JP2013069571A - Sealed secondary battery - Google Patents

Sealed secondary battery Download PDF

Info

Publication number
JP2013069571A
JP2013069571A JP2011207968A JP2011207968A JP2013069571A JP 2013069571 A JP2013069571 A JP 2013069571A JP 2011207968 A JP2011207968 A JP 2011207968A JP 2011207968 A JP2011207968 A JP 2011207968A JP 2013069571 A JP2013069571 A JP 2013069571A
Authority
JP
Japan
Prior art keywords
liquid
injection port
liquid injection
container
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011207968A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakai
哲男 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011207968A priority Critical patent/JP2013069571A/en
Publication of JP2013069571A publication Critical patent/JP2013069571A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sealed secondary battery capable of preventing leakage from a liquid injection port.SOLUTION: The sealed secondary battery in one embodiment is characterized by including a battery container having the liquid injection port in which an electrolyte can be injected, and a liquid holding part arranged so that fluid can be held in a region apart from the liquid injection port and a drainage part arranged so that fluid can be guided so as to be evacuated from the liquid injection port are provided in a periphery of and apart from the liquid injection port in an inner surface of the battery case.

Description

本発明の実施形態は、密閉型二次電池に関する。   Embodiments described herein relate generally to a sealed secondary battery.

リチウムイオン電池など密閉型二次電池が携帯用電子機器等に広く利用されている。密閉型二次電池は、例えば、上端が開口した金属製の容器と、この容器の開口を閉塞するように溶接される金属製の封口蓋を備える電池容器を備え、封口蓋を容器に溶接する前に、容器内に電池要素を配置し、その後、封口蓋を容器に溶接して、密閉型の電池容器を形成する。次いで、封口蓋に形成された注液口を通して電解液を電池容器内に注入する。そして、電解液の注入後に減圧環境下において注液口を封止体で封止する。   Sealed secondary batteries such as lithium ion batteries are widely used in portable electronic devices and the like. A sealed secondary battery includes, for example, a battery container including a metal container having an upper end opened and a metal sealing lid that is welded so as to close the opening of the container, and the sealing lid is welded to the container. Before, the battery element is placed in the container, and then the sealing lid is welded to the container to form a sealed battery container. Next, an electrolytic solution is injected into the battery container through a liquid injection port formed in the sealing lid. And after injection | pouring of electrolyte solution, a liquid inlet is sealed with a sealing body in a pressure-reduced environment.

特開2000−106155号公報JP 2000-106155 A

上記の構造では、封口蓋の内側面には電解液の液滴が付着し、減圧下において注液口を封止体で封止する際に、内側の液体が圧力差によって注液口を通って外部に漏れることがある。また、液体の持つメニスカスの力が重力より大きくなるとき、液体が注液口を這い上がって漏れることもある。   In the above structure, electrolyte droplets adhere to the inner surface of the sealing lid, and when the liquid inlet is sealed with a sealing body under reduced pressure, the inner liquid passes through the liquid inlet due to a pressure difference. May leak outside. In addition, when the meniscus force of the liquid is greater than the gravity, the liquid may crawl up the liquid inlet and leak.

実施形態では、注液口からの漏れを防止することが可能な密閉型二次電池を提供する。   In the embodiment, a sealed secondary battery capable of preventing leakage from a liquid inlet is provided.

一実施形態にかかる密閉型二次電池は、電解液を注入可能に構成された注液口を有し、その内面における前記注液口の周辺であって前記注液口から離れた領域に、液体を前記注液口から離れた前記領域に保持可能に構成された液保持部と、前記内面において液体を前記注液口から退避するように案内可能に構成された排液部と、が設けられた電池容器を備えたことを特徴とする。   A sealed secondary battery according to an embodiment has a liquid injection port configured to be able to inject an electrolyte, and in a region around the liquid injection port on the inner surface and away from the liquid injection port, A liquid holding part configured to hold the liquid in the region away from the liquid injection port, and a liquid discharge unit configured to be guided to retract the liquid from the liquid injection port on the inner surface are provided. The battery container is provided.

一実施形態にかかる密閉型二次電池を一部切欠して示す斜視図。1 is a perspective view showing a partially closed sealed secondary battery according to an embodiment. 同密閉型二次電池の封口蓋の裏面側を示す平面図。The top view which shows the back surface side of the sealing lid of the sealed secondary battery. 同封口蓋の除液部の構成を示す平面図。The top view which shows the structure of the liquid removal part of the sealing lid. 同封口蓋の注液口近傍の構成を示す断面図。Sectional drawing which shows the structure of the liquid inlet vicinity of the sealing lid. 同除液部の排液部の図2におけるA−A断面を示す説明図。Explanatory drawing which shows the AA cross section in FIG. 2 of the drainage part of the same liquid removal part. 同除液部の液保持部の図2におけるB−B断面を示す説明図。Explanatory drawing which shows the BB cross section in FIG. 2 of the liquid holding | maintenance part of the same liquid removal part. 他の実施形態にかかる除液部の構成を示す平面図。The top view which shows the structure of the liquid removal part concerning other embodiment. 他の実施形態にかかる除液部の構成を示す平面図。The top view which shows the structure of the liquid removal part concerning other embodiment. 他の実施形態にかかる排液部の構成を示す断面図。Sectional drawing which shows the structure of the drainage part concerning other embodiment.

以下一実施形態にかかる密閉型二次電池10について、図1乃至図6を参照して説明する。各図においては適宜構成を拡大、縮小、または省略して概略的に示す。図1は本実施形態にかかる密閉型二次電池10を一部切欠して示す斜視図である。   Hereinafter, a sealed secondary battery 10 according to an embodiment will be described with reference to FIGS. 1 to 6. In each drawing, the configuration is schematically shown by appropriately enlarging, reducing, or omitting the configuration. FIG. 1 is a perspective view showing a partially closed sealed secondary battery 10 according to the present embodiment.

図1に示すように、密閉型二次電池10は、アルミニウム等の金属で形成された扁平な箱型形状の電池容器11を備えており、この電池容器11内に電解液とともに電極体13を収容している。   As shown in FIG. 1, a sealed secondary battery 10 includes a flat box-shaped battery container 11 formed of a metal such as aluminum, and an electrode body 13 is placed in the battery container 11 together with an electrolyte. Contained.

電池容器11は、上端が開口した容器11Aと、この容器11Aの開口部を封口する矩形板状の封口蓋11Bとを有している。封口蓋11Bは、容器11Aの開口部端面上に載置されて全周溶接され、容器11Aの開口部を封止している。これにより、容器11Aと封口蓋11Bとが隙間無く一体化して、密閉型の電池容器11を形成している。   The battery container 11 includes a container 11A having an open upper end and a rectangular plate-shaped sealing lid 11B that seals the opening of the container 11A. The sealing lid 11B is placed on the end face of the opening of the container 11A and welded all around, thereby sealing the opening of the container 11A. Thereby, the container 11A and the sealing lid 11B are integrated with no gap to form the sealed battery container 11.

封口蓋11Bの長手方向両端部には、正極端子14と負極端子15がそれぞれ封口蓋11Bから突出するように設けられている。正極端子14と負極端子15は、電極体13の正極及び負極にそれぞれ接続されている。正極端子14と負極端子15の間には、ガスが発生し電池内部の圧力が上がった際に、破けるように薄く構成された薄成部16が形成されている。   A positive terminal 14 and a negative terminal 15 are provided at both ends in the longitudinal direction of the sealing lid 11B so as to protrude from the sealing lid 11B. The positive electrode terminal 14 and the negative electrode terminal 15 are connected to the positive electrode and the negative electrode of the electrode body 13, respectively. A thin portion 16 is formed between the positive electrode terminal 14 and the negative electrode terminal 15 so as to be broken when gas is generated and the pressure inside the battery increases.

封口蓋11Bの中央部には、電池容器11内へ電解液を注入するための注液口17が貫通して形成されている。注液口17は、例えば円形に形成されている。注液口17は、封口蓋11Bに固定された封止体19によって封止される。   A liquid injection port 17 for injecting an electrolytic solution into the battery container 11 is formed through the central portion of the sealing lid 11B. The liquid injection port 17 is formed in a circular shape, for example. The liquid injection port 17 is sealed by a sealing body 19 fixed to the sealing lid 11B.

封止体19は、例えばアルミニウム等により円板状に形成され、封口蓋11Bの深さと略等しい厚みを有している。封止体19はレーザ溶接によって封口蓋11Bに溶接されている。電解液として、水よりも粘性が高く、表面張力が小さい材料を用いている。   The sealing body 19 is formed in a disk shape with, for example, aluminum, and has a thickness substantially equal to the depth of the sealing lid 11B. The sealing body 19 is welded to the sealing lid 11B by laser welding. As the electrolytic solution, a material having a higher viscosity than water and a small surface tension is used.

電極体13は、例えば、正極板及び負極板をその間にセパレータを介在させて渦巻状に捲回し、さらに、径方向に圧縮することにより、扁平形状に形成されている。   The electrode body 13 is formed in a flat shape by, for example, winding a positive electrode plate and a negative electrode plate in a spiral shape with a separator interposed therebetween, and further compressing in a radial direction.

図2は、封口蓋11Bの内側面(裏面)を示す平面図であり、図3は除液部の構成を示す平面図である。図2に示すように、封口蓋11Bの内面の注液口17の周辺であって注液口17から離間した領域A1に除液部20が設けられている。領域A1は例えば注液口17から所定距離(例えば3mm)離間した円と、所定距離(例えば20mm)離間した円とに囲まれる円環状の領域である。除液部20は、液保持部22及び排液部21を有して構成される。除液部20は、密閉型電池10内部に設置されている各種部品に接触しないように配置されている。   FIG. 2 is a plan view showing an inner surface (back surface) of the sealing lid 11B, and FIG. 3 is a plan view showing a configuration of the liquid removal unit. As shown in FIG. 2, a liquid removal unit 20 is provided in a region A1 around the liquid injection port 17 on the inner surface of the sealing lid 11 </ b> B and spaced from the liquid injection port 17. The region A1 is an annular region surrounded by, for example, a circle separated from the liquid injection port 17 by a predetermined distance (for example, 3 mm) and a circle separated by a predetermined distance (for example, 20 mm). The liquid removal unit 20 includes a liquid holding unit 22 and a liquid discharge unit 21. The liquid removal unit 20 is arranged so as not to come into contact with various components installed inside the sealed battery 10.

図4は封口蓋11の注液口17近傍の構成を示す断面図であり、図5は、排液部21の構成を示す説明図である。排液部21は、注液口17の周りに、注液口17から一定距離の間隔をあけて配置されている。排液部21は、注液口17から所定の距離離れた場所から放射状に設けられた複数の輸送路25で構成されている。各輸送路25は例えば一対の隆起部26,26(突起)を有し、この隆起部26,26に挟まれた部分において毛管現象により液体が離間方向へ案内されて輸送される。例えばレーザ照射によりビードオン状態を作成することにより隆起部26,26を形成する。このとき材料に対するレーザの入熱によって隆起部26,26の高さが決定される。例えばここでは輸送路25の幅は0.5mm〜1mm、高さは0.1mm〜1mmとした。   FIG. 4 is a cross-sectional view showing a configuration in the vicinity of the liquid injection port 17 of the sealing lid 11, and FIG. 5 is an explanatory diagram showing a configuration of the drainage part 21. The drainage part 21 is arranged around the liquid injection port 17 with a certain distance from the liquid injection port 17. The drainage part 21 is composed of a plurality of transport paths 25 that are provided radially from a place away from the liquid injection port 17 by a predetermined distance. Each transport path 25 has, for example, a pair of raised portions 26 and 26 (protrusions), and a liquid is guided and transported in the separating direction by capillary action at a portion sandwiched between the raised portions 26 and 26. For example, the raised portions 26 are formed by creating a bead-on state by laser irradiation. At this time, the heights of the raised portions 26 and 26 are determined by the heat input of the laser to the material. For example, here, the width of the transport path 25 is 0.5 mm to 1 mm, and the height is 0.1 mm to 1 mm.

輸送路25は、内側の端部が液保持部22よりも注液口17に近接した内側位置にあり、と外側の端部が液保持部22よりも注液口17から離間した外側位置に至って形成されている。輸送路25は、毛管現象を利用して、一対の隆起部26,26間に沿って液を輸送するように構成されている。注液口17近傍に液滴が付着した場合、毛細管現象により輸送路25の壁面と垂直方向に位置する液面が界面エネルギーを小さくする方向に力が向く。すなわち、液面が平らになるように力が働き、電解液が輸送路25に沿って進行していく。このとき、液体の接触角、つまり、液体の表面張力と液体が接触する壁の面積との関係に応じて輸送路25の形状が決定される。ここでは管の場合の毛管現象を評価する式を用いて各種寸法を決定する。液面の上昇高さはh = 2Tcos・・・・・g r ・・で表され、hは液面の高さ、Tは表面張力、・・は接触角、・・は液体の密度、gは重力加速度、rは管の内径(半径)である。壁面では表面張力と壁の界面張力が釣り合っている。なお、輸送路の高さ寸法、幅、カーブ形状などの各種寸法は、表面張力や接触角、液体の密度、重力加速度、管の内径などの条件によって適切な値に設定される。ここでは排液部21の輸送路25の幅は、0.6mm程度と設定した。隆起部26,26は注液口17に近い中心側よりも注液口17から遠い外側の方が大きく隆起する形状になっている。すなわち輸送路25は注液口17から離れるにしたがって輸送路内面26aの面積が大きくなり、外側に向かって液体を案内するようになっている。例えば中心側の端部の高さh1=0.5mm、外周側の端部の高さh2=1.0mm程度である。例えば隆起部26,26を形成する際のレーザ照射エネルギーの調整によって隆起部26,26の高さを調節し、溝の高さ(深さ)を調節する。   In the transport path 25, the inner end is at an inner position closer to the liquid injection port 17 than the liquid holding unit 22, and the outer end is at an outer position farther from the liquid injection port 17 than the liquid holding unit 22. It has been formed. The transport path 25 is configured to transport the liquid along the pair of raised portions 26 and 26 using capillary action. When a droplet adheres in the vicinity of the liquid injection port 17, the liquid surface located in the direction perpendicular to the wall surface of the transport path 25 is directed toward reducing the interfacial energy by capillary action. That is, force acts so that the liquid level becomes flat, and the electrolytic solution proceeds along the transport path 25. At this time, the shape of the transport path 25 is determined according to the relationship between the contact angle of the liquid, that is, the surface tension of the liquid and the area of the wall in contact with the liquid. Here, various dimensions are determined using an equation for evaluating the capillary phenomenon in the case of a tube. The rising height of the liquid level is expressed as h = 2T cos .g r .., h is the height of the liquid level, T is the surface tension, .. is the contact angle, .. is the density of the liquid, g Is the acceleration of gravity, and r is the inner diameter (radius) of the tube. On the wall, the surface tension and the interfacial tension of the wall are balanced. Various dimensions such as the height dimension, width, and curve shape of the transportation path are set to appropriate values depending on conditions such as surface tension, contact angle, liquid density, gravity acceleration, and inner diameter of the tube. Here, the width of the transport path 25 of the drainage part 21 was set to about 0.6 mm. The raised portions 26, 26 have a shape that protrudes larger on the outer side farther from the liquid injection port 17 than on the center side near the liquid injection port 17. That is, the area of the inner surface 26a of the transport path increases as the transport path 25 moves away from the liquid injection port 17, and the liquid is guided toward the outside. For example, the height h1 of the center side end portion is about 0.5 mm, and the height h2 of the end portion on the outer peripheral side is about 1.0 mm. For example, the height of the ridges 26 and 26 is adjusted by adjusting the laser irradiation energy when forming the ridges 26 and 26, and the height (depth) of the groove is adjusted.

図6は液保持部の構成を示す断面図である。図2,3,6に示すように、液保持部22は、注液口17の周りに、注液口17から一定距離の間隔をあけた領域A1に形成され、複数の輸送路25の間において輸送路25からあふれた液体を保持する機能を有する。   FIG. 6 is a cross-sectional view showing the configuration of the liquid holding unit. As shown in FIGS. 2, 3, and 6, the liquid holding unit 22 is formed around the liquid injection port 17 in a region A <b> 1 spaced apart from the liquid injection port 17 by a certain distance, and between the plurality of transport paths 25. In FIG. 4, the liquid overflowing from the transport path 25 is retained.

液保持部22は、封口蓋11Bの内側面に注液口17を中心として円形の縞状に複数の第1部位22bと第2部位と22aが交互に配置されて親液領域を形成している。各改質領域22bの幅寸法は0.2mm程度、ピッチは0.4mm程度に構成されている。   The liquid holding part 22 forms a lyophilic region by alternately arranging a plurality of first portions 22b, second portions and 22a in a circular stripe shape around the liquid injection port 17 on the inner surface of the sealing lid 11B. Yes. Each modified region 22b has a width of about 0.2 mm and a pitch of about 0.4 mm.

例えばここではレーザによる表面改質を利用する。封口蓋11Bの内側面の材料表面にレーザ照射して表面を溶かして改質した第1部位22aと、レーザ照射していない第2部位22bとを形成することで、材料表面と液体の間の界面自由エネルギーを制御する。例えばここでは第1部位22aはレーザによる改質部(表面が滑らか)、第2部位22bは未改質部(表面が荒れている)とする。   For example, surface modification by laser is used here. By forming a first portion 22a that is modified by melting the surface of the material on the inner surface of the sealing lid 11B by melting the surface and a second portion 22b that is not irradiated with the laser, a space between the material surface and the liquid is formed. Control interface free energy. For example, here, the first portion 22a is a laser-modified portion (surface is smooth), and the second portion 22b is an unmodified portion (surface is rough).

図6に示すように、液保持部22において第1部位22aと第2部位22bとでは、材料表面の粗さが異なり、液体と材料表面の界面エネルギーの差が生じる。液体はレーザ照射して表面が滑らかになった方に液が広がろうとするため、レーザ照射した改質部位とレーザ未照射の非改質部位とを交互に縞構造にすることによって、液体の親液化および表面への吸着力が増強される。すなわち、液保持部22は異なる界面エネルギーの複数の領域を設置することによって、液体が外力を受けても移動しにくい親液状態になっている。   As shown in FIG. 6, in the liquid holding part 22, the first portion 22a and the second portion 22b have different material surface roughness, resulting in a difference in interface energy between the liquid and the material surface. Since the liquid tends to spread in the direction where the surface becomes smooth after laser irradiation, the liquid-irradiated modified part and the non-modified part not irradiated with the laser are alternately formed into a stripe structure. The lyophilicity and the adsorption power to the surface are enhanced. That is, the liquid holding unit 22 is in a lyophilic state in which a plurality of regions having different interfacial energies are installed, so that the liquid is difficult to move even when it receives an external force.

以下本実施形態にかかる密閉型二次電池の除液動作について図5,6を参照して説明する。注液口17の近傍に付着した電解液の液滴Q(液体)は、排液部21の輸送路25に沿って輸送される。すなわち、毛管現象により、輸送路25の内面(壁面)と接している液面が界面エネルギーを小さくしようとして平らになろうとする力によって、注液口17付近の液滴Qが輸送路25の壁面25aに沿って外側へ移動し、注液口17から退避する。   Hereinafter, the liquid removal operation of the sealed secondary battery according to the present embodiment will be described with reference to FIGS. The electrolyte droplet Q (liquid) adhering to the vicinity of the liquid injection port 17 is transported along the transport path 25 of the drainage part 21. In other words, due to capillary action, the liquid surface in contact with the inner surface (wall surface) of the transport path 25 is flattened in an attempt to reduce the interfacial energy, so that the liquid droplet Q near the liquid injection port 17 becomes the wall surface of the transport path 25. It moves outward along the line 25 a and retreats from the liquid injection port 17.

図5に示すように、輸送路25からあふれた電解液の液滴Qは、周囲に形成された液保持部22へ移動する。図6に示すように液保持部22は異なる界面エネルギーの複数の領域を設置して親液状態とすることで、液体が外力を受けても移動しにくいようになっているため液体が注液口17から離れた領域に保持され、その領域外(2次元領域)に液が出にくくなる。したがって、排液部21で注液口17近傍から電解液を離すことにより、封口蓋11Bの表面への電解液の液漏れを防ぎ、液保持部22に電解液を留めることで外部の力で再び電解液が注液口17へ移動することを回避できる。   As shown in FIG. 5, the droplet Q of the electrolyte overflowing from the transport path 25 moves to the liquid holding unit 22 formed in the surrounding area. As shown in FIG. 6, the liquid holding unit 22 is provided with a plurality of regions having different interfacial energies so as to be in a lyophilic state. The liquid is held in a region away from the mouth 17, and it is difficult for liquid to come out of the region (two-dimensional region). Therefore, by separating the electrolyte solution from the vicinity of the liquid injection port 17 at the drainage portion 21, the leakage of the electrolyte solution to the surface of the sealing lid 11 </ b> B is prevented, and the electrolyte solution is retained in the liquid holding portion 22 with an external force. It is possible to avoid the electrolytic solution from moving again to the injection port 17.

上記のような電池容器11を用いた密閉型電池10は、例えば、容器11A内に電極体13を収容し、封口蓋11Bを容器11Aに溶接して容器11Aの開口を塞ぎ、注液口17から電解液を注入した後、減圧環境下において注液口17を塞ぐように封止体19を溶接することにより製造される。   In the sealed battery 10 using the battery container 11 as described above, for example, the electrode body 13 is accommodated in the container 11A, the sealing lid 11B is welded to the container 11A to close the opening of the container 11A, and the liquid injection port 17 After injecting the electrolytic solution, the sealing body 19 is welded so as to close the liquid injection port 17 in a reduced pressure environment.

本実施形態にかかる封口蓋11Bでは、除液部20の排液部21により電解液の液滴Qが注液口17から退避するように輸送され、液保持部22により注液口17側に移動しないようになっている。このため、電池容器11の注液口17に封口蓋11Bを設置し減圧環境下でレーザ溶接により気密接合する際、注液口17からの電解液の這い上がりおよび電解液の注液口17近傍への侵入を抑制することができる。加えて化学薬品を使用しないドライプロセスで封止栓を密封した構造を有する密閉型二次電池10およびその製造方法を提供できる。   In the sealing lid 11B according to the present embodiment, the liquid droplet Q of the electrolytic solution is transported so as to be retracted from the liquid injection port 17 by the drainage unit 21 of the liquid removal unit 20, and is moved to the liquid injection port 17 side by the liquid holding unit 22. It does not move. For this reason, when the sealing lid 11B is installed in the liquid injection port 17 of the battery container 11 and hermetic joining is performed by laser welding in a reduced pressure environment, the electrolyte rises from the liquid injection port 17 and the vicinity of the electrolyte injection port 17 Can be prevented from entering. In addition, it is possible to provide a sealed secondary battery 10 having a structure in which a sealing plug is sealed by a dry process that does not use chemicals, and a method for manufacturing the same.

したがって、電池容器11の注液口17は、封止体19によって気密に封止される。このため、本実施形態にかかる密閉型電池10は、高い信頼性を有した注液口17のレーザ溶接封止を提供することが可能である。また、注液口17のレーザ溶接不良を減少させることにより、高い歩留まりで電池を製造できる。   Accordingly, the liquid injection port 17 of the battery container 11 is hermetically sealed by the sealing body 19. For this reason, the sealed battery 10 according to the present embodiment can provide laser welding sealing of the liquid injection port 17 having high reliability. In addition, by reducing laser welding defects at the liquid injection port 17, batteries can be manufactured with a high yield.

なお、上記実施形態では輸送路25の構成としてレーザ照射により形成される一対の隆起部26、26で輸送路25を形成する例を示したが、これに限られるものではない。例えば図7に示すように封口蓋11Bの内面を加工して溝28を形成し、この溝28に沿って液を輸送させる構成としてもよい。   In the above embodiment, the transport path 25 is configured by the pair of raised portions 26 and 26 formed by laser irradiation as the configuration of the transport path 25. However, the present invention is not limited to this. For example, as shown in FIG. 7, the inner surface of the sealing lid 11 </ b> B may be processed to form a groove 28, and the liquid may be transported along the groove 28.

また液保持部22(親液領域)を形成する方法としてレーザ加工による改質を用いた例を示したが、これに限られるものではない。例えば他にプラズマ(放電処理)による改質や、化学薬品による改質、研磨による改質などを用いてもよい。   Moreover, although the example using the modification | reformation by laser processing was shown as a method of forming the liquid holding | maintenance part 22 (lyophilic area | region), it is not restricted to this. For example, modification by plasma (discharge treatment), modification by chemicals, modification by polishing, or the like may be used.

さらに、
また、図8に示すように、輸送路25を湾曲させながら放射状に案内するようにしてもよい。さらには図9に示すように複数の輸送路25の間に短いサブ輸送路29を別途形成してもよい。このサブ輸送路29は除液部20の内側(注液口17に近い側)の端部は液保持部22よりも注液口17に近接した位置に配置し、外側(注液口17から離れる側)の端部は液保持部22の領域内に配置させる。この実施形態ではサブ輸送路29によってより確実に注液口17近傍の液体が排液部21によって輸送されて退避し、液保持部22に保持されることにより、液漏れ防止効能を向上させることが可能となる。
further,
Further, as shown in FIG. 8, the transportation path 25 may be guided radially while being curved. Further, as shown in FIG. 9, a short sub-transport path 29 may be separately formed between the plurality of transport paths 25. The sub transport path 29 has an end on the inner side (closer to the liquid injection port 17) of the liquid removal unit 20 disposed at a position closer to the liquid injection port 17 than the liquid holding unit 22, and an outer side (from the liquid injection port 17. The end portion on the side away is disposed in the region of the liquid holding portion 22. In this embodiment, the liquid in the vicinity of the liquid injection port 17 is more reliably transported by the sub-transport path 29 and retracted by the liquid discharge part 21, and is retained in the liquid holding part 22, thereby improving the liquid leakage prevention effect. Is possible.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

A1…領域、10…密閉型二次電池(電池)、11…電池容器、11A…容器、11B…封口蓋、11B…封口蓋、13…電極体、14…正極端子、15…負極端子、17…注液口、19…封止体、20…除液部、21…排液部、22…液保持部、24…改質領域、25…輸送路(輸送路)、25a…壁面、26…隆起部、28…溝、29…サブ輸送路。   A1 ... area, 10 ... sealed secondary battery (battery), 11 ... battery container, 11A ... container, 11B ... sealing lid, 11B ... sealing lid, 13 ... electrode body, 14 ... positive electrode terminal, 15 ... negative electrode terminal, 17 DESCRIPTION OF SYMBOLS ... Liquid injection port, 19 ... Sealing body, 20 ... Liquid removal part, 21 ... Drainage part, 22 ... Liquid holding part, 24 ... Modification | reformation area | region, 25 ... Transport path (transport path), 25a ... Wall surface, 26 ... Raised part, 28 ... groove, 29 ... sub-transport route.

Claims (5)

電解液を注入可能に構成された注液口を有し、その内面における前記注液口の周辺であって前記注液口から離れた領域に、液体を前記注液口から離れた前記領域に保持可能に構成された液保持部と、前記内面において液体を案内して前記注液口から退避させる排液部と、が設けられた電池容器を備えたことを特徴とする密閉型二次電池。   A liquid injection port configured to be able to inject an electrolyte solution, and a liquid in a region around the liquid injection port on the inner surface thereof and away from the liquid injection port. A sealed secondary battery comprising a battery container provided with a liquid holding portion configured to be able to hold, and a drainage portion that guides liquid on the inner surface and retreats from the liquid injection port . 前記液保持部は、注液口の周りに表面粗さが異なる複数の領域を有して構成され、
前記排液部は、前前記電池容器の内面において記液保持部よりも前記注液口に近接した位置から前記注液口に対して離れる方向に延び、毛管現象により前記内面の前記注液口付近に付着した液体を案内する輸送路を備えることを特徴とする請求項1記載の密閉型二次電池。
The liquid holding part is configured to have a plurality of regions having different surface roughness around the liquid inlet,
The drainage portion extends in a direction away from the liquid injection port from a position closer to the liquid injection port than the liquid storage holding portion on the inner surface of the battery container, and the liquid injection port on the inner surface due to capillary action. The sealed secondary battery according to claim 1, further comprising a transport path for guiding the liquid adhering to the vicinity.
前記輸送路は前記注液口から放射状に複数形成され、
前記液保持部は、前記注液口から離れた前記注液口周辺で前記注液口を囲む領域に、第1の表面粗さの第1部位と前記第1の表面粗さと異なる第22の表面粗さの第2部位とが縞状に交互に配されたことを特徴とする請求項2記載の密閉型二次電池。
A plurality of the transport paths are formed radially from the liquid injection port,
The liquid holding portion is provided in a region surrounding the liquid injection port in the vicinity of the liquid injection port that is separated from the liquid injection port, and a 22nd portion different from the first surface roughness and the first portion of the first surface roughness. 3. The sealed secondary battery according to claim 2, wherein the second surface roughness portions are alternately arranged in a stripe pattern.
前記輸送路は前記注液口から離れるにしたがって前記輸送内面の面積が大きくなるように構成されたことを特徴とする請求項3記載の密閉型二次電池。   The sealed secondary battery according to claim 3, wherein the transport path is configured such that an area of the transport inner surface increases with distance from the liquid injection port. 前記電池容器は、開口を有する容器と、前記容器の開口を塞ぐ封口蓋と、を備え、
前記封口蓋に前記注液口が設けられるとともに前記注液口の周囲の領域に前記液保持部及び前記排液部が形成され、
前記容器内に電極体を収容し、前記封口蓋を前記容器に溶接して前記容器の開口を塞ぎ、前記注液口から電解液を注入した後、減圧環境下において前記注液口を塞ぐように封止体を溶接することにより製造されることを特徴とする請求項1乃至4記載の密閉型二次電池。
The battery container includes a container having an opening, and a sealing lid that closes the opening of the container,
The liquid inlet is provided in the sealing lid and the liquid holding part and the drainage part are formed in a region around the liquid inlet,
The electrode body is accommodated in the container, the sealing lid is welded to the container to close the opening of the container, the electrolyte is injected from the liquid inlet, and then the liquid inlet is closed under a reduced pressure environment. The sealed secondary battery according to claim 1, wherein the sealed secondary battery is manufactured by welding a sealing body to the battery.
JP2011207968A 2011-09-22 2011-09-22 Sealed secondary battery Withdrawn JP2013069571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011207968A JP2013069571A (en) 2011-09-22 2011-09-22 Sealed secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011207968A JP2013069571A (en) 2011-09-22 2011-09-22 Sealed secondary battery

Publications (1)

Publication Number Publication Date
JP2013069571A true JP2013069571A (en) 2013-04-18

Family

ID=48475025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011207968A Withdrawn JP2013069571A (en) 2011-09-22 2011-09-22 Sealed secondary battery

Country Status (1)

Country Link
JP (1) JP2013069571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110838A (en) * 2014-12-05 2016-06-20 トヨタ自動車株式会社 Sealed battery and method of manufacturing the same
JP2016126890A (en) * 2014-12-26 2016-07-11 株式会社東芝 battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110838A (en) * 2014-12-05 2016-06-20 トヨタ自動車株式会社 Sealed battery and method of manufacturing the same
JP2016126890A (en) * 2014-12-26 2016-07-11 株式会社東芝 battery

Similar Documents

Publication Publication Date Title
JP5336023B1 (en) Prismatic secondary battery
US9077047B2 (en) Secondary battery and method of manufacturing the same
KR101291371B1 (en) Sealed type secondary battery and method of manufacturing the same
JP2010086776A (en) Sealed type secondary battery, and method of manufacturing the same
JP6555544B2 (en) Battery case sealing method and sealed battery manufacturing method
US20140004411A1 (en) Sealed battery
JP2014022337A (en) Nonaqueous secondary battery and liquid injection method therefor
JP6217979B2 (en) Manufacturing method of sealed battery
JP2007103158A (en) Square sealed battery
US9537172B2 (en) Sealed secondary battery and manufacturing method of sealed secondary battery
JP2013069571A (en) Sealed secondary battery
JP5932323B2 (en) Secondary battery and method for manufacturing secondary battery
JP2005190776A (en) Sealed type battery
JP6913442B2 (en) Secondary battery
JP6184400B2 (en) battery
KR20150051467A (en) Second Battery Having Sealing Member of Self- Sealability
JP6373590B2 (en) Battery and battery manufacturing method
JP2003257414A (en) Sealed battery and its manufacturing method
JP2019175613A (en) Battery and housing member
KR100624898B1 (en) Lithium Secondary battery
US11777165B2 (en) Battery
KR101897312B1 (en) Eletrolyte injection device
JP6119445B2 (en) Lead acid battery
JP2014022095A (en) Sealed battery, and method for manufacturing sealed battery
JP5992108B2 (en) Secondary battery case and secondary battery manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202