JP2013067530A - Method and apparatus for manufacturing gallium nitride powder - Google Patents

Method and apparatus for manufacturing gallium nitride powder Download PDF

Info

Publication number
JP2013067530A
JP2013067530A JP2011206959A JP2011206959A JP2013067530A JP 2013067530 A JP2013067530 A JP 2013067530A JP 2011206959 A JP2011206959 A JP 2011206959A JP 2011206959 A JP2011206959 A JP 2011206959A JP 2013067530 A JP2013067530 A JP 2013067530A
Authority
JP
Japan
Prior art keywords
powder
temperature
gallium nitride
gallium
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011206959A
Other languages
Japanese (ja)
Inventor
Masahiro Ito
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011206959A priority Critical patent/JP2013067530A/en
Publication of JP2013067530A publication Critical patent/JP2013067530A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing gallium nitride powder capable of producing gallium nitride powder suitable for use as a raw material in synthesizing bulk crystals of gallium nitride by the ammonothermal method with a low cost and highly productivity by using a vapor-phase method.SOLUTION: Gallium chloride is produced by reacting hydrogen chloride with gallium powder at a temperature of 800 to 1,000°C, and the gallium nitride is synthesized by reacting the obtained gallium chloride with ammonia at a temperature of 800 to 1,200°C. By controlling the temperature of the gas atmosphere containing the obtained gallium nitride to 185°C or more and 337.5°C or less the gallium nitride powder not containing the ammonium chloride of a reaction by-product is separately recovered.

Description

本発明は、窒化ガリウム(GaN)粉末の製造方法、特にGaN粉末を大量生産し且つ効率的に回収する方法に関する。   The present invention relates to a method for producing gallium nitride (GaN) powder, and more particularly to a method for mass-producing and efficiently recovering GaN powder.

人類が生存するために今後解決すべき幾つかの課題の中で、省エネルギー化とCO削減は極めて重要である。家庭やオフィスでのエネルギー消費の主たるものの一つは照明であり、欧米では白熱電球の使用禁止の動きもあるが、日本国内では白熱電球の使用は欧米よりも少なく、蛍光灯への移行が進んでいる。それでも更なる省エネルギー化が望まれる中で、照明の白色LED(発光ダイオード)化は必須の方向であると考えられている。 Among several issues to be solved in the future for the survival of humankind, energy saving and CO 2 reduction are extremely important. One of the main energy consumption in homes and offices is lighting. In Europe and the United States, there is a movement to ban the use of incandescent bulbs. It is out. Nevertheless, while further energy saving is desired, the use of white LEDs (light emitting diodes) for illumination is considered an essential direction.

従来から、白色LEDを製造する場合には、一般にサファイア(酸化アルミニウム)基板を用い、その上にMOCVD法などの気相法でGaNの膜を形成してデバイス化している。しかし、サファイアとGaNとの格子定数の違いは16%にもなるため、上質のサファイア基板を使用してGaN膜を形成しても、大きな格子定数の違いにより格子欠陥の一種である転位が多数入ることが避けられず、これがデバイスであるLEDや半導体レーザーの低効率化あるいは短寿命化の原因となっている。   Conventionally, when manufacturing a white LED, a sapphire (aluminum oxide) substrate is generally used, and a GaN film is formed on the sapphire (aluminum oxide) substrate by a vapor phase method such as an MOCVD method to form a device. However, since the difference in lattice constant between sapphire and GaN is as high as 16%, even if a GaN film is formed using a high-quality sapphire substrate, there are many dislocations that are a kind of lattice defects due to the large difference in lattice constant. This is unavoidable, and this is a cause of low efficiency or short life of the LED or semiconductor laser as a device.

上記のごとく多くの転位が入っても、青色LEDの場合ある程度の発光が実現しているのは、デバイス作製時に添加するインジウムが適度に分布することで格子の歪を緩和するためであるとされている。しかし、より長波長の緑色や、より短波長の紫色又は紫外光は、原理的にGaNから強く発光することが可能な波長域であるが、実際には発光効率が極端に低く、しかも寿命が短いという欠点がある。このような状況ではあるが、サファイア基板が安価なため、さほど高効率でなくても青色LEDを利用し、これに適切な蛍光体を組み合わせることで白色化を実現している現状である。   Even if a large number of dislocations are introduced as described above, a certain amount of light emission is realized in the case of a blue LED because the indium added at the time of device fabrication is moderately distributed to alleviate lattice distortion. ing. However, the longer wavelength green and the shorter wavelength purple or ultraviolet light are wavelengths where light can be emitted strongly from GaN in principle, but in reality the light emission efficiency is extremely low and the lifetime is long. There is a drawback of being short. Although it is such a situation, since the sapphire substrate is inexpensive, whitening is realized by using a blue LED and combining it with an appropriate phosphor even if it is not very efficient.

一方、白色LEDの高効率化にはGaN基板の使用が理想的であるが、GaN自身は1500℃以上で1万気圧という高温高圧でなければ合成できない材料である。しかし、最近ではGaN基板を得るための幾つかの手法が試されている。例えば、サファイアやGaAs等の基材上に、MOCVDやHVPE法という気相法でGaNを厚く成膜させた後、基材を溶解するか又は物理的に剥がすことでGaNの自立基板が製造され市販されている。しかし、気相法で作製することや基材の除去に手間がかかることから高価であり、一般的なLEDへの応用は難しく、特殊な用途での使用に限られている。   On the other hand, the use of a GaN substrate is ideal for increasing the efficiency of white LEDs, but GaN itself is a material that can be synthesized only at a high temperature and high pressure of 1500 ° C. or higher and 10,000 atm. Recently, however, several methods for obtaining a GaN substrate have been tried. For example, a GaN free-standing substrate is manufactured by forming a thick GaN film on a base material such as sapphire or GaAs by a vapor phase method such as MOCVD or HVPE, and then dissolving or physically peeling the base material. It is commercially available. However, it is expensive because it takes a lot of time to produce by a vapor phase method and to remove the base material, and is difficult to apply to general LEDs, and is limited to use in special applications.

GaN基板を得る別のアプローチとして、GaNのバルク結晶を育成する方法がある。ただし、チョクラルスキー法のような原料を溶解して引き上げる方法は不可能であるため、アンモニア等の溶媒を利用した溶液法の一種であるアモノサーマル法が検討されている。最近では、非特許文献1に示されるように、アモノサーマル法でのバルク結晶の成長が可能となってきた。この手法によりGaNのバルク結晶のインゴットが歩留まり良く量産できるようになると、従来の気相法に比べて基板価格の大幅な低減が可能となり、GaN基板を使用した安価で高効率のLEDの提供が可能となる。   As another approach for obtaining a GaN substrate, there is a method of growing a bulk crystal of GaN. However, since it is impossible to dissolve and pull up the raw material as in the Czochralski method, an ammonothermal method, which is a kind of solution method using a solvent such as ammonia, has been studied. Recently, as shown in Non-Patent Document 1, it has become possible to grow a bulk crystal by an ammonothermal method. If this method enables mass production of GaN bulk crystal ingots with high yield, it will be possible to significantly reduce the substrate price compared to the conventional vapor phase method, and to provide an inexpensive and highly efficient LED using a GaN substrate. It becomes possible.

上記アモノサーマル法は、水晶の成長法である水熱合成と同じ原理による。ただし、水晶の水熱合成では溶媒として水を使用し、400℃程度の温度で1500気圧を印加して超臨界状態を実現する。超臨界状態とは、臨界点以上の温度と圧力をかけることで液体でも気体でもない流体となり、原子がバラバラになって反応性が非常に高くなった状態である。水晶の具体的な水熱合成では、原料となる水晶片をオートクレーブ(高温高圧炉)下部の高温部に置き、溶媒中で溶かして飽和溶解度の状態とすることで、対流等により溶質が上部の低温部にある種結晶に到達して結晶化する。   The ammonothermal method is based on the same principle as hydrothermal synthesis, which is a crystal growth method. However, in the hydrothermal synthesis of quartz, water is used as a solvent, and 1500 atm is applied at a temperature of about 400 ° C. to realize a supercritical state. The supercritical state is a state in which, when a temperature and pressure above the critical point are applied, a fluid that is neither a liquid nor a gas is obtained, the atoms are separated and the reactivity is very high. In the specific hydrothermal synthesis of quartz, the quartz piece that is the raw material is placed in the high temperature part at the bottom of the autoclave (high temperature high pressure furnace) and dissolved in a solvent to bring it into a saturated solubility state. It reaches the seed crystal in the low temperature part and crystallizes.

アモノサーマル法によるGaNのバルク結晶の合成では、溶媒としてアンモニアを使用する点が水晶と異なるが、その他の温度や圧力などの条件は水晶の場合とほぼ同じ条件を用いることができるため、サファイア基板に匹敵する安価なGaN基板の製造が現実的となってきた。そのため、今後アモノサーマル法での量産化を検討する上で、原料であるGaN材料を安価で大量に提供することが重要な課題となっている。   The synthesis of bulk crystals of GaN by the ammonothermal method differs from quartz in that ammonia is used as a solvent, but other conditions such as temperature and pressure can be used under almost the same conditions as in quartz. Production of inexpensive GaN substrates comparable to substrates has become realistic. For this reason, it is an important issue to provide a large amount of GaN material as a raw material at a low cost when considering mass production by the ammonothermal method in the future.

GaN材料を安価で大量に作製するには、粉末として製造することが有利であると考えられる。例えば、特許文献1には、硝酸ガリウム水和物にアンモニアを滴下させて得られた水酸化ガリウムを800℃で急速加熱して多孔性の酸化ガリウムを得た後、この酸化ガリウムをアンモニア雰囲気中で加熱処理することによってGaN粉末を得る方法が記載されている。しかし、この方法は水酸化ガリウムを800℃で急速加熱するなど、安全性の点で問題があった。   In order to produce a large amount of GaN material at low cost, it is considered advantageous to manufacture it as a powder. For example, in Patent Document 1, gallium hydroxide obtained by dripping ammonia into gallium nitrate hydrate is rapidly heated at 800 ° C. to obtain porous gallium oxide, and then this gallium oxide is placed in an ammonia atmosphere. Describes a method for obtaining a GaN powder by heat treatment with a glass. However, this method has a problem in terms of safety, such as rapidly heating gallium hydroxide at 800 ° C.

また、特許文献2には、ガリウム蒸気とアンモニアガスを反応させて窒化ガリウム結晶核を生成させ、この窒化ガリウム結晶核上でハロゲン化ガリウムとアンモニアガスを反応させることにより、窒化ガリウム結晶を成長させて窒化ガリウム粉末を作製する方法が開示されている。しかしながら、生成した窒化ガリウム粉末は副生成物であるNHClが個化して付着しないように500℃程度に加熱されているため、窒化ガリウム粉末を回収する際には温度を下げる必要がある。そのため、過度の加熱に伴うエネルギー消費の問題や、窒化ガリウム粉末の回収に要する時間的ロスによる生産性の低下が懸念されている。 Further, in Patent Document 2, a gallium nitride crystal nucleus is generated by reacting gallium vapor and ammonia gas, and a gallium nitride crystal is grown on the gallium nitride crystal nucleus by reacting gallium halide with ammonia gas. A method for producing a gallium nitride powder is disclosed. However, since the produced gallium nitride powder is heated to about 500 ° C. so that the by-product NH 4 Cl is not individualized and adhered, it is necessary to lower the temperature when collecting the gallium nitride powder. Therefore, there are concerns about the problem of energy consumption due to excessive heating and the decrease in productivity due to the time loss required for recovery of gallium nitride powder.

特表2008−521745Special table 2008-521745 特開2003−063810JP 2003-063810 A

産学官共同研究の効果的な推進・事後評価「次世代照明を齎(もたら)す半導体基板結晶製造技術」、東北大学多元物質科学研究所(研究代表者名:齋藤文良)、研究期間:平成16年度〜平成18年度Effective promotion and ex-post evaluation of industry-academia-government joint research "Semiconductor substrate crystal manufacturing technology that brings next-generation lighting", Research Institute for Multidisciplinary Research for Advanced Materials, Tohoku University (Research representative: Fumiyoshi Saito), From 2004 to 2006

本発明は、上記した従来の事情に鑑み、アモノサーマル法の原料などとして好適な窒化ガリウム粉末を、気相法により安価に且つ生産性良く製造する方法を提供することを目的とする。   In view of the above-described conventional circumstances, an object of the present invention is to provide a method for producing a gallium nitride powder suitable as a raw material for an ammonothermal method at low cost and with high productivity by a vapor phase method.

上記目的を達成するため、本発明が提供する窒化ガリウム粉末の製造方法は、キャリアガスにより導入された塩化水素ガスを800〜1000℃の温度でガリウム粉末と反応させ、得られた塩化ガリウムをキャリアガスで搬送しながら800〜1200℃の温度でアンモニアガスと反応させて窒化ガリウムを生成させた後、得られた窒化ガリウムを含むガス雰囲気の温度を185℃以上337.5℃未満に制御することにより、窒化ガリウム粉末を分離回収することを特徴とする。   In order to achieve the above object, a method for producing a gallium nitride powder provided by the present invention comprises reacting a hydrogen chloride gas introduced by a carrier gas with a gallium powder at a temperature of 800 to 1000 ° C., and using the resulting gallium chloride as a carrier. After reacting with ammonia gas at a temperature of 800 to 1200 ° C. while transporting with gas, gallium nitride is generated, and then the temperature of the gas atmosphere containing the obtained gallium nitride is controlled to 185 ° C. or more and less than 337.5 ° C. Thus, the gallium nitride powder is separated and recovered.

本発明によれば、気相法により窒化ガリウム粉末を安価に且つ生産性良く製造することができ、特に窒化ガリウム粉末をガス雰囲気から分離回収する際の温度を従来よりも大幅に低くすることで、反応副生成物が含まれない窒化ガリウム粉末の回収を容易にすると共にエネルギー使用量の低減を図ることができる。従って、本発明は、窒化ガリウム基板用のバルク結晶を合成するアモノサーマル法の原料として好適な窒化ガリウム粉末を大量且つ安価に製造できるため、安価で高効率なLEDの提供に極めて有用である。   According to the present invention, gallium nitride powder can be manufactured at low cost and with high productivity by a vapor phase method, and in particular, the temperature at the time of separating and recovering gallium nitride powder from a gas atmosphere can be made significantly lower than before. The recovery of gallium nitride powder containing no reaction by-products can be facilitated and the amount of energy used can be reduced. Therefore, the present invention can be manufactured in a large amount and at a low cost for a gallium nitride powder suitable as a raw material for an ammonothermal method for synthesizing a bulk crystal for a gallium nitride substrate, and thus is extremely useful for providing an inexpensive and highly efficient LED. .

本発明のGaN粉末の製造装置を示す概略の構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the GaN powder of this invention. 粉末回収室のガス雰囲気の温度と塩化アンモニウムの回収量との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the gas atmosphere of a powder collection | recovery chamber, and the collection amount of ammonium chloride.

本発明による窒化ガリウム粉末の製造方法を、図1を参照しながら具体的に説明する。まず、塩化水素(HCl)ガスを水素などのキャリアガスにより第1反応室1に導き、ヒーター1aにより800〜1000℃の温度に制御された第1反応室1でガリウム粉末と反応させて塩化ガリウム(GaCl)を生成させる。尚、ガリウム粉末は上部が開口した容器に入れて第1反応室1内に配置し、第1反応室1の容積が大きい場合には、図1に示すように塩化水素ガスとキャリアガスの流路を除き容器の周囲を囲うことで、反応域を制御することが望ましい。   The method for producing gallium nitride powder according to the present invention will be specifically described with reference to FIG. First, hydrogen chloride (HCl) gas is introduced into the first reaction chamber 1 by a carrier gas such as hydrogen, and reacted with gallium powder in the first reaction chamber 1 controlled to a temperature of 800 to 1000 ° C. by the heater 1a to gallium chloride. (GaCl) is generated. The gallium powder is placed in the first reaction chamber 1 in a container opened at the top, and when the volume of the first reaction chamber 1 is large, the flow of hydrogen chloride gas and carrier gas as shown in FIG. It is desirable to control the reaction zone by surrounding the vessel except the path.

第1反応室1で生成した塩化ガリウムは、キャリアガスと共に第2反応室2に導入される。同時に第2反応室2には、別の流路から水素などのキャリアガスによりアンモニアガスが導入される。第2反応室2はヒーター2aにより800〜1200℃の温度に制御されており、この第2反応室2において塩化ガリウムとアンモニアが反応して窒化ガリウム(GaN)が合成される。   Gallium chloride generated in the first reaction chamber 1 is introduced into the second reaction chamber 2 together with the carrier gas. At the same time, ammonia gas is introduced into the second reaction chamber 2 by a carrier gas such as hydrogen from another flow path. The second reaction chamber 2 is controlled to a temperature of 800 to 1200 ° C. by a heater 2a. In this second reaction chamber 2, gallium chloride and ammonia react to synthesize gallium nitride (GaN).

第2反応室2に導入するアンモニアガスの量は、ガリウム(Ga)に対するモル比、即ちGa:NHのモル比で、少なくとも1:50程度が必要である。また、第1反応室1でガリウム粉末から塩化ガリウムを生成する際にも、塩化水素ガスが多量に供給される。そのため、下記反応式1で表されるように、ガリウム粉末から窒化ガリウムを得る反応では、反応副生成物として塩化アンモニウム(NHCl)が大量に発生する。尚、ガリウム粉末を直接アンモニアと反応させることもできるが、反応効率が悪いため好ましくない。
[反応式1] 2Ga+3NH+HCl→2GaN+NHCl+3H
The amount of ammonia gas introduced into the second reaction chamber 2 should be at least about 1:50 in terms of a molar ratio to gallium (Ga), that is, a molar ratio of Ga: NH 3 . Also, a large amount of hydrogen chloride gas is supplied when gallium chloride is produced from gallium powder in the first reaction chamber 1. Therefore, as represented by the following reaction formula 1, in the reaction for obtaining gallium nitride from gallium powder, a large amount of ammonium chloride (NH 4 Cl) is generated as a reaction byproduct. Although gallium powder can be directly reacted with ammonia, it is not preferable because of poor reaction efficiency.
[Reaction Formula 1] 2Ga + 3NH 3 + HCl → 2GaN + NH 4 Cl + 3H 2

上記のごとく第2反応室2で合成された窒化ガリウムは、キャリアガスや塩化アンモニウムなどからなるガス雰囲気と共に、粉末回収室3に導入される。本発明では粉末回収室3の温度、即ち窒化ガリウムを含むガス雰囲気の温度を、ヒーター3aにより185℃以上337.5℃未満の範囲の温度に制御する。この温度範囲内に制御されたガス雰囲気中において反応副生成物の塩化アンモニウムは気体状態を維持できることができ、従って粉末回収室3において窒化ガリウム粉末のみを効率よく分離回収できることが判明した。   As described above, the gallium nitride synthesized in the second reaction chamber 2 is introduced into the powder recovery chamber 3 together with a gas atmosphere made of carrier gas, ammonium chloride, or the like. In the present invention, the temperature of the powder recovery chamber 3, that is, the temperature of the gas atmosphere containing gallium nitride is controlled to a temperature in the range of 185 ° C. or more and less than 337.5 ° C. by the heater 3 a. It has been found that ammonium chloride as a reaction by-product can maintain a gaseous state in a gas atmosphere controlled within this temperature range, so that only the gallium nitride powder can be efficiently separated and recovered in the powder recovery chamber 3.

即ち、合成されたGaN粉末は、反応装置底部の粉末回収室3に堆積させ、反応が終了して操業を停止してから回収される。その場合、従来は反応副生成物である塩化アンモニウム(NHCl)がGaN粉末の不純物とならないように、粉末回収室3の温度をNHClの昇華温度である337.8℃以上に保つことでNHClをキャリアガスなどと共に排ガスとして系外へ排出していた。そのため、反応終了後にGaN粉末を回収する際には、粉末回収室3の温度を337.8℃以上の高温から室温まで下げるために長い時間が必要となり、この温度低下に要する時間が生産性に悪影響を及ぼしていた。 That is, the synthesized GaN powder is deposited in the powder collection chamber 3 at the bottom of the reaction apparatus, and is collected after the reaction is completed and the operation is stopped. In that case, the temperature of the powder recovery chamber 3 is kept at 337.8 ° C. or higher, which is the sublimation temperature of NH 4 Cl, so that ammonium chloride (NH 4 Cl), which is a reaction by-product in the past, does not become impurities of the GaN powder. As a result, NH 4 Cl was discharged out of the system as an exhaust gas together with a carrier gas. Therefore, when recovering the GaN powder after completion of the reaction, it takes a long time to lower the temperature of the powder recovery chamber 3 from a high temperature of 337.8 ° C. or more to room temperature. It had an adverse effect.

ところが、本発明者らの研究によれば、NHClの昇華温度は上記のごとく337.8℃であるにもかかわらず、実際には337.8℃よりも更に低い温度でNHClが昇華していることを見出した。即ち、粉末回収室3の温度を変えて、粉末回収室3でGaN粉末と共に回収されたNHClの重量と温度との関係を調べたところ、図2に示す結果が得られた。この結果から、温度が185℃未満ではNHClが完全に昇華せずGaN粉末中に残留するが、185℃以上の温度においては実質的にNHClの昇華が起きていることが分かった。 However, according to the study by the present inventors, the NH 4 Cl sublimation temperature is 337.8 ° C. as described above, but the NH 4 Cl is actually at a temperature lower than 337.8 ° C. I found that it was sublimating. That is, when the temperature of the powder collection chamber 3 was changed and the relationship between the weight of NH 4 Cl collected together with the GaN powder in the powder collection chamber 3 and the temperature was examined, the result shown in FIG. 2 was obtained. From this result, it was found that when the temperature is lower than 185 ° C., NH 4 Cl does not sublime completely and remains in the GaN powder, but at a temperature of 185 ° C. or higher, substantially sublimation of NH 4 Cl occurs. .

文献等で通常報告されている昇華温度は平衡時の値であり、上記反応式1で表される反応系のようにキャリアガスなどを大量に流す場合には、平衡時の値とは異なり、非平衡時の値となるものと考えられる。このことは、ガスの流速を速くした方がNHClの回収量が少なくなるという実験結果とも合致している。上記の結果から、本発明における粉末回収室の温度、即ち、窒化ガリウムを含むガス雰囲気の温度は、185℃以上で且つNHClの昇華温度である337.8℃よりも低く設定し、好ましくは200〜250℃の範囲、更に好ましくは200〜230℃の範囲とする。 The sublimation temperature normally reported in literature etc. is a value at equilibrium, and when flowing a large amount of carrier gas or the like as in the reaction system represented by the above reaction formula 1, it differs from the value at equilibrium. It is considered that the value is at the time of non-equilibrium. This agrees with the experimental result that the amount of NH 4 Cl recovered is reduced when the gas flow rate is increased. From the above results, the temperature of the powder recovery chamber in the present invention, that is, the temperature of the gas atmosphere containing gallium nitride is set to 185 ° C. or higher and lower than 337.8 ° C. which is the sublimation temperature of NH 4 Cl, and preferably Is in the range of 200 to 250 ° C, more preferably in the range of 200 to 230 ° C.

尚、上記のごとく反応装置底部の粉末回収室3においてGaN粉末が分離して堆積した後、図1に示すように、ガス雰囲気は排ガス流路を通って反応装置から排出され、液回収部4においてNHClが液体となって回収される。 As described above, after the GaN powder is separated and deposited in the powder recovery chamber 3 at the bottom of the reaction apparatus, the gas atmosphere is discharged from the reaction apparatus through the exhaust gas flow path as shown in FIG. NH 4 Cl is recovered as a liquid.

本発明による窒化ガリウム粉末の製造方法に用いる製造装置は、例えば図1に示すように、ガリウム粉末を塩化水素ガスと反応させる第1反応室1と、第1反応室1で得られた塩化ガリウムをアンモニアガスと反応させる第2反応室2と、第2反応室2で得られた窒化ガリウムを回収する粉末回収室3とを備えている。また、第1反応室1、第2反応室2及び粉末回収室3の外周には、それぞれヒーター1a、2a、3aを備え、ヒーター1aにより第1反応室1の温度を800〜1000℃に、ヒーター2aにより第2反応室2の温度を800〜1200℃に、及びヒーター3aにより粉末回収室3の温度を185℃以上337.5℃未満に制御する。   As shown in FIG. 1, for example, a manufacturing apparatus used in a method for manufacturing a gallium nitride powder according to the present invention includes a first reaction chamber 1 for reacting gallium powder with hydrogen chloride gas, and a gallium chloride obtained in the first reaction chamber 1. Is provided with a second reaction chamber 2 that reacts with ammonia gas, and a powder recovery chamber 3 that recovers the gallium nitride obtained in the second reaction chamber 2. Further, the outer periphery of the first reaction chamber 1, the second reaction chamber 2 and the powder recovery chamber 3 is provided with heaters 1a, 2a and 3a, respectively, and the temperature of the first reaction chamber 1 is set to 800 to 1000 ° C. by the heater 1a. The temperature of the second reaction chamber 2 is controlled to 800 to 1200 ° C. by the heater 2a, and the temperature of the powder recovery chamber 3 is controlled to 185 ° C. or more and less than 337.5 ° C. by the heater 3a.

尚、上記反応装置としては、ホットウォール型の反応炉などを用いることができるが、1000℃を超える高温になり且つ腐食性が強い塩化水素ガスが導入されることから、一般的に高温においても安定で耐腐食性に優れた石英等のセラミックスを構成材料として使用することが望ましい。反応装置での窒化ガリウムの合成反応は、通常は常圧で行なわれる。   As the reactor, a hot wall type reactor can be used. However, since hydrogen chloride gas having a high temperature exceeding 1000 ° C. and strong corrosiveness is introduced, generally even at a high temperature. It is desirable to use ceramics such as quartz, which is stable and excellent in corrosion resistance, as a constituent material. The synthesis reaction of gallium nitride in the reaction apparatus is usually carried out at normal pressure.

また、本発明の反応装置では、第1反応室と第2反応室で構成される反応容器部から、粉末回収室を切り離せる構造にしておくことが好ましい。このような構造を有することにより、粉末回収室の温度がある程度まで低下したとき、直ちに粉末回収室を反応装置の反応容器部から分離して、GaN粉を回収することが可能となる。この場合でも、反応装置の運転時における粉末回収室の温度が低いほど、冷却に要する時間が短くなるためGaN粉の回収が容易になる。   Moreover, in the reaction apparatus of this invention, it is preferable to make it the structure which can isolate | separate a powder recovery chamber from the reaction container part comprised by a 1st reaction chamber and a 2nd reaction chamber. By having such a structure, when the temperature of the powder recovery chamber drops to a certain extent, it becomes possible to immediately separate the powder recovery chamber from the reaction vessel portion of the reactor and recover the GaN powder. Even in this case, the lower the temperature of the powder recovery chamber during the operation of the reactor, the shorter the time required for cooling, and the easier the recovery of GaN powder.

[実施例1]
内径300mmのSUS306製のホットウォール型炉を準備し、上部と中部と下部の各外周にそれぞれヒーターを配置した。各ヒーターにより、炉内上部(Ga粉末の容器がある第1反応室)の温度を900℃に、中部(第2反応室)の温度を1100℃に、及び下部(粉末回収室)の温度を300℃に調節した。また、粉末回収室から50cmほど上部の炉側面に、内径20mmの管を結合して排ガス流路とした。
[Example 1]
A hot wall type furnace made of SUS306 having an inner diameter of 300 mm was prepared, and heaters were arranged on the outer circumferences of the upper part, middle part and lower part, respectively. With each heater, the temperature in the upper part of the furnace (first reaction chamber with the Ga powder container) is set to 900 ° C., the temperature in the middle part (second reaction chamber) is set to 1100 ° C., and the temperature in the lower part (powder recovery chamber). The temperature was adjusted to 300 ° C. Further, a tube having an inner diameter of 20 mm was joined to the furnace side surface approximately 50 cm from the powder recovery chamber to form an exhaust gas flow path.

HClガスを水素のキャリアガスにより第1反応室に導き、容器内のGa粉末と反応させてGaClを生成させた。生成したGaClはキャリアガスと共に第2反応室に導入され、同時に水素のキャリアガスによりアンモニアガスを第2反応室に導入することにより、GaClとアンモニアガスを反応させてGaNを合成した。キャリアガスと未反応ガス及び反応副生成物であるNHClを排ガス流路から排気し、GaN粉末を粉末回収室に堆積させた。 HCl gas was introduced into the first reaction chamber by a hydrogen carrier gas and reacted with Ga powder in the container to generate GaCl. The produced GaCl was introduced into the second reaction chamber together with the carrier gas, and at the same time, ammonia gas was introduced into the second reaction chamber by the hydrogen carrier gas, thereby reacting GaCl and ammonia gas to synthesize GaN. Carrier gas, unreacted gas, and NH 4 Cl, which is a reaction byproduct, were exhausted from the exhaust gas flow path, and GaN powder was deposited in the powder recovery chamber.

反応終了後、炉内のガス雰囲気を窒素ガスに置換しながら、粉末回収室の温度を室温まで低下させ、粉末回収室に堆積したGaN粉末を回収した。粉末回収室の温度が300℃から室温に低下するまで約1時間かかり、回収したGaN粉末を分析したところNHClは含まれていなかった。 After completion of the reaction, while replacing the gas atmosphere in the furnace with nitrogen gas, the temperature of the powder recovery chamber was lowered to room temperature, and the GaN powder deposited in the powder recovery chamber was recovered. It took about 1 hour for the temperature of the powder recovery chamber to drop from 300 ° C. to room temperature, and analysis of the recovered GaN powder revealed no NH 4 Cl.

[実施例2]
粉末回収室の温度を185℃とした以外は上記実施例1と同様にしてGaN粉末を製造した。反応終了後、上記実施例1と同様にして粉末回収室の温度を室温まで低下させ、粉末回収室に堆積したからGaN粉末を回収した。粉末回収室の温度が185℃から室温に低下するまで約0.5時間であり、回収したGaN粉末を分析したところNHClは含まれていなかった。
[Example 2]
A GaN powder was produced in the same manner as in Example 1 except that the temperature of the powder recovery chamber was 185 ° C. After completion of the reaction, the temperature of the powder recovery chamber was lowered to room temperature in the same manner as in Example 1 above, and the GaN powder was recovered because it was deposited in the powder recovery chamber. It took about 0.5 hours for the temperature of the powder recovery chamber to drop from 185 ° C. to room temperature, and analysis of the recovered GaN powder revealed no NH 4 Cl.

[比較例1]
粉末回収室の温度を180℃とした以外は上記実施例1と同様にしてGaN粉末を製造した。反応終了後、上記実施例1と同様にして粉末回収室の温度を室温まで低下させ、粉末回収室に堆積したからGaN粉末を回収した。粉末回収室の温度が180℃から室温に低下するまで約20分と短かったが、得られたGaN粉末中にはNHClが含まれていた。
[Comparative Example 1]
A GaN powder was produced in the same manner as in Example 1 except that the temperature of the powder recovery chamber was 180 ° C. After completion of the reaction, the temperature of the powder recovery chamber was lowered to room temperature in the same manner as in Example 1 above, and the GaN powder was recovered because it was deposited in the powder recovery chamber. The temperature in the powder recovery chamber was as short as about 20 minutes until the temperature decreased from 180 ° C. to room temperature, but NH 4 Cl was contained in the obtained GaN powder.

[比較例2]
粉末回収室の温度を350℃とした以外は上記実施例1と同様にしてGaN粉末を製造した。反応終了後、上記実施例1と同様にして粉末回収室の温度を室温まで低下させ、粉末回収室に堆積したからGaN粉末を回収した。回収したGaN粉末を分析したところNHClは含まれていなかったが、粉末回収室の温度が350℃から室温に低下するまで約1.5時間が必要であった。
[Comparative Example 2]
A GaN powder was produced in the same manner as in Example 1 except that the temperature of the powder recovery chamber was 350 ° C. After completion of the reaction, the temperature of the powder recovery chamber was lowered to room temperature in the same manner as in Example 1 above, and the GaN powder was recovered because it was deposited in the powder recovery chamber. Analysis of the recovered GaN powder revealed no NH 4 Cl, but it took about 1.5 hours for the temperature of the powder recovery chamber to drop from 350 ° C. to room temperature.

1 第1反応室
2 第2反応室
3 粉末回収室
1a、2a、3a ヒーター
4 液回収部
DESCRIPTION OF SYMBOLS 1 1st reaction chamber 2 2nd reaction chamber 3 Powder recovery chamber 1a, 2a, 3a Heater 4 Liquid recovery part

Claims (2)

キャリアガスにより導入された塩化水素ガスを800〜1000℃の温度でガリウム粉末と反応させ、得られた塩化ガリウムをキャリアガスで搬送しながら800〜1200℃の温度でアンモニアガスと反応させて窒化ガリウムを生成させた後、得られた窒化ガリウムを含むガス雰囲気の温度を185℃以上337.5℃未満に制御することにより、窒化ガリウム粉末を分離回収することを特徴とする窒化ガリウム粉末の製造方法。   The hydrogen chloride gas introduced by the carrier gas is reacted with gallium powder at a temperature of 800 to 1000 ° C., and the resulting gallium chloride is reacted with ammonia gas at a temperature of 800 to 1200 ° C. while being conveyed by the carrier gas. , And then the gallium nitride powder is separated and recovered by controlling the temperature of the obtained gas atmosphere containing gallium nitride to 185 ° C. or higher and lower than 337.5 ° C. . 前記ガス雰囲気の温度を200〜250℃に制御して窒化ガリウム粉末を分離回収することを特徴とする、請求項1に記載の窒化ガリウム粉末の製造方法。   2. The method for producing gallium nitride powder according to claim 1, wherein the temperature of the gas atmosphere is controlled to 200 to 250 ° C. to separate and recover the gallium nitride powder.
JP2011206959A 2011-09-22 2011-09-22 Method and apparatus for manufacturing gallium nitride powder Withdrawn JP2013067530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206959A JP2013067530A (en) 2011-09-22 2011-09-22 Method and apparatus for manufacturing gallium nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206959A JP2013067530A (en) 2011-09-22 2011-09-22 Method and apparatus for manufacturing gallium nitride powder

Publications (1)

Publication Number Publication Date
JP2013067530A true JP2013067530A (en) 2013-04-18

Family

ID=48473687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206959A Withdrawn JP2013067530A (en) 2011-09-22 2011-09-22 Method and apparatus for manufacturing gallium nitride powder

Country Status (1)

Country Link
JP (1) JP2013067530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862132A (en) * 2016-05-30 2016-08-17 东莞市中镓半导体科技有限公司 Method for stably growing GaN crystal material at high rate in HVPE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862132A (en) * 2016-05-30 2016-08-17 东莞市中镓半导体科技有限公司 Method for stably growing GaN crystal material at high rate in HVPE

Similar Documents

Publication Publication Date Title
US8444765B2 (en) Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US10125433B2 (en) Nitride semiconductor crystal, manufacturing method and manufacturing equipment
US8323405B2 (en) Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer
JP5787324B2 (en) Method for producing gallium trichloride gas and method for producing nitride semiconductor crystal
US20100031873A1 (en) Basket process and apparatus for crystalline gallium-containing nitride
CN108275664B (en) High-temperature sintering purification method for aluminum nitride
JPH11189498A (en) Production of nitride crystal, mixture, liquid phase growth, nitride crystal, nitride crystal powder, and vapor growth
JP4788524B2 (en) Group 13 metal nitride crystal production methods and solutions and melts used in these production methods
JP2013067530A (en) Method and apparatus for manufacturing gallium nitride powder
JP2005239536A (en) Method for manufacturing nitride crystal of group 13 metal in periodical table and method for manufacturing semiconductor device by using the same
JP2003286098A (en) Method and apparatus for growing group iii nitride crystal
JP5252002B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method
JP2010100526A (en) Method for producing transition metal nitride
CN101225547B (en) Growth chamber and gallium nitride material growth method
JP4426251B2 (en) Group III nitride crystal manufacturing method
JP2009007207A (en) Crystal growth method and crystal growth apparatus
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP4876002B2 (en) Melt composition for growing gallium nitride single crystal and method for growing gallium nitride single crystal
JP4779848B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
JP2006182596A (en) Method for manufacturing nitride crystal of group iii element, nitride crystal of group iii element obtained by the method, and semiconductor device including the nitride crystal
JP5491300B2 (en) Aluminum nitride manufacturing method
JP5234694B2 (en) Method for producing group III nitride
Vodakov et al. Sublimation Sandwich Growth of Free Standing GaN Crystals
JP5375740B2 (en) A method for producing a periodic table group 13 metal nitride crystal and a method for producing a semiconductor device using the same.
JP2008285383A (en) Method for producing group iii nitride and method for producing transition metal nitride

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202