JP2013072734A - Gap amount measurement device and gap amount measurement method - Google Patents

Gap amount measurement device and gap amount measurement method Download PDF

Info

Publication number
JP2013072734A
JP2013072734A JP2011211606A JP2011211606A JP2013072734A JP 2013072734 A JP2013072734 A JP 2013072734A JP 2011211606 A JP2011211606 A JP 2011211606A JP 2011211606 A JP2011211606 A JP 2011211606A JP 2013072734 A JP2013072734 A JP 2013072734A
Authority
JP
Japan
Prior art keywords
human body
distance
body model
void
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211606A
Other languages
Japanese (ja)
Other versions
JP5791188B2 (en
Inventor
Hiromi Teraoka
裕美 寺岡
Shigeru Inui
滋 乾
Yosuke Horiba
洋輔 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Unicharm Corp
Original Assignee
Shinshu University NUC
Unicharm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Unicharm Corp filed Critical Shinshu University NUC
Priority to JP2011211606A priority Critical patent/JP5791188B2/en
Publication of JP2013072734A publication Critical patent/JP2013072734A/en
Application granted granted Critical
Publication of JP5791188B2 publication Critical patent/JP5791188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gap amount measurement device and a gap amount measurement method capable of accurately measuring an amount of a gap from a body regardless of a type of a wearing article.SOLUTION: A gap amount measurement device 1 includes: a distance measurement device 10 having a pedestal part 12 for mounting a human phantom 20 and a sensor part 11 for measuring a distance to a measurement object by projecting a laser beam to the measurement object; the human phantom 20 which is constituted of a member for transmitting the laser beam of the sensor part 11 and is opened at an upper part, and whose inside is formed in a cavity shape; and an arithmetic unit 30 for calculating a gap amount between the wearing article and the human phantom from the distance measured by the distance measurement device 10. At the time, the sensor part 11 measures the distance to a wearing surface by projecting the laser beam to the wearing surface of the wearing article worn by the human phantom 20 from the inside of the human phantom 20, and the arithmetic unit 30 calculates the gap amount from the distance to the wearing surface of the wearing article.

Description

本発明は、人体模型に着用された着用物と当該人体模型との間の空隙量を測定する空隙量測定装置及び空隙量測定方法に関する。   The present invention relates to a void amount measuring apparatus and a void amount measuring method for measuring a void amount between a worn article worn on a human body model and the human body model.

身体から排泄される尿や経血などの液体を吸収するものとして、生理用ナプキンやおりもの用シートなどの吸収性物品が広く知られている。このような吸収性物品では、身体との間に隙間が生じると漏れの原因となるため、着用時の隙間を適切に把握する仕組みが求められる。   Absorbent articles such as sanitary napkins and vaginal discharge sheets are widely known as devices that absorb liquids such as urine and menstrual blood excreted from the body. In such an absorbent article, a gap between the body and the body causes leakage, so a mechanism for appropriately grasping the gap when worn is required.

ここで、身体と衣服との間の隙間を測定する試みとしては、例えば、非特許文献1に記載された方法が知られている。この非特許文献1では、人体模型の外表面の3次元形状と、人体模型に衣服を着用させたときの外表面の3次元形状と、を計測し、両形状の差分を算出することで、身体と衣服との隙間を測定することとしている。   Here, as an attempt to measure the gap between the body and clothes, for example, a method described in Non-Patent Document 1 is known. In this Non-Patent Document 1, by measuring the three-dimensional shape of the outer surface of the human body model and the three-dimensional shape of the outer surface when clothes are worn on the human body model, calculating the difference between both shapes, The gap between the body and clothes is to be measured.

山本 真理子、「パンツの間隙量と衣服圧、着用感の関係」、東京都立産業技術研究センター 研究報告第4号(平成13年度)Mariko Yamamoto, “Relationship between Pants Clearance, Clothing Pressure, and Wearing Feeling”, Tokyo Metropolitan Industrial Technology Research Center, Research Report No. 4 (2001)

しかしながら、外表面の形状から空隙量を測定する非特許文献1の方法では、生理用ナプキンのように他の衣服を重ねて使用する着用物や、オムツのように厚さを無視できない着用物の空隙量を測定する際に誤差が生じてしまい、正確な空隙量を測定することができない。   However, according to the method of Non-Patent Document 1 that measures the void amount from the shape of the outer surface, it is possible to wear a worn item such as a sanitary napkin, or a worn item such as a diaper whose thickness cannot be ignored. An error occurs when measuring the void amount, and the accurate void amount cannot be measured.

そこで、本発明では、着用物の種別に関わらず身体との間の空隙量を正確に測定することのできる空隙量測定装置及び空隙量測定方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a void amount measuring device and a void amount measuring method capable of accurately measuring the void amount between the body and the body regardless of the type of the wearing item.

本発明は、人体模型に着用された着用物と前記人体模型との間の空隙量を測定する空隙量測定装置であって、光束を透過する部材で構成され、上部が開口するとともにその内部が空洞状に形成された人体模型と、前記人体模型を載置する台座部、及び対象物に対して光束を投光することで当該対象物までの距離を測定するセンサ部を備える距離測定装置と、前記距離測定装置が測定した距離に基づいて前記空隙量を算出する演算装置と、を備え、前記距離測定装置は、前記センサ部により前記人体模型の内部から当該人体模型に着用された着用物の着用面に対して前記光束を投光することで前記着用面までの距離を測定し、前記演算装置は、前記センサ部により測定された前記着用面までの距離と、前記センサ部により測定された前記人体模型までの距離と、に基づいて前記空隙量を算出する空隙量測定装置に関する。   The present invention is an air gap amount measuring device for measuring the air gap between an object worn on a human body model and the human body model, and is composed of a member that transmits a light beam. A distance measuring device including a human body model formed in a hollow shape, a pedestal unit on which the human body model is placed, and a sensor unit that measures a distance to the object by projecting a light beam onto the object; An arithmetic device that calculates the gap amount based on the distance measured by the distance measuring device, and the distance measuring device is worn on the human model from the inside of the human model by the sensor unit. The distance to the wearing surface is measured by projecting the light beam onto the wearing surface, and the computing device is measured by the sensor unit and the distance to the wearing surface measured by the sensor unit. Said human body And the distance to, of the gap measuring device for calculating the void content based on.

このとき、前記センサ部は、前記台座部の上方に設置され、前記人体模型の開口から前記光束を投光することで、前記着用物の着用面に対して前記光束を投光することが好ましい。   At this time, it is preferable that the sensor unit is installed above the pedestal unit and projects the light beam onto the wearing surface of the wearing object by projecting the light beam from an opening of the human body model. .

また、前記人体模型は、所定の線径及び網目寸法を有するステンレス製の金網で構成されることが好ましい。   Moreover, it is preferable that the said human body model is comprised with the metal mesh made from stainless steel which has a predetermined | prescribed wire diameter and mesh size.

また、前記人体模型は、水平面及び前記水平面に対して所定角度で立ち上がった側面を有し、前記距離測定装置は、前記センサ部による前記光束の投光角度を変更可能な角度調節部を備え、前記演算装置は、前記人体模型の前記側面までの距離を、前記センサ部が測定した距離及び前記投光角度に基づいて演算することが好ましい。   Further, the human body model has a horizontal surface and a side surface rising at a predetermined angle with respect to the horizontal surface, and the distance measuring device includes an angle adjusting unit capable of changing a light projection angle of the light beam by the sensor unit, It is preferable that the calculation device calculates a distance to the side surface of the human body model based on the distance measured by the sensor unit and the light projection angle.

また、本発明は、上記空隙量測定装置を用いて人体模型に着用された着用物と前記人体模型との間の空隙量を測定する空隙量測定方法であって、前記人体模型に前記光束を反射する反射シートを貼付した状態で前記人体模型までの距離を測定する工程と、前記人体模型から前記反射シートを剥がした状態で前記着用面までの距離を測定する工程と、前記人体模型までの距離と前記着用面までの距離とに基づいて前記空隙量を算出する工程と、を含む空隙量測定方法に関する。   Further, the present invention is a void amount measuring method for measuring a void amount between an object worn on a human body model and the human body model using the void amount measuring apparatus, wherein the luminous flux is applied to the human body model. A step of measuring a distance to the human body model in a state where a reflective sheet is reflected, a step of measuring a distance to the wearing surface in a state where the reflective sheet is peeled off from the human body model, and the human body model And a step of calculating the void amount based on a distance and a distance to the wearing surface.

本発明によれば、着用物の外表面の形状(距離)ではなく、着用物の着用面の形状(距離)を用いて空隙量を算出するため、着用物の種別に関わらず身体との間の空隙量を正確に測定することができる。   According to the present invention, since the void amount is calculated using not the shape (distance) of the outer surface of the wearing item but the shape (distance) of the wearing surface of the wearing item, Can be accurately measured.

本発明の空隙量測定装置の構成を示す図である。It is a figure which shows the structure of the void | hole amount measuring apparatus of this invention. 距離測定装置のセンサ部の投光角度の変更を示す図である。It is a figure which shows the change of the light projection angle of the sensor part of a distance measuring device. 人体模型の外観を示す図である。It is a figure which shows the external appearance of a human body model. 空隙量測定装置による空隙量測定を模式的に示す図である。It is a figure which shows typically the void | hole amount measurement by a void | hole amount measuring apparatus. 距離測定装置による距離の測定を模式的に示す図である。It is a figure which shows typically the measurement of the distance by a distance measuring device. センサ座標系から全体座標系への変換の例を示す図である。It is a figure which shows the example of conversion from a sensor coordinate system to a global coordinate system. 空隙量測定装置により測定した空隙量の分布を示す図である。It is a figure which shows distribution of the space | gap amount measured with the space | gap amount measuring apparatus. 実施例で用いた試料の形状を示す図である。It is a figure which shows the shape of the sample used in the Example. 実施例で用いた試料の分割領域を示す図である。It is a figure which shows the division area | region of the sample used in the Example. 実施例の測定結果を示すグラフである。It is a graph which shows the measurement result of an Example.

以下、本発明の空隙量測定装置1の好ましい実施形態について、図面を参照しながら説明する。   Hereinafter, a preferred embodiment of the void amount measuring apparatus 1 of the present invention will be described with reference to the drawings.

[空隙量測定装置1の構成]
本発明の空隙量測定装置1は、測定対象物までの距離、より詳細には当該距離から算出した測定対象物の3次元形状に基づいて、人体模型と着用物の着用面との間の空隙量を算出する。3次元形状の測定は、例えば、測定対象物に対して投光した所定のレーザー光(光束)の反射光を受光し、三角測距の原理で距離情報を得て、3次元データ化することで実現することができる。図1を参照して、本発明の空隙量測定装置1は、距離測定装置10と、人体模型20と、演算装置30と、を含んで構成される。
[Configuration of void volume measuring device 1]
The gap amount measuring device 1 of the present invention is based on the distance to the measurement object, more specifically, the gap between the human body model and the wearing surface of the wearable object based on the three-dimensional shape of the measurement object calculated from the distance. Calculate the amount. The measurement of the three-dimensional shape includes, for example, receiving reflected light of a predetermined laser beam (light beam) projected onto the measurement object, obtaining distance information based on the principle of triangulation, and converting it to three-dimensional data. Can be realized. Referring to FIG. 1, the void amount measuring device 1 of the present invention includes a distance measuring device 10, a human body model 20, and an arithmetic device 30.

距離測定装置10は、測定対象物の距離を測定する測定装置であり、センサ部11と、台座部12と、ガイド部13と、を含んで構成される。   The distance measuring device 10 is a measuring device that measures the distance of an object to be measured, and includes a sensor unit 11, a pedestal unit 12, and a guide unit 13.

センサ部11は、点あるいは線状のレーザー光を投光することで、測定対象物までの距離を測定するレーザー距離計であり、本実施形態では、KEYENCE社製のLK−G500を用いることとしている。センサ部11は、距離情報を測定すると、当該距離情報を演算装置30の制御部31に出力する。
台座部12は、センサ部11により距離を測定する測定対象物を載置する土台であり、センサ部11の下方に設けられる。
The sensor unit 11 is a laser distance meter that measures the distance to a measurement object by projecting a point or linear laser beam. In this embodiment, the LK-G500 manufactured by KEYENCE is used. Yes. When measuring the distance information, the sensor unit 11 outputs the distance information to the control unit 31 of the arithmetic device 30.
The pedestal portion 12 is a base on which a measurement object whose distance is measured by the sensor portion 11 is placed, and is provided below the sensor portion 11.

ここで、本実施形態では、レーザー光を用いて測定する測定対象物を立体形状の人体模型20としているため、測定対象物である人体模型20全体の表面形状を測定するためには、センサ部11や人体模型20を適宜移動する必要がある。   Here, in this embodiment, since the measuring object to be measured using laser light is the three-dimensional human body model 20, in order to measure the surface shape of the entire human body model 20 as the measuring object, the sensor unit 11 and the human body model 20 need to be moved appropriately.

そこで、距離測定装置10は、台座部12の移動を規制するガイド部13を備えることとしている。本実施形態では、ガイド部13は、台座部12を図中X方向(幅方向)及びY方向(奥行き方向)に移動可能に規制する。なお、ガイド部13の規制する移動方向は、X方向及びY方向に限られず、台座部12をZ方向(上下方向)に移動可能に規制することとしてもよい。   Therefore, the distance measuring device 10 includes a guide portion 13 that restricts the movement of the pedestal portion 12. In the present embodiment, the guide portion 13 restricts the pedestal portion 12 so as to be movable in the X direction (width direction) and the Y direction (depth direction) in the drawing. The movement direction regulated by the guide portion 13 is not limited to the X direction and the Y direction, and the pedestal portion 12 may be regulated to be movable in the Z direction (vertical direction).

また、距離測定装置10は、図2に示すようにレーザー光の投光角度(俯角)を変更可能にセンサ部11を設置する。本実施形態では、センサ部11は、Y方向に所定の角度(Θ)までレーザー光を投光可能に設置されている。なお、センサ部11の変更可能な投光角度は、Y方向に限られず、X方向に所定の角度(Θ)まで投光可能に設置することとしてもよい。このようなセンサ部11の投光角度の変更は、角度調節部(図示せず)を用いて行うことができる。また、センサ部11は、投光角度だけでなく、台座部12からの高さを変更可能に設置されることとしてもよい。このようなセンサ部11の高さの変更は、公知の高度調節部(図示せず)を用いて行うことができる。   Moreover, the distance measuring apparatus 10 installs the sensor unit 11 so that the projection angle (the depression angle) of the laser beam can be changed as shown in FIG. In the present embodiment, the sensor unit 11 is installed so that laser light can be projected to a predetermined angle (Θ) in the Y direction. The changeable light projection angle of the sensor unit 11 is not limited to the Y direction, and may be installed so that light can be projected up to a predetermined angle (Θ) in the X direction. Such a change in the projection angle of the sensor unit 11 can be performed using an angle adjustment unit (not shown). Moreover, the sensor part 11 is good also as installing not only a light projection angle but the height from the base part 12 so that a change is possible. Such a change in the height of the sensor unit 11 can be performed using a known altitude adjusting unit (not shown).

なお、センサ部11の投光角度や高さの変更、台座部12の移動は、手動又は演算装置30(制御部31)の制御に基づき自動で行うことができる。また、センサ部11の投光角度や高さ、台座部12の位置情報(XY座標)は、センサ部11が測定した距離情報とともに、演算装置30の制御部31に出力される。   In addition, the change of the projection angle and height of the sensor unit 11 and the movement of the pedestal unit 12 can be performed manually or automatically based on the control of the arithmetic unit 30 (the control unit 31). Further, the projection angle and height of the sensor unit 11 and the position information (XY coordinates) of the pedestal unit 12 are output to the control unit 31 of the arithmetic unit 30 together with the distance information measured by the sensor unit 11.

図3に示すように、人体模型20は、成人女性の立体腰部表面形状の人体模型である。ここで、本実施形態では、人体模型20に着用物を着用させた上で、人体模型20を透過したレーザー光を用いて着用物の着用面までの距離を測定することとしている。すなわち、センサ部11のレーザー光は、人体模型20の内部から着用物の着用面に投光される。そのため、人体模型20は、センサ部11のレーザー光を透過する部材で構成され、上部が開口するとともにその内部が空洞に形成されている。
なお、レーザー光を透過する部材については、任意の部材を用いることができ、例えば、所定の線径及び網目寸法の金網や、透明アクリル板を用いることができる。ただし、透明アクリル板を用いた場合には、レーザー光が透明アクリル板を透過する際に屈折してしまうため、金網を用いた方がより好適である。網目構造の場合には、レーザー光が線部で遮断されてしまうが、屈折による影響が少なく、高精度な形状を取得することができるためである。そこで、本実施形態では、線径0.8mm、網目寸法5.0mmのステンレス製の金網で作成した人体模型20を用いることとしている。
As shown in FIG. 3, the human body model 20 is a human body model of a three-dimensional waist surface shape of an adult female. Here, in this embodiment, after the human body model 20 is made to wear an object to be worn, the distance to the wearing surface of the object to be worn is measured using laser light that has passed through the human body model 20. That is, the laser light of the sensor unit 11 is projected from the inside of the human body model 20 onto the wearing surface of the wearing article. Therefore, the human body model 20 is composed of a member that transmits the laser light of the sensor unit 11, and the upper part is opened and the inside is formed in a cavity.
In addition, about the member which permeate | transmits a laser beam, arbitrary members can be used, For example, the wire mesh of a predetermined | prescribed wire diameter and mesh size, and a transparent acrylic board can be used. However, when a transparent acrylic plate is used, the laser beam is refracted when it passes through the transparent acrylic plate, so it is more preferable to use a wire mesh. In the case of a network structure, the laser light is blocked by the line portion, but is less affected by refraction and a highly accurate shape can be obtained. Therefore, in this embodiment, the human body model 20 made of a stainless steel wire net having a wire diameter of 0.8 mm and a mesh size of 5.0 mm is used.

このように立体腰部表面形状の人体模型20は、内部が空洞状であるため、内部表面は股部表面201と、腹部表面202と、尻部表面203と、を含んで構成されることになる(図3(C))。このとき、股部表面201は、略水平面であり、腹部表面202及び尻部表面203は、股部表面201から略垂直方向に立ち上がった側面である。
なお、本実施形態では、人体模型20は、腹側が前面を向くように台座部12に載せられているものとする。
As described above, the human body model 20 having the three-dimensional waist surface shape is hollow, and therefore, the inner surface includes the crotch surface 201, the abdomen surface 202, and the buttocks surface 203. (FIG. 3C). At this time, the crotch surface 201 is a substantially horizontal plane, and the abdomen surface 202 and the buttocks surface 203 are side surfaces rising from the crotch surface 201 in a substantially vertical direction.
In the present embodiment, it is assumed that the human body model 20 is placed on the pedestal portion 12 so that the ventral side faces the front.

図1に戻り、演算装置30は、距離測定装置10が測定した距離に基づいて人体模型20と着用物との間の隙間(空隙量)を算出し、適宜出力する。このような演算装置30は、制御部31と、記憶部32と、図示しない入力部及び表示部などと、を含む一般的なコンピュータを用いることができる。なお、演算装置30は、距離測定装置10自体に設けることとしてもよく、また、距離測定装置10と通信可能に接続された別体の装置を用いることとしてもよい。   Returning to FIG. 1, the arithmetic device 30 calculates a gap (amount of gap) between the human body model 20 and the wearable object based on the distance measured by the distance measuring device 10 and outputs it appropriately. Such a calculation device 30 can use a general computer including a control unit 31, a storage unit 32, an input unit and a display unit (not shown), and the like. The arithmetic device 30 may be provided in the distance measuring device 10 itself, or may be a separate device that is communicably connected to the distance measuring device 10.

制御部31は、記憶部32に記憶されたプログラムに従い空隙量測定装置1全体を制御する。例えば、制御部31は、センサ部11から出力された距離情報及び投光角度と、台座部12の位置情報とに基づいて、人体模型20と着用物との間の隙間を算出する。すなわち、図4に示すように、センサ部11から着用物40の着用面401までの距離Lと、センサ部11から人体模型20までの距離Iと、の差分を算出することで、人体模型20と着用物40との間の隙間を算出する。より詳細には、制御部31は、距離Lから着用面401の3次元形状を測定するとともに、距離Iから人体模型20の3次元形状を測定し、両3次元形状を比較することで、人体模型20と着用物40との間の隙間を算出する。
このとき、本実施形態では、人体模型20を透過したレーザー光を着用物40の着用面401に投光することで、着用物40の外表面402ではなく着用面401までの距離Lを測定することとしている。これにより、着用物40の種別に関わらず人体模型20との間の隙間を正確に測定することができる。
The control unit 31 controls the entire gap amount measuring device 1 according to the program stored in the storage unit 32. For example, the control unit 31 calculates the gap between the human body model 20 and the wearing object based on the distance information and the projection angle output from the sensor unit 11 and the position information of the pedestal unit 12. That is, as shown in FIG. 4, the human body model 20 is calculated by calculating the difference between the distance L from the sensor unit 11 to the wearing surface 401 of the article 40 and the distance I from the sensor unit 11 to the human body model 20. And the gap between the item 40 and the wearable item 40 are calculated. More specifically, the control unit 31 measures the three-dimensional shape of the wearing surface 401 from the distance L, measures the three-dimensional shape of the human body model 20 from the distance I, and compares both the three-dimensional shapes, whereby the human body A gap between the model 20 and the wear 40 is calculated.
At this time, in the present embodiment, the distance L to the wearing surface 401 rather than the outer surface 402 of the wearing item 40 is measured by projecting the laser beam transmitted through the human body model 20 onto the wearing surface 401 of the wearing item 40. I am going to do that. Thereby, the clearance gap between the human body models 20 can be measured correctly irrespective of the kind of the wearing article 40.

なお、レーザー光を透過する部材で構成される人体模型20までの距離Iは、任意の方法で測定することができ、例えば、記憶部32に予め記憶しておくこととしてもよく、また、人体模型20にレーザー光を反射する反射シートを貼付した上で、センサ部11を用いて測定することとしてもよい。このとき、反射シートは、厚さの無視できるものであることが好ましく、例えば、カラー粘着テープを用いることができる。貼付した反射シートは、着用面401までの距離Lの測定時には剥がすものとする。   The distance I to the human body model 20 formed of a member that transmits laser light can be measured by any method, and may be stored in advance in the storage unit 32, for example. It is good also as measuring using the sensor part 11, after sticking the reflective sheet which reflects a laser beam to the model 20. FIG. At this time, it is preferable that the reflection sheet has a negligible thickness, and for example, a color adhesive tape can be used. The attached reflection sheet is peeled off when measuring the distance L to the wearing surface 401.

ここで、本実施形態では、図1に示すように、センサ部11を人体模型20の上方に設置し、人体模型20の開口からレーザー光を投光することとしているが、これに限られるものではなく、センサ部11の形状や大きさによっては、人体模型20の内部に配置することとしてもよい。   Here, in this embodiment, as shown in FIG. 1, the sensor unit 11 is installed above the human body model 20, and laser light is projected from the opening of the human body model 20. Instead, depending on the shape and size of the sensor unit 11, it may be arranged inside the human body model 20.

記憶部32は、制御部31が実行する各種プログラムや制御部31の演算結果を記憶する。   The storage unit 32 stores various programs executed by the control unit 31 and calculation results of the control unit 31.

[3次元形状の測定方法]
以上、本発明の空隙量測定装置1の構成について説明した。続いて、図5及び図6を参照して、人体模型20や着用物40の着用面401の3次元形状の測定方法について説明する。なお、以下では、着用物40の着用面401の3次元形状の測定を例にとり説明するが、人体模型20の3次元形状の測定についても同様の方法により行うことができる。
[Measurement method of three-dimensional shape]
The configuration of the void amount measuring apparatus 1 according to the present invention has been described above. Then, with reference to FIG.5 and FIG.6, the measuring method of the three-dimensional shape of the wearing surface 401 of the human body model 20 or the wearing article 40 is demonstrated. In the following description, the measurement of the three-dimensional shape of the wearing surface 401 of the article 40 will be described as an example, but the measurement of the three-dimensional shape of the human body model 20 can also be performed by the same method.

初めに、図5を参照して、着用物40の着用面401までの距離Lの具体的な測定方法について説明する。
略水平面の股部表面201に対しては、台座部12をX方向及びY方向に移動することで、上方に設置されたセンサ部11を用いて距離Lを測定することができる。他方、股部表面201から立ち上がった腹部表面202及び尻部表面203に対しては、上方に設置されたセンサ部11からレーザー光を投光することができず、X方向及びY方向に移動しただけでは、距離Lを測定することができない。そこで、センサ部11の投光角度をY方向に所定角度変更した上で、台座部12をY方向に移動したりセンサ部11をZ方向に移動したりすることで、腹部表面202及び尻部表面203までの距離Lを測定することとしている(必要があればX方向への変更を行うこととしてもよい)。
First, a specific method for measuring the distance L to the wearing surface 401 of the wearing article 40 will be described with reference to FIG.
For the crotch surface 201 in a substantially horizontal plane, the distance L can be measured using the sensor unit 11 installed above by moving the pedestal unit 12 in the X direction and the Y direction. On the other hand, the abdomen surface 202 and the buttocks surface 203 rising from the crotch surface 201 cannot project laser light from the sensor unit 11 installed above, and move in the X direction and the Y direction. Only the distance L cannot be measured. Therefore, by changing the light projection angle of the sensor unit 11 by a predetermined angle in the Y direction, the abdomen surface 202 and the buttocks are moved by moving the pedestal unit 12 in the Y direction or moving the sensor unit 11 in the Z direction. The distance L to the surface 203 is measured (if necessary, the change in the X direction may be performed).

センサ部11により測定された距離Lは、台座部12の位置情報(X,Y)やセンサ部11の高度情報(H)とともに演算装置30の制御部31に出力され、制御部31により3次元データ化されることで、3次元形状の測定が行われる。すなわち、制御部31は、センサ座標系(X,Y,L)を全体座標系(x、y、z)に変換することで、3次元形状を測定する。   The distance L measured by the sensor unit 11 is output to the control unit 31 of the arithmetic unit 30 together with the position information (X, Y) of the pedestal unit 12 and the altitude information (H) of the sensor unit 11, and the control unit 31 performs three-dimensional By converting to data, a three-dimensional shape is measured. That is, the control unit 31 measures the three-dimensional shape by converting the sensor coordinate system (X, Y, L) to the global coordinate system (x, y, z).

センサ座標系の全体座標系への変換は、図6や以下の式により行うことができる。

Figure 2013072734
Conversion of the sensor coordinate system to the global coordinate system can be performed by FIG. 6 or the following equation.
Figure 2013072734

なお、本実施形態では、センサ部11の投光角度をY方向に変更可能にしているため、センサ座標系Xをそのまま全体座標系xとしているが、センサ部11の投光角度をX方向に変更可能にした場合には、センサ座標系Yから全体座標系yへの変換と同様にセンサ部11の投光角度Θを用いてセンサ座標系Xから全体座標系xへの変換を行う。   In the present embodiment, since the light projection angle of the sensor unit 11 can be changed in the Y direction, the sensor coordinate system X is used as the entire coordinate system x, but the light projection angle of the sensor unit 11 is set in the X direction. When the change is made possible, the conversion from the sensor coordinate system X to the global coordinate system x is performed using the projection angle Θ of the sensor unit 11 in the same manner as the conversion from the sensor coordinate system Y to the global coordinate system y.

[空隙量の測定]
続いて、本発明の空隙量測定装置1による空隙量の測定結果を図7に示す。図7では、吸収体(生理用ナプキン)を固着したショーツを人体模型20に着用させた際のショーツ及び吸収体(以下、単に「着用物」とする)と人体模型20との間の空隙量を測定している。なお、図7では、人体模型20と着用物との垂直方向(Z方向)の差分を空隙量として測定している。
[Measurement of void volume]
Then, the measurement result of the void amount by the void amount measuring apparatus 1 of the present invention is shown in FIG. In FIG. 7, when the human body model 20 is worn with the shorts to which the absorbent body (sanitary napkin) is fixed, the gap between the short body and the absorbent body (hereinafter simply referred to as “wear”) and the human body model 20. Is measuring. In FIG. 7, the difference in the vertical direction (Z direction) between the human body model 20 and the worn article is measured as the gap amount.

人体模型20の金網部分については、レーザー光が遮断されるため正確な空隙量を算出することができないものの、その他の部分(網目状の部分)については、人体模型20の表面形状と着用物の着用面の形状とから図7(A)に示すように空隙量分布を算出することができた。
このとき、吸収体が接触している領域に注目すると、吸収体の中央から腹側の領域(腹部表面202側)では空隙がほとんどない密着状態であるのに対し、背側の領域(尻部表面203側)では主に臀列において最大40mm程度の顕著な隙間があることが分かった。
また、前額面と平行な断面(E−E断面)では、吸収体が左右大腿部に挟まれることにより凸状に変形した結果、中央部に比べ端部の隙間が大きい様子なども測定することができた(図7(B))。
For the wire mesh portion of the human body model 20, the laser beam is blocked, so that the accurate void amount cannot be calculated. However, for the other portions (network portion), the surface shape of the human body model 20 and the wearable object From the shape of the wearing surface, the void amount distribution could be calculated as shown in FIG.
At this time, when attention is paid to the region where the absorber is in contact, the region on the abdominal side (abdominal surface 202 side) from the center of the absorber is in a close contact state with almost no gap, whereas the region on the back side (butt portion) On the surface 203 side), it was found that there was a remarkable gap of about 40 mm at the maximum mainly in the row.
Moreover, in a cross section parallel to the frontal plane (EE cross section), the state in which the gap between the end portions is larger than the central portion is measured as a result of the absorber being deformed into a convex shape by being sandwiched between the left and right thighs. (FIG. 7B).

以上のことから、本発明の空隙量測定装置1によれば、生理用ナプキンのように他の衣服と重ねて使用する着用物やオムツのように厚さを無視できない着用物のように、従来の方法では測定困難であった着用物の空隙量を正確に測定することができる。   From the above, according to the void amount measuring apparatus 1 of the present invention, as in a worn article such as a sanitary napkin or a worn article such as a diaper or a worn article that cannot be ignored in thickness, It is possible to accurately measure the void amount of the worn article, which was difficult to measure by this method.

[空隙量測定装置1の効果]
以上の空隙量測定装置1によれば、以下のような効果を奏する。
[Effect of void amount measuring device 1]
According to the void amount measuring apparatus 1 described above, the following effects can be obtained.

(1)空隙量測定装置1を、人体模型20を載置する台座部12及び測定対象物に対してレーザー光を投光することで当該測定対象物までの距離を測定するセンサ部11を備える距離測定装置10と、センサ部11のレーザー光を透過する部材で構成され、上部が開口するとともにその内部が空洞状に形成された人体模型20と、距離測定装置10が測定した距離から着用物の3次元形状を測定し、人体模型20の3次元形状と比較することで人体模型に着用された着用物と人体模型との間の空隙量を算出する演算装置30と、を備える構成とした。このとき、センサ部11は、人体模型20の内部から当該人体模型20に着用された着用物の着用面に対してレーザー光を投光することで着用面までの距離Lを測定し、演算装置30は、人体模型20の3次元形状と、着用物の着用面の3次元形状と、を比較することで、空隙量を算出することとした。   (1) The void amount measuring device 1 includes a pedestal unit 12 on which the human body model 20 is placed and a sensor unit 11 that measures the distance to the measurement object by projecting laser light onto the measurement object. The distance measuring device 10 and a human body model 20 that is configured by a member that transmits the laser light of the sensor unit 11 and that has an opening at the top and is formed in a hollow shape, and the distance measured by the distance measuring device 10 The calculation device 30 is configured to measure a three-dimensional shape of the human body model 20 and to calculate a void amount between the wearable item worn on the human body model and the human body model by comparing with the three-dimensional shape of the human body model 20. . At this time, the sensor unit 11 measures the distance L to the wearing surface by projecting laser light from the inside of the human body model 20 to the wearing surface of the wearing object worn on the human body model 20, and the arithmetic unit. No. 30, the amount of voids was calculated by comparing the three-dimensional shape of the human body model 20 with the three-dimensional shape of the wearing surface of the worn article.

これにより、着用物の外表面の形状ではなく、着用物の着用面の形状を用いて空隙量を算出することができ、着用物の種別に関わらず身体との間の空隙量を正確に測定することができる。   As a result, the amount of voids can be calculated using the shape of the wearing surface of the wearing item, not the shape of the outer surface of the wearing item, and the amount of void between the body can be accurately measured regardless of the type of wearing item can do.

(2)このとき、センサ部11は、台座部12の上方に設置され、人体模型20の開口からレーザー光を投光することで、着用物の着用面に対して光束を投光する構成とした。
これにより、人体模型20の空洞部分に設置することができない形状及び大きさのセンサであっても、正確な空隙量を測定することができる。
(2) At this time, the sensor unit 11 is installed above the pedestal unit 12, and projects a laser beam onto the wearing surface of the wearing article by projecting a laser beam from the opening of the human body model 20. did.
Thereby, even if it is a sensor of the shape and magnitude | size which cannot be installed in the cavity part of the human body model 20, the exact amount of space | gap can be measured.

(3)また、人体模型20は、所定の線径及び網目寸法を有するステンレス製の金網で構成することとした。
これにより、網目状の部分については人体模型20の部材によるレーザー光の屈折を考慮することなく、適切な空隙量を算出することができる。
(3) The human body model 20 is made of a stainless steel wire mesh having a predetermined wire diameter and mesh size.
As a result, an appropriate gap amount can be calculated for the mesh portion without considering the refraction of the laser beam by the member of the human body model 20.

(4)また、距離測定装置10は、センサ部11によるレーザー光の投光角度(俯角)を変更可能な角度調節部を備え、演算装置30は、人体模型20(着用物)の内表面のうち、略水平面の股部表面201から略垂直方向に立ち上がった腹部表面202及び尻部表面203の形状をセンサ部11が測定した距離及びセンサ部11の投光角度に基づいて測定することとした。
これにより、人体模型20や着用物の着用面の3次元形状を適切に測定することができ、正確な空隙量を測定することができる。
(4) Further, the distance measuring device 10 includes an angle adjusting unit that can change a light projection angle (declining angle) of the laser beam by the sensor unit 11, and the arithmetic device 30 is provided on the inner surface of the human body model 20 (wearing object). Among them, the shape of the abdominal surface 202 and the buttocks surface 203 rising from the substantially crotch surface 201 in a substantially vertical direction is measured based on the distance measured by the sensor unit 11 and the light projection angle of the sensor unit 11. .
Thereby, the three-dimensional shape of the human body model 20 and the wearing surface of a wearable object can be measured appropriately, and an accurate void amount can be measured.

(5)また、本発明の空隙量測定方法は、このように構成される空隙量測定装置1を用いて、人体模型20にレーザー光を反射する反射シートを貼付した状態で人体模型20までの距離を測定する工程と、人体模型20から反射シートを剥がした状態で着用面までの距離を測定する工程と、人体模型20までの距離と着用面までの距離とに基づいて空隙量を算出する工程と、を行うこととした。
これにより、レーザー光を透過する部材で構成した人体模型20の距離や形状をセンサ部11のレーザー光を用いて測定することができ、結果として、正確な空隙量を測定することができる。
(5) Moreover, the void | hole amount measuring method of this invention uses the void | hole amount measuring apparatus 1 comprised in this way, and the human body model 20 is attached to the human body model 20 in the state which stuck the reflective sheet which reflects a laser beam. The void amount is calculated based on the step of measuring the distance, the step of measuring the distance to the wearing surface with the reflective sheet peeled off from the human model 20, and the distance to the human model 20 and the distance to the wearing surface. And the process.
Thereby, the distance and the shape of the human body model 20 formed of a member that transmits laser light can be measured using the laser light of the sensor unit 11, and as a result, an accurate gap amount can be measured.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施例に記載されたものに限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to embodiment mentioned above. The effects described in the embodiments of the present invention are only the most preferable effects resulting from the present invention, and the effects of the present invention are limited to those described in the embodiments of the present invention. is not.

例えば、上記実施形態では、吸収体(生理用ナプキン)を固着したショーツと人体模型20との間の間隙量を測定しているが、これに限られるものではなく、本発明は、人体模型20に着用可能なその他の着用物に対して適用することができる。   For example, in the above embodiment, the gap amount between the shorts to which the absorbent body (sanitary napkin) is fixed and the human body model 20 is measured, but the present invention is not limited to this, and the present invention is not limited to this. It can be applied to other wearable items that can be worn on.

また、図7では、人体模型20と着用物との垂直方向(Z方向)の差分を空隙量として測定しているが、空隙量は、垂直方向の差分に限らず、測定する部位に応じて適宜設定可能である。   In FIG. 7, the difference in the vertical direction (Z direction) between the human body model 20 and the wearable object is measured as the gap amount. However, the gap amount is not limited to the difference in the vertical direction, and depends on the part to be measured. It can be set as appropriate.

続いて、本発明の空隙量測定装置1を用いた実施例に基づいて本発明をより詳細に説明する。なお、本発明はこれらの以下の実施例によって限定されるものではない。   Next, the present invention will be described in more detail based on examples using the void amount measuring apparatus 1 of the present invention. In addition, this invention is not limited by these following examples.

実施例では、後述の試料S1,S2,S3といった3種類の生理用ナプキンをショーツに固着した上で人体模型20に着用させ、人体模型20との間の間隙量を測定した。ここで、試料S1,S2,S3の3種類の生理用ナプキンの形状について、図8を参照して説明する。   In the example, three types of sanitary napkins such as samples S1, S2, and S3, which will be described later, were attached to the shorts and then worn on the human body model 20, and the amount of gap between the human body model 20 was measured. Here, the shapes of the three types of sanitary napkins of the samples S1, S2, and S3 will be described with reference to FIG.

3種類の生理用ナプキン50は、長手方向21cm、幅方向9cmの一般的な形状の生理用ナプキンである。生理用ナプキン50は、表面材とバックシートとの間に吸収体501と補強紙502とが挟まれホットメルト型接着剤により接着されている。このとき、表面材には、吸収体501によりエンボス加工503が形成されている。吸収体501の吸収層は、粉砕パルプと高吸収ポリマー(SAP)とが混合され、親水性のティッシュペーパー(目付け15g/m)で包まれている。 The three types of sanitary napkins 50 are sanitary napkins having a general shape of 21 cm in the longitudinal direction and 9 cm in the width direction. In the sanitary napkin 50, an absorbent body 501 and a reinforcing paper 502 are sandwiched between a surface material and a back sheet, and bonded with a hot melt adhesive. At this time, an embossing 503 is formed on the surface material by the absorber 501. The absorbent layer of the absorbent body 501 is a mixture of pulverized pulp and superabsorbent polymer (SAP), and is wrapped with a hydrophilic tissue paper (weight per unit area: 15 g / m 2 ).

表面材は、ポリエステル、ポリオレフィン系の30g/mのスルーエアー不織布であり、バックシートは、23g/mのポリエチレン樹脂製のフィルムである。また、表面材の両側に位置するサイドシート504は、15g/mでポリプロピレンの繊維からなる不織布であり、補強紙502は、30g/mである。 The surface material is a polyester, polyolefin-based 30 g / m 2 through-air nonwoven fabric, and the back sheet is a 23 g / m 2 polyethylene resin film. The side sheets 504 located on both sides of the surface material are nonwoven fabrics made of polypropylene fibers at 15 g / m 2 , and the reinforcing paper 502 is 30 g / m 2 .

このような形状の生理用ナプキン50において、試料S1,S2,S3では、吸収体501の目付け及び吸収体501の圧着の程度を異ならせることとした。
具体的には、試料S1は、粉砕パルプの目付け100g/m、SAPの目付け10g/mであり、試料S2,S3は、粉砕パルプの目付け300g/m、SAPの目付け30g/mである(試料S1の3倍)。また、試料S3は、試料S2に比べて2〜3倍程度の強い力をかけて吸収体501を圧着している。
In the sanitary napkin 50 having such a shape, in the samples S1, S2, and S3, the weight of the absorbent body 501 and the degree of pressure bonding of the absorbent body 501 are varied.
Specifically, the sample S1 has a basis weight of ground pulp of 100 g / m 2 and a basis weight of SAP of 10 g / m 2 , and the samples S2 and S3 have a basis weight of ground pulp of 300 g / m 2 and a basis weight of SAP of 30 g / m 2. (3 times the sample S1). In addition, the sample S3 presses the absorber 501 by applying a strong force about 2-3 times that of the sample S2.

実施例では、このような試料S1,S2,S3を固着したショーツを人体模型20に着用させ、空隙量の測定を実施した。測定においては、目付けや圧着の程度の違いに加え、経血などで生理用ナプキンが膨潤した際の空隙量の違いも測定するため、何も吸収していない状態(乾燥状態)と、標準的な1日の経血量に相当する45gの水を吸収している状態(吸収状態)とで空隙量分布を測定した。   In the example, shorts to which such samples S1, S2, and S3 were fixed were worn on the human body model 20, and the amount of voids was measured. In the measurement, in addition to the difference in the degree of weighting and crimping, the difference in the amount of voids when the sanitary napkin swells due to menstrual blood is also measured, so that nothing is absorbed (dry state) and standard The void volume distribution was measured while absorbing 45 g of water corresponding to the amount of menstrual blood per day (absorption state).

[目付けによる影響]
目付けが空隙量に与える影響を測定するため、夫々乾燥状態の試料S1,S2の空隙量を測定し、統計的検定を行った。このとき、空隙量の違いを詳細に検討するため、生理用ナプキンが装着されている領域を図9のように25分割し、分割された各領域の平均空隙量を求め、二元配置分散分析を行った。
図10(A)は、試料S1,S2の空隙量の測定結果を示すグラフである。多重比較の結果、生理用ナプキンの中央から腹側の領域で空隙が少なく、中央から尻側の領域で空隙が大きいという分布は、目付けの大小を問わず共通した特徴であるが、目付けが大きい試料S2では試料S1に比べて相対的に空隙が大きい傾向が見られた。より具体的には、試料S2は、領域18〜20及び領域23〜25において、試料S1に比べて空隙量が有意に大きいことが確認された。
このことから、空隙形成における目付けの影響は、主に臀裂周辺において現れ、その領域では目付けの増加に伴い空隙量が増加することが分かった。
[Effect of weight per unit]
In order to measure the influence of the basis weight on the void amount, the void amount of each of the dried samples S1 and S2 was measured, and a statistical test was performed. At this time, in order to examine the difference in the void amount in detail, the region where the sanitary napkin is attached is divided into 25 as shown in FIG. 9, the average void amount of each divided region is obtained, and a two-way analysis of variance is performed. Went.
FIG. 10A is a graph showing the measurement results of the void amount of samples S1 and S2. As a result of multiple comparisons, the distribution that the gap from the center to the ventral side of the sanitary napkin is small and the gap from the center to the hip side is large is a common feature regardless of the size of the basis weight, but the basis weight is large. In sample S2, there was a tendency for the voids to be relatively large compared to sample S1. More specifically, it was confirmed that sample S2 has a significantly larger amount of voids in regions 18 to 20 and regions 23 to 25 than sample S1.
From this, it was found that the effect of the fabric weight on the void formation mainly appears in the vicinity of the crack, and the void volume increases with the increase of the fabric weight in that region.

[圧着による影響]
圧着の程度が空隙量に与える影響を測定するため、夫々乾燥状態の試料S2,S3の空隙量を測定し、統計的検定を行った。このとき、空隙量の違いを詳細に検討するため、生理用ナプキンが装着されている領域を図9のように25分割し、分割された各領域の平均空隙量を求め、二元配置分散分析を行った。
図10(B)は、試料S2,S3の空隙量の測定結果を示すグラフである。多重比較の結果、臀裂周辺に見られる顕著な空隙は、圧着の程度を問わず共通した傾向であるが、生理用ナプキンの中央から腹側にかけては、圧着の程度による空隙量の差異が観察され、圧着の強い試料S3は、試料S2に比べ空隙が相対的に小さい傾向が見られた。より具体的には、領域8,9,13,14では、試料S2の方が試料S3よりも空隙が大きく、領域11,15では、試料S3の方が試料S2よりも空隙が大きいことが明らかになった。
領域8,9,13,14は、主に圧着により形成された表溝に囲まれた領域であり、一方、領域11,15は、主に大腿部近傍の表溝外側の領域であることから、表溝に囲まれた領域では、圧着の圧力が増すにつれて空隙が減少し、大腿部近傍の表溝外側の領域では空隙が増加することが分かった。
[Influence of crimping]
In order to measure the influence of the degree of pressure-bonding on the void amount, the void amount of each of the dried samples S2 and S3 was measured, and a statistical test was performed. At this time, in order to examine the difference in the void amount in detail, the region where the sanitary napkin is attached is divided into 25 as shown in FIG. 9, the average void amount of each divided region is obtained, and a two-way analysis of variance is performed. Went.
FIG. 10B is a graph showing the measurement results of the void amounts of the samples S2 and S3. As a result of multiple comparisons, the remarkable voids found around the cracks tend to be common regardless of the degree of crimping, but a difference in the amount of voids depending on the degree of crimping is observed from the center to the ventral side of the sanitary napkin. In addition, the sample S3 having strong pressure bonding tended to have a relatively small gap compared to the sample S2. More specifically, in regions 8, 9, 13, and 14, sample S2 has a larger gap than sample S3, and in regions 11 and 15, sample S3 has a larger gap than sample S2. Became.
Regions 8, 9, 13, and 14 are regions surrounded by front grooves mainly formed by pressure bonding, while regions 11 and 15 are regions outside the front grooves mainly near the thighs. From the results, it was found that in the region surrounded by the front groove, the air gap decreased as the pressure of the crimping increased, and in the region outside the front groove near the thigh, the air gap increased.

[吸収の有無による影響]
吸収の有無が空隙量に与える影響を測定するため、乾燥状態及び吸収状態の試料S1,S2,S3の空隙量を測定し、統計的検定を行った。
図10(C)は、乾燥状態及び吸収状態の空隙量の測定結果を示すグラフである。多重比較の結果、いずれの試料S1,S2,S3においても乾燥状態に比べ吸収状態における空隙が相対的に小さい傾向が見られた。
なお、空隙量の違いを詳細に検討するため、生理用ナプキンが装着されている領域を図9のように25分割し、分割された各領域の平均空隙量を求め、二元配置分散分析を行ったが、吸収の有無と領域の交互作用において有意差はなく、吸収の有無に関する主効果において有意差が認められた。
このことから、生理用ナプキンの領域に関わらず、吸収状態では、乾燥状態に比べて空隙量が減少することが分かった。
[Effect of presence or absence of absorption]
In order to measure the influence of the presence or absence of absorption on the void volume, the void volume of the samples S1, S2 and S3 in the dry state and the absorbed state was measured, and a statistical test was performed.
FIG. 10C is a graph showing the measurement results of the void amount in the dry state and the absorption state. As a result of the multiple comparison, in all the samples S1, S2, and S3, there was a tendency that the voids in the absorption state were relatively small as compared with the dry state.
In order to examine the difference in the void amount in detail, the region where the sanitary napkin is attached is divided into 25 as shown in FIG. 9, the average void amount of each divided region is obtained, and a two-way analysis of variance is performed. Although there was no significant difference in the presence or absence of absorption and the interaction between regions, there was a significant difference in the main effect regarding the presence or absence of absorption.
From this, it was found that the amount of voids decreased in the absorption state compared to the dry state regardless of the sanitary napkin region.

1 空隙量測定装置
10 距離測定装置
11 センサ部
12 台座部
13 ガイド
20 人体模型
30 演算装置
31 制御部
32 記憶部
DESCRIPTION OF SYMBOLS 1 Space | gap amount measuring apparatus 10 Distance measuring apparatus 11 Sensor part 12 Base part 13 Guide 20 Human body model 30 Arithmetic apparatus 31 Control part 32 Memory | storage part

Claims (5)

人体模型に着用された着用物と前記人体模型との間の空隙量を測定する空隙量測定装置であって、
光束を透過する部材で構成され、上部が開口するとともにその内部が空洞状に形成された人体模型と、
前記人体模型を載置する台座部、及び対象物に対して光束を投光することで当該対象物までの距離を測定するセンサ部を備える距離測定装置と、
前記距離測定装置が測定した距離に基づいて前記空隙量を算出する演算装置と、
を備え、
前記距離測定装置は、前記センサ部により前記人体模型の内部から当該人体模型に着用された着用物の着用面に対して前記光束を投光することで前記着用面までの距離を測定し、
前記演算装置は、前記センサ部により測定された前記着用面までの距離と、前記センサ部により測定された前記人体模型までの距離と、に基づいて、前記空隙量を算出する、
空隙量測定装置。
A void amount measuring device for measuring a void amount between an object worn on a human body model and the human body model,
A human body model that is composed of a member that transmits a light beam, the upper part is open and the inside is formed in a hollow shape;
A distance measuring device including a pedestal for placing the human body model, and a sensor for measuring a distance to the object by projecting a light beam to the object;
An arithmetic device that calculates the void amount based on the distance measured by the distance measuring device;
With
The distance measuring device measures the distance to the wearing surface by projecting the light flux from the inside of the human body model to the wearing surface worn on the human body model by the sensor unit,
The arithmetic device calculates the gap amount based on the distance to the wearing surface measured by the sensor unit and the distance to the human body model measured by the sensor unit.
Void volume measuring device.
前記センサ部は、前記台座部の上方に設置され、前記人体模型の開口から前記光束を投光することで、前記着用物の着用面に対して前記光束を投光する、
請求項1に記載の空隙量測定装置。
The sensor unit is installed above the pedestal unit, and projects the luminous flux onto the wearing surface of the wearing object by projecting the luminous flux from an opening of the human body model,
The void amount measuring apparatus according to claim 1.
前記人体模型は、所定の線径及び網目寸法を有するステンレス製の金網で構成される、
請求項1又は2の何れかに記載の空隙量測定装置。
The human body model is composed of a stainless steel wire mesh having a predetermined wire diameter and mesh size.
The void | hole amount measuring apparatus in any one of Claim 1 or 2.
前記人体模型は、水平面及び前記水平面に対して所定角度で立ち上がった側面を有し、
前記距離測定装置は、前記センサ部による前記光束の投光角度を変更可能な角度調節部を備え、
前記演算装置は、前記人体模型の前記側面までの距離を、前記センサ部が測定した距離及び前記投光角度に基づいて演算する、
請求項1〜3の何れかに記載の空隙量測定装置。
The human body model has a horizontal surface and a side surface rising at a predetermined angle with respect to the horizontal surface,
The distance measuring device includes an angle adjusting unit capable of changing a light projection angle of the light flux by the sensor unit,
The calculation device calculates the distance to the side surface of the human body model based on the distance measured by the sensor unit and the light projection angle.
The void | hole amount measuring apparatus in any one of Claims 1-3.
請求項1〜4に記載の空隙量測定装置を用いて人体模型に着用された着用物と前記人体模型との間の空隙量を測定する空隙量測定方法であって、
前記人体模型に前記光束を反射する反射シートを貼付した状態で前記人体模型までの距離を測定する工程と、
前記人体模型から前記反射シートを剥がした状態で前記着用面までの距離を測定する工程と、
前記人体模型までの距離と前記着用面までの距離とに基づいて前記空隙量を算出する工程と、
を含む空隙量測定方法。
A void amount measuring method for measuring a void amount between a worn article worn on a human body model and the human body model using the void amount measuring device according to claim 1,
Measuring a distance to the human body model in a state where a reflection sheet for reflecting the luminous flux is attached to the human body model;
Measuring the distance to the wearing surface in a state where the reflective sheet is peeled off from the human body model,
Calculating the void amount based on the distance to the human body model and the distance to the wearing surface;
A void amount measuring method including:
JP2011211606A 2011-09-27 2011-09-27 Void amount measuring apparatus and void amount measuring method Expired - Fee Related JP5791188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211606A JP5791188B2 (en) 2011-09-27 2011-09-27 Void amount measuring apparatus and void amount measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211606A JP5791188B2 (en) 2011-09-27 2011-09-27 Void amount measuring apparatus and void amount measuring method

Publications (2)

Publication Number Publication Date
JP2013072734A true JP2013072734A (en) 2013-04-22
JP5791188B2 JP5791188B2 (en) 2015-10-07

Family

ID=48477358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211606A Expired - Fee Related JP5791188B2 (en) 2011-09-27 2011-09-27 Void amount measuring apparatus and void amount measuring method

Country Status (1)

Country Link
JP (1) JP5791188B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535761A (en) * 2015-11-17 2018-12-06 エッジウェル パーソナル ケア ブランズ リミテッド ライアビリティ カンパニーEdgewell Personal Care Brands, LLC Four-dimensional analysis system, apparatus and method
GB2565833A (en) * 2017-08-25 2019-02-27 Oxford Caresense Ltd Wetness sensor
JP2020049008A (en) * 2018-09-27 2020-04-02 大王製紙株式会社 Positional deviation detection method and evaluation method of absorbent article
WO2022054538A1 (en) * 2020-09-09 2022-03-17 大王製紙株式会社 Wearable dummy for testing body liquid absorbent article, and test method for using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294502A (en) * 1990-03-29 1991-12-25 Kanebo Ltd Evaluation of supporting degree of stocking
JPH1176208A (en) * 1997-07-14 1999-03-23 Dan:Kk Merchandise selection system for stockings
US20050168756A1 (en) * 2002-04-12 2005-08-04 Corpus.E Ag Method for optically detecting the spatial form of inside spaces and a device for carrying out said method
JP2007010405A (en) * 2005-06-29 2007-01-18 Yokohama Rubber Co Ltd:The Method and device for measuring of dynamic landing shape of tire
JP2008175575A (en) * 2007-01-16 2008-07-31 Uni Charm Corp Displacement measuring method of wearing article, display method of displacement, followability evaluation method, and wearing comfort evaluation method
JP2010165345A (en) * 2008-12-19 2010-07-29 Kao Corp Finite element human body model for analyzing wearing state of wearing article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294502A (en) * 1990-03-29 1991-12-25 Kanebo Ltd Evaluation of supporting degree of stocking
JPH1176208A (en) * 1997-07-14 1999-03-23 Dan:Kk Merchandise selection system for stockings
US20050168756A1 (en) * 2002-04-12 2005-08-04 Corpus.E Ag Method for optically detecting the spatial form of inside spaces and a device for carrying out said method
JP2007010405A (en) * 2005-06-29 2007-01-18 Yokohama Rubber Co Ltd:The Method and device for measuring of dynamic landing shape of tire
JP2008175575A (en) * 2007-01-16 2008-07-31 Uni Charm Corp Displacement measuring method of wearing article, display method of displacement, followability evaluation method, and wearing comfort evaluation method
JP2010165345A (en) * 2008-12-19 2010-07-29 Kao Corp Finite element human body model for analyzing wearing state of wearing article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535761A (en) * 2015-11-17 2018-12-06 エッジウェル パーソナル ケア ブランズ リミテッド ライアビリティ カンパニーEdgewell Personal Care Brands, LLC Four-dimensional analysis system, apparatus and method
US10940058B2 (en) 2015-11-17 2021-03-09 Edgewell Personal Care Brands, Llc Four-dimensional analysis system, apparatus, and method
GB2565833A (en) * 2017-08-25 2019-02-27 Oxford Caresense Ltd Wetness sensor
JP2020049008A (en) * 2018-09-27 2020-04-02 大王製紙株式会社 Positional deviation detection method and evaluation method of absorbent article
WO2022054538A1 (en) * 2020-09-09 2022-03-17 大王製紙株式会社 Wearable dummy for testing body liquid absorbent article, and test method for using same

Also Published As

Publication number Publication date
JP5791188B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
US8658852B2 (en) Disposable absorbent articles with an embossed topsheet
US10993848B2 (en) Discreet disposable absorbent article
AU2007353890B2 (en) Absorbent article with improved fit
RU2626229C2 (en) Absorbing products with barrier wrenches
RU2652306C1 (en) Absorbent article containing the system of adhesive attachment of the absorbing core and rear sheet including two adhesive materials
JP5791188B2 (en) Void amount measuring apparatus and void amount measuring method
CA2642124C (en) Absorbent article including an absorbent layer having a plurality of spaced beam elements
US8664468B2 (en) Disposable absorbent articles having an interior design signal
ES2351793T3 (en) PROCEDURE TO PRODUCE ABSORBENT CORE STRUCTURES.
US10779998B2 (en) Absorbent article with contoured fit
US20150250663A1 (en) Three-dimensional substrates
US20100036355A1 (en) Absorbent Article
JP2009508620A (en) Perforated liquid acquisition double layer
WO2013134522A1 (en) Sensor for determining contact
US8764718B2 (en) Absorbent article
JP2019517893A (en) Absorbent article with improved top sheet dryness
AU2015224438B2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
RU2703118C2 (en) Absorbent product demonstrating controlled deformation and longitudinal distribution of fluid medium
RU2682776C2 (en) Absorbent article demonstrating controlled deformation and longitudinal fluid distribution
CN101422405A (en) Absorbent article including an absorbent layer having a plurality of spaced beam elements
RU2719209C2 (en) Absorbent product demonstrating controlled deformation and longitudinal distribution of liquid
JP5234681B2 (en) Disposable wearing items
RU2387427C2 (en) Absorbent product
RU2801645C2 (en) Absorbent showing controlled deformation and longitudinal liquid distribution
RU2418569C1 (en) Absorbing product with improved fitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5791188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees