JP2013072533A5 - - Google Patents

Download PDF

Info

Publication number
JP2013072533A5
JP2013072533A5 JP2011213784A JP2011213784A JP2013072533A5 JP 2013072533 A5 JP2013072533 A5 JP 2013072533A5 JP 2011213784 A JP2011213784 A JP 2011213784A JP 2011213784 A JP2011213784 A JP 2011213784A JP 2013072533 A5 JP2013072533 A5 JP 2013072533A5
Authority
JP
Japan
Prior art keywords
planetary gear
rotation
output
continuously variable
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011213784A
Other languages
Japanese (ja)
Other versions
JP5834710B2 (en
JP2013072533A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011213784A priority Critical patent/JP5834710B2/en
Priority claimed from JP2011213784A external-priority patent/JP5834710B2/en
Publication of JP2013072533A publication Critical patent/JP2013072533A/en
Publication of JP2013072533A5 publication Critical patent/JP2013072533A5/ja
Application granted granted Critical
Publication of JP5834710B2 publication Critical patent/JP5834710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

無段変速装置Continuously variable transmission

この発明は、変速比を変更する為の変速機構としてトロイダル型無段変速機を組み込み、自動車用の自動変速機として使用する無段変速装置の改良に関する。具体的には、小型に構成できて限られた空間に設置し易く、しかも優れた伝達効率を有する、前置エンジン前輪駆動車(FF車)用として好適な構造を実現するものである。   The present invention relates to an improvement in a continuously variable transmission that incorporates a toroidal type continuously variable transmission as a transmission mechanism for changing a transmission ratio and is used as an automatic transmission for an automobile. Specifically, a structure suitable for a front engine front wheel drive vehicle (FF vehicle) that can be configured in a small size, can be easily installed in a limited space, and has excellent transmission efficiency is realized.

変速機構としてトロイダル型無段変速機を組み込み、比較的小型に構成できるFF車用の自動変速機として、特許文献1に記載されたものが知られている。図5は、この特許文献1に記載された無段変速装置の原理を示している。この無段変速装置は、動力の伝達方向に関して上流側から順番に、入力回転軸1と、第一中間回転伝達軸2と、アイドラ軸3と、第二中間回転伝達軸4と、出力回転軸5とを互いに平行に設けている。このうちの入力回転軸1は、駆動源である図示しないエンジンにより、トルクコンバータ等の発進クラッチ6を介して一方向に回転駆動される。この様な前記入力回転軸1の周囲に、トロイダル型無段変速機7を設けている。この入力回転軸1の回転は、1対の入力ディスク8、8と図示しないパワーローラとを介して出力ディスク9に伝わり、この出力ディスク9の回転が、入力側歯車伝達機構10を介して、前記第一中間回転伝達軸2に伝達される。次に、この第一中間回転伝達軸2の回転は、前進用クラッチ11及び前進用歯車伝達機構12を介して、又は、後退用クラッチ13及び後退用歯車伝達機構14を介して、前記第二中間回転伝達軸4に伝達される。更に、この第二中間回転伝達軸4の回転は、出力側歯車伝達機構15を介して、デファレンシャルギヤ16の入力部に伝達され、このデファレンシャルギヤ16の出力部である、前記出力回転軸5が回転駆動される。車両を前進させる場合には、前記前進用クラッチ11を接続すると共に、前記後退用クラッチ13の接続を断つ。これに対して、車両を後退させる場合には、この後退用クラッチ13を接続すると共に、前記前進用クラッチ11の接続を断つ。   As an automatic transmission for an FF vehicle that incorporates a toroidal-type continuously variable transmission as a transmission mechanism and can be made relatively small, an automatic transmission described in Patent Document 1 is known. FIG. 5 shows the principle of the continuously variable transmission described in Patent Document 1. The continuously variable transmission includes an input rotation shaft 1, a first intermediate rotation transmission shaft 2, an idler shaft 3, a second intermediate rotation transmission shaft 4, and an output rotation shaft in order from the upstream side in the power transmission direction. 5 are provided in parallel with each other. Among these, the input rotating shaft 1 is rotationally driven in one direction by a starting clutch 6 such as a torque converter by an engine (not shown) as a driving source. A toroidal continuously variable transmission 7 is provided around the input rotary shaft 1. The rotation of the input rotary shaft 1 is transmitted to the output disk 9 via a pair of input disks 8 and 8 and a power roller (not shown). The rotation of the output disk 9 is transmitted via the input side gear transmission mechanism 10. It is transmitted to the first intermediate rotation transmission shaft 2. Next, the rotation of the first intermediate rotation transmission shaft 2 is performed via the forward clutch 11 and the forward gear transmission mechanism 12, or via the reverse clutch 13 and the reverse gear transmission mechanism 14. It is transmitted to the intermediate rotation transmission shaft 4. Further, the rotation of the second intermediate rotation transmission shaft 4 is transmitted to the input portion of the differential gear 16 via the output side gear transmission mechanism 15, and the output rotation shaft 5, which is the output portion of the differential gear 16, Driven by rotation. When the vehicle is advanced, the forward clutch 11 is connected and the reverse clutch 13 is disconnected. On the other hand, when the vehicle is moved backward, the reverse clutch 13 is connected and the forward clutch 11 is disconnected.

上述の図5に示した様な無段変速装置の場合、比較的小型に構成できるとは言え、互いに平行な5本の軸1〜5を備えており、未だ十分な小型・軽量化を図れるとは言えない。前記発進クラッチ6と前記トロイダル型無段変速機7との間に逆転機構を設ける事も考えられるが、この場合には前記トロイダル型無段変速機7を両方向に回転させる必要が生じ、このトロイダル型無段変速機7の制御が面倒になる。   In the case of the continuously variable transmission as shown in FIG. 5 described above, although it can be configured relatively small, it is provided with five shafts 1 to 5 parallel to each other, and can still be sufficiently reduced in size and weight. It can not be said. Although it is conceivable to provide a reverse rotation mechanism between the starting clutch 6 and the toroidal continuously variable transmission 7, in this case, it is necessary to rotate the toroidal continuously variable transmission 7 in both directions. Control of the type continuously variable transmission 7 becomes troublesome.

特開2008−75863号公報JP 2008-75863 A

本発明は、上述の様な事情に鑑み、トロイダル型無段変速機の制御を面倒にする事なく、入力部と出力部との間に配置する軸の数を少なく抑えて、より小型且つ軽量に構成できる無段変速装置の構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention reduces the number of shafts arranged between the input unit and the output unit without making troublesome control of the toroidal type continuously variable transmission, and is smaller and lighter. Invented to realize the structure of a continuously variable transmission that can be configured as follows.

本発明の無段変速装置は、入力回転軸と、トロイダル型無段変速機と、出力回転軸と、中間回転伝達軸と、前進用、後退用両遊星歯車機構と、入力側動力伝達機構と、クラッチ装置と、出力側動力伝達機構とを備える。
このうちの入力回転軸は、エンジン等の駆動源により回転駆動される。
又、前記トロイダル型無段変速機は、前記入力回転軸の周囲に、この入力回転軸と同心に設けられて、この入力回転軸をその入力部として運転される。
又、前記出力回転軸は、この入力回転軸と平行に設けられ、例えば、回転に伴って左右1対の駆動輪を回転駆動する。
又、前記中間回転伝達軸は、動力の伝達方向に関して前記入力回転軸と前記出力回転軸との間部分に、これら入力回転軸及び出力回転軸と平行に設けられている。
又、前記前進用、後退用両遊星歯車機構は、中間回転伝達軸の周囲に設けられている。
又、前記入力側動力伝達機構は、前記トロイダル型無段変速機の出力部と前記両遊星歯車機構の入力部との間に設けられている。
又、前記クラッチ装置は、その切換に伴って、前記両遊星歯車機構のうちの何れか一方の遊星歯車機構を前記トロイダル型無段変速機の出力部と前記出力回転軸との間の動力伝達経路中に組み込み、他方の遊星歯車機構をこの動力伝達経路中から切り離す機能を有する。
更に、前記出力側動力伝達機構は、前記両遊星歯車機構の出力部と前記出力回転軸との間に設けられている。
又、前記クラッチ装置は、具体的には、前進時に接続され後退時に切断される前進用クラッチと、後退時に接続され前進時に切断される後退用クラッチとにより構成する事ができる。
A continuously variable transmission according to the present invention includes an input rotation shaft, a toroidal continuously variable transmission, an output rotation shaft, an intermediate rotation transmission shaft, both forward and reverse planetary gear mechanisms, an input side power transmission mechanism, And a clutch device and an output side power transmission mechanism.
Of these, the input rotation shaft is rotationally driven by a drive source such as an engine.
The toroidal continuously variable transmission is provided around the input rotation shaft and concentric with the input rotation shaft, and is operated with the input rotation shaft as an input section.
The output rotation shaft is provided in parallel with the input rotation shaft, and for example, rotationally drives a pair of left and right drive wheels with rotation.
The intermediate rotation transmission shaft is provided in a portion between the input rotation shaft and the output rotation shaft in parallel with the input rotation shaft and the output rotation shaft in the power transmission direction.
The forward and reverse planetary gear mechanisms are provided around the intermediate rotation transmission shaft.
The input side power transmission mechanism is provided between the output part of the toroidal type continuously variable transmission and the input parts of the planetary gear mechanisms.
Further, the clutch device, when switched, transmits one of the planetary gear mechanisms to the power transmission between the output portion of the toroidal continuously variable transmission and the output rotating shaft. It is incorporated in the path and has a function of separating the other planetary gear mechanism from the power transmission path.
Furthermore, the output side power transmission mechanism is provided between the output portions of the planetary gear mechanisms and the output rotation shaft.
Specifically, the clutch device can be constituted by a forward clutch that is connected at the time of forward movement and disconnected at the time of backward movement, and a reverse clutch that is connected at the time of backward movement and disconnected at the time of forward movement.

上述の様な本発明の無段変速装置を実施する場合に、具体的には、例えば請求項2に記載した発明の様に、前記前進用、後退用両遊星歯車機構を、固定部分に支持されて回転しないキャリアを備え、これら両遊星歯車機構は何れも、前記中間回転伝達軸と共に回転する太陽歯車と、それぞれの太陽歯車の周囲に配置されたリング歯車と、それぞれの太陽歯車とリング歯車との間に設けられた複数の遊星歯車とを備えたものとする。そして、何れか一方の遊星歯車機構を、各遊星歯車を前記太陽歯車と前記リング歯車との両方の歯車に噛合させるシングルピニオン型とし、他方の遊星歯車機構を、各遊星歯車毎に1対ずつ設けた遊星歯車素子を互いに噛合させると共に、一方の遊星歯車素子を前記太陽歯車に、他方の遊星歯車素子を前記リング歯車に、それぞれ噛合させたダブルピニオン型とする。When implementing the continuously variable transmission of the present invention as described above, specifically, as in the invention described in claim 2, for example, the forward and reverse planetary gear mechanisms are supported by a fixed portion. Each of the planetary gear mechanisms includes a sun gear that rotates together with the intermediate rotation transmission shaft, a ring gear that is disposed around each sun gear, and each sun gear and ring gear. And a plurality of planetary gears provided between the two. One of the planetary gear mechanisms is a single pinion type in which each planetary gear meshes with both the sun gear and the ring gear, and the other planetary gear mechanism is paired for each planetary gear. The planetary gear elements provided are meshed with each other, and one planetary gear element is meshed with the sun gear, and the other planetary gear element is meshed with the ring gear.
この様な請求項2に記載した発明を実施する場合に好ましくは、請求項3に記載した発明の様に、前記シングルピニオン型の遊星歯車機構を構成する各遊星歯車と、前記ダブルピニオン型の遊星歯車機構を構成する各遊星歯車素子のうち、前記リング歯車と噛合している各遊星歯車素子とを同期した回転を自在に結合する事により、前記前進用、後退用両遊星歯車機構で1個のリング歯車を共用する。When implementing the invention described in claim 2, preferably, as in the invention described in claim 3, each planetary gear constituting the single-pinion type planetary gear mechanism, and the double-pinion type Of the planetary gear elements constituting the planetary gear mechanism, the planetary gear elements meshing with the ring gear are freely coupled to rotate synchronously, so that both the forward and reverse planetary gear mechanisms are 1 Shared ring gears.
又、上述の様な請求項1〜2に記載した無段変速装置を実施する場合に、例えば請求項4に記載した発明の様に、前記前進用、後退用両クラッチを、前記前進用、後退用両遊星歯車機構を構成する1対のリング歯車と、前記出力側伝達機構との間にそれぞれ設ける。Further, when the continuously variable transmission described in claims 1 and 2 as described above is implemented, for example, as in the invention described in claim 4, the forward and reverse clutches are used for the forward, Provided between a pair of ring gears constituting the reverse planetary gear mechanism and the output side transmission mechanism.

或いは、本発明の無段変速装置を実施する場合には、例えば請求項5に記載した発明の様に、前記前進用、後退用両遊星歯車機構を何れも、前記トロイダル型無段変速機の出力部の回転に伴って回転する太陽歯車と、それぞれの太陽歯車の周囲に配置されたリング歯車と、それぞれの太陽歯車とリング歯車との間に設けられ、それぞれがこれら太陽歯車とリング歯車との両方の歯車に噛合した複数の遊星歯車とを備えたシングルピニオン型とする。そして、前記両遊星歯車機構のうちの一方の遊星歯車機構を、キャリアが固定されていて前記リング歯車の回転を前記出力回転軸に伝達するものとし、他方の遊星歯車機構を、前記リング歯車が固定されていてキャリアの回転を前記出力回転軸に伝達するものとする。Alternatively, when the continuously variable transmission according to the present invention is implemented, for example, as in the invention described in claim 5, both the forward and reverse planetary gear mechanisms are provided in the toroidal continuously variable transmission. A sun gear that rotates as the output unit rotates, a ring gear that is disposed around each sun gear, and a sun gear and a ring gear that are provided between the sun gear and the ring gear. And a single pinion type having a plurality of planetary gears meshed with both gears. And one planetary gear mechanism of the two planetary gear mechanisms has a carrier fixed to transmit the rotation of the ring gear to the output rotating shaft, and the other planetary gear mechanism is connected to the ring gear. It is assumed that the rotation of the carrier is transmitted to the output rotation shaft.

上述の様な請求項3又は5に記載した無段変速装置を実施する場合には、例えば請求項6に記載した発明の様に、前記前進用、後退用両クラッチを、前記トロイダル型無段変速機の出力部と、前記前進用、後退用両遊星歯車機構を構成する1対の太陽歯車との間にそれぞれ設ける。When implementing the continuously variable transmission described in claim 3 or 5 as described above, for example, as in the invention described in claim 6, both the forward and reverse clutches are connected to the toroidal type continuously variable transmission. It is provided between the output portion of the transmission and a pair of sun gears constituting the forward and reverse planetary gear mechanisms.
この様な請求項6に記載した発明を実施する場合に好ましくは、請求項7に記載した発明の様に、前記中間回転伝達軸を、内径側回転伝達軸と、この内径側回転伝達軸の中間部周囲に、この内径側回転伝達軸に対する相対回転を可能に配置された、円管状の外径側回転伝達軸とから成る二重構造とする。そして、前記前進用、後退用両遊星歯車機構を構成する1対の太陽歯車を、それぞれ前記内径側回転伝達軸又は前記外径側回転伝達軸の一部に、当該回転伝達軸と同期した回転を自在に設置し、前記前進用、後退用両クラッチを、それぞれ前記内径側回転伝達軸又は前記外径側回転伝達軸と前記トロイダル型無段変速機の出力部との間に設ける。When the invention described in claim 6 is implemented, preferably, as in the invention described in claim 7, the intermediate rotation transmission shaft includes an inner diameter side rotation transmission shaft and an inner diameter side rotation transmission shaft. A double structure including a circular outer-diameter-side rotation transmission shaft disposed around the middle portion so as to be capable of relative rotation with respect to the inner-diameter-side rotation transmission shaft. Then, a pair of sun gears constituting the forward and reverse planetary gear mechanisms are respectively rotated on a part of the inner diameter side rotation transmission shaft or the outer diameter side rotation transmission shaft in synchronization with the rotation transmission shaft. The forward and reverse clutches are respectively provided between the inner diameter side rotation transmission shaft or the outer diameter side rotation transmission shaft and the output part of the toroidal continuously variable transmission.

上述の様な請求項1〜3、5〜7に記載した無段変速装置を実施する場合、例えば請求項8に記載した発明の様に、前記入力側動力伝達機構を、前記トロイダル型無段変速機の出力部に設けられた出力部材を含んで構成されるものとし、前記中間回転伝達軸の軸方向に関して、前記クラッチ装置と前記前進用、後退用両遊星歯車機構とを、互いに反対側に配置する。When implementing the continuously variable transmission according to any one of claims 1 to 3 and 5 to 7 as described above, for example, as in the invention according to claim 8, the input side power transmission mechanism is connected to the toroidal type continuously variable transmission. An output member provided at an output portion of the transmission is configured, and the clutch device and the forward and reverse planetary gear mechanisms are opposite to each other with respect to the axial direction of the intermediate rotation transmission shaft. To place.

上述の様な本発明の無段変速装置を実施する場合に好ましくは、請求項9に記載した発明の様に、出力側動力伝達機構を、デファレンシャルギヤを含んで構成されたものとし、前記クラッチ装置の切換に伴って、前記前進用、後退用両遊星歯車機構のうちの何れか一方の遊星歯車機構の出力部により前記デファレンシャルギヤの入力部を回転駆動し、このデファレンシャルギヤの出力部により、左右1対の出力回転軸を回転駆動する。Preferably, when the continuously variable transmission of the present invention as described above is implemented, the output side power transmission mechanism is configured to include a differential gear as in the invention described in claim 9, and the clutch Along with the switching of the device, the input portion of the differential gear is rotated by the output portion of one of the forward and reverse planetary gear mechanisms, and the output portion of the differential gear, A pair of left and right output rotation shafts are driven to rotate.

上述の様に構成する本発明によれば、入力回転軸を一方向に回転させた状態のまま、出力回転軸を両方向に回転させられる無段変速装置を、これら入力、出力両回転軸に加えて中間回転伝達軸を加えたのみの、3軸構造により実現できる。この為、前述の図5に示した様な5軸構造の無段変速装置に比べて、大幅な小型・軽量化が可能になる。又、トロイダル型無段変速機の回転方向を変更する必要もない為、このトロイダル型無段変速機の制御が面倒になる事もない。   According to the present invention configured as described above, a continuously variable transmission that can rotate the output rotation shaft in both directions while the input rotation shaft is rotated in one direction is added to both the input and output rotation shafts. This can be realized by a three-axis structure in which an intermediate rotation transmission shaft is added. Therefore, it is possible to significantly reduce the size and weight as compared with the continuously variable transmission having the five-shaft structure as shown in FIG. Further, since it is not necessary to change the rotation direction of the toroidal continuously variable transmission, the control of the toroidal continuously variable transmission is not troublesome.

本発明の実施の形態の第1例を示す略断面図。1 is a schematic cross-sectional view showing a first example of an embodiment of the present invention. 同第2例を示す略断面図。The schematic sectional drawing which shows the 2nd example. 同第3例を示す略断面図。Sectional drawing which shows the 3rd example. 同第4例を示す略断面図。Sectional drawing which shows the 4th example. 従来構造の1例を示す略断面図。FIG. 6 is a schematic cross-sectional view showing an example of a conventional structure.

[実施の形態の第1例]
図1は、請求項1、2、4、9に対応する、本発明の実施の形態の第1例を示している。尚、本例を含めて本発明の特徴は、入力回転軸1の周囲に設けたトロイダル型無段変速機7の出力部と、出力回転軸5を設けたデファレンシャルギヤ16との間に設けられた、前後進切換機構を備えた動力伝達機構部分の構造にある。前記トロイダル型無段変速機7及びデファレンシャルギヤ16を含めて、その他の部分の構造及び作用は、従来から広く知られている為、詳しい図示並びに説明は省略乃至簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1, 2, 4 and 9. The features of the present invention including this example are provided between the output portion of the toroidal-type continuously variable transmission 7 provided around the input rotary shaft 1 and the differential gear 16 provided with the output rotary shaft 5. Further, the power transmission mechanism portion having a forward / reverse switching mechanism is provided. Since the structure and operation of the other parts including the toroidal-type continuously variable transmission 7 and the differential gear 16 have been widely known in the past, detailed illustration and description will be omitted or simplified. The explanation will focus on the part.

前記トロイダル型無段変速機7と前記デファレンシャルギヤ16との間部分に中間回転伝達軸17を、前記入力回転軸1及び前記出力回転軸5と平行に設けている。そして、前記トロイダル型無段変速機7の出力部である、出力ディスク9の回転を、入力側歯車伝達機構10aにより、前記中間回転伝達軸17に伝達自在としている。本例の場合、これら出力ディスク9と入力側歯車伝達機構10aとの間に設ける入力側動力伝達機構として歯車式のものを使用しているが、チェンとスプロケットとから成る構造等、歯車式以外の構造を採用する事もできる。何れにしても、前記中間回転伝達軸17の周囲に、前進用、後退用、2組の遊星歯車機構18、19を設けている。   An intermediate rotation transmission shaft 17 is provided in parallel with the input rotation shaft 1 and the output rotation shaft 5 at a portion between the toroidal type continuously variable transmission 7 and the differential gear 16. The rotation of the output disk 9, which is the output portion of the toroidal-type continuously variable transmission 7, can be transmitted to the intermediate rotation transmission shaft 17 by the input side gear transmission mechanism 10a. In the case of this example, a gear type is used as the input side power transmission mechanism provided between the output disk 9 and the input side gear transmission mechanism 10a. However, other than the gear type, such as a structure comprising a chain and a sprocket, etc. The structure of can also be adopted. In any case, two sets of planetary gear mechanisms 18 and 19 for forward movement and backward movement are provided around the intermediate rotation transmission shaft 17.

これら両遊星歯車機構18、19は、共通のキャリア20を備えており、このキャリア20は、変速装置のケーシングの内部に設けた取付部等の固定部分に支持固定されて回転しない。又、前記中間伝達軸17の中間部先端寄り部分に前進用太陽歯車21を、同じく先端部に後退用太陽歯車22を、それぞれ前記中間伝達軸17と同期した回転を自在に組み付けている。又、このうちの前進用太陽歯車21の周囲に前進用リング歯車23を、同じく後退用太陽歯車22の周囲に後退用リング歯車24を、それぞれこれら両太陽歯車21、22と同心に、互いに独立した回転を自在に配置している。   Both the planetary gear mechanisms 18 and 19 are provided with a common carrier 20, and the carrier 20 is supported and fixed to a fixing portion such as an attachment provided inside the casing of the transmission and does not rotate. Further, the forward sun gear 21 is attached to the intermediate transmission shaft 17 near the tip of the intermediate portion, and the reverse sun gear 22 is similarly attached to the tip portion of the intermediate transmission shaft 17 so as to freely rotate in synchronization with the intermediate transmission shaft 17. Of these, the forward ring gear 23 is provided around the forward sun gear 21, and the reverse ring gear 24 is provided around the backward sun gear 22. Rotation is arranged freely.

そして、前記前進用太陽歯車21と前記前進用リング歯車23とに、前記キャリア20の先端寄り(図1の左寄り)部分に回転自在に支持した、複数個(3〜4個)の前進用遊星歯車25、25を噛合させて、シングルピニオン型である、前記前進用遊星歯車機構18を構成している。これに対して、前記後退用太陽歯車22と前記後退用リング歯車24とに、前記キャリア20の基端寄り(図1の右寄り)部分に回転自在に支持した、複数組(3〜4組)の後退用遊星歯車26、26を設置している。これら各後退用遊星歯車26、26は、それぞれ1組ずつの遊星歯車素子27a、27bから成る。これら各組の遊星歯車素子27a、27bは、互いに噛合すると共に、一方(前記後退用遊星歯車機構19の径方向に関して内側)の遊星歯車素子27a、27aを前記後退用太陽歯車22に、他方(前記後退用遊星歯車機構19の径方向に関して外側)の遊星歯車素子27b、27bを前記後退用リング歯車24に、それぞれ噛合させて、ダブルピニオン型の、前記後退用遊星歯車機構19を構成している。   A plurality (3 to 4) of forward planets that are rotatably supported by the forward sun gear 21 and the forward ring gear 23 at a portion near the tip (left side in FIG. 1) of the carrier 20. The forward planetary gear mechanism 18 of a single pinion type is configured by meshing the gears 25, 25. On the other hand, a plurality of sets (three to four sets) are rotatably supported by the retreating sun gear 22 and the retreating ring gear 24 at a portion near the base end (rightward in FIG. 1) of the carrier 20. The reverse planetary gears 26, 26 are installed. Each of the reverse planetary gears 26 and 26 includes a set of planetary gear elements 27a and 27b. These sets of planetary gear elements 27a and 27b mesh with each other, and one (inner side in the radial direction of the reverse planetary gear mechanism 19) one planetary gear element 27a and 27a is used as the reverse sun gear 22 and the other ( The planetary gear elements 27b and 27b on the outer side in the radial direction of the reverse planetary gear mechanism 19 are respectively meshed with the reverse ring gear 24 to constitute the double-pinion type reverse planetary gear mechanism 19. Yes.

上述の様に、前記前進用遊星歯車機構18をシングルピニオン型とし、前記後退用遊星歯車機構19をダブルピニオン型とすると共に、これら両遊星歯車機構18、19の太陽歯車21、22を、前記中間回転伝達軸17と共に、互いに同方向に回転する様にしている。この為、前記前進用遊星歯車機構18を構成する前進用リング歯車23と、前記後退用遊星歯車機構19を構成する後退用リング歯車24とは、互いに逆方向に回転する。そこで、これら両リング歯車23、24の回転を、選択的に前記デファレンシャルギヤ16に、出力側歯車伝達機構15aを通じて取り出し自在としている。この為に本例の場合には、前記前進用リング歯車23と前記出力側歯車伝達機構15aとの間に前進用クラッチ28を、前記後退用リング歯車24とこの出力側歯車伝達機構15aとの間に後退用クラッチ29を、それぞれ設けている。これら両クラッチ28、29は、多板クラッチ等、十分なトルク伝達容量を備えたもので、一方のクラッチ28(29)が接続された場合には、他方のクラッチ29(28)の接続が断たれる。両方のクラッチ28、29の接続が断たれる瞬間はあっても、両方のクラッチ28、29が同時に接続される事はない。   As described above, the forward planetary gear mechanism 18 is a single pinion type, the reverse planetary gear mechanism 19 is a double pinion type, and the sun gears 21 and 22 of both the planetary gear mechanisms 18 and 19 are The intermediate rotation transmission shaft 17 and the intermediate rotation transmission shaft 17 rotate in the same direction. For this reason, the forward ring gear 23 constituting the forward planetary gear mechanism 18 and the backward ring gear 24 constituting the backward planetary gear mechanism 19 rotate in opposite directions. Therefore, the rotations of both the ring gears 23 and 24 can be selectively taken out to the differential gear 16 through the output side gear transmission mechanism 15a. Therefore, in the case of this example, a forward clutch 28 is provided between the forward ring gear 23 and the output side gear transmission mechanism 15a, and the reverse ring gear 24 and the output side gear transmission mechanism 15a. A reverse clutch 29 is provided between them. These clutches 28 and 29 have a sufficient torque transmission capacity, such as a multi-plate clutch. When one clutch 28 (29) is connected, the other clutch 29 (28) is disconnected. Be drunk. Even if there is a moment when both clutches 28 and 29 are disconnected, both clutches 28 and 29 are not simultaneously connected.

上述の様な本例の無段変速装置の場合、車両を前進させる際には、前記前進用クラッチ28を接続すると共に、前記後退用クラッチ29の接続を断つ。この状態では、前記トロイダル型無段変速機7を構成する、前記出力ディスク9から前記中間回転伝達軸17に伝えられた回転が、前記前進用遊星歯車機構18と、前記前進用クラッチ28と、前記出力側歯車伝達機構15aとを介して前記デファレンシャルギヤ16に伝達され、このデファレンシャルギヤ16の出力部に設けた左右1対の出力回転軸5、5を同方向に回転させて、図示しない駆動輪を前進方向に回転駆動する。これに対して、車両を後退させる際には、前記後退用クラッチ29を接続すると共に、前記前進用クラッチ28の接続を断つ。この状態では、前記中間回転伝達軸17の回転が、前記後退用遊星歯車機構19と、前記後退用クラッチ29と、前記出力側歯車伝達機構15aとを介して前記デファレンシャルギヤ16に伝達され、前記駆動輪を後退方向に回転駆動する。   In the case of the continuously variable transmission of this example as described above, when the vehicle is advanced, the forward clutch 28 is connected and the reverse clutch 29 is disconnected. In this state, the rotation transmitted from the output disk 9 to the intermediate rotation transmission shaft 17 constituting the toroidal-type continuously variable transmission 7 is converted into the forward planetary gear mechanism 18, the forward clutch 28, A drive (not shown) is transmitted to the differential gear 16 via the output gear transmission mechanism 15a, and a pair of left and right output rotating shafts 5 and 5 provided at the output portion of the differential gear 16 are rotated in the same direction. The wheel is driven to rotate in the forward direction. On the other hand, when the vehicle is moved backward, the reverse clutch 29 is connected and the forward clutch 28 is disconnected. In this state, the rotation of the intermediate rotation transmission shaft 17 is transmitted to the differential gear 16 via the reverse planetary gear mechanism 19, the reverse clutch 29, and the output side gear transmission mechanism 15a. The drive wheel is driven to rotate in the backward direction.

上述の様に本例の無段変速装置の場合、前記入力回転軸1と、前記中間回転伝達軸17と、前記出力回転軸5、5との、3軸構造であり、小型且つ軽量にする為の設計が容易であるにも拘らず、前記入力回転軸1を一方向に回転させた状態のまま、前記出力回転軸5、5を両方向に回転させられる。この為、設置スペースが限られたFF車用の自動変速機として、非常に有用性が高い。又、前進時と後退時とで、前記トロイダル型無段変速機7の回転方向を変更する必要もない為、このトロイダル型無段変速機7の制御が面倒になる事もない。更に、小型に構成できる事に伴い、無段変速装置全体としての摩擦損失を少なく抑えて、この無段変速装置の伝達効率の向上の図り易い。   As described above, the continuously variable transmission of this example has a three-axis structure including the input rotary shaft 1, the intermediate rotation transmission shaft 17, and the output rotary shafts 5 and 5, and is small and lightweight. Although the design for this is easy, the output rotating shafts 5 and 5 can be rotated in both directions while the input rotating shaft 1 is rotated in one direction. For this reason, it is very useful as an automatic transmission for an FF vehicle having a limited installation space. Further, since it is not necessary to change the rotational direction of the toroidal type continuously variable transmission 7 between forward and backward, control of the toroidal type continuously variable transmission 7 does not become troublesome. Furthermore, with the fact that it can be made compact, it is easy to improve the transmission efficiency of the continuously variable transmission by minimizing the friction loss of the continuously variable transmission as a whole.

[実施の形態の第2例]
図2は、請求項1〜3、6〜9に対応する、本発明の実施の形態の第2例を示している。本例の場合には、シングルピニオン型である前進用遊星歯車機構18aを構成する各前進用遊星歯車25a、25aと、ダブルピニオン型の後退用遊星歯車機構19aを構成する各遊星歯車素子27a、27cのうち、径方向外側の遊星歯車素子27c、27cとを互いに結合固定して(軸方向寸法が長い一体構造として)これら各遊星歯車素子27c、27cと前記各前進用遊星歯車25a、25aとが同期して回転する様にしている。そして、これら各遊星歯車素子27c、27c及び各前進用遊星歯車25a、25aを、単一のリング歯車30に噛合させている。又、このリング歯車30の回転を、出力側歯車伝達機構15aを介して、デファレンシャルギヤ16の入力部に伝達する様にしている。
[Second Example of Embodiment]
FIG. 2 shows a second example of an embodiment of the present invention corresponding to claims 1 to 3 and 6 to 9. In the case of this example, the forward planetary gears 25a, 25a constituting the forward planetary gear mechanism 18a of a single pinion type, and the planetary gear elements 27a constituting the double pinion type reverse planetary gear mechanism 19a, 27c, the planetary gear elements 27c, 27c on the outer side in the radial direction are coupled and fixed to each other (as an integral structure having a long axial dimension), and the planetary gear elements 27c, 27c and the forward planetary gears 25a, 25a Are rotating in synchronization. The planetary gear elements 27 c and 27 c and the forward planetary gears 25 a and 25 a are meshed with a single ring gear 30. Further, the rotation of the ring gear 30 is transmitted to the input portion of the differential gear 16 via the output side gear transmission mechanism 15a.

本例の場合には、前進用遊星歯車機構18aを構成する前進用太陽歯車21aと、前記後退用遊星歯車機構19aを構成する後退用太陽歯車22aとを、トロイダル型無段変速機7の出力ディスク9の回転に基づき、選択的に回転駆動する様に構成している。即ち、本例の場合には、動力の伝達方向に関して、前記出力ディスク9の回転を取り出す為の入力側歯車伝達機構10bの下流側端部に、クラッチ装置を構成する、前進用、後退用両クラッチ28a、29aを設けている。これら両クラッチ28a、29aにより、前記前進用、後退用両太陽歯車21a、22aを選択的に回転駆動させる為、本例の場合には、中間回転伝達軸17aを、円管状の外径側回転伝達軸31の内側に円杆状の内径側回転伝達軸32を挿通した、二重構造としている。言い換えれば、この内径側回転伝達軸32の中間部周囲に前記外径側回転伝達軸31を、この内径側回転伝達軸32に対する相対回転を可能に配置している。   In this example, the forward sun gear 21a constituting the forward planetary gear mechanism 18a and the backward sun gear 22a constituting the backward planetary gear mechanism 19a are output from the toroidal-type continuously variable transmission 7. Based on the rotation of the disk 9, it is configured to selectively rotate. That is, in the case of this example, both the forward and reverse directions that constitute the clutch device at the downstream end of the input side gear transmission mechanism 10b for taking out the rotation of the output disk 9 in the power transmission direction. Clutches 28a and 29a are provided. In order to selectively rotate and drive the forward and reverse sun gears 21a and 22a by both the clutches 28a and 29a, in the case of this example, the intermediate rotation transmission shaft 17a is rotated on the outer side of the circular tube. A double structure is formed in which a conical inner diameter side rotation transmission shaft 32 is inserted inside the transmission shaft 31. In other words, the outer diameter side rotation transmission shaft 31 is arranged around the intermediate portion of the inner diameter side rotation transmission shaft 32 so as to be able to rotate relative to the inner diameter side rotation transmission shaft 32.

そして、前記前進用太陽歯車21aを前記外径側回転伝達軸31の先端部に、前記後退用太陽歯車22aを前記内径側回転伝達軸32の先端部に、それぞれこれら外径側回転伝達軸31又は内径側回転伝達軸32と同期した回転を自在に設置している。前記前進用クラッチ28aは、前記外径側回転軸31の基端部と前記入力側歯車伝達機構10bとの間に、前記後退用クラッチ29aは、前記内径側回転伝達軸32の基端部とこの入力側歯車伝達機構10bとの間に、それぞれ設置している。本例の場合には、この入力側歯車伝達機構10bを挟んで、前記前進用、後退用両クラッチ28a、29aと、前記前進用、後退用両遊星歯車機構18a、19aとを、軸方向に関して互いに反対側に配置している。   The forward sun gear 21a is at the tip of the outer diameter side rotation transmission shaft 31, and the backward sun gear 22a is at the tip of the inner diameter side rotation transmission shaft 32. Alternatively, the rotation synchronized with the inner diameter side rotation transmission shaft 32 is freely installed. The forward clutch 28a is disposed between the proximal end portion of the outer diameter side rotation shaft 31 and the input side gear transmission mechanism 10b, and the backward clutch 29a is coupled to the proximal end portion of the inner diameter side rotation transmission shaft 32. They are respectively installed between the input side gear transmission mechanism 10b. In the case of this example, the forward and reverse clutches 28a and 29a and the forward and reverse planetary gear mechanisms 18a and 19a are connected in the axial direction with the input side gear transmission mechanism 10b interposed therebetween. They are arranged on opposite sides.

上述の様に構成する本例の構造の場合も、3軸構造で小型・軽量化を図り易い構造であるにも拘らず、前記前進用、後退用両クラッチ28a、29aを選択的に接続する事により、入力回転軸1を一方向に回転させたまま、出力回転軸5、5を両方向に回転させられる。しかも本例の構造の場合には、次の(1)〜(3)の効果を、合わせて得られる。
(1) 前記前進用、後退用両クラッチ28a、29aと、前記前進用、後退用両遊星歯車機構18a、19aとをバランス良く配置できて、小型・軽量化を図る面から有利である。
(2) これら前進用、後退用両遊星歯車機構18a、19aで、単一のリング歯車30を共用している為、径が大きく、従って重量が嵩むリング歯車の数を減らす事で、より小型・軽量化を図れる。
(3) 前記前進用、後退用両クラッチ28a、29aを、動力の伝達方向に関して、減速機として機能する、前記前進用、後退用両遊星歯車機構18a、19aよりも上流側に配置するので、前記前進用、後退用両クラッチ28a、29aを通過するトルクを低く抑えられる。この結果、これら両クラッチ28a、29aのトルク伝達容量を低く抑え、これら両クラッチ28a、29aを小型化する事ができて、無段変速装置全体としての小型・軽量化も図り易い。
その他の部分の構成及び作用は、前述した実施の形態の第1例とほぼ同様であるから、重複する説明は省略する。
In the case of the structure of the present example configured as described above, both the forward and reverse clutches 28a and 29a are selectively connected even though the three-axis structure is easy to reduce in size and weight. Thus, the output rotary shafts 5 and 5 can be rotated in both directions while the input rotary shaft 1 is rotated in one direction. Moreover, in the case of the structure of this example, the following effects (1) to (3) can be obtained together.
(1) The forward and reverse clutches 28a and 29a and the forward and reverse planetary gear mechanisms 18a and 19a can be arranged in a well-balanced manner, which is advantageous in terms of reducing the size and weight.
(2) Since both the forward and reverse planetary gear mechanisms 18a, 19a share a single ring gear 30, the number of ring gears that are large in diameter and therefore heavy is reduced, thereby reducing the size. -Reduces weight.
(3) Since both the forward and reverse clutches 28a and 29a are arranged on the upstream side of the forward and reverse planetary gear mechanisms 18a and 19a, which function as a speed reducer, in the power transmission direction. The torque passing through both the forward and reverse clutches 28a and 29a can be kept low. As a result, the torque transmission capacity of both the clutches 28a, 29a can be kept low, and both the clutches 28a, 29a can be miniaturized, and the overall continuously variable transmission can be easily reduced in size and weight.
Since the configuration and operation of the other parts are almost the same as those of the first example of the above-described embodiment, redundant description is omitted.

[実施の形態の第3例]
図3は、請求項1、5〜9に対応する、本発明の実施の形態の第3例を示している。本例の場合、前進用、後退用両遊星歯車機構18b、19bは何れも、シングルピニオン型である。即ち、このうちの前進用遊星歯車機構18bは、中間伝達軸17aを構成する内径側回転伝達軸32の先端部に設けた前進用太陽歯車21aと、この前進用太陽歯車21aの周囲に設けた前進用リング歯車23aとの間に複数個の前進用遊星歯車25、25を設け、これら各前進用遊星歯車25、25を、前記前進用太陽歯車21a及び前記前進用リング歯車23aに噛合させて成る。又、前記各前進用遊星歯車25、25を回転自在に支持したキャリア20aを、ケーシングの内部に設けた取付部等の固定部分に支持固定して、回転を阻止している。更に、前記前進用リング歯車23aの回転を、前記後退用遊星歯車機構19bを構成するキャリア20bと出力側歯車伝達機構15aとを通じて、デファレンシャルギヤ16に取り出す様にしている。
[Third example of embodiment]
FIG. 3 shows a third example of an embodiment of the present invention corresponding to claims 1 and 5 to 9. In the case of this example, both the forward and reverse planetary gear mechanisms 18b and 19b are of single pinion type. That is, among these, the forward planetary gear mechanism 18b is provided around the forward sun gear 21a provided at the tip of the inner diameter side rotational transmission shaft 32 constituting the intermediate transmission shaft 17a and the forward sun gear 21a. A plurality of forward planetary gears 25, 25 are provided between the forward ring gear 23a and the forward planetary gears 25, 25 are meshed with the forward sun gear 21a and the forward ring gear 23a. Become. Further, the carrier 20a that rotatably supports the forward planetary gears 25, 25 is supported and fixed to a fixing portion such as a mounting portion provided inside the casing to prevent rotation. Further, the rotation of the forward ring gear 23a is taken out to the differential gear 16 through the carrier 20b and the output side gear transmission mechanism 15a constituting the reverse planetary gear mechanism 19b.

これに対して、前記後退用遊星歯車機構19bは、前記中間伝達軸17aを構成する外径側回転伝達軸31の先端部に設けた後退用太陽歯車22aと、この後退用太陽歯車22aの周囲に設けた後退用リング歯車24aとの間に複数個の後退用遊星歯車26a、26aを設け、これら各後退用遊星歯車26a、26aを、前記後退用太陽歯車22a及び前記後退用リング歯車24aに噛合させて成る。又、この後退用リング歯車24aを、固定の部分に支持固定し、回転を阻止している。更に、前記各後退用遊星歯車26a、26aを回転自在に支持した、前記キャリア20bの回転(これら各後退用遊星歯車26a、26aの公転運動)を、前記出力側歯車伝達機構15aを通じて、前記デファレンシャルギヤ16に取り出す様にしている。   On the other hand, the reverse planetary gear mechanism 19b includes a reverse sun gear 22a provided at the tip of the outer diameter side rotation transmission shaft 31 constituting the intermediate transmission shaft 17a, and the periphery of the reverse sun gear 22a. A plurality of reverse planetary gears 26a, 26a are provided between the reverse ring gear 24a and the reverse ring gear 24a. The reverse planetary gears 26a, 26a are connected to the reverse sun gear 22a and the reverse ring gear 24a. It is made to mesh. The reverse ring gear 24a is supported and fixed to a fixed portion to prevent rotation. Further, the rotation of the carrier 20b, which rotatably supports the retreating planetary gears 26a, 26a (revolving motion of the retreating planetary gears 26a, 26a), is transmitted through the output side gear transmission mechanism 15a to the differential. The gear 16 is taken out.

上述の様に構成する本例の場合も、3軸構造で小型・軽量化を図り易い構造であるにも拘らず、前進用、後退用両クラッチ28a、29aを選択的に接続する事により、入力回転軸1を一方向に回転させたまま、出力回転軸5、5を両方向に回転させられる。又、本例の構造の場合には、上述した実施の形態の第2例の場合に得られる、前記(1)(3)の効果に加えて、前記前進用、後退用両遊星歯車機構18b、19bを、何れもシングルピニオン型とする事による、構造の簡略化も図れる。
その他の部分の構成及び作用は、前述した実施の形態の第2例とほぼ同様であるから、重複する説明は省略する。
In the case of this example configured as described above, the forward and backward clutches 28a and 29a are selectively connected in spite of the triaxial structure that is easy to reduce in size and weight. The output rotation shafts 5 and 5 can be rotated in both directions while the input rotation shaft 1 is rotated in one direction. In the case of the structure of this example, in addition to the effects (1) and (3) obtained in the case of the second example of the above-described embodiment, the forward and reverse planetary gear mechanisms 18b. , 19b can be of a single pinion type, thereby simplifying the structure.
Since the configuration and operation of the other parts are almost the same as those of the second example of the above-described embodiment, a duplicate description is omitted.

[実施の形態の第4例]
図4も、請求項1、5〜9に対応する、本発明の実施の形態の第4例を示している。本例の場合には、前進用、後退用両遊星歯車機構18c、19cの配置を、上述した実施の形態の第3例の場合とは逆にしている。これに合わせて、前進用、後退用両クラッチ28a、29aの配置、並びに、回転を阻止する部材を、中間回転伝達軸17aの軸方向に関して、上述の実施の形態の第3例とは逆にしている。配置が逆になった点以外の基本的な構造及び作用は、上述した実施の形態の第3例と同様であるから、重複する説明は省略する。
[Fourth Example of Embodiment]
FIG. 4 also shows a fourth example of the embodiment of the invention corresponding to claims 1 and 5 to 9. In the case of this example, the arrangement of both forward and reverse planetary gear mechanisms 18c and 19c is reversed from that in the third example of the above-described embodiment. In accordance with this, the arrangement of the forward and reverse clutches 28a and 29a and the member that prevents the rotation are reversed with respect to the axial direction of the intermediate rotation transmission shaft 17a from the third example of the above-described embodiment. ing. Since the basic structure and operation other than the reverse arrangement are the same as in the third example of the above-described embodiment, redundant description is omitted.

本発明を構成するトロイダル型無段変速機は、図示の様なハーフトロイダル型に限らず、フルトロイダル型であっても良い。   The toroidal type continuously variable transmission constituting the present invention is not limited to the half toroidal type as shown, but may be a full toroidal type.

1 入力回転軸
2 第一中間回転伝達軸
3 アイドラ軸
4 第二中間回転伝達軸
5 出力回転軸
6 発進クラッチ
7 トロイダル型無段変速機
8 入力ディスク
9 出力ディスク
10、10a、10b 入力側歯車伝達機構
11 前進用クラッチ
12 前進用歯車伝達機構
13 後退用クラッチ
14 後退用歯車伝達機構
15、15a 出力側歯車伝達機構
16 デファレンシャルギヤ
17、17a 中間回転伝達軸
18、18a、18b、18c 前進用遊星歯車機構
19、19a、19b、19c 後退用遊星歯車機構
20、20a、20b キャリア
21、21a 前進用太陽歯車
22、22a 後退用太陽歯車
23、23a 前進用リング歯車
24、24a 後退用リング歯車
25、25a 前進用遊星歯車
26、26a 後退用遊星歯車
27a、27b、27c 遊星歯車素子
28、28a 前進用クラッチ
29、29a 後退用クラッチ
30 リング歯車
31 外径側回転伝達軸
32 内径側回転伝達軸
DESCRIPTION OF SYMBOLS 1 Input rotation shaft 2 1st intermediate rotation transmission shaft 3 Idler shaft 4 Second intermediate rotation transmission shaft 5 Output rotation shaft 6 Starting clutch 7 Toroidal continuously variable transmission 8 Input disk 9 Output disk 10, 10a, 10b Input side gear transmission Mechanism 11 Forward clutch 12 Forward gear transmission mechanism 13 Reverse clutch 14 Reverse gear transmission mechanism 15, 15a Output side gear transmission mechanism 16 Differential gear 17, 17a Intermediate rotation transmission shaft 18, 18a, 18b, 18c Forward planetary gear Mechanism 19, 19a, 19b, 19c Reverse planetary gear mechanism 20, 20a, 20b Carrier 21, 21a Forward sun gear 22, 22a Reverse sun gear 23, 23a Forward ring gear 24, 24a Reverse ring gear 25, 25a Forward planetary gear 26, 26a Reverse planetary gear 27a, 27 b, 27c Planetary gear elements 28, 28a Forward clutch 29, 29a Reverse clutch 30 Ring gear 31 Outer diameter side rotation transmission shaft 32 Inner diameter side rotation transmission shaft

Claims (9)

駆動源により回転駆動される入力回転軸と、この入力回転軸の周囲に、この入力回転軸と同心に設けられて、この入力回転軸をその入力部として運転されるトロイダル型無段変速機と、この入力回転軸と平行に設けられた出力回転軸と、動力の伝達方向に関してこれら入力回転軸と出力回転軸との間部分に、これら入力回転軸及び出力回転軸と平行に設けられた中間回転伝達軸と、この中間回転伝達軸の周囲に設けられた、前進用、後退用両遊星歯車機構と、前記トロイダル型無段変速機の出力部とこれら両遊星歯車機構の入力部との間に設けられた入力側動力伝達機構と、クラッチ装置と、これら両遊星歯車機構の出力部と前記出力回転軸との間に設けられた出力側動力伝達機構とを備え、前記クラッチ装置はその切換に伴って、前記両遊星歯車機構のうちの何れか一方の遊星歯車機構を前記トロイダル型無段変速機の出力部と前記出力回転軸との間の動力伝達経路中に組み込み、他方の遊星歯車機構をこの動力伝達経路中から切り離す機能を有し、前進時に接続され後退時に切断される前進用クラッチと、後退時に接続され前進時に切断される後退用クラッチとから構成されるものである無段変速装置。 An input rotary shaft that is rotationally driven by a drive source, and a toroidal continuously variable transmission that is provided around the input rotary shaft and concentrically with the input rotary shaft and is operated using the input rotary shaft as an input unit thereof. An output rotation shaft provided in parallel with the input rotation shaft, and an intermediate portion provided in parallel with the input rotation shaft and the output rotation shaft at a portion between the input rotation shaft and the output rotation shaft in the power transmission direction. Between the rotation transmission shaft, the forward and reverse planetary gear mechanisms provided around the intermediate rotation transmission shaft, the output portion of the toroidal continuously variable transmission, and the input portions of these planetary gear mechanisms. An input-side power transmission mechanism, a clutch device, and an output-side power transmission mechanism provided between the output portions of these planetary gear mechanisms and the output rotation shaft, the clutch device switching Accompanying One of the planetary gear mechanisms is incorporated into a power transmission path between the output portion of the toroidal-type continuously variable transmission and the output rotation shaft, and the other planetary gear mechanism is incorporated in the power transmission path. A continuously variable transmission that has a function of disconnecting from a forward clutch that is connected during forward travel and disconnected during backward travel, and a reverse clutch that is connected during backward travel and disconnected during forward travel. 前記前進用、後退用両遊星歯車機構は、固定部分に支持されて回転しないキャリアを備え、これら両遊星歯車機構は何れも、前記中間回転伝達軸と共に回転する太陽歯車と、それぞれの太陽歯車の周囲に配置されたリング歯車と、それぞれの太陽歯車とリング歯車との間に設けられた複数の遊星歯車とを備えたものであり、何れか一方の遊星歯車機構は、各遊星歯車を前記太陽歯車と前記リング歯車との両方の歯車に噛合させるシングルピニオン型であり、他方の遊星歯車機構は、各遊星歯車毎に1対ずつ設けた遊星歯車素子を互いに噛合させると共に、一方の遊星歯車素子を前記太陽歯車に、他方の遊星歯車素子を前記リング歯車に、それぞれ噛合させたダブルピニオン型である、請求項1に記載した無段変速装置。   The forward and reverse planetary gear mechanisms each include a carrier that is supported by a fixed portion and does not rotate. Both of these planetary gear mechanisms are a sun gear that rotates together with the intermediate rotation transmission shaft, and each sun gear. A ring gear disposed in the periphery, and a plurality of planetary gears provided between the sun gear and the ring gear, and one of the planetary gear mechanisms is configured to connect each planetary gear to the sun gear. A single-pinion type that meshes with both the gear and the ring gear, and the other planetary gear mechanism meshes one planetary gear element provided for each planetary gear with each other, and one planetary gear element 2. The continuously variable transmission according to claim 1, wherein the continuously variable transmission is a double pinion type in which a sun gear is engaged with the other planetary gear element and the ring gear. 前記シングルピニオン型の遊星歯車機構を構成する各遊星歯車と、前記ダブルピニオン型の遊星歯車機構を構成する各遊星歯車素子のうち、前記リング歯車と噛合している各遊星歯車素子とを同期した回転を自在に結合する事により、前記前進用、後退用両遊星歯車機構で1個のリング歯車を共用している、請求項2に記載した無段変速装置。   Each planetary gear constituting the single pinion type planetary gear mechanism is synchronized with each planetary gear element meshing with the ring gear among the planetary gear elements constituting the double pinion type planetary gear mechanism. The continuously variable transmission according to claim 2, wherein one ring gear is shared by both the forward and reverse planetary gear mechanisms by freely coupling the rotation. 前記前進用、後退用両クラッチが、前記前進用、後退用両遊星歯車機構を構成する1対のリング歯車と、前記出力側伝達機構との間にそれぞれ設けられたものである、請求項1〜2のうちの何れか1項に記載した無段変速装置。 2. The forward and reverse clutches are respectively provided between a pair of ring gears constituting the forward and reverse planetary gear mechanisms and the output transmission mechanism. The continuously variable transmission as described in any one of -2. 前記前進用、後退用両遊星歯車機構は何れも、前記トロイダル型無段変速機の出力部の回転に伴って回転する太陽歯車と、それぞれの太陽歯車の周囲に配置されたリング歯車と、それぞれの太陽歯車とリング歯車との間に設けられ、それぞれがこれら太陽歯車とリング歯車との両方の歯車に噛合した複数の遊星歯車とを備えたシングルピニオン型であり、前記両遊星歯車機構のうちの一方の遊星歯車機構は、キャリアが固定されていて前記リング歯車の回転を前記出力回転軸に伝達するものであり、他方の遊星歯車機構は、前記リング歯車が固定されていてキャリアの回転を前記出力回転軸に伝達するものである、請求項1に記載した無段変速装置。   Both the forward and reverse planetary gear mechanisms are each a sun gear that rotates as the output portion of the toroidal continuously variable transmission rotates, and a ring gear that is arranged around each sun gear, A single pinion type provided with a plurality of planetary gears meshed with both the sun gear and the ring gear, and the two planetary gear mechanisms, One planetary gear mechanism has a carrier fixed and transmits the rotation of the ring gear to the output rotation shaft, and the other planetary gear mechanism has the ring gear fixed and the carrier rotates. The continuously variable transmission according to claim 1, wherein the continuously variable transmission is transmitted to the output rotation shaft. 前記前進用、後退用両クラッチが、前記トロイダル型無段変速機の出力部と、前記前進用、後退用両遊星歯車機構を構成する1対の太陽歯車との間にそれぞれ設けられたものである、請求項3又は請求項5に記載した無段変速装置。 The forward and reverse clutches are provided between the output portion of the toroidal-type continuously variable transmission and a pair of sun gears constituting the forward and reverse planetary gear mechanisms, respectively. there, continuously variable transmission according to claim 3 or claim 5. 前記中間回転伝達軸が、内径側回転伝達軸と、この内径側回転伝達軸の中間部周囲に、この内径側回転伝達軸に対する相対回転を可能に配置された、円管状の外径側回転伝達軸とから成る二重構造であり、前記前進用、後退用両遊星歯車機構を構成する1対の太陽歯車が、それぞれ前記内径側回転伝達軸又は前記外径側回転伝達軸の一部に、当該回転伝達軸と同期した回転を自在に設置されており、前記前進用、後退用両クラッチは、それぞれ前記内径側回転伝達軸又は前記外径側回転伝達軸と前記トロイダル型無段変速機の出力部との間に設けられている、請求項6に記載した無段変速装置。 The intermediate rotation transmission shaft has a circular outer diameter rotation transmission shaft disposed around the inner diameter side rotation transmission shaft and an intermediate portion of the inner diameter side rotation transmission shaft so as to be able to rotate relative to the inner diameter side rotation transmission shaft. A pair of sun gears constituting the forward and reverse planetary gear mechanisms, respectively, on a part of the inner diameter side rotation transmission shaft or the outer diameter side rotation transmission shaft, The forward and reverse clutches are installed freely in synchronization with the rotation transmission shaft. The inner and outer rotation transmission shafts and the outer diameter side rotation transmission shaft and the toroidal continuously variable transmission are respectively provided. The continuously variable transmission according to claim 6, provided between the output section and the output section. 前記入力側動力伝達機構が、前記トロイダル型無段変速機の出力部に設けられた出力部材を含んで構成されるものであり、前記中間回転伝達軸の軸方向に関して、前記クラッチ装置と前記前進用、後退用両遊星歯車機構とが、互いに反対側に配置されている、請求項1〜3、5〜7のうちの何れか1項に記載した無段変速装置。   The input-side power transmission mechanism includes an output member provided at an output portion of the toroidal-type continuously variable transmission, and the clutch device and the forward drive in the axial direction of the intermediate rotation transmission shaft The continuously variable transmission according to any one of claims 1 to 3, and 5 to 7, wherein the primary and reverse planetary gear mechanisms are disposed on opposite sides of each other. 出力側動力伝達機構は、デファレンシャルギヤを含んで構成されたものであり、前記クラッチ装置の切換に伴って、前記前進用、後退用両遊星歯車機構のうちの何れか一方の遊星歯車機構の出力部により前記デファレンシャルギヤの入力部を回転駆動し、このデファレンシャルギヤの出力部により、左右1対の出力回転軸を回転駆動する、請求項1〜8のうちの何れか1項に記載した無段変速装置。 The output-side power transmission mechanism is configured to include a differential gear, and the output of either one of the forward and reverse planetary gear mechanisms according to the switching of the clutch device. 9. The continuously variable drive according to any one of claims 1 to 8, wherein an input portion of the differential gear is rotationally driven by a portion, and a pair of left and right output rotation shafts are rotationally driven by an output portion of the differential gear. Transmission device.
JP2011213784A 2011-09-29 2011-09-29 Continuously variable transmission Expired - Fee Related JP5834710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213784A JP5834710B2 (en) 2011-09-29 2011-09-29 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213784A JP5834710B2 (en) 2011-09-29 2011-09-29 Continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2013072533A JP2013072533A (en) 2013-04-22
JP2013072533A5 true JP2013072533A5 (en) 2014-11-06
JP5834710B2 JP5834710B2 (en) 2015-12-24

Family

ID=48477195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213784A Expired - Fee Related JP5834710B2 (en) 2011-09-29 2011-09-29 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5834710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1015486A3 (en) 1999-09-30 2005-05-03 Honda Motor Co Ltd Clamping fixation band to boot for uniform-velocity joint of a vehicle, involves pressing protrusion of fixation band set in fixed position and rotated with boot to tightly bind flexible band to boot

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280867A (en) * 1998-03-30 1999-10-15 Nippon Seiko Kk Continously variable transmission
JP2006132595A (en) * 2004-11-02 2006-05-25 Nissan Motor Co Ltd Vehicle automatic transmission
JP5061647B2 (en) * 2007-02-27 2012-10-31 日本精工株式会社 Continuously variable transmission

Similar Documents

Publication Publication Date Title
JP4626337B2 (en) Continuously variable transmission
JP4637632B2 (en) Continuously variable transmission
EP2167843B1 (en) Dual clutch transmission with planetary gearset
JP2008144904A (en) Continuously variable transmission of power split type
WO2015108006A1 (en) Multistage transmission
JP5617727B2 (en) Automatic transmission
JP2006308039A (en) Continuously variable transmission
JP4151300B2 (en) Continuously variable transmission
JP4386672B2 (en) Automatic transmission
WO2021073184A1 (en) Two-gear variable-speed bridge driving system without driving force interruption
WO2016175287A1 (en) Transmission device
JP5834710B2 (en) Continuously variable transmission
JP2010203542A (en) Double clutch automatic transmission
JP2013072533A5 (en)
JP5061647B2 (en) Continuously variable transmission
JP5903288B2 (en) Stepped transmission
JP4696770B2 (en) Continuously variable transmission
JP5796092B2 (en) Vehicle transmission
US11794575B2 (en) Motor vehicle transmissions, in particular electric vehicle transmissions
US11815166B2 (en) Motor vehicle transmissions, in particular electric vehicle transmissions
US11719317B2 (en) Electric vehicle transmission
JP7166735B2 (en) vehicle transmission
JP2006316839A (en) Continuously variable transmission device
JP4696902B2 (en) Continuously variable transmission
JP2006322482A (en) Continuously variable transmission device