JP2013068586A - Method for removing radioactive contamination of soil - Google Patents

Method for removing radioactive contamination of soil Download PDF

Info

Publication number
JP2013068586A
JP2013068586A JP2011223369A JP2011223369A JP2013068586A JP 2013068586 A JP2013068586 A JP 2013068586A JP 2011223369 A JP2011223369 A JP 2011223369A JP 2011223369 A JP2011223369 A JP 2011223369A JP 2013068586 A JP2013068586 A JP 2013068586A
Authority
JP
Japan
Prior art keywords
soil
water
radioactive
contaminated
clean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011223369A
Other languages
Japanese (ja)
Inventor
Masayuki Kumada
雅之 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011223369A priority Critical patent/JP2013068586A/en
Publication of JP2013068586A publication Critical patent/JP2013068586A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that in almost conventional methods for removing radioactive contamination of soil caused by an accident of a nuclear power plant, soil contamination is performed by removing a surface layer of contaminated soil only by several centimeters and separating the removed contaminated soil from clean soil, but destination of the separated contaminated soil is not determined, and a place for storing the contaminated soil for a long period should be determined.SOLUTION: The contaminated soil on the surface layer is soaked in environmental water with less radioactivity such as uncontaminated rain water or ground water of the same amount as that of contaminated rain or snow causing the radioactive contamination of soil, discharging of the dipped water to the outside or downstream is repeated to finally discharge radioactive contaminated substances of the soil to the sea through rivers.

Description

本発明は原発事故由来の土壌の放射能汚染除去法に関する。The present invention relates to a method for removing radioactive contamination of soil derived from a nuclear accident.

福島第一原発により福島県をはじめ全国的に広大な地域で土壌が放射能に汚染された。その除染には表層数センチの土壌を削りこれにビニールシートをかけて土地の一角に集めたり、袋に詰めて暫定置き場に集めたりして一時的な保存措置を行っている。The Fukushima Daiichi nuclear power plant contaminated the soil with radioactivity in Fukushima Prefecture and other vast areas nationwide. For the decontamination, the soil of several centimeters of surface is shaved and a vinyl sheet is applied to it to collect it in a corner of the land, or it is packed in a bag and collected in a temporary storage place to take temporary preservation measures.

表層土を削る作業はユニッククレーン
などの機械を使う必要性がでてくるが土壌の表面を削るときに放射性物質を含む土ぼこりが発生する。一般にこのような作業環境は放射線レベルが高く本来なら放射線作業者の法律的な認定が必要なところが多い。放射線被曝に関する十分な知識のない一般労働者が作業を行わざるをえないため、法律に違反したケースが生じせざるを得ない。表層度を削る方法はこのような課題を抱えている。
When cutting the surface soil, it is necessary to use a machine such as a UNIC crane, but when cutting the surface of the soil, dust containing radioactive materials is generated. In general, such a working environment has a high radiation level, and there are many cases that require legal approval of radiation workers. Since ordinary workers who do not have sufficient knowledge about radiation exposure are forced to work, there are cases where violations of the law occur. The method of cutting the surface layer has such a problem.

またこれらの汚染された表層土は暫定的に集められているだけでその処理法や行き先についての目処はたっていない。その行き先をどこにもっていくかが国家や自治体の焦眉の課題である。Moreover, these contaminated surface soils are only collected temporarily, and there is no plan for the treatment method or destination. Where to go to that destination is a serious issue for the state and local governments.

課題を解決するために過去の放射能汚染度の経時変化の以下の例を学ぶ:
広島には1945年にウラニウム型の原子爆弾が、長崎にはプルトニウム型の原子爆弾が投下されその後数十年間は人が住めないだろうと予想されていたが2年から3年で人々は住み始め、復興が始まり、しかも放射能さえ検出できなくなってしまったという。ビキニ諸島では1946年度の核実験から1954年には水爆実験もはじまり、1958年までに合計66回の核実験が行われたが、53年後の2011年についに住民が戻れるまでに環境は回復した。チェルノブイリ原子力発電所の事故は1986年であったが25年後のいまでも、とても回復できたとはいえない。違いがどこにあるのかを解く事が課題を解決する鍵である。
Learn the following examples of changes in past radioactivity levels over time to solve challenges:
The uranium-type atomic bomb was dropped on Hiroshima in 1945 and the plutonium-type atomic bomb was dropped on Nagasaki, and it was expected that people would not be able to live for several decades. Reconstruction has begun, and even radioactivity can no longer be detected. In the Bikini Islands, from the nuclear test in 1946 to the hydrobombing test in 1954, a total of 66 nuclear tests were conducted by 1958, but the environment will recover until the residents finally return in 2011, 53 years later did. The accident at the Chernobyl nuclear power plant was in 1986, but even 25 years later, it cannot be said that it has recovered very much. Solving where the differences are is the key to solving the problem.

核実験による国内の土壌の放射能の濃度の経時変化については農環研報24,1−21(2006)に(http://www.affrc.go.jp/agrolib/RN/0000096962.pdf)詳しい。ここから水田作土と畑作土と観測された半減期の関係をまとめると:
水田作土 90Sr:6〜13y、137Cs:9−24y、畑作土 90Sr:6〜15y、137Cs:8−26y が重要である。このデータは実際の環境での土壌が示す半減期は物理で決まっている半減期よりも短い事があるということである。
Regarding the time-dependent change in the radioactivity concentration in domestic soil by nuclear tests, please refer to Agricultural Research Report 24, 1-21 (2006) ( http://www.affrc.go.jp/agrolib/RN/000096962.pdf ). detailed. Here is a summary of the relationship between paddy and field soils and the observed half-life:
Paddy soil 90Sr: 6-13y, 137Cs: 9-24y, field soil 90Sr: 6-15y, 137Cs: 8-26y are important. This data means that the half-life of soil in the actual environment may be shorter than the half-life determined by physics.

原発事故後半年経過して土壌の放射性物質の大半は放射性セシウムと放射性ストロンチウムでヨウ素はいまでは無視できる。
前者は水に溶けやすく後者も水と激しく反応する。このことから土壌のなかのこれらの放射性物質は水とともに滞留しまた水と共に移動するという仮説をたてることが可能である。広島や長崎の環境放射能が物理的な半減期と比べてはるかに短時間で消失したのはこれらの地域が台風の通過路にあたり、頻繁で大量の降雨で放射性物質を溶解し海に流入したのが理由だと考えられる。ちなみに年間降水量でいうと長崎県12位(1840ミリ)、広島県38位(1149ミリ)、福島県42位(1149ミリ)。福島県は雪のため降水量がおおきくみえるが、冬の間は雪の状態で滞留しているため自然による土壌の洗浄効果は広島よりもはるかに少なく人工的な方策が必要である。ビキニ諸島でも同様で逆にチエルノブイリでは降水量が少ないのでこの効果が少ないのだと考えられる。
In the latter half of the nuclear accident, most of the radioactive materials in the soil are radioactive cesium and radioactive strontium, and iodine can now be ignored.
The former is soluble in water and the latter reacts violently with water. This makes it possible to hypothesize that these radioactive substances in the soil stay with water and move with water. The environmental radioactivity in Hiroshima and Nagasaki disappeared in a much shorter time than the physical half-life, because these areas were typhoon passages, and radioactive materials were dissolved and flowed into the sea due to frequent heavy rainfall. This is considered to be the reason. By the way, in terms of annual precipitation, Nagasaki Prefecture is ranked 12th (1840 mm), Hiroshima Prefecture 38th (1149 mm), and Fukushima Prefecture 42nd (1149 mm). In Fukushima Prefecture, the amount of precipitation appears to be large due to snow, but since it stays in the snow during winter, the natural soil cleaning effect is much less than in Hiroshima and an artificial measure is required. The same is true for the Bikini Islands, and conversely in Ciel Nobyl, this effect is thought to be less because of the low precipitation.

農環研のデータも降水量の観点から整理しなおされれば理解がもっとすすむはずである。農環研のデータで畑作土も水田作度も半減期に差がみられないのは水田の水が汚染していたことが疑われる。最近関東地方においては9月に台風12号が大量の雨を降らせたが、八郷町(現石岡市)においてもそれまで0.2マイクロシーベルト/時であった空間放射能レベルが3割強のレベルに減少した(doseRAE2による測定値)。これは降雨により表土に雨が進入し放射性セシウムを溶解し下流に放射性物質を流したと考えられる。If the Agricultural Research Laboratories data is rearranged from the viewpoint of precipitation, the understanding should be improved. It is suspected that the water in the paddy field was polluted that there was no difference in the half-life between the field soil and the paddy field in the data from the National Agriculture Research Institute. Recently, in September in Kanto, Typhoon No. 12 rained a lot of rain, but in Yango-cho (current Ishioka City), the spatial radioactivity level was 0.2 microsieverts / hour, which is over 30%. (Measured by doseRAE2). This is thought to be due to rain entering the topsoil due to rainfall, dissolving radioactive cesium and flowing radioactive material downstream.

現在雨に含まれる放射性物質は少ないので、この放射能の弱いきれいな水で土壌に含まれるセシウム等の放射性物質を溶解させ、小川から大川にそして海に放出させて、物理的な半減期を加速させることで土壌中の放射性物質を流しだし放射性土壌の半減期を短縮可能である。Because there is little radioactive material in the rain, the radioactive material such as cesium contained in the soil is dissolved with this clean water with weak radioactivity and released from the stream to the river and into the sea to accelerate the physical half-life. It is possible to discharge radioactive materials in the soil and shorten the half-life of the radioactive soil.

さらにこの水洗いによる除去機構を加速させるためには、大量の清浄な水を作る。既に環境汚染のひどい地域では深井戸を堀り、これを田んぼや畑の土壌に流し込み、河川にまで導く。児童館、幼稚園、小中学校も校庭全体も田んぼとみなして、表層度数センチまで清浄な水につかるようにして、放射性物質を溶かし込んだのちに河川や下水に放流する。その際、汚染された水が滞留しないように高圧ホースなどで、水の”通じ”がよくなるような気配りが必要である。一般家庭でもこれをスケールダウンすればよい。例はすくないが、屋根やベランダの洗浄で除染に成功した例がNHKなどで報告されている。Furthermore, in order to accelerate the removal mechanism by washing with water, a large amount of clean water is produced. In areas that are already heavily polluted, deep wells are dug and poured into the soil of rice fields and fields, leading to rivers. Children's halls, kindergartens, elementary and junior high schools, and the entire school grounds are considered to be rice fields. At that time, it is necessary to take care to improve the “communication” of water with a high-pressure hose or the like so that contaminated water does not stay. This can be scaled down at home. Examples are not good, but NHK and others have reported successful decontamination by washing roofs and verandas.

この水洗い除染法を人工的に繰り返しおこなえば、放射能物質は最終的にはみな海洋に放出される。なにもしなくても自然の除染でも同じ事がおきるだけである。人はこのメカニズムの背中をおして除染を加速してあげるだけである。この水洗い除染法をさらに加速するには人口雨を汚染された地域全体に降らせればよい。大部分の放射能汚染はもともと黒い雨が運んで来たものである。これを放射性物質の少ないきれいな雨で掃除してあげればよいのである。“刃には刃を、雨には雨を“である。If this washing and decontamination method is repeated artificially, all radioactive materials are finally released into the ocean. Even if nothing is done, the same thing happens with natural decontamination. People only accelerate decontamination through the back of this mechanism. To further accelerate this water decontamination method, artificial rain can be applied to the entire contaminated area. Most of the radioactive contamination was originally carried by black rain. You can clean it with clean rain with little radioactive material. “Blade for blade, rain for rain”.

人口降雨を広い地域に降らせるには中国などで行われているドライアイスやヨウ化銀を用いる方法がある(http://ja.wikipedia.org/wiki/人工降雨)。さらにおおがかりな方法としては台風をHAARP(High Frequency Active Auroral Research Program)等により人工的に誘導することも考えられるが我が国はまだそこまでの技術は持ち合わせていないだろう。この点で沖縄、九州、四国、紀伊半島など台風の銀座通りは自然浄化の最適地である。幸い、長崎や広島はそのなかに入っていたために2−3年で除染が自然に行われたと考えられる(仮説)。There are methods using dry ice and silver iodide, which are used in China and the like (http://ja.wikipedia.org/wiki/artificial rainfall), to cause artificial rainfall to fall over a wide area. As a more conspicuous method, it is conceivable that the typhoon is artificially induced by HAARP (High Frequency Active Research Program) or the like, but Japan does not have the technology so far. In this respect, Typhoon Ginza Street, such as Okinawa, Kyushu, Shikoku, and Kii Peninsula, is the best place for natural purification. Fortunately, Nagasaki and Hiroshima were in it, so it is thought that decontamination was carried out naturally in 2-3 years (hypothesis).

本発明の放射線除去方法は自然の摂理により除去機構と本質的には同等である。自然の摂理による除染法を人的に強化して、放射能の半減期を短縮しようというものである。本発明は除染による汚染物質の行き先の土地などを特別に用意する必要がないのが大きな利点である。また、我が国は地下水も豊富でそのコストも安価である。水洗いに用いる水も海に流れ込むので本方法は自然の循環システムにとりこまれている。The radiation removal method of the present invention is essentially equivalent to a removal mechanism by natural providence. It is intended to shorten the half-life of radioactivity by personally strengthening the decontamination method by natural providence. The present invention has a great advantage in that it is not necessary to specially prepare a land for the destination of the pollutant by decontamination. Japan also has abundant groundwater and its cost is low. Since the water used for washing also flows into the sea, this method is incorporated in the natural circulation system.

第1の発明は、汚染された水田に汚染された水ではなく清浄な水を張り、表土中の放射性セシウム等を清浄な水に溶解させ、放射線測定器でこれを確認したのちに、川に放出する。都会では下水に放流する。途中、汚れた水が滞留しないように、灌漑の水路や下水を掃除して、放射能溶解水の大半が河川を通り効率よく海洋に流入するように監視する。In the first invention, the contaminated paddy field is filled with clean water instead of contaminated water, radioactive cesium, etc. in the topsoil is dissolved in clean water, and after confirming this with a radiation measuring instrument, discharge. In urban areas, it is discharged into sewage. During the process, clean up irrigation channels and sewage to prevent dirty water from staying, and monitor most of the radioactive dissolved water flowing into the ocean through the river.

海洋にはすでに再処理工場、原子力発電所、放射能物質の不法投棄、原子力潜水艦とうから大量の放射性物質が貯蔵されている。その量は国際的な監視がないので不明であるが福島原発からの環境への量とくらべて膨大と推定される。にもかかわらず、実質的な不具合はまだ報告されていない。Large quantities of radioactive material are already stored in the ocean from reprocessing plants, nuclear power plants, illegal dumping of radioactive materials, and nuclear submarines. The amount is unknown because there is no international monitoring, but it is estimated to be enormous compared to the amount from the Fukushima nuclear power plant to the environment. Nevertheless, no substantial failure has been reported yet.

本発明の適用は、小は個人の家庭から、中は農家の田んぼの除染そして 大は地域一帯の田畑の除染とスケールはまちまちである。人口降雨などはロケットを飛ばす必要性から企業や気象庁などの国家機関による実践になりうる。台風の進路をコントロールするためのHAARPなどはさらに大きなプロジェクトになり、産業化においても国家プロジェクトとの共同となるだろう。The application of the present invention is small from individual households, some of which are decontamination of farmer's rice fields, and most are decontamination and scale of fields in the region. Population rainfall can be practiced by companies and national agencies such as the Japan Meteorological Agency because of the need to fly rockets. HAARP, etc. for controlling the course of typhoons will be a larger project, and will be a joint project with national projects in industrialization.

Claims (3)

原子炉事故由来の放射能汚染された畑、田圃、園庭、校庭などの土壌を汚染されていない清浄な沢水、川水、井戸水などの自然環境水に浸したのち下流に用水路や下水道等で河川に流出させることを繰り返すことによる自然の清浄機構に学んだ放射能汚染物質の除去法。      After immersing soil such as radioactively contaminated fields, rice fields, gardens and schoolyards from nuclear reactor accidents in clean natural water such as clean water, river water, and well water, irrigation channels and sewers downstream The removal method of radioactive pollutants learned from the natural cleaning mechanism by repeatedly flowing into the river. 請求項1で使う清浄な水を人降雨等によって得て、クリーンであることを確認したのち、水洗いにより放射能汚染物質を繰り返し除去する方法。      A method in which the clean water used in claim 1 is obtained by human rain or the like, and after confirming that it is clean, radioactive contaminants are repeatedly removed by washing with water. 請求項1でつかう大量の雨水を熱帯性低気圧や台風を人工的な方法で放射能汚染処理地域に誘導して、水洗いを繰り返すことによる当該地域の放射能汚染物質を除去する方法。      A method for removing radioactive pollutants in a region by repeatedly washing with a large amount of rainwater used in claim 1 by guiding tropical cyclones and typhoons to a radioactive contamination treatment region by an artificial method.
JP2011223369A 2011-09-21 2011-09-21 Method for removing radioactive contamination of soil Withdrawn JP2013068586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223369A JP2013068586A (en) 2011-09-21 2011-09-21 Method for removing radioactive contamination of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223369A JP2013068586A (en) 2011-09-21 2011-09-21 Method for removing radioactive contamination of soil

Publications (1)

Publication Number Publication Date
JP2013068586A true JP2013068586A (en) 2013-04-18

Family

ID=48474431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223369A Withdrawn JP2013068586A (en) 2011-09-21 2011-09-21 Method for removing radioactive contamination of soil

Country Status (1)

Country Link
JP (1) JP2013068586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064236A (en) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 Terrace flatly-buried type underground nuclear power station
CN104064229A (en) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 Large nuclear power station with underground reactor and radioactive auxiliary plant
CN104064235A (en) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 Slope type horizontally-buried underground nuclear power station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064236A (en) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 Terrace flatly-buried type underground nuclear power station
CN104064229A (en) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 Large nuclear power station with underground reactor and radioactive auxiliary plant
CN104064235A (en) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 Slope type horizontally-buried underground nuclear power station

Similar Documents

Publication Publication Date Title
Hardie et al. Fukushima remediation: status and overview of future plans
Bondarkov et al. Environmental radiation monitoring in the Chernobyl exclusion zone—history and results 25 years after
Gellis et al. Land-use effects on erosion, sediment yields, and reservoir sedimentation: A case study in the Lago Loiza basin, Puerto Rico
Iwagami et al. Dissolved 137Cs concentrations in stream water and subsurface water in a forested headwater catchment after the Fukushima Dai-ichi Nuclear Power Plant accident
JP2013068586A (en) Method for removing radioactive contamination of soil
Flower et al. Sediment distribution and accumulation in lagoons of the Southern Mediterranean Region (the MELMARINA Project) with special reference to environmental change and aquatic ecosystems
Oberholster et al. Using modified multiple phosphorus sensitivity indices for mitigation and management of phosphorus loads on a catchment level
KOIBUCHI et al. Sediment-associated radiocesium originated from Fukushima Daiichi nuclear power plant flowing from Ohori River to Lake Teganuma
Shimizu et al. Effect of climate change on nutrient discharge in a coastal area, western Japan
Semmler et al. Assessment of decontamination, decommissioning, and remediation methodologies at Fukushima
Urso et al. Modeling of the fate of radionuclides in urban sewer systems after contamination due to nuclear or radiological incidents
Ewa et al. Horizontal and vertical distribution of selected metals in the Kubanni River, Nigeria as determined by neutron activation analysis
Voitsekhovich et al. The Chernobyl accident and its aquatic impacts on the surrounding area
Miyahara et al. Overview of the results of Fukushima decontamination pilot projects
Takeuchi Importance of sediment research in global water system science
Lale et al. Uranium Contamination in Shallow Aquifers of Haryana State, India
Zhao et al. Spatial Distribution, Ecological Risk Assessment and Source Identification for Nutrients and Heavy Metals in Surface Sediments from Tangxun Lake, Wuhan, Central China.
Shephard et al. Remediation of uranium impacted sediments in a watercourse
Gardner et al. Enhancing merciless euthanasia of Yamuna-Role of Agra
Quivenco When surging seas meet stronger rain: Nuclear techniques in flood management
Nakayama et al. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima
Carpenter 100-B area technical baseline report
Miyahara et al. Challenges for enhancing Fukushima environmental resilience
Beckers Ancient food and water supply in drylands: Geoarchaeological perspectives on the water harvesting systems of the two ancient cities Resafa, Syria and Petra, Jordan
Evrard et al. Strategies and effectiveness of land decontamination in the region affected by radioactive fallout from the Fukushima nuclear accident: A review

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202