JP2013071165A - Method and device for welding - Google Patents

Method and device for welding Download PDF

Info

Publication number
JP2013071165A
JP2013071165A JP2011212908A JP2011212908A JP2013071165A JP 2013071165 A JP2013071165 A JP 2013071165A JP 2011212908 A JP2011212908 A JP 2011212908A JP 2011212908 A JP2011212908 A JP 2011212908A JP 2013071165 A JP2013071165 A JP 2013071165A
Authority
JP
Japan
Prior art keywords
pressurization
workpiece
welding
gap amount
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011212908A
Other languages
Japanese (ja)
Other versions
JP5787696B2 (en
Inventor
Mitsutaka Igaue
光隆 伊賀上
Kaoru Shibata
薫 柴田
Hiroshi Aoki
裕志 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011212908A priority Critical patent/JP5787696B2/en
Publication of JP2013071165A publication Critical patent/JP2013071165A/en
Application granted granted Critical
Publication of JP5787696B2 publication Critical patent/JP5787696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a welding method that sets the optimal welding current corresponding to a gap between plate materials which configure a workpiece by easily calculating the gap without increasing working hours.SOLUTION: The welding method is to weld a workpiece W formed by joining a plurality of plate materials W1 and W2 on top of each other by flowing electric current under the condition of the workpiece W being held by a movable electrode 21 and a static electrode 22. This welding method includes: a process to measure the pressurization start-up time (t-t) from the start of pressurizing the workpiece W to the time of reaching a predetermined pressurization force; a process to calculate the gap amount between the joined plate materials W1 and W2 before the start of pressurization based on the measured pressurization start-up time; and a process to select setting of the welding current flowed to the pressurization part of the workpiece W based on the calculated gap amount.

Description

本発明は、溶接方法及びその装置に関する。詳しくは、積層された板材間のギャップ(隙間)量に基づいて溶接電流の設定を選択する溶接方法及びその装置に関する。   The present invention relates to a welding method and an apparatus therefor. Specifically, the present invention relates to a welding method and apparatus for selecting a setting of a welding current based on a gap amount between stacked plate members.

従来より、複数の板材を重ね合わせたワークの溶接にスポット溶接が用いられている。このスポット溶接では、ワークを一対の電極チップで挟んで加圧し、この状態で電極間に通電する。すると、通電により発生するジュール熱でワーク材が溶融し、電極間のワーク内部にワーク材の溶融物であるナゲットが生成する。その後、加圧状態を維持しつつ通電を停止することにより、ナゲットが冷却固化してワークが溶接される。   Conventionally, spot welding is used for welding a workpiece in which a plurality of plate materials are overlapped. In this spot welding, a work is sandwiched between a pair of electrode tips and pressurized, and electricity is applied between the electrodes in this state. Then, the work material is melted by Joule heat generated by energization, and a nugget that is a melt of the work material is generated inside the work between the electrodes. Then, by stopping energization while maintaining the pressurized state, the nugget is cooled and solidified, and the workpiece is welded.

ところで、複数の板材を重ね合わせたワークをスポット溶接する際、各板材のプレス状況等の要因により、各板材間にギャップが発生している。また、そのギャップに関しては、各ワーク間でばらつきが発生している。このような状態で、ワークを一定条件で加圧した場合、接触条件(加圧力、板材同士の接触径)にばらつきが生じてくるため、電極間のワークに同じ電流を流しても、ナゲットの成長状態を一定に保つことができない。   By the way, when spot-welding a workpiece in which a plurality of plate materials are overlapped, a gap is generated between the plate materials due to factors such as the pressing state of each plate material. In addition, the gap varies between the workpieces. In such a state, when the workpiece is pressurized under certain conditions, the contact conditions (pressing force, contact diameter between the plate materials) vary, so even if the same current is passed through the workpiece between the electrodes, The growth state cannot be kept constant.

そこで、ナゲットの成長状態を一定に保つために、電極間に流す溶接電流等の溶接条件を適切に設定する必要がある。そのために、各板材間のギャップを計測する技術が知られている(例えば、特許文献1参照)。   Therefore, in order to keep the growth state of the nugget constant, it is necessary to appropriately set welding conditions such as a welding current flowing between the electrodes. For this purpose, a technique for measuring the gap between the plate members is known (for example, see Patent Document 1).

特開2009−85856号公報JP 2009-85856 A

しかしながら、特許文献1の技術では、測定すべきパラメータが多く、ワークを構成する各板材間のギャップを計測する処理が複雑になるという課題がある。   However, in the technique of Patent Document 1, there are many parameters to be measured, and there is a problem that processing for measuring a gap between each plate material constituting the workpiece becomes complicated.

本発明は上記に鑑みてなされたものであり、その目的は、ワークを構成する各板材間のギャップを容易に算出することにより、工数を増加させることなくギャップに応じた最適な溶接電流の設定を行う溶接方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to easily calculate the gap between the plate members constituting the workpiece, thereby setting an optimum welding current according to the gap without increasing the number of man-hours. It is in providing the welding method which performs.

上記目的を達成するため本発明は、複数の板材(例えば、後述の板材W1,W2)を積層したワーク(例えば、後述のワークW)を一対の電極(例えば、後述の可動電極21及び固定電極22)により挟持した状態で電流を流して溶接する溶接方法を提供する。
本発明に係る溶接方法は、前記一対の電極による前記ワークの加圧開始から所定の加圧力に達するまでの加圧立ち上がり時間(例えば、後述のt−t)を測定する工程(例えば、後述の歪みゲージ17が加圧立ち上がり時間を計測する工程)と、前記測定した前記加圧立ち上がり時間に基づいて、前記積層された板材間の加圧開始前のギャップ量を算出する工程(例えば、後述の制御装置100がギャップ量を算出する工程)と、前記算出した前記ギャップ量に基づいて、前記ワークの加圧部分に流す溶接電流の設定を選択する工程(例えば、後述の制御装置100が溶接電流の設定を選択する工程)と、を備えたことを特徴とする。
In order to achieve the above object, the present invention provides a work (for example, a work W described later) in which a plurality of plate materials (for example, plate materials W1 and W2 described later) are laminated to a pair of electrodes (for example, a movable electrode 21 and a fixed electrode described later). 22) A welding method is provided in which a current is applied in a state of being sandwiched by step 22).
The welding method according to the present invention includes a step of measuring a pressurization rising time (for example, t 2 -t 1 described later) from the start of pressurization of the workpiece by the pair of electrodes until reaching a predetermined applied pressure (for example, t 2 -t 1 described later) A step of measuring a pressure rising time by a strain gauge 17 to be described later), and a step of calculating a gap amount before the start of pressurization between the laminated plate materials based on the measured pressure rising time (for example, A step of calculating a gap amount by a control device 100 described later) and a step of selecting a setting of a welding current to be passed through the pressurizing portion of the workpiece based on the calculated gap amount (for example, the control device 100 described later includes And a step of selecting the setting of the welding current).

本発明によれば、ワークの加圧開始から所定の加圧力に達するまでの加圧立ち上がり時間を測定し、測定した加圧立ち上がり時間に基づいて、積層された板材間の加圧開始前のギャップ量を算出する。よって、加圧立ち上がり時間を測定することで板材間のギャップ量を容易に算出することができる。
また、本発明によれば、算出したギャップ量に基づいて、ワークの加圧部分に流す溶接電流の設定を選択する。よって、ギャップ量に応じて溶接電流の電流値が決まるので、溶接条件が適切に設定されてナゲットの成長状態を一定に保つことができる。
以上より、本発明によれば、1サイクル分の溶接作業途中でギャップ量を算出し、溶接電流の設定を選択することができるので、工数を増加させることなく、ギャップ量に見合った最適な溶接作業を行うことができる。
According to the present invention, the pressurization rise time from the start of pressurization of the workpiece until the predetermined pressurization force is measured, and based on the measured pressurization rise time, the gap between the stacked plate materials before the start of pressurization Calculate the amount. Therefore, the gap amount between the plate materials can be easily calculated by measuring the pressure rising time.
Moreover, according to this invention, the setting of the welding current sent through the pressurization part of a workpiece | work is selected based on the calculated gap amount. Therefore, since the current value of the welding current is determined according to the gap amount, it is possible to appropriately set the welding conditions and keep the nugget growth state constant.
As described above, according to the present invention, the gap amount can be calculated during the welding operation for one cycle, and the setting of the welding current can be selected. Therefore, the optimum welding corresponding to the gap amount can be performed without increasing the number of man-hours. Work can be done.

また、複数の板材(例えば、後述の板材W1,W2)を積層したワーク(例えば、後述のワークW)を溶接する溶接装置(例えば、後述のスポット溶接装置1)を提供する。
この溶接装置は、互いに対向して配置され、進退機構により接近又は離隔する一対の電極(例えば、後述の可動電極21及び固定電極22)と、前記一対の電極間に電流を流す電流源(例えば、後述の図示しない電流源)と、前記ワークを前記一対の電極で挟持して加圧したときの加圧力を検出する加圧力検出手段(例えば、後述の歪みゲージ17)と、前記加圧力検出手段が前記ワークの加圧力を検出し始めてから所定の加圧力を検出するまでの加圧立ち上がり時間を測定する加圧立ち上がり時間測定手段(例えば、後述の歪みゲージ17)と、前記加圧立ち上がり時間測定手段が測定した前記加圧立ち上がり時間に基づいて、前記積層された板材間の加圧開始前のギャップ量を算出するギャップ量算出手段(例えば、後述の制御装置100)と、前記ギャップ量算出手段が算出した前記ギャップ量に基づいて、前記ワークの加圧部分に流す溶接電流の設定を選択する電流設定選択手段(例えば、後述の制御装置100)と、を備えたことを特徴とする。
Further, a welding device (for example, a spot welding device 1 described later) for welding a workpiece (for example, a workpiece W described later) in which a plurality of plate materials (for example, plate materials W1, W2 described later) are stacked is provided.
This welding apparatus is disposed opposite to each other, and a pair of electrodes (for example, a movable electrode 21 and a fixed electrode 22 to be described later) that are approached or separated by an advancing and retreating mechanism, and a current source that flows current between the pair of electrodes (for example, A current source (not shown), a pressure detection means (for example, a strain gauge 17 described later) for detecting a pressure when the work is sandwiched between the pair of electrodes and pressed, and the pressure detection A pressurization rise time measuring means (for example, strain gauge 17 described later) for measuring a pressurization rise time from when the means starts to detect the pressurization force of the workpiece until the predetermined pressurization pressure is detected; and the pressurization rise time Based on the pressurization rise time measured by the measurement unit, a gap amount calculation unit (for example, a control device 10 described later) that calculates the gap amount before the pressurization between the stacked plate materials is performed. ) And current setting selection means (for example, a control device 100 described later) for selecting setting of a welding current to be passed through the pressurizing portion of the workpiece based on the gap amount calculated by the gap amount calculation means. It is characterized by that.

この発明によれば、上記の溶接方法の発明と同様の効果がある。   According to this invention, there exists an effect similar to invention of said welding method.

本発明によれば、ワークを構成する各板材間のギャップを容易に算出することにより、工数を増加させることなくギャップに応じた最適な溶接電流の設定を行う溶接方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the welding method which sets the optimal welding current according to a gap can be provided, without increasing a man-hour by calculating easily the gap between each board | plate material which comprises a workpiece | work.

本発明の一実施形態に係るスポット溶接装置の構成を示す側面図である。It is a side view which shows the structure of the spot welding apparatus which concerns on one Embodiment of this invention. 上記実施形態に係るワークワークに流れる電流密度の様子と生成されるナゲットの形状を表す模式図である。It is a schematic diagram showing the state of the current density which flows into the workpiece | work which concerns on the said embodiment, and the shape of the nugget produced | generated. 上記実施形態に係るワークに流れる電流密度の様子と生成されるナゲットの形状を表す模式図である。It is a schematic diagram showing the state of the current density which flows into the workpiece | work which concerns on the said embodiment, and the shape of the nugget produced | generated. 上記実施形態に係るワークに流れる電流密度の様子と生成されるナゲットの形状を表す模式図である。It is a schematic diagram showing the state of the current density which flows into the workpiece | work which concerns on the said embodiment, and the shape of the nugget produced | generated. 上記実施形態に係る溶接電流とナゲット径との関係を表すグラフである。It is a graph showing the relationship between the welding current which concerns on the said embodiment, and a nugget diameter. 上記実施形態に係る溶接電流とナゲット径との関係を表すグラフである。It is a graph showing the relationship between the welding current which concerns on the said embodiment, and a nugget diameter. 上記実施形態に係る溶接電流とナゲット径との関係を表すグラフである。It is a graph showing the relationship between the welding current which concerns on the said embodiment, and a nugget diameter. 上記実施形態に係る溶接電流とナゲット径との関係を表すグラフである。It is a graph showing the relationship between the welding current which concerns on the said embodiment, and a nugget diameter. 上記実施形態に係るギャップ量と加圧立ち上がり時間との関係を表すグラフである。It is a graph showing the relationship between the gap amount which concerns on the said embodiment, and pressurization rise time. 上記実施形態に係る溶接電流とワークへの加圧力との関係を表す図である。It is a figure showing the relationship between the welding current which concerns on the said embodiment, and the applied pressure to a workpiece | work.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係るスポット溶接装置の構成を示す側面図である。本実施形態に係るスポット溶接装置1は、ロボットアーム80の先端に取り付けられた電動式のスポット溶接装置である。
スポット溶接装置1は、複数の板材W1及びW2を重ね合わせたワークWを、後述する複数の電極で挟んで加圧し、この状態で電極間に通電することでワークWを溶接するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing a configuration of a spot welding apparatus according to an embodiment of the present invention. The spot welding apparatus 1 according to the present embodiment is an electric spot welding apparatus attached to the tip of a robot arm 80.
The spot welding apparatus 1 welds the workpiece W by pressing a workpiece W obtained by superimposing a plurality of plate materials W1 and W2 between a plurality of electrodes, which will be described later, and energizing the electrodes in this state.

スポット溶接装置1は、ロボットアーム80の先端に設けられた支持部90により支持されたスポット溶接ガン10と、このスポット溶接ガン10を制御する制御装置100と、を備える。   The spot welding apparatus 1 includes a spot welding gun 10 supported by a support portion 90 provided at the tip of a robot arm 80 and a control device 100 that controls the spot welding gun 10.

支持部90は、支持ブラケット91を含んで構成される。この支持ブラケット91は、上板91aと、この上板91aに平行な下板91bと、を備える。これら上板91aと下板91bの間には、ガイドバー92が橋架されている。   The support part 90 includes a support bracket 91. The support bracket 91 includes an upper plate 91a and a lower plate 91b parallel to the upper plate 91a. A guide bar 92 is bridged between the upper plate 91a and the lower plate 91b.

ガイドバー92には、その軸方向に摺動自在な支持板93が取り付けられている。支持板93は、ロボットアーム80側から上板91a及び下板91bに対して平行に延び、その先端側でスポット溶接ガン10を支持する。支持板93の基端側の上面には、筐体状の支持体94が設けられている。上板91aと支持体94の間には、ガイドバー92に巻回された第1コイルスプリング95が介装されている。同様に、下板91bと支持板93の間には、ガイドバー92に巻回された第2コイルスプリング96が介装されている。   A support plate 93 slidable in the axial direction is attached to the guide bar 92. The support plate 93 extends in parallel to the upper plate 91a and the lower plate 91b from the robot arm 80 side, and supports the spot welding gun 10 on the tip side. A casing-like support body 94 is provided on the upper surface on the base end side of the support plate 93. A first coil spring 95 wound around the guide bar 92 is interposed between the upper plate 91a and the support 94. Similarly, a second coil spring 96 wound around the guide bar 92 is interposed between the lower plate 91 b and the support plate 93.

スポット溶接ガン10は、上記の支持板93に支持されることで、支持部90に対して相対的に昇降可能となっている。スポット溶接ガン10は、溶接ガン本体11と、溶接ガン本体11の先端に設けられた電極部15と、図示しない電流源と、を備える。
溶接ガン本体11は、その上部に設けられたサーボモータ16と、このサーボモータ16に連結された図示しない送りねじ機構と、備える。
電極部15は、可動電極21と、固定電極22と、を含んで構成される。
The spot welding gun 10 can be moved up and down relative to the support portion 90 by being supported by the support plate 93. The spot welding gun 10 includes a welding gun main body 11, an electrode portion 15 provided at the tip of the welding gun main body 11, and a current source (not shown).
The welding gun body 11 includes a servo motor 16 provided on the upper portion thereof, and a feed screw mechanism (not shown) connected to the servo motor 16.
The electrode unit 15 includes a movable electrode 21 and a fixed electrode 22.

可動電極21は、溶接ガン本体11の先端から下方に突出し、送りねじ機構に連結されたロッド12の先端に支持されている。可動電極21は、サーボモータ16により送りねじ機構を介してロッド12が上下動(図1のA2方向又はA1方向に移動)することで、後述する固定電極22に対して進退可能となっている。
固定電極22は、溶接ガン本体11の先端に連結された連結部14から下方に延びるC形ヨーク13の先端に支持されている。
これら可動電極21と固定電極22は、ワークWを挟んで対向配置される。
The movable electrode 21 protrudes downward from the tip of the welding gun body 11 and is supported by the tip of the rod 12 connected to the feed screw mechanism. The movable electrode 21 can be moved back and forth with respect to the fixed electrode 22 described later by moving the rod 12 up and down (moving in the A2 direction or A1 direction in FIG. 1) via the feed screw mechanism by the servo motor 16. .
The fixed electrode 22 is supported at the tip of a C-shaped yoke 13 that extends downward from a connecting portion 14 connected to the tip of the welding gun body 11.
The movable electrode 21 and the fixed electrode 22 are disposed to face each other with the workpiece W interposed therebetween.

C形ヨーク13には、可動電極21及び固定電極22によるワークWの加圧力を検出する歪みゲージ17が取り付けられている。また、歪みゲージ17は、加圧力を検出し始めてから所定の加圧力を検出するまでの加圧立ち上がり時間を計測する。なお、歪みゲージ17は、図示しないケーブルを介して制御装置100と電気的に接続されている。   The C-shaped yoke 13 is attached with a strain gauge 17 for detecting the pressure applied to the work W by the movable electrode 21 and the fixed electrode 22. The strain gauge 17 measures the pressurization rising time from the start of detecting the applied pressure until the predetermined applied pressure is detected. The strain gauge 17 is electrically connected to the control device 100 via a cable (not shown).

制御装置100は、ギャップ量算出部、電流設定選択部及び溶接電流通電部(いずれも図示せず)を備える。また、制御装置100は、サーボモータ16と、図示しない電流源と、を制御する。また、制御装置100のギャップ量算出部は、歪みゲージ17から加圧立ち上がり時間を受信して、板材W1,W2間のギャップ量を算出し、電流設定選択部は、算出したギャップ量に基づいて溶接電流の設定を選択し、溶接電流通電部は、図示しない電流源を制御することにより、ワークWに溶接電流を通電させる。
詳細は図5〜図8を参照して後述するが、制御装置100は、算出したギャップ量が大きいほど溶接電流を低く設定する。
The control device 100 includes a gap amount calculation unit, a current setting selection unit, and a welding current energization unit (all not shown). Further, the control device 100 controls the servo motor 16 and a current source (not shown). Further, the gap amount calculation unit of the control device 100 receives the pressurization rising time from the strain gauge 17, calculates the gap amount between the plate materials W1, W2, and the current setting selection unit is based on the calculated gap amount. The setting of the welding current is selected, and the welding current energization unit energizes the workpiece W with the welding current by controlling a current source (not shown).
Although details will be described later with reference to FIGS. 5 to 8, the control device 100 sets the welding current lower as the calculated gap amount increases.

次に、本実施形態に係るスポット溶接装置1の動作について説明する。
先ず、可動電極21を固定電極22に対して離間させた状態で、ロボットアーム80及び支持部90の動作により、ワークWの溶接部位にスポット溶接ガン10を移動させる。
このとき、ワークWの下面が固定電極22の先端面に当接する。
Next, operation | movement of the spot welding apparatus 1 which concerns on this embodiment is demonstrated.
First, in a state where the movable electrode 21 is separated from the fixed electrode 22, the spot welding gun 10 is moved to the welding portion of the workpiece W by the operation of the robot arm 80 and the support portion 90.
At this time, the lower surface of the workpiece W comes into contact with the front end surface of the fixed electrode 22.

次いで、制御装置100によりサーボモータ16を制御して、送りねじ機構の作用で可動電極21をワークWに対して前進させる。すると、可動電極21の先端面が、ワークWの上面に当接する。   Next, the servo motor 16 is controlled by the control device 100, and the movable electrode 21 is advanced with respect to the workpiece W by the action of the feed screw mechanism. Then, the tip surface of the movable electrode 21 comes into contact with the upper surface of the workpiece W.

次いで、可動電極21及び固定電極22による加圧を維持しつつ、制御装置100により図示しない電流源を制御して、溶接電流を供給する。これにより、ワークWの可動電極21及び固定電極22間において、ワーク材の溶融が促進されてナゲット23が生成する。   Next, while maintaining pressurization by the movable electrode 21 and the fixed electrode 22, a current source (not shown) is controlled by the control device 100 to supply a welding current. As a result, melting of the work material is promoted between the movable electrode 21 and the fixed electrode 22 of the work W, and the nugget 23 is generated.

その後、制御装置100により図示しない電流源を制御して、溶接電流の供給を停止する。次いで、制御装置100によりサーボモータ16を制御して、送りねじ機構の作用で可動電極21をワークWに対して後退させる。これにより、ナゲット23が冷却固化し、ワークWが溶接される。   Thereafter, the control device 100 controls a current source (not shown) to stop the supply of the welding current. Next, the servo motor 16 is controlled by the control device 100, and the movable electrode 21 is moved backward with respect to the workpiece W by the action of the feed screw mechanism. Thereby, the nugget 23 is cooled and solidified, and the workpiece W is welded.

次に、図2乃至図4を参照して、可動電極21及び固定電極22間においてワークWに流れる電流密度と生成されるナゲット23について説明する。   Next, the current density flowing through the workpiece W between the movable electrode 21 and the fixed electrode 22 and the generated nugget 23 will be described with reference to FIGS.

図2は、板材W1と板材W2とのギャップが無い場合に、可動電極21及び固定電極22間においてワークWに流れる電流密度の様子と生成されるナゲット23の形状を表す模式図である。なお、図2(a)は、電流密度の様子を表しており、図2(b)は、ナゲット23の形状を表している。   FIG. 2 is a schematic diagram showing the state of the current density flowing through the workpiece W between the movable electrode 21 and the fixed electrode 22 and the shape of the generated nugget 23 when there is no gap between the plate material W1 and the plate material W2. 2A shows the state of current density, and FIG. 2B shows the shape of the nugget 23.

図2によれば、板材W1と板材W2とは面全体で接触しているため、可動電極21及び固定電極22間においてワークWに均等に電流が流れ、電流密度が略一定になる(図2(a))。よって、適切な接合強度が得られるような径を有するナゲット23が生成される(図2(b))。   According to FIG. 2, since the plate material W1 and the plate material W2 are in contact with each other over the entire surface, a current flows evenly through the workpiece W between the movable electrode 21 and the fixed electrode 22, and the current density becomes substantially constant (FIG. 2). (A)). Therefore, a nugget 23 having a diameter that can provide an appropriate bonding strength is generated (FIG. 2B).

図3は、板材W1と板材W2とのギャップがある場合に、ワークWに対する加圧が立ち上がってからの可動電極21及び固定電極22間においてワークWに流れる電流密度の様子と生成されるナゲット23の形状を表す模式図である。なお、図3(a)は、電流密度の様子を表しており、図3(b)は、ナゲット23の形状を表している。   FIG. 3 shows the state of the current density flowing in the work W between the movable electrode 21 and the fixed electrode 22 and the generated nugget 23 when the pressure on the work W rises when there is a gap between the plate material W1 and the plate material W2. It is a schematic diagram showing the shape. 3A shows the state of current density, and FIG. 3B shows the shape of the nugget 23.

図3によれば、ギャップを有する板材W1と板材W2とが可動電極21及び固定電極22により加圧されて、ワークWの中央付近で接触している。したがって、接触部分に集中して電流が流れるため、ギャップが無い場合(図2参照)と比べて、電流密度に偏りが生じる(図3(a))。
そうすると、接触部分の発熱効率が上がり、ギャップが無い場合(図2参照)と比べて接触部分を中心としたナゲット23が早く生成される。しかし、ナゲット23の径は、ギャップが無い場合(図2参照)と比べて小さくなるため、適切な接合強度が得られなくなる。
According to FIG. 3, the plate material W <b> 1 and the plate material W <b> 2 having a gap are pressed by the movable electrode 21 and the fixed electrode 22 and are in contact with each other near the center of the workpiece W. Therefore, since the current flows concentrated on the contact portion, the current density is biased compared to the case where there is no gap (see FIG. 2) (FIG. 3A).
As a result, the heat generation efficiency of the contact portion is increased, and the nugget 23 centered on the contact portion is generated faster than the case where there is no gap (see FIG. 2). However, since the diameter of the nugget 23 is smaller than that when there is no gap (see FIG. 2), an appropriate bonding strength cannot be obtained.

そこで、ギャップがある場合であっても、ナゲット23の径を大きくして適切な接合強度を得るためには、ワークWを流れる電流密度の偏りをできるだけ少なくする必要がある。そのためには、ギャップが無い場合(図2参照)と比べて、可動電極21及び固定電極22間に流す電流を少なくする必要がある。この場合について、図4を参照して説明する。   Therefore, even when there is a gap, in order to increase the diameter of the nugget 23 and obtain an appropriate joint strength, it is necessary to reduce the deviation of the current density flowing through the workpiece W as much as possible. For this purpose, it is necessary to reduce the current flowing between the movable electrode 21 and the fixed electrode 22 as compared with the case where there is no gap (see FIG. 2). This case will be described with reference to FIG.

図4は、板材W1と板材W2とのギャップがある場合に、ワークWに対する加圧が立ち上がってからの可動電極21及び固定電極22間においてワークWに流れる電流密度の様子と生成されるナゲット23の形状を表す模式図である。なお、図4(a)は、電流密度の様子を表しており、図4(b)は、ナゲット23の形状を表している。   FIG. 4 shows the state of the current density flowing through the workpiece W and the generated nugget 23 between the movable electrode 21 and the fixed electrode 22 after the pressurization to the workpiece W rises when there is a gap between the plate material W1 and the plate material W2. It is a schematic diagram showing the shape. 4A shows the state of current density, and FIG. 4B shows the shape of the nugget 23.

図4によれば、図3と同様に、ギャップを有する板材W1と板材W2とが可動電極21及び固定電極22により加圧されて、ワークWの中央付近で接触している。しかしながら、図3の場合と比べて、可動電極21及び固定電極22間に流す電流を少なくしたため、電流密度の偏りが少なくなる(図4(a))。したがって、図3の場合と比べて、接触部分の発熱効率が下がり、ナゲットの生成が均一化されるため、スパッタを出すことなく、ナゲット23の径が大きくなる(図4(b))。   According to FIG. 4, as in FIG. 3, the plate material W <b> 1 having a gap and the plate material W <b> 2 are pressed by the movable electrode 21 and the fixed electrode 22 and are in contact with each other near the center of the workpiece W. However, since the current flowing between the movable electrode 21 and the fixed electrode 22 is reduced as compared with the case of FIG. 3, the current density is less biased (FIG. 4A). Therefore, compared with the case of FIG. 3, since the heat generation efficiency of the contact portion is reduced and the nugget generation is made uniform, the diameter of the nugget 23 is increased without spattering (FIG. 4B).

次に、図5乃至図8を参照して、板材W1と板材W2とのギャップ量に応じて設定される溶接電流について説明する。   Next, with reference to FIG. 5 thru | or FIG. 8, the welding current set according to the gap amount of the board | plate material W1 and the board | plate material W2 is demonstrated.

図5は、板材W1と板材W2とのギャップ量が0mmの場合に、可動電極21及び固定電極22間に流れる溶接電流とナゲット径との関係を表すグラフである。
図5によれば、本実施形態における板材W1と板材W2とが適切な接合強度を有するために必要なナゲット径(以下、「必要ナゲット径」とする)を超えた径を有するナゲットを生成するために必要な溶接電流の最小値は、8.5KAである。したがって、ギャップ量が0mmの場合の適正電流値は、8.5KAである。
FIG. 5 is a graph showing the relationship between the welding current flowing between the movable electrode 21 and the fixed electrode 22 and the nugget diameter when the gap amount between the plate material W1 and the plate material W2 is 0 mm.
According to FIG. 5, a nugget having a diameter exceeding a nugget diameter (hereinafter referred to as “required nugget diameter”) necessary for the plate material W1 and the plate material W2 in the present embodiment to have appropriate joint strength is generated. The minimum welding current required for this is 8.5 KA. Therefore, the appropriate current value when the gap amount is 0 mm is 8.5 KA.

図6は、板材W1と板材W2とのギャップ量が1mmの場合に、可動電極21及び固定電極22間に流れる溶接電流とナゲット径との関係を表すグラフである。
図6によれば、必要ナゲット径を超えた径を有するナゲットを生成するために必要な溶接電流の最小値は、8.0KAである。このとき、電流密度がギャップ無しの場合と同等になり、スパッタを出すことなく、ナゲットの径が必要ナゲット径より大きくなる。したがって、ギャップ量が1mmの場合の適正電流値は、8.0KAである。
FIG. 6 is a graph showing the relationship between the welding current flowing between the movable electrode 21 and the fixed electrode 22 and the nugget diameter when the gap amount between the plate material W1 and the plate material W2 is 1 mm.
According to FIG. 6, the minimum value of the welding current necessary for generating a nugget having a diameter exceeding the necessary nugget diameter is 8.0 KA. At this time, the current density is the same as in the case where there is no gap, and the diameter of the nugget becomes larger than the necessary nugget diameter without spattering. Therefore, the appropriate current value when the gap amount is 1 mm is 8.0 KA.

図7は、板材W1と板材W2とのギャップ量が2mmの場合に、可動電極21及び固定電極22間に流れる溶接電流とナゲット径との関係を表すグラフである。
図7によれば、必要ナゲット径を超えた径を有するナゲットを生成するために必要な溶接電流の最小値は、7.5KAである。このとき、電流密度がギャップ無しの場合と同等になり、スパッタを出すことなく、ナゲットの径が必要ナゲット径より大きくなる。したがって、ギャップ量が2mmの場合の適正電流値は、7.5KAである。
FIG. 7 is a graph showing the relationship between the welding current flowing between the movable electrode 21 and the fixed electrode 22 and the nugget diameter when the gap amount between the plate material W1 and the plate material W2 is 2 mm.
According to FIG. 7, the minimum value of the welding current required for producing a nugget having a diameter exceeding the necessary nugget diameter is 7.5 KA. At this time, the current density is the same as in the case where there is no gap, and the diameter of the nugget becomes larger than the necessary nugget diameter without spattering. Therefore, the appropriate current value when the gap amount is 2 mm is 7.5 KA.

図8は、板材W1と板材W2とのギャップ量が3mmの場合に、可動電極21及び固定電極22間に流れる溶接電流とナゲット径との関係を表すグラフである。
図8によれば、必要ナゲット径を超えた径を有するナゲットを生成するために必要な溶接電流の最小値は、7.0KAである。このとき、電流密度がギャップ無しの場合と同等になり、スパッタを出すことなく、ナゲットの径が必要ナゲット径より大きくなる。したがって、ギャップ量が3mmの場合の適正電流値は、7.0KAである。
FIG. 8 is a graph showing the relationship between the welding current flowing between the movable electrode 21 and the fixed electrode 22 and the nugget diameter when the gap amount between the plate material W1 and the plate material W2 is 3 mm.
According to FIG. 8, the minimum value of the welding current required for producing a nugget having a diameter exceeding the necessary nugget diameter is 7.0 KA. At this time, the current density is the same as in the case where there is no gap, and the diameter of the nugget becomes larger than the necessary nugget diameter without spattering. Therefore, the appropriate current value when the gap amount is 3 mm is 7.0 KA.

上記図5乃至図8の説明によれば、ギャップ量が大きいほど溶接電流を低くすることによって、適正なナゲット径を有するナゲットを生成できる。   According to the description of FIGS. 5 to 8, a nugget having an appropriate nugget diameter can be generated by lowering the welding current as the gap amount is larger.

図9は、板材W1と板材W2とのギャップ量と、可動電極21及び固定電極22によるワークWの加圧が開始されてから所定の加圧力に達するまでの加圧立ち上がり時間との関係を表すグラフである。   FIG. 9 shows the relationship between the gap amount between the plate material W1 and the plate material W2 and the pressurization rise time from when the pressurization of the workpiece W by the movable electrode 21 and the fixed electrode 22 is started until the predetermined pressurization force is reached. It is a graph.

図9によれば、ギャップ量が0mm、1mm、2mm及び3mmの場合の加圧立ち上がり時間が示されている。また、ギャップ量と加圧立ち上がり時間とは略比例しており、ギャップ量が多いほど加圧立ち上がり時間が長い。これは、ギャップをつぶすための時間が、ギャップ量が多いほど長いからである。   FIG. 9 shows the pressure rise time when the gap amount is 0 mm, 1 mm, 2 mm, and 3 mm. Further, the gap amount and the pressurization rise time are substantially proportional, and the pressurization rise time is longer as the gap amount is larger. This is because the time for closing the gap increases as the gap amount increases.

図10は、可動電極21及び固定電極22間に流れる溶接電流と、可動電極21及び固定電極22によるワークWへの加圧力との関係を表す図である。   FIG. 10 is a diagram illustrating the relationship between the welding current flowing between the movable electrode 21 and the fixed electrode 22 and the pressure applied to the workpiece W by the movable electrode 21 and the fixed electrode 22.

図10を参照して、時刻の流れとともに加圧力及び溶接電流の変化を説明する。時刻t〜tの間は、ワークWへの加圧開始前であり、加圧力及び溶接電流は共に0である。この間に、制御装置100は、サーボモータ16を制御して、可動電極21の先端面をワークWの上面に当接させる。 With reference to FIG. 10, changes in pressure and welding current with time will be described. Between times t 0 ~t 1 is before the start pressurization to the work W, pressure and welding current are both zero. During this time, the control device 100 controls the servo motor 16 to bring the tip surface of the movable electrode 21 into contact with the upper surface of the workpiece W.

次に、時刻tから加圧が開始されtで加圧が立ち上がる。加圧立ち上がり時間(t−t)は、歪みゲージ17によって測定(歪みゲージ17は、加圧力を検出し始めてから所定の加圧力を検出するまでの時間を測定する)されて、制御装置100に送信される。この加圧立ち上がり時間は、板材W1と板材W2とのギャップ量に応じて変化する(図9参照)。制御装置100は、図9の関係に基づいて、受信した加圧立ち上がり時間からギャップ量を算出する。
なお、加圧立ち上がり状態での加圧力は、ギャップ量にかかわらず一定である。
Then, the pressure rises in the pressurization starts from time t 1 t 2. The pressurization rise time (t 2 −t 1 ) is measured by the strain gauge 17 (the strain gauge 17 measures the time from the start of detecting the applied pressure until the predetermined applied pressure is detected), and the control device 100. The pressurization rise time changes according to the gap amount between the plate material W1 and the plate material W2 (see FIG. 9). The control device 100 calculates the gap amount from the received pressurization rise time based on the relationship of FIG.
Note that the applied pressure in the pressure rising state is constant regardless of the gap amount.

次に、時刻tからtまでの間は、加圧力を安定させるための時間(約100ms)であり、この時間の経過後時刻tで溶接電流が変更される。溶接電流は、ギャップ量に応じて適正値が定まっており、図5〜図8を参照して説明したように、ギャップ量が0mm、1mm、2mm又は3mmの場合の適正電流値は、それぞれ、8.5KA、8.0KA、7.5KA又は7.0KAである。すなわち、ギャップ量が多いほど適正電流値は小さくなるという関係がある。制御装置100は、この関係に基づいて、算出したギャップ量から溶接電流の設定を選択する。 Next, the period from time t 2 to t 3 is a time (about 100 ms) for stabilizing the applied pressure, and the welding current is changed at time t 3 after the elapse of this time. The welding current has an appropriate value determined according to the gap amount. As described with reference to FIGS. 5 to 8, the appropriate current value when the gap amount is 0 mm, 1 mm, 2 mm, or 3 mm, 8.5KA, 8.0KA, 7.5KA or 7.0KA. That is, there is a relationship that the appropriate current value decreases as the gap amount increases. Based on this relationship, control device 100 selects a welding current setting from the calculated gap amount.

次に、制御装置100は、時刻tで図示しない電流源を制御して溶接電流を変化させ、時刻tまでの間通電する。この通電により、ギャップ量に応じた適正なナゲット径を有するナゲット23が生成される。なお、通電時間は、ギャップ量にかかわらず一定である。
時刻tで、制御装置100は、溶接電流の供給を停止させて、時刻tで可動電極21をワークWに対して後退させる。これにより、ナゲット23が冷却固化し、ワークWが適切な接合強度で溶接される。
Next, the control device 100 controls the current source (not shown) at time t 3 to change the welding current is energized until the time t 4. By this energization, a nugget 23 having an appropriate nugget diameter corresponding to the gap amount is generated. The energization time is constant regardless of the gap amount.
At time t 4, the control device 100 stops the supply of the welding current, the movable electrode 21 is retracted relative to the workpiece W at time t 5. Thereby, the nugget 23 is cooled and solidified, and the workpiece W is welded with an appropriate joint strength.

本実施形態によれば、ワークWの加圧開始から所定の加圧力に達するまでの加圧立ち上がり時間を測定し、測定した加圧立ち上がり時間に基づいて、積層された板材W1及び板材W2間の加圧開始前のギャップ量を算出する。よって、加圧立ち上がり時間を測定することで板材W1及び板材W2間のギャップ量を容易に算出することができる。
また、本実施形態によれば、算出したギャップ量に基づいて、ワークWの加圧部分に流す溶接電流の設定を選択する。よって、ギャップ量に応じて溶接電流の電流値が決まるので、溶接条件が適切に設定されてナゲット23の成長状態を一定に保つことができる。
以上より、本実施形態によれば、1サイクル分の溶接作業途中でギャップ量を算出し、溶接電流の設定を選択することができるので、工数を増加させることなく、ギャップ量に見合った最適な溶接作業を行うことができる。
According to the present embodiment, the pressurization rise time from the start of pressurization of the workpiece W to a predetermined applied pressure is measured, and between the stacked plate members W1 and W2 based on the measured pressurization rise time. The gap amount before the start of pressurization is calculated. Therefore, the gap amount between the plate material W1 and the plate material W2 can be easily calculated by measuring the pressure rising time.
Moreover, according to this embodiment, the setting of the welding current sent through the pressurization part of the workpiece | work W is selected based on the calculated gap amount. Therefore, since the current value of the welding current is determined according to the gap amount, the welding condition is appropriately set, and the growth state of the nugget 23 can be kept constant.
As described above, according to the present embodiment, the gap amount can be calculated during the welding operation for one cycle, and the setting of the welding current can be selected. Therefore, the optimum amount corresponding to the gap amount can be obtained without increasing the number of man-hours. Welding work can be performed.

また、本実施形態によれば、溶接条件の加圧力及び通電時間はギャップ量にかかわらず同じ条件として、溶接電流をギャップ量に応じて小さくして板材W1及び板材W2間に流れる溶接電流密度の偏りを少なくして、ギャップ無しの場合と同等にした。よって、溶接電流が大きい場合と比べて、板材W1及び板材W2の接触部分の発熱効率が下がり、接触部分に集中してナゲット23が生成されなくなるため、スパッタを出すことなく、ナゲット23の径が大きくなり、適切な接合強度を有するナゲット23を生成することができる。
また、本実施形態によれば、溶接電流をギャップ量に応じて変更するだけなので、通電時間は延びることがない。よって、生産効率が悪くなることがない。
In addition, according to the present embodiment, the welding pressure and energization time of the welding conditions are the same regardless of the gap amount, and the welding current is reduced in accordance with the gap amount to reduce the welding current density flowing between the plate material W1 and the plate material W2. The bias was reduced to the same level as when there was no gap. Therefore, compared with the case where the welding current is large, the heat generation efficiency of the contact portion between the plate material W1 and the plate material W2 is reduced, and the nugget 23 is not generated concentrated on the contact portion. The nugget 23 which becomes large and has appropriate joint strength can be generated.
In addition, according to the present embodiment, the energization time does not extend because the welding current is only changed according to the gap amount. Therefore, production efficiency does not deteriorate.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

1…スポット溶接装置
10…スポット溶接ガン
21…可動電極
22…固定電極
23…ナゲット
W…ワーク
W1,W2…板材
DESCRIPTION OF SYMBOLS 1 ... Spot welding apparatus 10 ... Spot welding gun 21 ... Movable electrode 22 ... Fixed electrode 23 ... Nugget W ... Workpiece | work W1, W2 ... Plate material

Claims (2)

複数の板材を積層したワークを一対の電極により挟持した状態で電流を流して溶接する溶接方法であって、
前記一対の電極による前記ワークの加圧開始から所定の加圧力に達するまでの加圧立ち上がり時間を測定する工程と、
前記測定した前記加圧立ち上がり時間に基づいて、前記積層された板材間の加圧開始前のギャップ量を算出する工程と、
前記算出した前記ギャップ量に基づいて、前記ワークの加圧部分に流す溶接電流の設定を選択する工程と、を備えたことを特徴とする溶接方法。
A welding method in which a current is passed and welded in a state where a workpiece in which a plurality of plate materials are stacked is sandwiched between a pair of electrodes,
Measuring a pressurization rise time from the start of pressurization of the workpiece by the pair of electrodes until reaching a predetermined applied pressure;
Based on the measured pressure rise time, calculating a gap amount before the start of pressurization between the laminated plate materials,
And a step of selecting a setting of a welding current to be passed through the pressurizing portion of the workpiece based on the calculated gap amount.
複数の板材を積層したワークを溶接する溶接装置であって、
互いに対向して配置され、進退機構により接近又は離隔する一対の電極と、
前記一対の電極間に電流を流す電流源と、
前記ワークを前記一対の電極で挟持して加圧したときの加圧力を検出する加圧力検出手段と、
前記加圧力検出手段が前記ワークの加圧力を検出し始めてから所定の加圧力を検出するまでの加圧立ち上がり時間を測定する加圧立ち上がり時間測定手段と、
前記加圧立ち上がり時間測定手段が測定した前記加圧立ち上がり時間に基づいて、前記積層された板材間の加圧開始前のギャップ量を算出するギャップ量算出手段と、
前記ギャップ量算出手段が算出した前記ギャップ量に基づいて、前記ワークの加圧部分に流す溶接電流の設定を選択する電流設定選択手段と、を備えたことを特徴とする溶接装置。
A welding device for welding a workpiece in which a plurality of plate materials are laminated,
A pair of electrodes arranged opposite to each other and approaching or separating by an advancing and retreating mechanism;
A current source for passing a current between the pair of electrodes;
A pressure detection means for detecting a pressure when the work is sandwiched between the pair of electrodes and pressurized;
A pressurization rise time measuring means for measuring a pressurization rise time from when the pressurization detection means starts to detect the pressurization force of the workpiece until a predetermined pressurization force is detected;
Based on the pressurization rise time measured by the pressurization rise time measurement means, a gap amount calculation means for calculating a gap amount before the pressurization between the laminated plate members,
A welding apparatus comprising: current setting selection means for selecting a setting of a welding current to be passed through the pressurizing portion of the workpiece based on the gap amount calculated by the gap amount calculation means.
JP2011212908A 2011-09-28 2011-09-28 Welding method and apparatus Expired - Fee Related JP5787696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212908A JP5787696B2 (en) 2011-09-28 2011-09-28 Welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212908A JP5787696B2 (en) 2011-09-28 2011-09-28 Welding method and apparatus

Publications (2)

Publication Number Publication Date
JP2013071165A true JP2013071165A (en) 2013-04-22
JP5787696B2 JP5787696B2 (en) 2015-09-30

Family

ID=48476090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212908A Expired - Fee Related JP5787696B2 (en) 2011-09-28 2011-09-28 Welding method and apparatus

Country Status (1)

Country Link
JP (1) JP5787696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458565A (en) * 2020-03-30 2021-10-01 双叶产业株式会社 Method for manufacturing joining member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110353A (en) * 1997-06-23 1999-01-19 Mazda Motor Corp Spot welding method and its device
JPH11104849A (en) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd Welding control device for spot welding equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110353A (en) * 1997-06-23 1999-01-19 Mazda Motor Corp Spot welding method and its device
JPH11104849A (en) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd Welding control device for spot welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458565A (en) * 2020-03-30 2021-10-01 双叶产业株式会社 Method for manufacturing joining member
CN113458565B (en) * 2020-03-30 2022-11-25 双叶产业株式会社 Method for manufacturing joining member

Also Published As

Publication number Publication date
JP5787696B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
KR101584495B1 (en) Resistance spot welding system
JP5052586B2 (en) Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting
JP5758667B2 (en) Spot welding equipment
KR101974298B1 (en) Resistance spot welding method
US10065262B2 (en) Welding method and welding device
JP5908976B2 (en) Spot welding apparatus and spot welding method
JP2015128787A5 (en)
US8357870B1 (en) Intelligent stepper welding system and method
JP2019155389A (en) Resistance spot welding method and resistance spot welding device
JP5519457B2 (en) Spot welding method and apparatus
JP5427746B2 (en) Spot welding equipment
JP5801169B2 (en) One-side spot welding equipment
JP2013071124A (en) Spot welding method and spot welding equipment
KR20200037352A (en) Resistance spot welding method and manufacturing method of welding member
JP6339292B2 (en) Spot welding method and apparatus
JP5787696B2 (en) Welding method and apparatus
JP5582277B1 (en) Resistance spot welding system
JP2009226467A (en) Spot welding method of dissimilar plates, and its apparatus
JP6104013B2 (en) Spot welding method and spot welding apparatus
JP2015013302A (en) Resistance-welding device and weld control method for resistance-welding
JP2019118921A (en) Welding device
JP2013022623A (en) Spot welding equipment and spot welding method
JP5822904B2 (en) Spot welding method and apparatus
JP5697093B2 (en) Hybrid welding apparatus and hybrid welding method
JP2009028786A (en) Method of and apparatus for determining quality of resistance brazing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5787696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees