JP2013072107A - Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same - Google Patents

Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same Download PDF

Info

Publication number
JP2013072107A
JP2013072107A JP2011211319A JP2011211319A JP2013072107A JP 2013072107 A JP2013072107 A JP 2013072107A JP 2011211319 A JP2011211319 A JP 2011211319A JP 2011211319 A JP2011211319 A JP 2011211319A JP 2013072107 A JP2013072107 A JP 2013072107A
Authority
JP
Japan
Prior art keywords
steel sheet
bake
less
cold
surface quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011211319A
Other languages
Japanese (ja)
Inventor
Yasunobu Nagataki
康伸 長滝
Hideyuki Kimura
英之 木村
Hideyuki Takahashi
秀行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011211319A priority Critical patent/JP2013072107A/en
Priority to MYPI2012003437A priority patent/MY170573A/en
Priority to RU2012132844/02A priority patent/RU2532782C2/en
Priority to ZA2012/05764A priority patent/ZA201205764B/en
Priority to BR102012019141A priority patent/BR102012019141A2/en
Publication of JP2013072107A publication Critical patent/JP2013072107A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

PROBLEM TO BE SOLVED: To provide a bake-hardenable, cold-rolled steel sheet which is excellent in surface quality after molding and is extremely useful as an automotive exterior and interior panels.SOLUTION: The bake-hardenable, cold-rolled steel sheet has a composition comprising, by mass%, 0.0005-0.0050% C, ≤0.30% Si, ≤1.50% Mn, ≤0.100% P, ≤0.020% S, ≤0.080% sol. Al, ≤0.0070% N, 0.003-0.100% Nb, provided that C and Nb satisfy the following relation: 0.50≤([%Nb]/93)/([%C]/12)≤1.50 (wherein [%M] represents element M content in steel (mass%)), and the balance being Fe and unavoidable impurities.

Description

本発明は、自動車の外板等に適用して好適な、成形後の表面品質に優れる焼付け硬化型冷延鋼板およびその製造方法に関するものである。   The present invention relates to a bake-hardened cold-rolled steel sheet excellent in surface quality after forming and suitable for application to an outer plate of an automobile and a method for producing the same.

近年、自動車の外板等に求められる表面品質がますます厳しくなっている。この表面品質を左右する表面欠陥は、大きく分けて、鋼板の製造段階で表面に認められるものと、自動車のプレスライン等において成形後、発現するものとに分類される。   In recent years, the surface quality required for automobile outer panels has become increasingly severe. The surface defects that influence the surface quality are roughly classified into those that are recognized on the surface in the manufacturing stage of the steel sheet and those that appear after being formed in the press line of an automobile.

前者の表面欠陥は、比較的容易に見つけられるため、自動車生産への影響は小さい。また、例えば特許文献1などに開示されているように、素材段階での対策も知られている。
一方、後者の表面欠陥は、部品に成形した後、あるいはさらに車体に組み込んだ後の最終検査工程で、初めて発見される場合があるため、自動車生産に対する影響は極めて大きい。
しかも、後者の表面欠陥を抑制する手段については、これまで効果的な対策が明確になっていなかった。
The former surface defects are relatively easy to find, so the impact on automobile production is small. In addition, as disclosed in Patent Document 1, for example, measures at the material stage are also known.
On the other hand, since the latter surface defect may be found for the first time in the final inspection process after being molded into a part or further incorporated into a vehicle body, the influence on automobile production is extremely large.
Moreover, no effective countermeasure has been clarified so far for the means for suppressing the latter surface defects.

特開平9−296222号公報JP-A-9-296222

本発明は、上記の現状に鑑み開発されたもので、特に成形後の表面品質に優れる焼付け硬化型冷延鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention has been developed in view of the above situation, and an object of the present invention is to propose a bake-hardened cold-rolled steel sheet that is particularly excellent in surface quality after forming together with its advantageous manufacturing method.

本発明者らは、上記の問題を解決すべく、成形後に表面欠陥として現出する欠陥の発生メカニズムとその抑制対策について鋭意検討を重ねた。
その結果、このような表面欠陥が発生する鋼板では、鋼板の焼鈍過程において、降伏点伸びに起因した局所的な不均一変形が生じており、これが成形後の表面欠陥の原因であることが解明された。
In order to solve the above-mentioned problems, the present inventors have intensively studied the generation mechanism of defects that appear as surface defects after molding and countermeasures for suppressing them.
As a result, in steel sheets where such surface defects occur, local uneven deformation due to yield point elongation occurs during the annealing process of the steel sheet, and it is clarified that this is the cause of surface defects after forming. It was done.

すなわち、焼鈍過程で鋼板に不均一変形が生じていると、この不均一変形部では硬さが未変形部に比較して大きく、変形量が小さくなるため、部品への成形時において、不均一変形部が凸部として浮き上がってきて外観不良となる。なお、外観上はシャープな線状の欠陥となり、鋼板の長手方向に対して、斜め45°方向に伸びた形態を呈する。
自動車外板の中でも、ドアやフード等には、耐デント性を向上させる目的で、焼付け硬化型鋼板が多く使用されている。かかる鋼板では、固溶Cを意図的に残留させるために、再結晶後の状態では降伏点伸びが発現し、特に上述したような不均一変形が生じやすい。
In other words, if non-uniform deformation occurs in the steel sheet during the annealing process, the hardness of the non-uniform deformation portion is larger than that of the non-deformation portion, and the amount of deformation is small. A deformation | transformation part floats up as a convex part, and becomes an external appearance defect. In addition, it becomes a sharp linear defect in appearance, and exhibits a form extending obliquely at 45 ° with respect to the longitudinal direction of the steel sheet.
Among automotive outer plates, bake-hardened steel plates are often used for doors, hoods, and the like for the purpose of improving dent resistance. In such a steel sheet, since the solid solution C is intentionally left, the elongation at the yield point appears in the state after recrystallization, and in particular, the above-described non-uniform deformation tends to occur.

上記のような表面欠陥の発生を抑制するには、焼鈍時に降伏点を超えるような歪量を与えなければ良い。一般的に、連続焼鈍炉内では、鋼板の降伏点を超える歪が発生しない条件で設備設計や通板条件が設定されている。ところが、実際には、加熱・冷却による熱歪のため、局所的に不均一な歪が発生して、特定条件では、鋼板の降伏点を超える場合が発生することが明らかとなった。   In order to suppress the occurrence of surface defects as described above, it is sufficient that a strain amount exceeding the yield point is not given during annealing. In general, in a continuous annealing furnace, facility design and sheet passing conditions are set under conditions that do not cause strain exceeding the yield point of the steel sheet. However, in practice, it has become clear that due to thermal strain due to heating / cooling, locally uneven strain occurs, and under certain conditions, the yield point of the steel sheet may be exceeded.

そこで、本発明者らは、上述した焼鈍時の不均一変形に起因した表面欠陥の発生因子についてさらに検討を加えた結果、再結晶完了後の冷却過程において、特定温度域で一定の冷却速度を超えると、鋼板内に発生する熱歪が大きくなって鋼板の降伏点を超える歪が発生し、成形後に表面欠陥が発現するとの知見を得た。
本発明は、上記の知見に立脚するものである。
Therefore, as a result of further study on the generation factors of surface defects caused by the above-described non-uniform deformation during annealing, the present inventors have obtained a constant cooling rate in a specific temperature range in the cooling process after completion of recrystallization. When it exceeded, the thermal strain which generate | occur | produces in a steel plate will become large, the distortion exceeding the yield point of a steel plate will generate | occur | produce, and the knowledge that the surface defect expressed after shaping | molding was acquired.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.0005〜0.0050%、Si:0.30%以下、Mn:1.50%以下、P:0.100%以下、S:0.020%以下、sol.Al:0.080%以下、N:0.0070%以下およびNb:0.003〜0.100%を含有し、かつC,Nbが下記式の関係を満足し、残部はFeおよび不可避的不純物の組成からなり、圧延方向に採取した短冊状試験片に1〜5%の一方向の引張り歪を加えた後、表面を砥石がけした時に線状模様が発生しないことを特徴とする成形後の表面品質に優れる焼付け硬化型冷延鋼板。

0.50≦([%Nb]/93)/([%C]/12)≦1.50
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.0005 to 0.0050%, Si: 0.30% or less, Mn: 1.50% or less, P: 0.100% or less, S: 0.020% or less, sol.Al: 0.080% or less, N: 0.0070% or less, and Nb : 0.003 to 0.100%, C and Nb satisfy the relationship of the following formula, the balance is composed of Fe and unavoidable impurities, and 1 to 5% of the strip-shaped specimens taken in the rolling direction. A bake-hardened cold-rolled steel sheet excellent in surface quality after forming, characterized in that a linear pattern does not occur when the surface is scratched after applying tensile strain in the direction.
Record
0.50 ≦ ([% Nb] / 93) / ([% C] / 12) ≦ 1.50
Here, [% M] represents the content (mass%) of M element in steel.

2.さらに、質量%で、Ti:0.005%以下、B:0.0003〜0.0030%から選択される一種以上を含有することを特徴とする前記1に記載の成形後の表面品質に優れる焼付け硬化型冷延鋼板。 2. The bake-hardened cold-rolled steel sheet having excellent surface quality after forming according to 1 above, further comprising at least one selected from Ti: 0.005% or less and B: 0.0003-0.0030% by mass% .

3.鋼板の表面に亜鉛系めっき皮膜を有することを特徴とする前記1または2に記載の成形後の表面品質に優れる焼付け硬化型冷延鋼板。 3. The bake hardened cold rolled steel sheet having excellent surface quality after forming according to 1 or 2 above, wherein the steel sheet has a zinc-based plating film on the surface thereof.

4.前記1または2に記載の成分組成からなる鋼片を、熱間圧延後、酸洗し、ついで冷間圧延後、連続焼鈍を施し、該連続焼鈍の冷却過程において400〜200℃の温度域を30℃/sを超えない冷却速度で冷却することを特徴とする成形後の表面品質に優れる焼付け硬化型冷延鋼板の製造方法。 4). The steel slab having the composition described in 1 or 2 is hot-rolled, pickled, then cold-rolled and then subjected to continuous annealing, and a temperature range of 400 to 200 ° C. is applied in the cooling process of the continuous annealing. A method for producing a bake-hardened cold-rolled steel sheet having excellent surface quality after forming, characterized by cooling at a cooling rate not exceeding 30 ° C / s.

5.鋼板表面に亜鉛系めっき皮膜を形成させるめっき処理工程を有することを特徴とする前記4に記載の成形後の表面品質に優れる焼付け硬化型冷延鋼板の製造方法。 5). 5. The method for producing a bake-hardened cold-rolled steel sheet having excellent surface quality after forming as described in 4 above, comprising a plating treatment step of forming a zinc-based plating film on the steel sheet surface.

本発明によれば、自動車外板や内板用として極めて有用な、成形後の表面品質に優れる焼付け硬化型冷延鋼板を安定して製造・供給することができ、工業的価値は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, the bake hardening type cold-rolled steel plate excellent in the surface quality after shaping | molding extremely useful as a motor vehicle outer plate | board or an inner board | plate can be manufactured and supplied stably, and industrial value is very high.

以下、本発明を具体的に説明する。
まず、本発明において、鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C:0.0005〜0.0050%
Cは、含有量が増えると、深絞り性や延性が劣化し自動車外板用や内板用としての成形性を付与することが困難となる。このためC量の上限は0.0050%に、好ましくは0.0040%に規定する。一方、含有量が0.0005%未満では結晶粒が粗大化して、成形した際に鋼板表面に肌荒れが生じやすくなるため、C量の下限は0.0005%に規定する。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: 0.0005-0.0050%
When the content of C increases, deep drawability and ductility deteriorate, and it becomes difficult to impart formability for automobile outer plates and inner plates. For this reason, the upper limit of the amount of C is specified as 0.0050%, preferably 0.0040%. On the other hand, if the content is less than 0.0005%, the crystal grains become coarse and the surface of the steel sheet is liable to be roughened when formed, so the lower limit of the C content is specified to 0.0005%.

Si:0.30%以下
Siは、固溶強化能の高い元素であり、高強度を得るために有効な元素であるが、一方で含有量が増大するとスケールに起因した表面欠陥が発生しやすくなる。このためSi量の上限は0.30%に、好ましくは0.20%に規定する。
Si: 0.30% or less
Si is an element having a high solid solution strengthening ability and is an effective element for obtaining high strength. On the other hand, when the content is increased, surface defects due to scale are likely to occur. For this reason, the upper limit of Si content is specified to be 0.30%, preferably 0.20%.

Mn:1.50%以下
Mnも、含有させることで鋼板を高強度化できる元素であるが、一方で、過剰に添加すると深絞り性が低下する。このため、Mn量の上限は1.50%に規定する。
Mn: 1.50% or less
Mn is an element that can increase the strength of the steel sheet by adding Mn, but on the other hand, when it is added excessively, deep drawability is lowered. For this reason, the upper limit of the amount of Mn is specified as 1.50%.

P:0.100%以下
Pは、微量でも含有量が増えると鋼板を高強度化できる有効な元素であるが、一方で、過剰に含有すると延性、溶接性が劣化する。このためP量の上限は0.100%に規定する。
P: 0.100% or less P is an effective element that can increase the strength of a steel sheet when the content increases even in a small amount, but if contained excessively, ductility and weldability deteriorate. For this reason, the upper limit of the amount of P is specified as 0.100%.

S:0.020%以下
Sは、含有量が高いとPと同様に溶接部の靭性が劣化する。このためS量の上限は0.020%に、好ましくは0.015%に抑制する。
S: 0.020% or less If the content of S is high, the toughness of the welded portion deteriorates as in the case of P. For this reason, the upper limit of the amount of S is suppressed to 0.020%, preferably 0.015%.

sol.Al:0.080%以下、N:0.0070%以下
sol.AlとNは、通常の鋼に含有される量であれば本発明の効果を損なわないので、それぞれsol.Al:0.080%以下、N:0.0070%以下に規定する。
sol.Al: 0.080% or less, N: 0.0070% or less
Since sol.Al and N do not impair the effects of the present invention as long as they are contained in ordinary steel, they are defined as sol.Al: 0.080% or less and N: 0.0070% or less, respectively.

Nb:0.003〜0.100%
Nbは、本発明において特に重要な元素である。Nbは、C量に対して添加量を適切に制御することにより、Cの一部をNbCあるいはNbCNとして固定し、最終製品で固溶Cを残留させることができる。また、C量に対して過剰に添加した場合でも、焼鈍温度を高く制御してNbCあるいはNbCNの一部を再溶解させることにより、所望の焼付け硬化量(BH量)を得ることができる。
焼付け硬化量(BH量)とは、固溶Cの残留による歪時効現象を活用した、塗装焼付け工程における部品降伏強度の上昇量である。一般には、2%の引張り変形歪を付与した後、塗装焼付け処理をシミュレートした170℃、20分の加熱処理後に再度引張り試験を実施し、再引張時の降伏強度(2%引張り変形および170℃、20分の加熱処理後の状態の応力)から、加熱処理前の応力(2%引張り変形後の応力)を差し引いた、応力の上昇量である。
なお、Cを炭窒化物として固定する元素としては、Tiもあるが、Ti系の炭窒化物は再溶解する温度が高いため、鋼成分調整の誤差を焼鈍温度で補正することが難しいという問題がある。
ここに、Nb量が0.003%未満では、固溶C量の制御が困難になるだけでなく、熱延板結晶粒が粗大化して深絞り性が劣化し、一方0.100%を超えると析出物が増大して延性の劣化を招くので、Nb量は0.003〜0.100%の範囲に規定する。
Nb: 0.003 to 0.100%
Nb is a particularly important element in the present invention. By appropriately controlling the amount of Nb added relative to the amount of C, a part of C can be fixed as NbC or NbCN, and solid solution C can remain in the final product. Moreover, even when it is added excessively with respect to the amount of C, a desired bake hardening amount (BH amount) can be obtained by re-dissolving a part of NbC or NbCN by controlling the annealing temperature high.
The bake hardening amount (BH amount) is the amount of increase in the yield strength of parts in the paint baking process, which utilizes the strain aging phenomenon due to the residual solid solution C. Generally, after applying a tensile deformation strain of 2%, a tensile test is performed again after heat treatment at 170 ° C. for 20 minutes, which simulates a paint baking process, and yield strength at the time of re-tension (2% tensile deformation and 170% It is the amount of increase in stress obtained by subtracting the stress before heat treatment (stress after 2% tensile deformation) from the stress after heat treatment at 20 ° C. for 20 minutes.
In addition, there is Ti as an element to fix C as carbonitride, but Ti-based carbonitride has a high remelting temperature, so it is difficult to correct the steel component adjustment error with the annealing temperature. There is.
Here, if the Nb amount is less than 0.003%, not only the control of the solute C amount becomes difficult, but also the hot-rolled plate crystal grains become coarse and the deep drawability deteriorates. On the other hand, if it exceeds 0.100%, precipitates are formed. Since it increases and causes deterioration of ductility, the Nb content is specified in the range of 0.003 to 0.100%.

また、固溶C量を制御するためには、CとNb量は、以下の関係式を満足させることが必要である。
0.50≦([%Nb]/93)/([%C]/12)≦1.50
上記の関係式において、下限を0.50に規定したのは、これを下回ると、固溶Cが多く残留しすぎて、時効による材質劣化が発生しやすくなるためである。一方、上限を1.50に規定したのは、これを超えると固溶Cを残留させにくくなり、所望の焼付け硬化性が付与できなくなるからである。
Moreover, in order to control the amount of solute C, the amounts of C and Nb must satisfy the following relational expression.
0.50 ≦ ([% Nb] / 93) / ([% C] / 12) ≦ 1.50
The reason why the lower limit is defined as 0.50 in the above relational expression is that if it is less than this, a large amount of solid solution C remains and material deterioration due to aging tends to occur. On the other hand, the reason why the upper limit is defined as 1.50 is that when the upper limit is exceeded, it is difficult for solid solution C to remain, and the desired bake hardenability cannot be imparted.

以上、基本成分について説明したが、本発明では、その他にも、以下に述べる元素を必要に応じて適宜含有させることができる。
Ti:0.005%以下
上述したとおり、Tiは含有量が増加すると、焼付け硬化性の制御性が劣化するため含有量の上限が必要となる。このため、Ti量の上限は0.005%に規定する。
Although the basic components have been described above, in the present invention, other elements described below can be appropriately contained as necessary.
Ti: 0.005% or less As described above, when Ti content increases, the bake hardenability controllability deteriorates, so an upper limit of the content is required. For this reason, the upper limit of Ti amount is specified as 0.005%.

B:0.0003〜0.0030%
Bは、深絞り成形した部品の耐二次加工脆性を向上させるために添加する。しかしながら、B量が0.0003%に満たないと所望の効果が得られず、一方0.0030%を超えると硬質化して成形性が劣化する。そのためB量は0.0003〜0.0030%の範囲に規定する。
B: 0.0003-0.0030%
B is added in order to improve the secondary work brittleness resistance of the deep-drawn part. However, if the amount of B is less than 0.0003%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.0030%, it becomes hard and the formability deteriorates. Therefore, the amount of B is specified in the range of 0.0003 to 0.0030%.

その他、深絞り性等の成形性や製造工程での表面元素濃化抑制による表面品質の向上を目的として、V,W,Cu,Ni,Sn,Cr,MoおよびSb等を添加することができる。これらの添加量については0.5%を超えるような多量添加でなければ、本発明の効果は損なわれない。
また、介在物の形態制御を目的としてCaを添加する場合や、精錬時の効率向上のため脱酸素レベルの許容範囲を広げる目的でO含有量の上限を高める場合においても、それぞれ30ppm,50ppmを超える添加でなければ、本発明の効果は損なわない。
上記した成分以外の残部は、Feおよび不可避的不純物である。
In addition, V, W, Cu, Ni, Sn, Cr, Mo, Sb, and the like can be added for the purpose of improving the surface quality by suppressing moldability such as deep drawability and surface element concentration in the manufacturing process. . The effects of the present invention are not impaired unless these addition amounts are larger than 0.5%.
In addition, when adding Ca for the purpose of controlling the form of inclusions, or when increasing the upper limit of the O content for the purpose of expanding the allowable range of deoxygenation for improving the efficiency during refining, 30 ppm and 50 ppm respectively. If the addition is not excessive, the effect of the present invention is not impaired.
The balance other than the above components is Fe and inevitable impurities.

次に、成形後の表面品質の評価法について述べる。
前述したとおり、製造ままで現出する表面欠陥に比べて、成形後に現出する表面欠陥は、部品に成形した後あるいはさらに車体に組み込んだ後の最終検査工程で、初めて発見される場合があるため、自動車生産に対する影響は極めて大きい。発明者らは、製造過程での局所的な塑性変形発生による筋状欠陥の検出方法について鋭意検討した結果、適切な歪量を鋼板に付与して、表面を砥石がけすることで、簡易かつ効果的に検出できることを明らかとした。
歪量は少なすぎても多すぎても、塑性変形の発生した部分とそうでない部分の硬さの差による変形挙動の差が小さくなるため、1〜5%程度が最適である。試験片は圧延方向を長手方向として短冊状の試験片とすれば良い。製品の全幅で確認する必要があるので、引張り試験片の仕様範囲内で、できるだけ、面積を広くとることが効率的である。
また、試験片長手方向を圧延方向とした試験片を用いることにより、線状模様(筋状欠陥)を適切に評価することができる。なお、本発明で対象とする引張変形後に現出する筋状欠陥は、いわゆる降伏点伸びによるストレッチャー・ストレインではなく、あくまで、製造工程で鋼板に導入された局所的な塑性変形により、鋼板内部に微小ではあるが周囲に比べて硬度が高い部分が存在することに起因するものである。ストレッチャー・ストレインは、短冊状試験片で引張ると10mmあるいはそれ以上の幅を有する帯状の形態を呈するが、本発明で対象とする欠陥は幅は5mm以内で、シャープな直線状の形態を呈することが特徴である。
Next, a method for evaluating the surface quality after molding will be described.
As described above, surface defects that appear after molding may be found for the first time in the final inspection process after being molded into a part or after being incorporated into a car body, compared to surface defects that appear as manufactured. Therefore, the impact on automobile production is extremely large. As a result of earnestly examining the method for detecting streak defects due to local plastic deformation during the manufacturing process, the inventors imparted an appropriate amount of strain to the steel sheet and rubbed the surface, which is simple and effective. It was clarified that it can be detected.
If the amount of strain is too small or too large, the difference in deformation behavior due to the difference in hardness between the portion where plastic deformation has occurred and the portion where it does not is small, so about 1 to 5% is optimal. The test piece may be a strip-shaped test piece with the rolling direction as the longitudinal direction. Since it is necessary to check the entire width of the product, it is efficient to make the area as wide as possible within the specification range of the tensile test piece.
Further, by using a test piece whose longitudinal direction is the test piece, a linear pattern (striped defect) can be appropriately evaluated. In addition, the streak defect that appears after the tensile deformation that is the subject of the present invention is not a stretcher strain caused by so-called yield point elongation, but is only caused by local plastic deformation introduced into the steel sheet during the manufacturing process. This is due to the presence of a portion that is very small but harder than the surroundings. Stretcher strain has a strip shape with a width of 10 mm or more when pulled with a strip-shaped test piece, but the defect targeted by the present invention has a width within 5 mm and a sharp linear shape. It is a feature.

次に、本発明の製造工程について述べる。
本発明では、上記したような成分組成に調整された鋼片を、鋳造後、熱間圧延した後、酸洗し、ついで冷間圧延後、連続焼鈍を施すことによって冷延鋼板とする。そして、本発明では、上記の連続焼鈍に際し、その冷却過程において特に400〜200℃の温度域を30℃/sを超えない冷却速度で冷却することが重要である。
Next, the manufacturing process of the present invention will be described.
In the present invention, the steel slab adjusted to the above component composition is cast, hot-rolled, pickled, then cold-rolled, and then subjected to continuous annealing to obtain a cold-rolled steel sheet. In the present invention, during the above-described continuous annealing, it is important to cool the temperature range of 400 to 200 ° C. at a cooling rate not exceeding 30 ° C./s, particularly in the cooling process.

発明者らの検討によれば、400〜200℃の温度域は、降伏強度が比較的低く、かつ降伏点伸びが明瞭に発現するため、製造条件の変動や熱歪などにより、鋼板内に不均一変形が発生しやすい温度域である。この点、400℃を超える温度域では、降伏強度が十分に低く、かつ転位の増殖も容易であるため、不均一変形は生じにくい。一方、200℃を下回る温度域では、降伏強度が十分高くなり、歪が発生しても降伏強度を超えなくなる。
また、冷却速度を30℃/s以下とするのは、これを超えた冷却速度になると、収縮により発生する熱歪が大きくなり、局所的に鋼板の降伏強度を超えて不均一変形が生じるためである。一方、冷却速度は小さいほど冷却時の歪が小さくなるが、極端に小さく制限すると、ライン長が長くなりすぎるので、5℃/s以上とすることが好ましい。
According to the study by the inventors, in the temperature range of 400 to 200 ° C., the yield strength is relatively low and the yield point elongation is clearly expressed. This temperature range is likely to cause uniform deformation. In this respect, in a temperature range exceeding 400 ° C., the yield strength is sufficiently low and the growth of dislocations is easy, so that non-uniform deformation hardly occurs. On the other hand, in the temperature range below 200 ° C., the yield strength is sufficiently high, and even if distortion occurs, the yield strength is not exceeded.
In addition, the cooling rate is set to 30 ° C./s or less because when the cooling rate exceeds this, the thermal strain generated by the shrinkage increases, resulting in uneven deformation locally exceeding the yield strength of the steel sheet. It is. On the other hand, the smaller the cooling rate, the smaller the distortion during cooling. However, if the cooling rate is extremely small, the line length becomes too long.

なお、上記した連続焼鈍の冷却過程における400〜200℃の温度域での冷却を上述した制御冷却とすること以外の製造工程は、常法に従って行えば良く、特に制限されることはない。例えば、造塊あるいは連続鋳造によるスラブ製造法や、熱延での粗熱延バー接続による連続熱延を適用することができる。また、熱延過程でのインダクションヒーターを利用した200℃以内の昇温などは、本発明の効果に対して悪影響を及ぼさない。   In addition, the manufacturing process other than changing the cooling in the temperature range of 400 to 200 ° C. in the cooling process of the above-described continuous annealing to the above-described controlled cooling may be performed according to a conventional method and is not particularly limited. For example, it is possible to apply a slab manufacturing method by ingot forming or continuous casting, or continuous hot rolling by rough hot rolling bar connection in hot rolling. Further, a temperature rise within 200 ° C. using an induction heater in the hot rolling process does not adversely affect the effects of the present invention.

その他の好適製造条件について述べると、熱間圧延における鋼片加熱温度:1150〜1300℃、仕上げ圧延終了温度は850〜950℃、巻取り温度は500〜700℃、冷間圧延の圧下率は60〜90%、連続焼鈍(または連続溶融亜鉛めっき)における均熱温度は800〜900℃とすることが好ましい。
本発明では、鋼板表面に亜鉛系めっき皮膜を形成させるめっき処理工程を有する製造方法とすることもできる。電気めっき処理や溶融めっき処理にて、純亜鉛や亜鉛合金(亜鉛−鉄、亜鉛−Ni、亜鉛−アルミニウム等)の亜鉛系めっき皮膜を、鋼板表面に形成させることができる。亜鉛めっき処理の場合には、焼鈍、めっき処理を別個の工程とすることもできるし、また、焼鈍とめっき処理を連続した一連の工程(例えば、連続溶融亜鉛めっき)とすることも可能である。
Regarding other preferable production conditions, the steel slab heating temperature in hot rolling: 1150 to 1300 ° C, the finish rolling finishing temperature is 850 to 950 ° C, the coiling temperature is 500 to 700 ° C, and the rolling reduction of cold rolling is 60 The soaking temperature in continuous annealing (or continuous hot dip galvanizing) is preferably 800 to 900 ° C.
In this invention, it can also be set as the manufacturing method which has the plating process process which forms a zinc-type plating film on the steel plate surface. A zinc-based plating film of pure zinc or zinc alloy (zinc-iron, zinc-Ni, zinc-aluminum, etc.) can be formed on the steel plate surface by electroplating or hot dipping. In the case of galvanizing treatment, annealing and plating treatment can be made as separate steps, and annealing and plating treatment can be made into a series of steps (for example, continuous galvanizing). .

さらに、本発明は、冷延鋼板の表面に電気めっきが施されためっき鋼板や塗装されたプレコート鋼板であっても、さらに溶融亜鉛めっき鋼板の場合、表面に潤滑性を付与する処理や皮膜の塗布処理を施しても、本発明の効果が損なわれることはない。   Furthermore, the present invention is applicable to a treatment or coating that imparts lubricity to the surface even in the case of a hot-dip galvanized steel sheet, even if it is a plated steel sheet or a precoated steel sheet that has been electroplated on the surface of a cold-rolled steel sheet. Even if the coating treatment is performed, the effect of the present invention is not impaired.

以下、本発明の実施例について具体的に説明する。
表1に示す成分組成に調整した鋼を、溶製後、連続鋳造によりスラブとし、加熱温度:1200℃、仕上げ圧延終了温度:900℃、巻取り温度:600℃の条件で熱延板とした。ついで、酸洗後、圧下率:75%の冷間圧延により板厚:0.75mmの冷延板とした。引き続き、表2に示す条件で、連続焼鈍または連続溶融亜鉛めっきを施して、冷延鋼板または溶融亜鉛めっき鋼板とした。ついで、圧下率:1.2%の調質圧延を施した。
溶融亜鉛めっきの条件は、めっき浴温度:460℃、めっき浴のAl濃度(合金化処理有りの場合:0.13%、合金化処理無しの場合:0.2%)、めっき付着量片面あたり(45g/m2)(両面めっき)、合金化処理温度:480〜580℃、合金化度(Fe質量%):10%とした。
Examples of the present invention will be specifically described below.
The steel adjusted to the component composition shown in Table 1 was made into a slab by continuous casting after melting, and it was made into a hot-rolled sheet under the conditions of heating temperature: 1200 ° C, finish rolling finishing temperature: 900 ° C, coiling temperature: 600 ° C. . Then, after pickling, cold rolling with a reduction ratio of 75% was made into a cold rolled sheet with a sheet thickness of 0.75 mm. Subsequently, continuous annealing or continuous hot dip galvanizing was performed under the conditions shown in Table 2 to obtain cold-rolled steel sheets or hot-dip galvanized steel sheets. Then, temper rolling with a reduction ratio of 1.2% was performed.
The conditions for hot dip galvanizing are as follows: plating bath temperature: 460 ° C, Al concentration in the plating bath (with alloying treatment: 0.13%, without alloying treatment: 0.2%), plating coverage per side (45g / m 2 ) (Double-sided plating), alloying treatment temperature: 480-580 ° C., alloying degree (Fe mass%): 10%.

次に、これらのコイル(鋼帯)から、圧延方向を長手方向として長さ:150mm、幅:30mmの短冊状試験片を全幅で採取し、引張試験機(クロスヘッド速度:10mm/min)にて1,3,5%の歪を加えた(引張方向は長手方向)。その後、平坦な机の上に予歪を加えた試験片を載置して、表面を砥石がけをし、線状模様(筋状欠陥)の有無について調査を行った結果を、表2中に、○:欠陥なし、×:欠陥有りで示す。欠陥の有無は目視にて行い、一箇所でも筋状欠陥が認められた場合は×とした。
また、機械的性質は、JIS5号試験片を用い引張試験(クロスヘッド速度:10mm/min)を行い、引張強度TS、全伸びELを測定した。引張試験は圧延方向に沿って採取した試験片で評価した。
さらに、焼付け硬化量(BH)は、JIS5号試験片を用いて、引張試験機にて、クロスヘッド速度:10mm/minで、2%の歪を加えたのち、170℃で20分加熱後、再度引張試験を実施し、応力(下降伏点)の上昇量で評価した。BH量は、部品の耐デント性向上効果を十分に得るため25MPa以上であることが望ましく、一方で、60MPaを超えるBH量が発現すると、固溶C量が必要以上に多く残留して、歪時効による材料特性の経時劣化が大きくなり問題となる。
得られた結果を表2に併せて示す。
Next, strip test pieces with a length of 150 mm and a width of 30 mm were collected from these coils (steel strips) in the longitudinal direction, and the specimens were taken in full width and placed in a tensile testing machine (crosshead speed: 10 mm / min). 1, 3, 5% strain was applied (the tensile direction is the longitudinal direction). Table 2 shows the result of placing a pre-strained test piece on a flat desk, grinding the surface, and investigating the presence or absence of linear patterns (streaks). , O: no defect, x: defect present. The presence / absence of defects was visually observed, and x was indicated when a streak defect was observed even at one location.
As for mechanical properties, a tensile test (crosshead speed: 10 mm / min) was performed using a JIS No. 5 test piece, and a tensile strength TS and a total elongation EL were measured. The tensile test was evaluated with test pieces taken along the rolling direction.
Furthermore, the bake-hardening amount (BH) is JIS No. 5 test piece, using a tensile tester, with a crosshead speed of 10 mm / min, applying 2% strain, and then heating at 170 ° C. for 20 minutes. A tensile test was performed again, and the increase in stress (falling yield point) was evaluated. The amount of BH is desirably 25 MPa or more in order to sufficiently obtain the effect of improving the dent resistance of the part.On the other hand, if the amount of BH exceeding 60 MPa is developed, the amount of solute C remains unnecessarily, causing distortion. The deterioration of the material characteristics over time due to aging becomes large and becomes a problem.
The obtained results are also shown in Table 2.

Figure 2013072107
Figure 2013072107

Figure 2013072107
Figure 2013072107

表2より明らかなように、本発明に従い、連続焼鈍後の400〜200℃の温度域における冷却速度を30℃/s以下に制御することによって、優れた焼付け硬化性と共に、成形後でも筋状欠陥の発生しない焼付け硬化型冷延鋼板および溶融亜鉛めっき鋼板を得ることができた。
なお、鋼板温度が200℃を下回った場合には、鋼板の降伏強度が十分に大きくなるため、30℃/sを超える速度で冷却しても、筋状欠陥は発生しないことが分かる。
これに対し、比較例No.20は、(Nb/93)/(C/12)が本発明範囲を超えているため、BH量が低い。また、比較例No.21は、(Nb/93)/(C/12)が本発明範囲より低いため、ELが低い。
As is apparent from Table 2, according to the present invention, by controlling the cooling rate in the temperature range of 400 to 200 ° C. after continuous annealing to 30 ° C./s or less, excellent bake hardenability and streak even after molding. A bake-hardened cold-rolled steel sheet and hot-dip galvanized steel sheet free from defects were obtained.
In addition, when the steel plate temperature is less than 200 ° C., the yield strength of the steel plate is sufficiently increased, and it can be seen that no streak defect occurs even when the steel plate is cooled at a rate exceeding 30 ° C./s.
On the other hand, Comparative Example No. 20 has a low BH amount because (Nb / 93) / (C / 12) exceeds the range of the present invention. Further, Comparative Example No. 21 has a low EL because (Nb / 93) / (C / 12) is lower than the range of the present invention.

本発明によれば、自動車外板や内板用として極めて有用な、成形後の表面品質に優れる焼付け硬化型冷延鋼板を安定して製造・供給することができ、工業的価値は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, the bake hardening type cold-rolled steel plate excellent in the surface quality after shaping | molding extremely useful as a motor vehicle outer plate | board or an inner board | plate can be manufactured and supplied stably, and industrial value is very high.

Claims (5)

質量%で、C:0.0005〜0.0050%、Si:0.30%以下、Mn:1.50%以下、P:0.100%以下、S:0.020%以下、sol.Al:0.080%以下、N:0.0070%以下およびNb:0.003〜0.100%を含有し、かつC,Nbが下記式の関係を満足し、残部はFeおよび不可避的不純物の組成からなり、圧延方向に採取した短冊状試験片に1〜5%の一方向の引張り歪を加えた後、表面を砥石がけした時に線状模様が発生しないことを特徴とする成形後の表面品質に優れる焼付け硬化型冷延鋼板。

0.50≦([%Nb]/93)/([%C]/12)≦1.50
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
In mass%, C: 0.0005 to 0.0050%, Si: 0.30% or less, Mn: 1.50% or less, P: 0.100% or less, S: 0.020% or less, sol.Al: 0.080% or less, N: 0.0070% or less, and Nb : 0.003 to 0.100%, C and Nb satisfy the relationship of the following formula, the balance is composed of Fe and unavoidable impurities, and 1 to 5% of the strip-shaped specimens taken in the rolling direction. A bake-hardened cold-rolled steel sheet excellent in surface quality after forming, characterized in that a linear pattern does not occur when the surface is scratched after applying tensile strain in the direction.
Record
0.50 ≦ ([% Nb] / 93) / ([% C] / 12) ≦ 1.50
Here, [% M] represents the content (mass%) of M element in steel.
さらに、質量%で、Ti:0.005%以下、B:0.0003〜0.0030%から選択される一種以上を含有することを特徴とする請求項1に記載の成形後の表面品質に優れる焼付け硬化型冷延鋼板。   The bake hardening type cold rolling excellent in surface quality after molding according to claim 1, further comprising at least one selected from Ti: 0.005% or less and B: 0.0003 to 0.0030% by mass%. steel sheet. 鋼板の表面に亜鉛系めっき皮膜を有することを特徴とする請求項1または2に記載の成形後の表面品質に優れる焼付け硬化型冷延鋼板。   The bake-hardened cold-rolled steel sheet having excellent surface quality after forming according to claim 1 or 2, further comprising a zinc-based plating film on the surface of the steel sheet. 請求項1または2に記載の成分組成からなる鋼片を、熱間圧延後、酸洗し、ついで冷間圧延後、連続焼鈍を施し、該連続焼鈍の冷却過程において400〜200℃の温度域を30℃/sを超えない冷却速度で冷却することを特徴とする成形後の表面品質に優れる焼付け硬化型冷延鋼板の製造方法。   A steel slab comprising the component composition according to claim 1 or 2 is hot-rolled, pickled, then cold-rolled and then subjected to continuous annealing, and a temperature range of 400 to 200 ° C in the cooling process of the continuous annealing. Is produced at a cooling rate not exceeding 30 ° C./s, and a method for producing a bake-hardened cold-rolled steel sheet having excellent surface quality after forming. 鋼板表面に亜鉛系めっき皮膜を形成させるめっき処理工程を有することを特徴とする請求項4に記載の成形後の表面品質に優れる焼付け硬化型冷延鋼板の製造方法。   The method for producing a bake-hardened cold-rolled steel sheet having excellent surface quality after forming according to claim 4, further comprising a plating treatment step of forming a zinc-based plating film on the steel sheet surface.
JP2011211319A 2011-09-27 2011-09-27 Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same Withdrawn JP2013072107A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011211319A JP2013072107A (en) 2011-09-27 2011-09-27 Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same
MYPI2012003437A MY170573A (en) 2011-09-27 2012-07-31 Cold rolled steel sheet having excellent surface quality after press forming and bake hardenability and method for manufacturing the same
RU2012132844/02A RU2532782C2 (en) 2011-09-27 2012-07-31 Cold-rolled steel plate having excellent quality of surface after forming and ability for strengthening at annealing, as well as method for its manufacture
ZA2012/05764A ZA201205764B (en) 2011-09-27 2012-07-31 Cold rolled steel sheet having excellent surface quality after press forming and bake hardenability and method for manufacturing the same
BR102012019141A BR102012019141A2 (en) 2011-09-27 2012-07-31 cold rolled steel sheet having excellent surface quality after pressing forming and bake hardening ability and method for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211319A JP2013072107A (en) 2011-09-27 2011-09-27 Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013072107A true JP2013072107A (en) 2013-04-22

Family

ID=48476857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211319A Withdrawn JP2013072107A (en) 2011-09-27 2011-09-27 Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JP2013072107A (en)
BR (1) BR102012019141A2 (en)
MY (1) MY170573A (en)
RU (1) RU2532782C2 (en)
ZA (1) ZA201205764B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985713A (en) * 2015-07-28 2015-10-21 河南省科学院化学研究所有限公司 Continuous casting epoxy resin composite panel device
CN105018840A (en) * 2015-07-10 2015-11-04 唐山钢铁集团有限责任公司 Ultra-low carbon bake-hardening steel plate and production method thereof
JP6202234B1 (en) * 2016-03-31 2017-09-27 Jfeスチール株式会社 Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571229B1 (en) * 2000-02-29 2007-04-11 JFE Steel Corporation High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
TW565621B (en) * 2000-05-26 2003-12-11 Jfe Steel Corp Cold-rolled steel sheet and galvanized steel sheet having strain age hardenability property and method for producing the same
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
RU2313583C2 (en) * 2006-01-24 2007-12-27 Открытое акционерное общество "Северсталь" Method for producing of cold-rolled steel for cold pressing
RU2330887C1 (en) * 2006-10-30 2008-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method of producing cold-rolled steel for deep-drawing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018840A (en) * 2015-07-10 2015-11-04 唐山钢铁集团有限责任公司 Ultra-low carbon bake-hardening steel plate and production method thereof
CN104985713A (en) * 2015-07-28 2015-10-21 河南省科学院化学研究所有限公司 Continuous casting epoxy resin composite panel device
JP6202234B1 (en) * 2016-03-31 2017-09-27 Jfeスチール株式会社 Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
WO2017168991A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
US10961601B2 (en) 2016-03-31 2021-03-30 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet

Also Published As

Publication number Publication date
ZA201205764B (en) 2013-05-29
RU2532782C2 (en) 2014-11-10
BR102012019141A2 (en) 2015-12-15
MY170573A (en) 2019-08-19
RU2012132844A (en) 2014-02-10

Similar Documents

Publication Publication Date Title
US8828153B2 (en) High-strength cold-rolled steel sheet and high-strength plated steel sheet
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
KR101375413B1 (en) High-strength molten zinc-plated steel sheet and process for production thereof
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
US20170211164A1 (en) High strength galvanized steel sheet and production method therefor
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
KR20160003263A (en) Heat-treated steel material and method for producing same
JPWO2017033222A1 (en) steel sheet
JP5870861B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and ductility and small in-plane anisotropy of ductility and method for producing the same
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JPWO2019069938A1 (en) Hot stamping molded article, hot stamping steel plate and method for producing them
JP4422645B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
JP2013072107A (en) Bake-hardenable, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same
CN112585287B (en) Hot-rolled steel sheet, cold-rolled steel sheet, and method for producing same
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
JP2013072110A (en) High-tensile, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
US10801085B2 (en) High-strength steel sheet and method for manufacturing the same
JP2013072108A (en) Cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same
JP5041096B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2009263713A (en) Cold-rolled steel sheet with high tensile strength, plated steel sheet with high tensile strength, and manufacturing method therefor
JP4867336B2 (en) High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202