JP2013067521A - Method for producing silica particle - Google Patents

Method for producing silica particle Download PDF

Info

Publication number
JP2013067521A
JP2013067521A JP2011205354A JP2011205354A JP2013067521A JP 2013067521 A JP2013067521 A JP 2013067521A JP 2011205354 A JP2011205354 A JP 2011205354A JP 2011205354 A JP2011205354 A JP 2011205354A JP 2013067521 A JP2013067521 A JP 2013067521A
Authority
JP
Japan
Prior art keywords
carbon dioxide
supercritical carbon
solvent
silica particles
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011205354A
Other languages
Japanese (ja)
Other versions
JP5862150B2 (en
Inventor
Junichi Tomonaga
淳一 朝長
Emi Matsushita
絵美 松下
Yoshifumi Eri
祥史 恵利
Takeshi Iwanaga
猛 岩永
Masakazu Iijima
正和 飯島
Kazufumi Tomita
和史 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2011205354A priority Critical patent/JP5862150B2/en
Publication of JP2013067521A publication Critical patent/JP2013067521A/en
Application granted granted Critical
Publication of JP5862150B2 publication Critical patent/JP5862150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silica particles which suppresses variation in properties of silica particles obtained through a step of bringing supercritical carbon dioxide into contact with silica particles.SOLUTION: The method for producing silica particles includes a first step of bringing supercritical carbon dioxide into contact with a silica particle dispersion or silica particles contained in a treatment vessel by introducing the supercritical carbon dioxide into the treatment vessel and discharging it, and a second step of detecting information on supercritical carbon dioxide discharged from the treatment vessel and terminating the first step based on the detected information.

Description

本発明は、シリカ粒子の製造方法に関する。   The present invention relates to a method for producing silica particles.

特許文献1には、「骨格が(SiO2m(mは正の整数)で且つシラノール基を有するゲルを、疎水化処理の際に副生成物としてアンモニアを生じるシリル化剤を疎水化処理剤として使用して疎水化処理し、次いで超臨界乾燥することによって疎水性エアロゲルを製造するにあたって、疎水化処理後の処理液を二酸化炭素と接触させ、処理液中のアンモニアを炭酸アンモニウムとして析出させて除去する疎水性エアロゲルの製法」が提案されている。 Patent Document 1 discloses that a gel having a skeleton of (SiO 2 ) m (m is a positive integer) and having a silanol group is hydrophobized with a silylating agent that generates ammonia as a by-product during hydrophobizing treatment. In producing hydrophobic airgel by hydrophobizing using the agent and then supercritical drying, the treated liquid after the hydrophobized treatment is brought into contact with carbon dioxide, and ammonia in the treated liquid is precipitated as ammonium carbonate. And a process for producing a hydrophobic airgel that can be removed in the past ”.

特許文献2には、「液体媒体中でトナー粒子を形成し、該トナー粒子を濾取してウエットケーキを得、該ウエットケーキを超臨界流体および亜臨界流体の少なくともいずれかと接触させる処理工程を有するトナーの製造方法」が提案されている。   Patent Document 2 discloses a “processing step of forming toner particles in a liquid medium, filtering the toner particles to obtain a wet cake, and contacting the wet cake with at least one of a supercritical fluid and a subcritical fluid. Has been proposed.

特許文献3には、「液体溶媒中で下記一般式(I)で表されるフルオレノン系ビスアゾ顔料粒子を形成し、該フルオレノン系ビスアゾ顔料を濾取したウエットケーキもしくはこれを乾燥したクルード乾燥品を、超臨界流体および亜臨界流体の少なくともいずれかとエントレイナーの混合流体と接触させる、又は前記エントレイナーとして用いることができる流体に接触させた後、超臨界流体および亜臨界流体の少なくともいずれかと接触させる処理工程を有するフルオレノン系ビスアゾ顔料の製造方法」が提案されている。   Patent Document 3 states that “a wet cake in which fluorenone-based bisazo pigment particles represented by the following general formula (I) are formed in a liquid solvent and the fluorenone-based bisazo pigment is collected by filtration or a crude dried product obtained by drying the wet cake. Contacting with a mixed fluid of an entrainer with at least one of a supercritical fluid and a subcritical fluid, or contacting with a fluid that can be used as the entrainer, and then contacting with at least one of a supercritical fluid and a subcritical fluid A method for producing a fluorenone-based bisazo pigment having a treatment step has been proposed.

特許文献4には、「少なくとも1種の界面活性剤を含む水−二酸化炭素系から界面活性剤を回収する方法であって、該水−二酸化炭素系を脱水剤と接触させて水を除き、界面活性剤を回収する方法に関する。また、本発明は、二酸化炭素、二酸化炭素と相溶性を有する界面活性剤及び/又は助溶媒、並びに除去対象物を含む混合系を循環させる循環ライン中に該除去対象物の選択的除去装置を設け、該混合系を循環させて、前記界面活性剤及び/又は助溶媒に取り込まれた該除去対象物を選択的に除去する方法」が提案されている。
その他、循環ライン中に、除去対象物を選択的に除去する装置を設けて、除去対象物を選択的に除去することを特徴とする方法については、特許文献5〜6に提案されている。
In Patent Document 4, “a method of recovering a surfactant from a water-carbon dioxide system containing at least one surfactant, contacting the water-carbon dioxide system with a dehydrating agent to remove water, The present invention also relates to a method for recovering a surfactant, and the present invention relates to a circulation line for circulating a mixed system containing carbon dioxide, a surfactant and / or a cosolvent compatible with carbon dioxide, and an object to be removed. A method for selectively removing the removal target incorporated in the surfactant and / or cosolvent by providing a selective removal device for the removal target and circulating the mixed system has been proposed.
In addition, Patent Documents 5 to 6 propose methods for selectively removing a removal target by providing an apparatus for selectively removing the removal target in the circulation line.

特許文献7には、「リコピンを含有する野菜類の処理物を最終的には90%以上のエチルアルコールで脱水処理した後、脱水物を超臨界二酸化炭素で抽出処理し、抽出物を植物油に溶解することを特徴とするリコピン油の製造方法」が提案されている。   Patent Document 7 states that “a processed product of vegetables containing lycopene is finally dehydrated with 90% or more of ethyl alcohol, and then the dehydrated product is extracted with supercritical carbon dioxide, and the extract is converted into vegetable oil. A method for producing lycopene oil characterized by dissolving "has been proposed.

特許文献8には、「モヅクの極性溶媒抽出物を二酸化炭素ガスを溶媒とする超臨界抽出法により低極性画分を除去して得られる精製モヅク抽出物」が提案されている。   Patent Document 8 proposes “a purified extract obtained by removing a low-polar fraction by a supercritical extraction method using a carbon polar solvent extract as a solvent and carbon dioxide gas” as a solvent.

特開11−335115号公報JP 11-335115 A 特開2006−3513号公報JP 2006-3513 A 特開2007−332350号公報JP 2007-332350 A 国際公開2004/112952パンフレットInternational Publication 2004/112952 Pamphlet 特開2003−249475号公報JP 2003-249475 A 特開2009−297665号公報JP 2009-297665 A 特開平7−147929号公報Japanese Unexamined Patent Publication No. 7-147929 特開2003−342157号公報JP 2003-342157 A

本発明の課題は、超臨界二酸化炭素を接触させる工程を経て得られるシリカ粒子の特性変動を抑制したシリカ粒子の製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the silica particle which suppressed the characteristic fluctuation | variation of the silica particle obtained through the process made to contact a supercritical carbon dioxide.

上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
シリカ粒子分散液又はシリカ粒子が収容された処理槽に、超臨界二酸化炭素を導入・排出して、前記シリカ粒子分散液又は前記シリカ粒子に前記超臨界二酸化炭素を接触させる第1工程と、
前記処理槽から排出した超臨界二酸化炭素の情報を検出し、前記検出した情報に基づいて、前記第1工程を停止する第2工程と、
を有するシリカ粒子の製造方法。
The above problem is solved by the following means. That is,
The invention according to claim 1
A first step of introducing and discharging supercritical carbon dioxide into a treatment tank containing silica particle dispersion or silica particles, and bringing the supercritical carbon dioxide into contact with the silica particle dispersion or silica particles;
Detecting the information of supercritical carbon dioxide discharged from the treatment tank, and based on the detected information, a second step of stopping the first step;
The manufacturing method of the silica particle which has this.

請求項2に係る発明は、
前記第1工程が、前記処理槽にヘキサメチルジシラザン(HMDS)を導入して、前記シリカ粒子の疎水化処理を行う工程であり、
前記第2工程が、前記処理槽に超臨界二酸化炭素を導入・排出して、前記処理槽から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出して、前記検出したアンモニア濃度に基づいて、前記第1工程を停止する工程である請求項1に記載のシリカ粒子の製造方法。
The invention according to claim 2
The first step is a step of introducing hexamethyldisilazane (HMDS) into the treatment tank to perform a hydrophobic treatment of the silica particles;
The second step introduces and discharges supercritical carbon dioxide into the treatment tank, detects the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank, and based on the detected ammonia concentration, The method for producing silica particles according to claim 1, which is a step of stopping the first step.

請求項1に係る発明によれば、処理槽から排出した超臨界二酸化炭素の情報を検出し、検出した情報に基づいて、超臨界二酸化炭素の接触を停止しない場合に比べ、超臨界二酸化炭素を接触させる工程を経て得られるシリカ粒子の特性変動を抑制したシリカ粒子の製造方法が提供できる。
請求項2に係る発明によれば、処理槽にヘキサメチルジシラザン(HMDS)を導入してシリカ粒子の疎水化処理を行う場合において、処理槽から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出して、検出したアンモニア濃度に基づいて超臨界二酸化炭素の接触を停止しないときに比べ、得られるシリカ粒子の特性変動を抑制したシリカ粒子の製造方法が提供できる。
According to the first aspect of the present invention, the supercritical carbon dioxide discharged from the treatment tank is detected, and the supercritical carbon dioxide is detected based on the detected information as compared with the case where the contact of the supercritical carbon dioxide is not stopped. It is possible to provide a method for producing silica particles that suppresses fluctuations in characteristics of the silica particles obtained through the contacting step.
According to the invention which concerns on Claim 2, when introducing the hexamethyldisilazane (HMDS) into a processing tank and performing the hydrophobic treatment of a silica particle, the ammonia concentration contained in the supercritical carbon dioxide discharged | emitted from the processing tank is set. It is possible to provide a method for producing silica particles that is detected and suppresses fluctuations in the properties of the resulting silica particles as compared to when the contact of supercritical carbon dioxide is not stopped based on the detected ammonia concentration.

本実施形態に係るシリカ粒子の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the silica particle which concerns on this embodiment.

以下、本発明の一例である実施形態について、詳細に説明する。   Hereinafter, an embodiment which is an example of the present invention will be described in detail.

図1は、本実施形態に係るシリカ粒子の製造装置を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an apparatus for producing silica particles according to the present embodiment.

本実施形態に係るシリカ粒子の製造装置101は、図1に示すように、例えば、シリカ粒子及び分散媒(以下、溶媒と称する)を含むシリカ粒子分散液を収納し、シリカ粒子分散液を処理するための処理槽10と、シリカ粒子又は分散媒に超臨界二酸化炭素を接触させるために、処理槽10に超臨界二酸化炭素を導入・排出する超臨界二酸化炭素導入・排出機構20(導入・排出機構手段の一例)と、シリカ粒子の表面を疎水化処理するために、処理槽10にヘキサメチルジシラザン(HMDS)を導入するヘキサメチルジシラザン導入機構60(ヘキサメチルジシラザン導入手段の一例:以下、HMDS導入機構60と称する)と、処理槽10から排出した超臨界二酸化炭素に含まれる溶媒量を検出する溶媒量検出計71(検出手段の一例)と、処理槽10から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出するアンモニア濃度計72(検出手段の一例)と、を備えている。但し、溶媒量検出計71は、必要に応じて備えるものである。
そして、本実施形態に係るシリカ粒子の製造装置101には、シリカ粒子の製造装置101の動作を制御する制御部80を備えている。
なお、図1中、SAは、シリカ粒子分散液又は溶媒除去後のシリカ粒子を示し、SBは、溶媒を示す。
As shown in FIG. 1, the silica particle manufacturing apparatus 101 according to the present embodiment stores, for example, a silica particle dispersion containing silica particles and a dispersion medium (hereinafter referred to as a solvent), and processes the silica particle dispersion. A supercritical carbon dioxide introduction / discharge mechanism 20 (introduction / discharge) that introduces / discharges supercritical carbon dioxide to / from the treatment tank 10 to bring the supercritical carbon dioxide into contact with the silica particles or the dispersion medium. An example of mechanism means) and hexamethyldisilazane introduction mechanism 60 (example of hexamethyldisilazane introduction means) for introducing hexamethyldisilazane (HMDS) into the treatment tank 10 in order to hydrophobize the surface of the silica particles: Hereinafter, the HMDS introduction mechanism 60) and a solvent amount detector 71 (an example of detection means) for detecting the amount of solvent contained in the supercritical carbon dioxide discharged from the processing tank 10 When provided with a ammonia concentration meter 72 for detecting an ammonia concentration in the supercritical carbon dioxide was discharged from the processing tank 10 (an example of detecting means), a. However, the solvent amount detector 71 is provided as necessary.
The silica particle manufacturing apparatus 101 according to the present embodiment includes a control unit 80 that controls the operation of the silica particle manufacturing apparatus 101.
In FIG. 1, SA indicates the silica particle dispersion or silica particles after removal of the solvent, and SB indicates the solvent.

処理槽10は、例えば、シリカ粒子分散液から分散媒を除去する処理(所謂、乾燥処理)、及びシリカ粒子の表面を疎水化する疎水化処理を行う処理槽である。
処理槽10としては、例えば、上記処理を行うために、アンカー等の攪拌翼とヒータ等の加熱源とを有する高圧処理槽が適用される。なお、図中、11は、攪拌翼を示す。
The treatment tank 10 is, for example, a treatment tank that performs a treatment for removing the dispersion medium from the silica particle dispersion (so-called drying treatment) and a hydrophobic treatment for hydrophobizing the surface of the silica particles.
As the processing tank 10, for example, a high-pressure processing tank having a stirring blade such as an anchor and a heating source such as a heater is applied in order to perform the above processing. In the figure, 11 indicates a stirring blade.

超臨界二酸化炭素導入・排出機構20は、例えば、超臨界二酸化炭素導入部30と、超臨界二酸化炭素排出部40と、超臨界二酸化炭素再生部50と、を備えている。   The supercritical carbon dioxide introduction / discharge mechanism 20 includes, for example, a supercritical carbon dioxide introduction unit 30, a supercritical carbon dioxide discharge unit 40, and a supercritical carbon dioxide regeneration unit 50.

超臨界二酸化炭素導入部30は、液化二酸化炭素(液状の二酸化炭素)を収容する液化二酸化炭素収容タンク31と、液化二酸化炭素を超臨界状態とする、つまり超臨界二酸化炭素を発生させる超臨界二酸化炭素発生部32と、を備えている。
また、超臨界二酸化炭素導入部30には、液化二酸化炭素収容タンク31と超臨界二酸化炭素発生部32とを連結する液化二酸化炭素導入管35も設けられている。
また、超臨界二酸化炭素導入部30には、超臨界二酸化炭素発生部32と処理槽10とを連結する超臨界二酸化炭素導入管36も設けられている。この超臨界二酸化炭素導入管36の経路途中には、開閉バルブ37(例えばスウェージロック社製 過酷条件用バルブHNシリーズ等)が設けられている。
The supercritical carbon dioxide introduction unit 30 includes a liquefied carbon dioxide storage tank 31 that stores liquefied carbon dioxide (liquid carbon dioxide), and a supercritical carbon dioxide that brings the liquefied carbon dioxide into a supercritical state, that is, generates supercritical carbon dioxide. A carbon generating unit 32.
In addition, the supercritical carbon dioxide introduction unit 30 is also provided with a liquefied carbon dioxide introduction pipe 35 that connects the liquefied carbon dioxide storage tank 31 and the supercritical carbon dioxide generation unit 32.
The supercritical carbon dioxide introduction part 30 is also provided with a supercritical carbon dioxide introduction pipe 36 that connects the supercritical carbon dioxide generation part 32 and the treatment tank 10. An opening / closing valve 37 (for example, a severe condition valve HN series manufactured by Swagelok Co., Ltd.) is provided in the course of the supercritical carbon dioxide introduction pipe 36.

超臨界二酸化炭素発生部32は、例えば、液化二酸化炭素導入管35の経路途中に設けられた、液化二酸化炭素を加熱する加熱源33(例えばヒータ等)と、液化二酸化炭素に圧力を付与する高圧ポンプ34と、で構成されている。
超臨界二酸化炭素発生部32では、液化二酸化炭素収容タンク31から液化二酸化炭素導入管35を通じて導入された液化二酸化炭素に対して、加熱源33及び高圧ポンプ34により、臨界点を超える温度及び圧力を付与し、液化二酸化炭素を臨界状態して、超臨界二酸化炭素を発生させる。
The supercritical carbon dioxide generating unit 32 is, for example, a heating source 33 (for example, a heater) that heats the liquefied carbon dioxide provided in the course of the liquefied carbon dioxide introduction pipe 35 and a high pressure that applies pressure to the liquefied carbon dioxide. And a pump 34.
In the supercritical carbon dioxide generating unit 32, the temperature and pressure exceeding the critical point are applied to the liquefied carbon dioxide introduced from the liquefied carbon dioxide storage tank 31 through the liquefied carbon dioxide introduction pipe 35 by the heating source 33 and the high pressure pump 34. Apply and make liquefied carbon dioxide critical, generating supercritical carbon dioxide.

超臨界二酸化炭素排出部40は、処理槽10から排出された超臨界二酸化炭素から、超臨界二酸化炭素とそれに含まれる溶媒とを分離するための分離槽41を備えている。
また、超臨界二酸化炭素排出部40には、分離槽41と処理槽10とを連結する超臨界二酸化炭素排出管42が設けられている。この超臨界二酸化炭素排出管42の経路途中には、開閉バルブ43(例えばスウェージロック社製 過酷条件用バルブHNシリーズ等)が設けられている。
The supercritical carbon dioxide discharge unit 40 includes a separation tank 41 for separating the supercritical carbon dioxide and the solvent contained therein from the supercritical carbon dioxide discharged from the processing tank 10.
Further, the supercritical carbon dioxide discharge section 40 is provided with a supercritical carbon dioxide discharge pipe 42 that connects the separation tank 41 and the processing tank 10. An opening / closing valve 43 (for example, a severe condition valve HN series manufactured by Swagelok Co., Ltd.) is provided in the course of the supercritical carbon dioxide discharge pipe 42.

分離槽41には、不図示の冷却装置が備えられ、冷却装置により、溶媒を含む超臨界二酸化炭素の圧力低減と共に、温度を低下させ、超臨界状態を解除し、二酸化炭素の溶媒に対する溶解度を低減させ、気体状の二酸化炭素と溶媒とを分離する。
分離された溶媒は、分離槽41の底部に貯留して回収される。一方、気体状の二酸化炭素は、超臨界二酸化炭素再生部50へ送られる。
The separation tank 41 is provided with a cooling device (not shown). The cooling device reduces the pressure of supercritical carbon dioxide containing the solvent, lowers the temperature, cancels the supercritical state, and increases the solubility of carbon dioxide in the solvent. Reduce and separate gaseous carbon dioxide and solvent.
The separated solvent is stored and recovered at the bottom of the separation tank 41. On the other hand, gaseous carbon dioxide is sent to the supercritical carbon dioxide regeneration unit 50.

超臨界二酸化炭素再生部50は、気体状の二酸化炭素を液化する二酸化炭素液化槽51を備えている。
また、超臨界二酸化炭素再生部50には、二酸化炭素液化槽51と分離槽41とを連結する気化二酸化炭素排出管52も設けられている。
また、超臨界二酸化炭素再生部50には、二酸化炭素液化槽51と液化二酸化炭素収容タンク31とを連結する液化二酸化炭素導入管53も設けられている。
The supercritical carbon dioxide regeneration unit 50 includes a carbon dioxide liquefaction tank 51 that liquefies gaseous carbon dioxide.
The supercritical carbon dioxide regeneration section 50 is also provided with a vaporized carbon dioxide discharge pipe 52 that connects the carbon dioxide liquefaction tank 51 and the separation tank 41.
The supercritical carbon dioxide regeneration unit 50 is also provided with a liquefied carbon dioxide introduction pipe 53 that connects the carbon dioxide liquefaction tank 51 and the liquefied carbon dioxide storage tank 31.

二酸化炭素液化槽51では、槽内を高圧にし、気体状の二酸化炭素に圧力を付与して、液化させる。そして、液化した液状の二酸化炭素は、液化二酸化炭素導入管53を通じて、液化二酸化炭素収容タンク31へ導入され、再利用する。   In the carbon dioxide liquefaction tank 51, the inside of the tank is set to a high pressure, and pressure is applied to gaseous carbon dioxide to cause liquefaction. The liquefied liquid carbon dioxide is introduced into the liquefied carbon dioxide storage tank 31 through the liquefied carbon dioxide introduction pipe 53 and reused.

なお、超臨界二酸化炭素導入・排出機構20として、超臨界二酸化炭素再生部50を設けて、二酸化炭素を再利用する形態を説明するが、これに限られず、例えば、二酸化炭素を再利用しない形態、つまり、液化二酸化炭素収容タンク31へ液状の二酸化炭素を外部から供給、又は液化二酸化炭素収容タンク31を交換する形態であってもよい。   Although the supercritical carbon dioxide introduction / discharge mechanism 20 is provided with a supercritical carbon dioxide regeneration unit 50 and reuses carbon dioxide, the present invention is not limited to this. For example, the embodiment does not reuse carbon dioxide. In other words, the liquid carbon dioxide may be supplied to the liquefied carbon dioxide storage tank 31 from the outside, or the liquefied carbon dioxide storage tank 31 may be replaced.

HMDS導入機構60は、ヘキサメチルジシラザン(HMDS)を収容するHMDS収容タンク61を備えている。
また、HMDS導入機構60には、HMDS収容タンク61と処理槽10とを連結するHMDS導入管62も設けられている。このHMDS導入管62の経路途中には、導入ポンプ63と開閉バルブ64(例えばスウェージロック社製 過酷条件用バルブHNシリーズ等)とが設けられている。
The HMDS introduction mechanism 60 includes a HMDS storage tank 61 that stores hexamethyldisilazane (HMDS).
The HMDS introduction mechanism 60 is also provided with an HMDS introduction pipe 62 that connects the HMDS storage tank 61 and the processing tank 10. An introduction pump 63 and an opening / closing valve 64 (for example, a severe condition valve HN series manufactured by Swagelok Co., Ltd.) are provided in the middle of the route of the HMDS introduction pipe 62.

溶媒量検出計71は、例えば、処理槽10から排出した超臨界二酸化炭素に含まれる溶媒の割合(溶媒濃度)を測定する濃度センサ、分離して分離槽41の底部に貯留した溶媒の重量を測る計量計、分離して分離槽41の底部に貯留した溶媒の液面を計測するレベル計等が挙げられる。
なお、本実施形態では、溶媒量検出計71として、分離して分離槽41の底部に貯留した溶媒の重量を測る計量計を、分離槽41内に設けた形態を示している。
無論、溶媒量検出計71として、濃度センサ、レベル計、計量計を2つ以上設けてもよい。
The solvent amount detector 71 is, for example, a concentration sensor that measures the ratio (solvent concentration) of the solvent contained in the supercritical carbon dioxide discharged from the processing tank 10, and the weight of the solvent separated and stored at the bottom of the separation tank 41. A meter for measuring, a level meter for measuring the liquid level of the solvent separated and stored in the bottom of the separation tank 41, and the like can be mentioned.
In the present embodiment, as the solvent amount detector 71, a mode is shown in which a meter for measuring the weight of the solvent separated and stored in the bottom of the separation tank 41 is provided in the separation tank 41.
Of course, as the solvent amount detector 71, two or more concentration sensors, level meters, and metering meters may be provided.

アンモニア濃度計72は、処理槽10から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出するために、超臨界二酸化炭素排出管42内部に設けられている。
アンモニア濃度計72は、例えば、疎水化処理剤であるヘキサメチルジシラザン(HMDS)によるシリカ粒子の表面の疎水化処理反応により生成するアンモニアが、超臨界二酸化炭素と共に処理槽10から排出される際、当該超臨界二酸化炭素に含まれるアンモニア濃度を計測する濃度計であり、例えば、レーザー式ガス分析計(東光計器株式会社製:GM700)等が適用される。
The ammonia concentration meter 72 is provided inside the supercritical carbon dioxide discharge pipe 42 in order to detect the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank 10.
When the ammonia concentration meter 72 is discharged from the treatment tank 10 together with supercritical carbon dioxide, for example, ammonia generated by the hydrophobization reaction on the surface of the silica particles with hexamethyldisilazane (HMDS), which is a hydrophobizing agent. A concentration meter that measures the concentration of ammonia contained in the supercritical carbon dioxide, for example, a laser gas analyzer (manufactured by Toko Keiki Co., Ltd .: GM700) or the like is applied.

制御部80は、シリカ粒子の製造装置101の各部(例えば、各種ポンプ、各種開閉バルブ、各種加熱源、溶媒量検出計、アンモニア濃度計72等)に、信号が授受されるように接続されている。
制御部80は、図示しないが、例えば、コンピュータとして構成され、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性メモリ、及び入出力インターフェース(I/O)を介して各々接続された構成となっており、I/Oには、シリカ粒子の製造装置101の各部(例えば、各種ポンプ、各種開閉バルブ、各種加熱源、溶媒量検出計、アンモニア濃度計72等)が接続される。
また、不揮発性メモリには、処理(例えば、溶媒除去処理、疎水化処理等)の制御プログラムや、各種テーブルデータ等が記憶される。不揮発性メモリに記憶された制御プログラムは、CPUにより読み込まれて実行される。なお、制御プログラムは、CD−ROM、DVD−ROMUSBメモリ等の記録媒体により提供するようにしてもよい。
The control unit 80 is connected to each part (for example, various pumps, various opening / closing valves, various heating sources, a solvent amount detector, an ammonia concentration meter 72, etc.) of the silica particle manufacturing apparatus 101 so that signals are transmitted and received. Yes.
Although not shown, the control unit 80 is configured as a computer, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and an input / output interface (I / O). In the I / O, each part of the silica particle production apparatus 101 (for example, various pumps, various open / close valves, various heating sources, a solvent amount detector, an ammonia concentration meter 72 is provided. Etc.) are connected.
The nonvolatile memory stores a control program for processing (for example, solvent removal processing, hydrophobization processing, etc.), various table data, and the like. The control program stored in the nonvolatile memory is read and executed by the CPU. The control program may be provided by a recording medium such as a CD-ROM or a DVD-ROM USB memory.

次に、本実施形態に係るシリカ粒子の製造方法について説明する。
ここで、本実施形態に係るシリカ粒子の製造方法は、本実施形態に係るシリカ粒子の製造装置の制御部80において実行される処理として行われる。
Next, the manufacturing method of the silica particle which concerns on this embodiment is demonstrated.
Here, the manufacturing method of the silica particle which concerns on this embodiment is performed as a process performed in the control part 80 of the silica particle manufacturing apparatus which concerns on this embodiment.

−シリカ粒子分散液収容工程−
まず、処理槽10内に、シリカ粒子分散液を収容する。
-Silica particle dispersion containing step-
First, the silica particle dispersion is accommodated in the treatment tank 10.

収容するシリカ粒子分散液は、例えば、シリカ粒子と溶媒(例えばアルコール及び水)とを含有するシリカ粒子分散液である。
シリカ粒子分散液は、例えば、湿式(例えば、ゾルゲル法等)により作製されてものであることがよい。特に、シリカ粒子分散液は、湿式としてゾルゲル法、具体的には、テトラアルコキシランを、アルコール及び水の溶媒にアルカリ溶媒を添加したアルカリ溶媒存在下で、反応(加水分解反応、縮合反応)を生じさせてシリカ粒子を生成して作製されたものであることがよい。
なお、シリカ粒子の形成は、球形状、異型状のいずれであってもよい。
The silica particle dispersion to be accommodated is, for example, a silica particle dispersion containing silica particles and a solvent (for example, alcohol and water).
The silica particle dispersion may be prepared by, for example, a wet method (for example, a sol-gel method). In particular, the silica particle dispersion is subjected to a sol-gel method as a wet process, specifically, a tetraalkoxylane in the presence of an alkali solvent obtained by adding an alkali solvent to an alcohol and water solvent (hydrolysis reaction, condensation reaction). It is preferable that the particles are produced by generating silica particles.
The silica particles may be formed in a spherical shape or an irregular shape.

ここで、収容するシリカ粒子分散液は、そのアルコールに対する水の質量比が例えば0.01以上0.5以下であることがよく、望ましくは0.05以上0.35以下、より望ましくは、0.1以上0.3以下である。
水の質量比が0.01を下回ると、溶媒除去後の乾燥されたシリカ粒子の水分が低くなってしまうため、疎水化処理を行っても疎水化度がさほど高くならないことがある。また、水の質量比が0.5を超えると、後述する超臨界二酸化炭素による溶媒を除去する工程における減圧時にシリカ粒子分散液中に水が過剰に存在することとなり、大気圧まで圧力を低下した際に水の蒸発により、シリカ粒子の液架橋力が発生し易く、粗粉が発生し易くなる傾向となる。
Here, the silica particle dispersion to be contained preferably has a mass ratio of water to alcohol of, for example, 0.01 or more and 0.5 or less, desirably 0.05 or more and 0.35 or less, and more desirably 0. .1 or more and 0.3 or less.
If the water mass ratio is less than 0.01, the water content of the dried silica particles after removal of the solvent will be low, and therefore the degree of hydrophobicity may not be so high even if a hydrophobic treatment is performed. If the mass ratio of water exceeds 0.5, excessive water will be present in the silica particle dispersion at the time of depressurization in the step of removing the solvent by supercritical carbon dioxide, which will be described later, and the pressure will be reduced to atmospheric pressure. When the water is evaporated, liquid crosslinking force of the silica particles is likely to be generated, and coarse powder tends to be easily generated.

また、収容するシリカ粒子分散液は、そのシリカ粒子に対する水の質量比が例えば0.02以上3以下であることがよく、望ましくは0.05以上1以下、より望ましくは0.1以上0.5以下である。
水の質量比が0.02を下回ると、溶媒除去後の乾燥されたシリカ粒子の揮発分(例えば水分)が低くなってしまうため、疎水化処理時に疎水化処理剤の加水分解が不十分となる事で疎水化度がさほど高くならないことがある。また、水の質量比が3を超えると、後述する超臨界二酸化炭素による溶媒を除去する工程における減圧時にシリカ粒子分散液中に水が過剰に存在することとなり、大気圧まで圧力を低下した際に水の蒸発により、シリカ粒子の液架橋力が発生し易く、粗粉が発生し易くなる傾向となる。
Further, the silica particle dispersion to be stored preferably has a mass ratio of water to silica particles of, for example, 0.02 or more and 3 or less, preferably 0.05 or more and 1 or less, more preferably 0.1 or more and 0.00. 5 or less.
If the mass ratio of water is less than 0.02, the volatile matter (for example, moisture) of the dried silica particles after removing the solvent will be low, so that the hydrophobizing agent is not sufficiently hydrolyzed during the hydrophobizing treatment. As a result, the degree of hydrophobicity may not be so high. Moreover, when the mass ratio of water exceeds 3, when water is excessively present in the silica particle dispersion at the time of depressurization in the step of removing the solvent by supercritical carbon dioxide, which will be described later, the pressure is reduced to atmospheric pressure. In addition, due to the evaporation of water, liquid crosslinking force of silica particles is likely to be generated, and coarse powder tends to be easily generated.

また、収容するシリカ粒子分散液は、当該シリカ粒子分散液に対するシリカ粒子の質量比が例えば0.05以上0.5以下がよく、望ましくは0.1以上0.45以下、より望ましくは、0.2以上0.4以下である。
シリカ粒子の質量比が0.05を下回ると、生産性が悪くなってしまうことがある。また、このシリカ粒子の質量比が0.5を超えると、後述する超臨界二酸化炭素による溶媒を除去する工程においてシリカ粒子がゲル化し、粗粉が発生し易くなる傾向となる。
Further, the silica particle dispersion to be accommodated has a mass ratio of silica particles to the silica particle dispersion of, for example, 0.05 to 0.5, preferably 0.1 to 0.45, more preferably 0. .2 or more and 0.4 or less.
When the mass ratio of the silica particles is less than 0.05, productivity may be deteriorated. On the other hand, when the mass ratio of the silica particles exceeds 0.5, the silica particles are gelated in the step of removing the solvent by supercritical carbon dioxide, which will be described later, and coarse powder tends to be easily generated.

−溶媒除去処理工程−
次に、処理槽10に超臨界二酸化炭素を導入・排出して、シリカ粒子分散液の分散媒に超臨界二酸化炭素を接触させて、シリカ粒子分散液の溶媒除去処理を行う。
-Solvent removal treatment process-
Next, supercritical carbon dioxide is introduced into and discharged from the treatment tank 10, and the supercritical carbon dioxide is brought into contact with the dispersion medium of the silica particle dispersion to perform a solvent removal treatment of the silica particle dispersion.

具体的には、例えば、攪拌翼11を回転させ、開閉バルブ37を開くと共に、開閉バルブ43を閉め、高圧ポンプ34を駆動し、超臨界二酸化炭素導入管36を通じて、液化二酸化炭素を処理槽10内に充填する。
次に、高圧ポンプ34を駆動しつつ、超臨界二酸化炭素発生部32の加熱源33と共に、処理槽10の加熱源(不図示)を駆動し、液体二酸化炭素を昇温・昇圧させ、超臨界状態とする。
次に、開閉バルブ43を開き、処理槽10に超臨界二酸化炭素を導入・排出させ、流通させる。
これにより、超臨界二酸化炭素が溶媒(アルコール及び水)を溶解しつつ、これを同伴してシリカ粒子分散液の外部(処理槽10の外部)へと排出され、溶媒が除去される。
Specifically, for example, the stirring blade 11 is rotated to open the opening / closing valve 37 and the opening / closing valve 43 is closed to drive the high-pressure pump 34, and the liquefied carbon dioxide is treated through the supercritical carbon dioxide introduction pipe 36. Fill inside.
Next, while driving the high-pressure pump 34, the heating source (not shown) of the processing tank 10 is driven together with the heating source 33 of the supercritical carbon dioxide generating unit 32, and the temperature of the liquid carbon dioxide is increased and the pressure is increased. State.
Next, the opening / closing valve 43 is opened, and supercritical carbon dioxide is introduced into and discharged from the processing tank 10.
As a result, the supercritical carbon dioxide dissolves the solvent (alcohol and water) and is accompanied by the solvent to the outside of the silica particle dispersion (outside of the treatment tank 10), thereby removing the solvent.

なお、シリカ粒子分散液の溶媒除去処理の開始は、例えば、シリカ粒子の製造装置101の電源がONされたか、又は、ユーザの操作によりシリカ粒子分散液の溶媒除去処理開始の信号の授受を受けたか等により行う。   In addition, the start of the solvent removal processing of the silica particle dispersion is performed by, for example, turning on the power of the silica particle manufacturing apparatus 101 or receiving a signal for starting the solvent removal processing of the silica particle dispersion by user operation. Perform by Taka etc.

ここで、超臨界二酸化炭素とは、臨界点以上の温度・圧力下においた状態の二酸化炭素であり、気体の拡散性と液体の溶解性との双方を持つものである。   Here, supercritical carbon dioxide is carbon dioxide in a state of temperature and pressure above the critical point, and has both gas diffusibility and liquid solubility.

溶媒除去処理の温度条件、つまり超臨界二酸化炭素の温度は、例えば、31℃以上350℃以下がよく、望ましくは60℃以上300℃以下、より望ましくは、80℃以上250℃以下である。
この温度が上記範囲未満であると、溶媒が超臨界二酸化炭素に溶解し難くなるため、溶媒の除去がし難くなることがある。また溶媒や超臨界二酸化炭素の液架橋力により粗粉が生じ易くなることがある。一方、この温度が上記範囲を超えると、親水性シリカ粒子表面のシラノール基の縮合により2次凝集体等の粗粉が生じやすくなることがある。
The temperature condition of the solvent removal treatment, that is, the temperature of supercritical carbon dioxide is, for example, preferably 31 ° C. or higher and 350 ° C. or lower, preferably 60 ° C. or higher and 300 ° C. or lower, more preferably 80 ° C. or higher and 250 ° C. or lower.
When this temperature is less than the above range, the solvent is difficult to dissolve in supercritical carbon dioxide, and thus it may be difficult to remove the solvent. Moreover, coarse powder may be easily generated due to the liquid crosslinking force of a solvent or supercritical carbon dioxide. On the other hand, when this temperature exceeds the above range, coarse powder such as secondary aggregates may be easily generated due to condensation of silanol groups on the surface of the hydrophilic silica particles.

また、溶媒除去処理の温度条件は、シリカ粒子分散液中のアルコールに対する水の質量比により適温が異なる。水はアルコールに比べて超臨界二酸化炭素に溶け込み難い傾向があるが、超臨界二酸化炭素の温度を高くすることで溶解度は高くなる傾向がある。   Further, the temperature condition of the solvent removal treatment varies depending on the mass ratio of water to alcohol in the silica particle dispersion. Water tends to be less soluble in supercritical carbon dioxide than alcohol, but the solubility tends to increase by raising the temperature of supercritical carbon dioxide.

一方、溶媒除去処理の圧力条件、つまり超臨界二酸化炭素の圧力は、例えば、7.38MPa以上40MPa以下がよく、望ましくは10MPa以上35MPa以下、より望ましく15MPa以上25MPa以下である。
この圧力が上記範囲未満であると、超臨界二酸化炭素に溶媒が溶解し難くなる傾向にあり、一方、圧力が上記範囲を超えると、設備が高額となる傾向となる。
On the other hand, the pressure condition of the solvent removal treatment, that is, the pressure of supercritical carbon dioxide is, for example, 7.38 MPa or more and 40 MPa or less, desirably 10 MPa or more and 35 MPa or less, and more desirably 15 MPa or more and 25 MPa or less.
If this pressure is less than the above range, the solvent tends to be difficult to dissolve in supercritical carbon dioxide. On the other hand, if the pressure exceeds the above range, the equipment tends to be expensive.

−溶媒除去処理停止工程−
次に、処理槽10から排出した超臨界二酸化炭素に含まれる溶媒量を検出し、検出した溶媒量に基づいて、溶媒除去処理を停止する。
-Solvent removal treatment stop process-
Next, the amount of solvent contained in the supercritical carbon dioxide discharged from the treatment tank 10 is detected, and the solvent removal process is stopped based on the detected amount of solvent.

具体的には、例えば、まず、溶媒量検出計71により、処理槽10から排出した超臨界二酸化炭素に含まれる溶媒量(その積算溶媒量:つまり、シリカ粒子分散液から除去された溶媒除去量)を検出する。
そして、排出した超臨界二酸化炭素に含まれる溶媒量(溶媒除去量)が、予め定めた量に達したか否かを判定し、予め定めた量に達した場合、溶媒除去処理を停止する。
溶媒除去処理の停止は、例えば、開閉バルブ37を閉じ、処理槽10内への超臨界二酸化炭素の導入を停止すると共に、超臨界二酸化炭素発生部32の加熱源33及び高圧ポンプ34の駆動と共に、処理槽10の加熱源(不図示)の駆動を停止し、処理槽10内が予め定められた内圧まで減圧した後、開閉バルブ43を閉じることで行う。
このようにして、溶媒除去処理を停止する。
Specifically, for example, first, the amount of solvent contained in the supercritical carbon dioxide discharged from the processing tank 10 by the solvent amount detector 71 (the cumulative amount of solvent: that is, the amount of solvent removed from the silica particle dispersion). ) Is detected.
Then, it is determined whether or not the amount of solvent (solvent removal amount) contained in the discharged supercritical carbon dioxide has reached a predetermined amount. When the amount reaches a predetermined amount, the solvent removal process is stopped.
The solvent removal process is stopped, for example, by closing the open / close valve 37 to stop the introduction of supercritical carbon dioxide into the processing tank 10 and driving the heating source 33 and the high-pressure pump 34 of the supercritical carbon dioxide generator 32. Then, the driving of the heating source (not shown) of the processing tank 10 is stopped, the inside of the processing tank 10 is reduced to a predetermined internal pressure, and then the on-off valve 43 is closed.
In this way, the solvent removal process is stopped.

ここで、溶媒除去処理を停止する設定値である溶媒量(溶媒除去量)は、予め、目的とする溶媒除去後のシリカ粒子の水分(残留水分量)を実験等により求めておく。具体的には、溶媒量(溶媒除去量)は、シリカ粒子分散液の総量からシリカ分散液中のシリカ粒子濃度より求めたシリカ粒子固形分量及び溶媒除去後の溶媒量(揮発)分を足した量を差し引くことで求めておく。
そして、予め求めた溶媒除去処理を停止する設定値である溶媒量(溶媒除去量)をROM、RAM、又は不揮発性メモリに記憶しておき、溶媒量検出計71(計量計)により検出された結果と対比させることで、溶媒除去処理の停止か否かの判定がなされる。
なお、本実施形態では、溶媒量検出計71として、分離して分離槽41の底部に貯留した溶媒の重量を測る計量計により、溶媒量(溶媒除去量)を検出する。
Here, the solvent amount (solvent removal amount), which is a set value for stopping the solvent removal treatment, is obtained in advance by experimentation or the like for the moisture (residual moisture amount) of the silica particles after removal of the target solvent. Specifically, the solvent amount (solvent removal amount) was obtained by adding the silica particle solid content amount obtained from the silica particle concentration in the silica dispersion solution from the total amount of the silica particle dispersion solution and the solvent amount (volatilization) content after the solvent removal. Find by subtracting the amount.
Then, the solvent amount (solvent removal amount), which is a set value for stopping the solvent removal process obtained in advance, is stored in the ROM, RAM, or nonvolatile memory, and detected by the solvent amount detector 71 (meter). By comparing with the result, it is determined whether or not the solvent removal process is stopped.
In the present embodiment, the solvent amount (solvent removal amount) is detected by a meter that measures the weight of the solvent separated and stored at the bottom of the separation tank 41 as the solvent amount detector 71.

−疎水化処理工程−
次に、処理槽10に、ヘキサメチルジシラザン(HMDS)を導入すると共に、超臨界二酸化炭素を導入・排出して、シリカ粒子分散液のシリカ粒子に超臨界二酸化炭素を接触させた状態で(つまり、超臨界二酸化炭素中で)、シリカ粒子の疎水化処理を行う。
-Hydrophobization process-
Next, while introducing hexamethyldisilazane (HMDS) into the treatment tank 10 and introducing and discharging supercritical carbon dioxide, the silica particles of the silica particle dispersion are in contact with the supercritical carbon dioxide ( In other words, the silica particles are hydrophobized in supercritical carbon dioxide.

具体的には、例えば、溶媒除去処理の停止した後、導入ポンプ63の駆動、開閉バルブ64の開きを行い、HMDS収容タンク61からHMDS導入管62を通じて、ヘキサメチルジシラザン(HMDS)を処理槽10へ導入する。
次に、攪拌翼11を回転させ、開閉バルブ37を開くと共に、開閉バルブ43を閉め、高圧ポンプ34を駆動し、超臨界二酸化炭素導入管36を通じて、液化二酸化炭素を処理槽10内に充填する。
その後、高圧ポンプ34を駆動し、処理槽10内の液体二酸化炭素を昇温・昇圧させ、超臨界状態とした後、開閉バルブ37を閉め、超臨界状態とした温度及び圧力を予め定められた時間保持する。
次に、予め定められた時間保持した後、開閉バルブ37及び開閉バルブ43を開くと共に、超臨界二酸化炭素発生部32の加熱源33及び高圧ポンプ34を駆動して、処理槽10に超臨界二酸化炭素を導入・排出させ、流通させる。
これにより、超臨界二酸化炭素中で、ヘキサメチルジシラザン(HMDS)を反応させて、シリカ粒子の疎水化処理を行う。
Specifically, for example, after the solvent removal process is stopped, the introduction pump 63 is driven, the opening / closing valve 64 is opened, and hexamethyldisilazane (HMDS) is treated from the HMDS storage tank 61 through the HMDS introduction pipe 62. 10 is introduced.
Next, the agitating blade 11 is rotated, the opening / closing valve 37 is opened, the opening / closing valve 43 is closed, the high-pressure pump 34 is driven, and the treatment tank 10 is filled with liquefied carbon dioxide through the supercritical carbon dioxide introduction pipe 36. .
Thereafter, the high-pressure pump 34 is driven to raise the temperature and pressure of the liquid carbon dioxide in the treatment tank 10 to be in a supercritical state, and then the opening and closing valve 37 is closed to set the temperature and pressure at which the supercritical state is established. Hold for hours.
Next, after holding for a predetermined time, the opening / closing valve 37 and the opening / closing valve 43 are opened, and the heating source 33 and the high-pressure pump 34 of the supercritical carbon dioxide generating unit 32 are driven to bring the supercritical carbon dioxide into the treatment tank 10. Introduce, discharge, and distribute carbon.
Thereby, in the supercritical carbon dioxide, hexamethyldisilazane (HMDS) is reacted to perform the hydrophobic treatment of the silica particles.

疎水化処理工程において、処理槽10の容積に対するシリカ粒子の量(つまり仕込み量)は、例えば、50g/L以上600g/L以下がよく、望ましくは100g/L以上500g/L以下、より望ましくは150g/L以上400g/L以下である。
この量が上記範囲より少ないと疎水処理剤の超臨界二酸化炭素に対する濃度が低くなりシリカ表面との接触確率が低下し、疎水化反応が進み難くなる。一方で、この量が上記範囲よりも多いと、疎水処理剤の超臨界二酸化炭素に対する濃度が高くなり、疎水処理剤が超臨界二酸化炭素へ溶解しきれず分散不良となり、粗大凝集物を発生させやすくなる。
In the hydrophobization treatment step, the amount of silica particles relative to the volume of the treatment tank 10 (that is, the charged amount) is, for example, 50 g / L or more and 600 g / L or less, desirably 100 g / L or more and 500 g / L or less, more desirably. 150 g / L or more and 400 g / L or less.
When this amount is less than the above range, the concentration of the hydrophobic treatment agent with respect to supercritical carbon dioxide is lowered, the contact probability with the silica surface is lowered, and the hydrophobic reaction is difficult to proceed. On the other hand, if this amount is larger than the above range, the concentration of the hydrophobic treatment agent with respect to supercritical carbon dioxide becomes high, and the hydrophobic treatment agent cannot be completely dissolved in supercritical carbon dioxide, resulting in poor dispersion and easy generation of coarse aggregates. Become.

超臨界二酸化炭素の密度は、例えば、0.10g/ml以上0.60g/ml以下がよく、望ましくは0.10g/ml以上0.50g/ml以下、より望ましくは0.2g/ml以上0.30g/ml以下)である。
この密度が上記範囲より低いと、超臨界二酸化炭素に対する疎水処理剤の溶解度が低下し、凝集物を発生させる傾向がある。一方で、密度が上記範囲よりも高いと、シリカ細孔への拡散性が低下するため、疎水化処理が不十分となる場合がある。特に、シラノール基を多く含有しているゾルゲルシリカに対しては上記密度範囲での疎水化処理が必要である。
なお、超臨界二酸化炭素の密度は、温度及び圧力等により調整される。
The density of supercritical carbon dioxide is, for example, 0.10 g / ml or more and 0.60 g / ml or less, preferably 0.10 g / ml or more and 0.50 g / ml or less, more preferably 0.2 g / ml or more and 0 or less. .30 g / ml or less).
When this density is lower than the above range, the solubility of the hydrophobic treating agent in supercritical carbon dioxide tends to decrease, and aggregates tend to be generated. On the other hand, when the density is higher than the above range, the diffusibility to the silica pores is lowered, and thus the hydrophobization treatment may be insufficient. In particular, sol-gel silica containing a large amount of silanol groups needs to be hydrophobized in the above density range.
The density of supercritical carbon dioxide is adjusted by temperature, pressure, and the like.

ヘキサメチルジシラザン(HMDS)の導入量は、特に限定はされないが、疎水化の効果を得るためには、例えば、シリカ粒子に対し、例えば、1質量%以上60質量%以下がよく、望ましくは5質量%以上40質量%以下、より望ましくは10質量%以上30質量%以下である。   The amount of hexamethyldisilazane (HMDS) introduced is not particularly limited, but in order to obtain a hydrophobizing effect, for example, it is preferably 1% by mass to 60% by mass with respect to the silica particles, desirably It is 5 mass% or more and 40 mass% or less, More desirably, it is 10 mass% or more and 30 mass% or less.

ここで、疎水化処理の温度条件(反応下の温度条件)、つまり超臨界二酸化炭素の温度は、例えば、80℃以上300℃以下がよく、望ましくは100℃以上300℃以下、より望ましくは150℃以上250℃以下である。
この温度が上記範囲未満であると、疎水化処理剤と親水性シリカ粒子表面との反応性低下する。一方で、温度が上記範囲を超えると、親水性シリカ粒子のシラノール基間による縮合反応が進み、結果として反応サイトの減少となり疎水化度が向上し難くなる場合がある。特に、シラノール基を多く含有しているゾルゲルシリカに対しては上記温度範囲での疎水化処理が必要である。
Here, the temperature condition of the hydrophobization treatment (temperature condition under reaction), that is, the temperature of supercritical carbon dioxide is, for example, 80 ° C. or more and 300 ° C. or less, preferably 100 ° C. or more and 300 ° C. or less, more preferably 150 ° C. It is at least 250 ° C.
When this temperature is less than the above range, the reactivity between the hydrophobizing agent and the surface of the hydrophilic silica particles decreases. On the other hand, when the temperature exceeds the above range, the condensation reaction between the silanol groups of the hydrophilic silica particles proceeds, and as a result, the reaction sites are reduced and the degree of hydrophobicity may not be improved. In particular, a sol-gel silica containing a large amount of silanol groups needs to be hydrophobized in the above temperature range.

一方、疎水化処理の圧力条件(反応下の温度条件)、つまり超臨界二酸化炭素の圧力は、上記密度を満足する条件であればよいが、例えば、8MPa以上30MPa以下がよく、望ましくは10MPa以上25MPa以下、より望ましく15MPa以上20MPa以下である。   On the other hand, the pressure condition of the hydrophobization treatment (temperature condition under reaction), that is, the pressure of supercritical carbon dioxide may be a condition that satisfies the above-mentioned density. 25 MPa or less, more desirably 15 MPa or more and 20 MPa or less.

−疎水化処理停止工程−
次に、処理槽10から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出し、検出したアンモニア濃度に基づいて、疎水化処理を停止する。
具体的には、まず、アンモニア濃度計72により、処理槽10から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出する。
そして、排出した超臨界二酸化炭素に含まれるアンモニア濃度が、予め定めた濃度以下に達したか否かを判定し、予め定めた濃度以下に達した場合、疎水化処理を停止する。
つまり、疎水化処理に伴う、ヘキサメチルジシラザン(HMDS)の反応は、アンモニアが生成されることから、生成するアンモニアが超臨界二酸化炭素と共に処理槽10から排出される際、流通(導入・排出)する当該超臨界二酸化炭素に含まれるアンモニア濃度を計測し、予め定めた濃度以下に達したか否かを判定し、予め定めた濃度以下に達した場合、超臨界二酸化炭素の流通(つまり処理槽10への超臨界二酸化炭素の導入・排出)を停止する。
-Hydrophobic treatment stop process-
Next, the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank 10 is detected, and the hydrophobization process is stopped based on the detected ammonia concentration.
Specifically, first, the ammonia concentration meter 72 detects the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank 10.
Then, it is determined whether the ammonia concentration contained in the discharged supercritical carbon dioxide has reached a predetermined concentration or less. When the ammonia concentration has reached a predetermined concentration or less, the hydrophobization process is stopped.
That is, since the reaction of hexamethyldisilazane (HMDS) accompanying the hydrophobization treatment generates ammonia, when the produced ammonia is discharged from the treatment tank 10 together with the supercritical carbon dioxide, it is distributed (introduction / discharge). ) Measure the concentration of ammonia contained in the supercritical carbon dioxide, determine whether it has reached a predetermined concentration or less, and if it has reached a predetermined concentration or less, flow of supercritical carbon dioxide (that is, processing) The introduction / discharge of supercritical carbon dioxide into the tank 10 is stopped.

疎水化処理の停止は、例えば、開閉バルブ37を閉じ、処理槽10内への超臨界二酸化炭素の導入を停止すると共に、超臨界二酸化炭素発生部32の加熱源33及び高圧ポンプ34の駆動と共に、処理槽10の加熱源(不図示)の駆動を停止し、処理槽10内が予め定められた内圧まで減圧した後、開閉バルブ43を閉じることで行う。
このようにして、疎水化処理を停止する。
For example, the hydrophobization process is stopped by closing the open / close valve 37 and stopping the introduction of the supercritical carbon dioxide into the processing tank 10 and driving the heating source 33 and the high-pressure pump 34 of the supercritical carbon dioxide generator 32. Then, the driving of the heating source (not shown) of the processing tank 10 is stopped, the inside of the processing tank 10 is reduced to a predetermined internal pressure, and then the on-off valve 43 is closed.
In this way, the hydrophobization process is stopped.

ここで、疎水化処理を停止する設定値であるアンモニア濃度は、予め、目的とする疎水化処理後のシリカ粒子のアンモニア濃度から実験等により求められる。具体的には、既知のアンモニア濃度を持つ疎水化処理後のシリカ粒子に対して、超臨界二酸化炭素を流通(接触)させ、流通(接触)後の超臨界二酸化炭素に含まれるアンモニア濃度を計測し、その計測値から検量線を作成する。
そして、予め求めた疎水化処理を停止する設定値であるアンモニア濃度(その検量線)をROM、RAM、又は不揮発性メモリに記憶しておき、溶媒量検出計71(計量計)により検出された結果と対比させることで、溶媒除去処理の停止か否かの判定がなされる。
Here, the ammonia concentration, which is a set value for stopping the hydrophobization treatment, is obtained in advance by experiments or the like from the ammonia concentration of the target silica particles after the hydrophobization treatment. Specifically, supercritical carbon dioxide is circulated (contacted) to hydrophobized silica particles with known ammonia concentration, and the ammonia concentration contained in supercritical carbon dioxide after distribution (contact) is measured. A calibration curve is created from the measured values.
Then, the ammonia concentration (the calibration curve), which is a set value for stopping the hydrophobization treatment obtained in advance, is stored in the ROM, RAM, or nonvolatile memory, and detected by the solvent amount detector 71 (meter). By comparing with the result, it is determined whether or not the solvent removal process is stopped.

−その他工程−
溶媒除去処理、疎水化処理において、処理槽10から排出される超臨界二酸化炭素は、超臨界二酸化炭素排出管42を通じて、分離槽41へ送られ、分離槽41で超臨界状態が解除され、溶媒及びアンモニアと分離される。
分離された溶媒及びアンモニアは、分離槽41の底部に貯留され、その後、回収される。
なお、排出される超臨界二酸化炭素とそれに含まれるアンモニアとの分離は、分離槽41に移る段階で、温度及び圧力を調節して分離してもよい。
-Other processes-
In the solvent removal process and the hydrophobization process, the supercritical carbon dioxide discharged from the processing tank 10 is sent to the separation tank 41 through the supercritical carbon dioxide discharge pipe 42, and the supercritical state is released in the separation tank 41. And separated from ammonia.
The separated solvent and ammonia are stored at the bottom of the separation tank 41 and then collected.
The supercritical carbon dioxide discharged and the ammonia contained therein may be separated by adjusting the temperature and pressure at the stage of moving to the separation tank 41.

超臨界状態が解除され、分離後の気体状の二酸化炭素は、気化二酸化炭素排出管52を通じて、二酸化炭素液化槽51へ送られ、二酸化炭素液化槽51で昇圧され、液化された後、液化二酸化炭素導入管53を通じて、再び、液化二酸化炭素収容タンク31へ導入され、再利用される。   The supercritical state is released, and the separated gaseous carbon dioxide is sent to the carbon dioxide liquefaction tank 51 through the vaporized carbon dioxide discharge pipe 52, pressurized in the carbon dioxide liquefaction tank 51, liquefied, and then liquefied carbon dioxide. It is again introduced into the liquefied carbon dioxide storage tank 31 through the carbon introduction pipe 53 and reused.

以上の工程(処理)を経て、本実施形態に係るシリカ粒子の製造方法を終了する。そして、以上の工程(処理)を一サイクルとして、繰り返し行い、本実施形態に係るシリカ粒子の製造方法を行う。   The manufacturing method of the silica particle which concerns on this embodiment is complete | finished through the above process (process). And the above process (process) is repeatedly performed as 1 cycle, and the manufacturing method of the silica particle which concerns on this embodiment is performed.

以上説明した本実施形態では、処理槽10に、シリカ粒子分散液を収容した後、処理槽10に超臨界二酸化炭素を導入・排出して、シリカ粒子又は前記分散媒に超臨界二酸化炭素を接触させる工程(本実施形態では、溶媒除去処理工程、疎水化処理工程)を有している。
そして、処理槽10から排出した超臨界二酸化炭素の情報(本実施形態では、超臨界二酸化炭素に含まれる溶媒量、アンモニア濃度)を検出し、検出した情報に基づいて、超臨界二酸化炭素を接触させる工程を停止する。
In the present embodiment described above, after the silica particle dispersion is accommodated in the treatment tank 10, supercritical carbon dioxide is introduced into and discharged from the treatment tank 10, and the supercritical carbon dioxide is brought into contact with the silica particles or the dispersion medium. The process (in this embodiment, a solvent removal process process, a hydrophobization process process) is made.
Then, information on the supercritical carbon dioxide discharged from the treatment tank 10 (in this embodiment, the amount of solvent and ammonia concentration contained in the supercritical carbon dioxide) is detected, and the supercritical carbon dioxide is contacted based on the detected information. The process to be stopped is stopped.

このため、本実施形態では、繰り返し行われるシリカ粒子の製造において、処理槽10から排出した超臨界二酸化炭素の情報に基づき、超臨界二酸化炭素を接触させる工程(本実施形態では、溶媒除去処理工程、疎水化処理工程)を停止させることから、本工程の停止条件の変動が少なくなる。
したがって、得られるシリカ粒子の特性変動も低減される。
For this reason, in this embodiment, in the production of silica particles that is repeatedly performed, based on the information on the supercritical carbon dioxide discharged from the processing tank 10, a step of contacting the supercritical carbon dioxide (in this embodiment, a solvent removal treatment step) , The hydrophobization process step) is stopped, so that fluctuations in the stop conditions of this step are reduced.
Therefore, characteristic fluctuations of the obtained silica particles are also reduced.

特に、本実施形態では、処理槽10に超臨界二酸化炭素を導入・排出して、シリカ粒子分散液の分散媒に超臨界二酸化炭素を接触させて、シリカ粒子分散液の溶媒除去処理を行う。
そして、処理槽10から排出した超臨界二酸化炭素に含まれる溶媒量を検出し、検出した溶媒量に基づいて、溶媒除去処理を停止している。
In particular, in the present embodiment, supercritical carbon dioxide is introduced into and discharged from the treatment tank 10, the supercritical carbon dioxide is brought into contact with the dispersion medium of the silica particle dispersion, and the solvent removal treatment of the silica particle dispersion is performed.
And the amount of solvent contained in supercritical carbon dioxide discharged from processing tank 10 is detected, and solvent removal processing is stopped based on the detected amount of solvent.

ここで、作製されるシリカ粒子分散液の溶媒量(例えばアルコール及び水の量)は、その作製ロッド毎にバラツキが少なからず発生する。このため、溶媒除去処理の条件を固定にした場合は、溶媒除去後のシリカ粒子に残る溶媒量も変動する。溶媒除去後のシリカ粒子に残る溶媒量が変動すると、次工程での処理(例えば疎水化処理)の際には、疎水化処理剤の加水分解状態が変化するため、疎水化処理剤とシリカ粒子表面との反応性が変わり、結果的に疎水化度、吸湿性、帯電性等の特性が変動することとなる。   Here, the amount of solvent (for example, the amount of alcohol and water) of the silica particle dispersion to be produced varies not a little from one production rod to another. For this reason, when the conditions for the solvent removal treatment are fixed, the amount of solvent remaining in the silica particles after removal of the solvent also varies. If the amount of solvent remaining in the silica particles after removal of the solvent fluctuates, the hydrolyzing state of the hydrophobizing agent will change during the next process (for example, hydrophobizing). The reactivity with the surface changes, and as a result, characteristics such as the degree of hydrophobicity, hygroscopicity, chargeability and the like change.

これに対して、本実施形態では、繰り返し行われるシリカ粒子の製造において、処理槽10から排出した超臨界二酸化炭素に含まれる溶媒量(溶媒除去量)に基づき、溶媒除去処理工程を停止させることから、溶媒除去処理工程の停止条件の変動が少なくなる。つまり、溶媒除去後のシリカ粒子に残る溶媒量も変動する。
したがって、得られるシリカ粒子の特性(例えば、吸湿性、帯電性、疎水化度)の変動が抑制される。
In contrast, in the present embodiment, in the repeated production of silica particles, the solvent removal treatment process is stopped based on the amount of solvent (solvent removal amount) contained in the supercritical carbon dioxide discharged from the treatment tank 10. Therefore, the fluctuation of the stop condition of the solvent removal process is reduced. That is, the amount of solvent remaining on the silica particles after removal of the solvent also varies.
Therefore, the fluctuation | variation of the characteristic (for example, hygroscopicity, charging property, hydrophobicity) of the silica particle obtained is suppressed.

ここで、超臨界二酸化炭素を流通させ、超臨界二酸化炭素により、シリカ粒子分散液の溶媒を除去する場合、超臨界二酸化炭素が「界面張力が働かない」という性質から、溶媒を除去する際の液架橋力による粒子同士の凝集もなく溶媒を除去できるものと考えられる。また超臨界二酸化炭素の「臨界点以上の温度・圧力下においた状態の二酸化炭素であり、気体の拡散性と液体の溶解性との双方を持つ」といった性質により、比較的低温(例えば250℃以下)で、超臨界二酸化炭素に効率良く接触し、溶媒を溶解することから、この溶媒を溶解した超臨界二酸化炭素を除去することで、シラノール基の縮合による2次凝集体等の粗粉を生じることなくシリカ粒子分散液中の溶媒を除去できるものと考えられる。
このため、粗粉の発生が少ないシリカ粒子が得られると考えられる。
Here, when supercritical carbon dioxide is circulated and the solvent of the silica particle dispersion liquid is removed by supercritical carbon dioxide, the supercritical carbon dioxide has the property that “interfacial tension does not work”. It is considered that the solvent can be removed without aggregation of particles due to the liquid crosslinking force. Also, due to the property of supercritical carbon dioxide, such as “carbon dioxide in a state of temperature and pressure above the critical point and having both gas diffusibility and liquid solubility”, it is relatively low temperature (for example, 250 ° C. In the following), the supercritical carbon dioxide is efficiently contacted and the solvent is dissolved. By removing the supercritical carbon dioxide dissolved in this solvent, coarse powder such as secondary aggregates due to condensation of silanol groups can be obtained. It is considered that the solvent in the silica particle dispersion can be removed without being generated.
For this reason, it is thought that the silica particle with few generation | occurrence | production of coarse powder is obtained.

また、本実施形態では、処理槽10に、ヘキサメチルジシラザン(HMDS)を導入すると共に、超臨界二酸化炭素を導入・排出して、シリカ粒子分散液のシリカ粒子に超臨界二酸化炭素を接触させた状態で(つまり、超臨界二酸化炭素中で)、シリカ粒子の疎水化処理を行う。
そして、処理槽10から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出し、検出したアンモニア濃度に基づいて、疎水化処理を停止している。
Further, in the present embodiment, hexamethyldisilazane (HMDS) is introduced into the treatment tank 10 and supercritical carbon dioxide is introduced / discharged to bring the supercritical carbon dioxide into contact with the silica particles of the silica particle dispersion. In such a state (that is, in supercritical carbon dioxide), the silica particles are hydrophobized.
And the ammonia concentration contained in the supercritical carbon dioxide discharged | emitted from the processing tank 10 is detected, and the hydrophobization process is stopped based on the detected ammonia concentration.

シリカ粒子を形成する際に触媒及び分散安定剤として使用されたり、疎水化処理剤(ヘキサメチルジシラザン)の反応由来の副生成物として発生するアンモニアは、不快な臭気となったり、吸湿する元となる。
一方で、疎水化処理後のシリカ粒子のアンモニア残留を避けるために、疎水化処理に引き続き、十分過ぎる時間、加熱することも考えられるが、加熱のし過ぎに伴うシリカ粒子の特性(BET比表面積、水分残量)を損ねる恐れとなり、エネルギー効率的にも生産効率的にも無駄が多くなるのが現状である。
Ammonia generated as a by-product from the reaction of a hydrophobizing agent (hexamethyldisilazane) is used as a catalyst and dispersion stabilizer in forming silica particles. It becomes.
On the other hand, in order to avoid residual ammonia in the silica particles after the hydrophobization treatment, it is conceivable that the silica particles are heated for an excessively long time following the hydrophobization treatment. The amount of waste is increased in terms of both energy efficiency and production efficiency.

これに対して、本実施形態では、繰り返し行われるシリカ粒子の製造において、処理槽10から排出した超臨界二酸化炭素に含まれるアンモニア濃度に基づき、疎水化処理工程を停止させることから、疎水化処理工程の停止条件の変動が少なくなる。
つまり、過剰な加熱を付与することなく、疎水化処理工程の停止が実現され、疎水化処理後のシリカ粒子の特性(BET比表面積、水分残量、アンモニア残留量)の変動が抑制されると共に、アンモニア濃度の低減も図れる。
したがって、得られるシリカ粒子の特性(例えば、吸湿性、帯電性、疎水化度)の変動が抑制される。また、得られるシリカ粒子のアンモニア残留量を低減した状態で、その量の変動が抑制されることから、残留するアンモニアに起因する臭気、及び吸湿性悪化も抑制される。
On the other hand, in the present embodiment, the hydrophobization treatment is stopped because the hydrophobization treatment process is stopped based on the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank 10 in the repeated production of silica particles. Fluctuations in process stop conditions are reduced.
In other words, the hydrophobization treatment process can be stopped without applying excessive heating, and fluctuations in the properties of the silica particles after the hydrophobization treatment (BET specific surface area, water remaining amount, residual ammonia amount) are suppressed. Also, the ammonia concentration can be reduced.
Therefore, the fluctuation | variation of the characteristic (for example, hygroscopicity, charging property, hydrophobicity) of the silica particle obtained is suppressed. Moreover, since the fluctuation | variation of the quantity is suppressed in the state which reduced the ammonia residual amount of the silica particle obtained, the odor resulting from the residual ammonia and a hygroscopic deterioration are also suppressed.

ここで、疎水化処理剤(ヘキサメチルジシラザン)によりシリカ粒子の表面を疎水化処理する際、超臨界二酸化炭素中で行うと、超臨界二酸化炭素中に疎水性処理剤が溶解した状態となると考えられる。超臨界二酸化炭素は界面張力が極めて低いという特性を持つことから、超臨界二酸化炭素中に溶解した状態の疎水性処理剤は、超臨界二酸化炭素と共に、シリカ粒子の表面の孔部の深くまで拡散して到達し易くなるものと考えられる。そして、これにより、シリカ粒子の表面のみならず、孔部の奥深くまで、疎水化処理がなされると考えられる。   Here, when hydrophobizing the surface of silica particles with a hydrophobizing agent (hexamethyldisilazane), if the processing is performed in supercritical carbon dioxide, the hydrophobic treating agent is dissolved in supercritical carbon dioxide. Conceivable. Since supercritical carbon dioxide has the characteristic of extremely low interfacial tension, the hydrophobic treatment agent dissolved in supercritical carbon dioxide diffuses deeply into the pores on the surface of silica particles together with supercritical carbon dioxide. It is thought that it will be easy to reach. Thus, it is considered that the hydrophobic treatment is performed not only on the surface of the silica particles but also deep in the hole.

なお、本実施形態では、処理槽10に超臨界二酸化炭素を導入・排出して、シリカ粒子又は前記分散媒に超臨界二酸化炭素を接触させる工程として、溶媒除去処理工程、疎水化処理工程の双方を行った形態を説明したが、いずれの工程のみを行う形態であってもよい。
また、溶媒除去処理工程と疎水化処理工程とを連続して実施する形態を説明したが、これに限られず、非連続で行う形態(つまり、溶媒除去処理工程を行った後、一旦、処理槽10からシリカ粒子を取り出し、再び、シリカ粒子と疎水化処理剤を処理槽10に収容して、疎水化処理工程を行う形態)であってもよい。
In the present embodiment, both the solvent removal treatment step and the hydrophobization treatment step are steps for introducing and discharging supercritical carbon dioxide into the treatment tank 10 and bringing the supercritical carbon dioxide into contact with the silica particles or the dispersion medium. Although the form which performed was demonstrated, the form which performs only any process may be sufficient.
Moreover, although the form which implements a solvent removal treatment process and a hydrophobization treatment process continuously was demonstrated, it is not restricted to this, The form (namely, after performing a solvent removal treatment process, once a processing tank is performed) The silica particles may be taken out from the No. 10 and the silica particles and the hydrophobizing agent may be accommodated in the treatment tank 10 again to perform the hydrophobizing treatment step.

本実施形態に係るシリカ粒子の製造装置101の構成は、上記構成に限られず、処理槽10に超臨界二酸化炭素を導入・排出して、シリカ粒子又は前記分散媒に超臨界二酸化炭素を接触させる工程(本実施形態では、溶媒除去処理工程、疎水化処理工程)が実現される構成であればよい。   The configuration of the silica particle production apparatus 101 according to the present embodiment is not limited to the above configuration, and supercritical carbon dioxide is introduced into and discharged from the treatment tank 10 to bring the supercritical carbon dioxide into contact with the silica particles or the dispersion medium. Any configuration may be used as long as the steps (in this embodiment, the solvent removal treatment step and the hydrophobization treatment step) are realized.

具体的には、本実施形態に係るシリカ粒子の製造装置101は、
シリカ粒子分散液又はシリカ粒子を収容し、シリカ粒子分散液又はシリカ粒子を処理するための処理槽と、
シリカ粒子分散液又はシリカ粒子に超臨界二酸化炭素を接触させるために、処理槽に超臨界二酸化炭素を導入・排出する超臨界二酸化炭素導入・排出手段と、
処理槽から排出した超臨界二酸化炭素の情報を検出する検出手段と、
検出手段によって検出された情報に基づいて、導入・排出手段を制御し、処理槽への超臨界二酸化炭素の導入を停止する制御手段と、
を備えるシリカ粒子の製造装置であればよい。
Specifically, the silica particle manufacturing apparatus 101 according to the present embodiment includes:
A treatment tank for containing a silica particle dispersion or silica particles, and treating the silica particle dispersion or silica particles;
Supercritical carbon dioxide introduction / discharge means for introducing / exhausting supercritical carbon dioxide into the treatment tank in order to bring the supercritical carbon dioxide into contact with the silica particle dispersion or the silica particles;
Detection means for detecting information of supercritical carbon dioxide discharged from the treatment tank;
Control means for controlling the introduction / discharge means based on the information detected by the detection means and stopping the introduction of supercritical carbon dioxide into the treatment tank,
Any apparatus for producing silica particles may be used.

特に、本実施形態に係るシリカ粒子の製造装置101は、
シリカ粒子の表面に疎水化処理を行うために、処理槽にヘキサメチルジシラザン(HMDS)を導入するヘキサメチルジシラザン導入手段をさらに備え、
検出手段が、ヘキサメチルジシラザン(HMDS)を導入後、処理槽から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出する検出手段であり、
制御手段が、検出手段によって検出されたアンモニア濃度に基づいて、導入・排出手段を制御し、処理槽への超臨界二酸化炭素の導入を停止する制御手段である構成であることがよい。
In particular, the silica particle manufacturing apparatus 101 according to the present embodiment includes:
In order to perform a hydrophobization treatment on the surface of the silica particles, further comprising hexamethyldisilazane introduction means for introducing hexamethyldisilazane (HMDS) into the treatment tank,
The detection means is a detection means for detecting the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank after introducing hexamethyldisilazane (HMDS),
The control means may be a control means for controlling the introduction / discharge means based on the ammonia concentration detected by the detection means and stopping the introduction of supercritical carbon dioxide into the treatment tank.

以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, these examples do not limit the present invention.

(実施例1)
ゾルゲル法で調製したシリカ粒子分散液をDCF(ダイナミック・クロスフロー・フィルター)で濃縮し、シリカ粒子固形分35質量%のシリカ粒子分散液を得た。
このシリカ粒子分散液を300質量部採取した。そして、溶媒除去処理終了時(乾燥終了時)のシリカ粒子の水分(残留水分量)を5質量%と設定し、取り除く溶媒量(溶媒除去量)を189.75(=300質量部−(300質量部×35質量%×1.05)と設定した。
Example 1
The silica particle dispersion prepared by the sol-gel method was concentrated with a DCF (dynamic crossflow filter) to obtain a silica particle dispersion having a silica particle solid content of 35% by mass.
300 parts by mass of this silica particle dispersion was collected. And the water | moisture content (residual water content) of the silica particle at the time of completion | finish of a solvent removal process (at the time of completion | finish of drying) is set to 5 mass%, and the solvent amount (solvent removal amount) removed is 189.75 (= 300 mass parts-(300 Mass part × 35 mass% × 1.05).

次に、採取したシリカ粒子分散液を、アンカー型撹拌機及びヒータ付きの0.65L高圧処理槽に投入し密閉した。
次に、アンカー型の撹拌翼を110rpmで回転させながら、液化二酸化炭素を充填し、高圧処理槽内を温度80℃、圧力20MPaとなるように昇温昇圧し、二酸化炭素を超臨界状態とした。そして、撹拌翼を110rpmで回転させたまま、超臨界二酸化炭素導入・排出機構により高圧処理槽に超臨界二酸化炭素を導入・排出して流通させた。このときの流通速度は20L/minとした。
高圧処理槽から排出された超臨界二酸化炭素を冷却装置付きの分離槽へ送り、分離槽にて冷却して、超臨界二酸化炭素に含まれる溶媒を分離し、分離した溶媒を分離槽に貯留した。
次に、分離槽に設けた計量計により、貯留された溶媒量(溶媒除去量)が設定の189.75gに達した時点で、超臨界二酸化炭素の導入(流通)を停止し、高圧処理槽の内圧を10MPaに下げて、溶媒除去処理を終了した。
Next, the collected silica particle dispersion was put into a 0.65 L high-pressure treatment tank equipped with an anchor stirrer and a heater and sealed.
Next, while rotating the anchor type stirring blade at 110 rpm, liquefied carbon dioxide was filled, and the inside of the high-pressure treatment tank was heated up to a temperature of 80 ° C. and a pressure of 20 MPa, so that the carbon dioxide was brought into a supercritical state. . Then, with the stirring blade rotating at 110 rpm, supercritical carbon dioxide was introduced into and discharged from the high-pressure treatment tank by the supercritical carbon dioxide introduction / discharge mechanism. The distribution speed at this time was 20 L / min.
Supercritical carbon dioxide discharged from the high-pressure treatment tank was sent to a separation tank equipped with a cooling device, cooled in the separation tank, the solvent contained in supercritical carbon dioxide was separated, and the separated solvent was stored in the separation tank. .
Next, when the stored solvent amount (solvent removal amount) reaches the set value of 189.75 g by the meter provided in the separation tank, the introduction (circulation) of supercritical carbon dioxide is stopped, and the high-pressure treatment tank Was reduced to 10 MPa to complete the solvent removal treatment.

次に、HMDS導入機構により、高圧処理槽にヘキサメチルジシラザン(HMDS)を導入した後、高圧処理槽内の昇温昇圧を行い、160℃、20MPaとし、その温度及び圧力を保持して、疎水化処理を30分間行い、30分後、高圧処理槽の圧力を開放して、疎水化処理を終了した。
そして、高圧処理槽から、疎水化処理されたシリカ粒子を取り出し、シリカ粒子の疎水化度や水分(残留水分量)を評価した。
Next, after introducing hexamethyldisilazane (HMDS) into the high-pressure treatment tank by the HMDS introduction mechanism, the temperature is raised and raised in the high-pressure treatment tank to 160 ° C. and 20 MPa, and the temperature and pressure are maintained. Hydrophobization treatment was performed for 30 minutes, and after 30 minutes, the pressure in the high-pressure treatment tank was released, and the hydrophobic treatment was completed.
Then, the hydrophobized silica particles were taken out from the high-pressure treatment tank, and the hydrophobization degree and water content (residual water content) of the silica particles were evaluated.

また、シリカ粒子固形分(表1記載のシリカ粒子固形分)の異なるシリカ粒子分散液を300g準備し、各シリカ粒子分散液から取り除く溶媒量(表1記載の溶媒除去量)を設定し、上記同様の溶媒除去処理及び疎水化処理を行い、シリカ粒子の疎水化度や水分(残留水分量)を評価した。   Also, 300 g of silica particle dispersions having different silica particle solids (silica particle solids described in Table 1) are prepared, and the amount of solvent removed from each silica particle dispersion (solvent removal described in Table 1) is set. The same solvent removal treatment and hydrophobization treatment were performed, and the hydrophobization degree and moisture (residual moisture content) of the silica particles were evaluated.

Figure 2013067521
Figure 2013067521

(比較例1)
シリカ粒子固形分(表2記載のシリカ粒子固形分)の異なるシリカ粒子分散液を300g準備し、上記同様の溶媒除去処理及び疎水化処理を行い、シリカ粒子の疎水化度や水分(残留水分量)を評価した。
但し、溶媒除去処理(乾燥処理)の停止条件を、シリカ粒子分散液から取り除く溶媒量(表1記載の溶媒除去量)によらず、超臨界二酸化炭素の流通時間を33分と固定して行った。なお、表2中の溶媒除去量は、超臨界二酸化炭素の流通時間を33分と固定して、溶媒除去処理(乾燥処理)の停止したときの溶媒除去量を示している。
(Comparative Example 1)
300 g of a silica particle dispersion having a different silica particle solid content (silica particle solid content shown in Table 2) was prepared, and the solvent removal treatment and the hydrophobization treatment were performed in the same manner as described above. ) Was evaluated.
However, the stopping condition of the solvent removal treatment (drying treatment) is performed with the supercritical carbon dioxide circulation time fixed at 33 minutes, regardless of the amount of solvent removed from the silica particle dispersion (solvent removal amount described in Table 1). It was. The solvent removal amount in Table 2 indicates the solvent removal amount when the supercritical carbon dioxide circulation time is fixed at 33 minutes and the solvent removal treatment (drying treatment) is stopped.

Figure 2013067521
Figure 2013067521

上記結果から、実施例1では、比較例1に比べ、得られるシリカ粒子の疎水化度、水分(残留水分量)の変動が少ないことがわかる。
なお、水分(残留水分量)は、シリア粒子の帯電性に影響を与えることから、実施例1では、比較例1に比べ、シリカ粒子の帯電性の変動も少ないことがわかる。
From the above results, it can be seen that Example 1 has less variation in the degree of hydrophobicity and moisture (residual moisture content) of the silica particles obtained than in Comparative Example 1.
Since moisture (residual moisture amount) affects the chargeability of the Syria particles, it can be seen that the variation in the chargeability of the silica particles is less in Example 1 than in Comparative Example 1.

(実施例2)
溶媒除去後の乾燥シリカ粒子(シリカ粒子の水分(残留水分量)5%)を準備した。
乾燥シリカ粒子をアンカー型撹拌機及びヒータ付きの0.65L高圧処理槽に投入し密閉した。
次に、アンカー翼を110rpmで回転させながら、HMDS導入機構により、高圧処理槽にヘキサメチルジシラザン(HMDS)30gを導入した後、液化二酸化炭素を充填し、高圧処理槽内を温度150℃、圧力20MPaとなるように昇温昇圧し、二酸化炭素を超臨界状態とした。そして、温度150℃、圧力20MPaへ到達後、30分間温度及び圧力を保持して、疎水化処理を行った。30分後、超臨界二酸化炭素導入・排出機構により高圧処理槽に超臨界二酸化炭素を導入・排出して流通させた。このときの流通速度は22L/minとした。
高圧処理槽から排出された超臨界二酸化炭素に含まれるアンモニア濃度を、レーザー式ガス分析計(東光計器株式会社製:GM700)により計測し、アンモニア濃度が低下し、0.02%に達した時点で、超臨界二酸化炭素の導入(流通)を停止し、高圧処理槽の圧力を開放して、疎水化処理を終了した。
そして、高圧処理槽から、疎水化処理されたシリカ粒子を取り出し、シリカ粒子のアンモニア濃度、及び水分(残留水分量)を評価した。また、超臨界二酸化炭素の流通時間(導入・排出時間)も調べた。
(Example 2)
Dry silica particles after removal of the solvent (water content of silica particles (residual water content) 5%) were prepared.
The dried silica particles were put into a 0.65 L high pressure treatment tank equipped with an anchor type stirrer and a heater and sealed.
Next, 30 g of hexamethyldisilazane (HMDS) is introduced into the high-pressure treatment tank by the HMDS introduction mechanism while rotating the anchor blade at 110 rpm, and then the liquefied carbon dioxide is filled therein. The temperature was increased and the pressure was increased to 20 MPa, and carbon dioxide was brought into a supercritical state. Then, after reaching a temperature of 150 ° C. and a pressure of 20 MPa, the temperature and pressure were maintained for 30 minutes to perform a hydrophobic treatment. After 30 minutes, supercritical carbon dioxide was introduced into and discharged from the high-pressure treatment tank by a supercritical carbon dioxide introduction / discharge mechanism. The distribution speed at this time was 22 L / min.
When the ammonia concentration contained in the supercritical carbon dioxide discharged from the high-pressure treatment tank is measured with a laser gas analyzer (manufactured by Toko Keiki Co., Ltd .: GM700), the ammonia concentration decreases and reaches 0.02% Then, the introduction (distribution) of supercritical carbon dioxide was stopped, the pressure of the high-pressure treatment tank was released, and the hydrophobization treatment was completed.
Then, the hydrophobized silica particles were taken out from the high-pressure treatment tank, and the ammonia concentration and moisture (residual moisture amount) of the silica particles were evaluated. The distribution time (introduction / discharge time) of supercritical carbon dioxide was also investigated.

また、水分(表3記載の水分:溶媒水分量)の異なる乾燥シリカ粒子を100g準備し、上記同様の疎水化処理を行い、シリカ粒子のアンモニア濃度や水分(残留水分量)を評価した。   Further, 100 g of dry silica particles having different water contents (water content in Table 3: solvent water content) were prepared and subjected to the same hydrophobizing treatment as described above, and the ammonia concentration and water content (residual water content) of the silica particles were evaluated.

Figure 2013067521
Figure 2013067521

(比較例2)
水分(表4記載の水分:残留水分量)の異なる乾燥シリカ粒子を100g準備し、実施例1と同様の疎水化処理を行い、シリカ粒子のアンモニア濃度や水分(残留水分量)を評価した。
但し、疎水化処理の停止条件を、高圧処理槽から排出される超臨界二酸化炭素のアンモニア濃度によらず、超臨界二酸化炭素の流通時間(導入・排出時間)を11.6分と固定して行った。
(Comparative Example 2)
100 g of dry silica particles having different water contents (water content in Table 4: residual water content) were prepared and subjected to the same hydrophobizing treatment as in Example 1 to evaluate the ammonia concentration and water (residual water content) of the silica particles.
However, the suspension time for the hydrophobization treatment is fixed at 11.6 minutes, regardless of the ammonia concentration of the supercritical carbon dioxide discharged from the high-pressure treatment tank. went.

Figure 2013067521
Figure 2013067521

上記結果から、実施例2では、比較例2に比べ、シリカ粒子のアンモニア濃度、水分(残留水分量)の変動が少ないことがわかる。
また、実施例2では、シリカ粒子のアンモニア濃度を低減した状態で、その変動が少ないこともわかる。
なお、水分(残留水分量)は、シリア粒子の帯電性に影響を与え、アンモニア濃度は吸湿性に影響を与えることから、実施例2では、比較例2に比べ、シリカ粒子の帯電性や吸湿性の変動も少ないことがわかる。
From the above results, it can be seen that Example 2 has less variation in the ammonia concentration and moisture (residual moisture content) of the silica particles than in Comparative Example 2.
Moreover, in Example 2, it turns out that the fluctuation | variation is few in the state which reduced the ammonia concentration of the silica particle.
Since moisture (residual moisture amount) affects the chargeability of Syria particles and ammonia concentration affects hygroscopicity, the chargeability and moisture absorption of silica particles in Example 2 are higher than those in Comparative Example 2. It can be seen that there is little variation in sex.

なお、シリカ粒子の疎水化度は、イオン交換水50ml、試料となるシリカ粒子0.2質量部をビーカーに入れ、マグネティックスターラーで攪拌しながらビュレットからメタノールを滴下し、試料全量が沈んだ終点におけるメタノール水混合溶液中のメタノール質量分率を疎水化度として求めた。   The hydrophobization degree of the silica particles is 50 ml of ion-exchanged water, 0.2 parts by mass of silica particles as a sample are put in a beaker, methanol is dropped from a burette while stirring with a magnetic stirrer, and the total amount of the sample sinks. The methanol mass fraction in the methanol water mixed solution was determined as the degree of hydrophobicity.

また、シリカ粒子の水分(残留水分量)は、セイコー社製TGA−DTA2000S(商品名)を用いて、窒素気流下、20℃/minの昇温速度で30℃から250℃まで昇温しときの質量減少率を水分(残留水分量)として求めた。   Moreover, the water | moisture content (residual water content) of a silica particle is when it heats up from 30 degreeC to 250 degreeC by the temperature increase rate of 20 degrees C / min in nitrogen stream using TGA-DTA2000S (brand name) by Seiko. The mass reduction rate was determined as moisture (residual moisture content).

また、疎水化処理後のシリカ粒子のアンモニア濃度は、次のようにして求める。
サンプルとなる疎水化処理後のシリカ粒子を50mlをポリプロピレン(PP)製メスフラスコに各々0.1g精秤し、これにテトラヒドロキシフラン(THF)2ml加えてシリカ粒子を濡らす。ここに超純水を加えて50mlにメスアップした後、良く振り混ぜ、6分間超音波分散機に掛ける。ついで、予め超純水で洗浄したシリンジフィルターにてシリカ分散液を濾過し、測定試料とする。そして、測定試料を用いて、以下の条件で、アンモニア濃度を求める。
・測定装置:Dionex社製 ICS2000イオンクロマトグラフ
・測定試料導入量:25μl
・溶離液:メタンスルフォン酸20mM
・分離カラム:IonPac CS12A 4mmφ×250mm
・検出器:電気伝導度計
Further, the ammonia concentration of the silica particles after the hydrophobization treatment is determined as follows.
50 ml of hydrophobized silica particles as samples are weighed precisely in 0.1 g each in a polypropylene (PP) measuring flask, and 2 ml of tetrahydroxyfuran (THF) is added thereto to wet the silica particles. After adding ultrapure water to make up to 50 ml, shake well and apply to an ultrasonic disperser for 6 minutes. Next, the silica dispersion is filtered with a syringe filter previously washed with ultrapure water to obtain a measurement sample. And ammonia concentration is calculated | required on condition of the following using a measurement sample.
・ Measurement device: ICS2000 ion chromatograph manufactured by Dionex ・ Measurement sample introduction amount: 25 μl
・ Eluent: Methanesulfonic acid 20 mM
Separation column: IonPac CS12A 4 mmφ × 250 mm
・ Detector: Electric conductivity meter

10 処理槽
11 攪拌翼
20 超臨界二酸化炭素導入・排出機構
30 超臨界二酸化炭素導入部
31 液化二酸化炭素収容タンク
32 超臨界二酸化炭素発生部
33 加熱源
34 高圧ポンプ
35 液化二酸化炭素導入管
36 超臨界二酸化炭素導入管
37 開閉バルブ
40 超臨界二酸化炭素排出部
41 分離槽
42 超臨界二酸化炭素排出管
43 開閉バルブ
50 超臨界二酸化炭素再生部
51 二酸化炭素液化槽
52 気化二酸化炭素排出管
53 液化二酸化炭素導入管
60 ヘキサメチルジシラザン導入機構
61 HMDS収容タンク
62 HMDS導入管
63 導入ポンプ
64 開閉バルブ
71 溶媒量検出計
72 アンモニア濃度計
80 制御部
101 シリカ粒子の製造装置
DESCRIPTION OF SYMBOLS 10 Treatment tank 11 Stirring blade 20 Supercritical carbon dioxide introduction and discharge mechanism 30 Supercritical carbon dioxide introduction part 31 Liquefied carbon dioxide storage tank 32 Supercritical carbon dioxide generation part 33 Heat source 34 High pressure pump 35 Liquefied carbon dioxide introduction pipe 36 Supercritical Carbon dioxide introduction pipe 37 Open / close valve 40 Supercritical carbon dioxide discharge part 41 Separation tank 42 Supercritical carbon dioxide discharge pipe 43 Open / close valve 50 Supercritical carbon dioxide regeneration part 51 Carbon dioxide liquefaction tank 52 Vaporized carbon dioxide discharge pipe 53 Liquid carbon dioxide introduction Pipe 60 Hexamethyldisilazane introduction mechanism 61 HMDS storage tank 62 HMDS introduction pipe 63 Introduction pump 64 On-off valve 71 Solvent amount detector 72 Ammonia concentration meter 80 Control unit 101 Silica particle production apparatus

Claims (2)

シリカ粒子分散液又はシリカ粒子が収容された処理槽に、超臨界二酸化炭素を導入・排出して、前記シリカ粒子分散液又は前記シリカ粒子に前記超臨界二酸化炭素を接触させる第1工程と、
前記処理槽から排出した超臨界二酸化炭素の情報を検出し、前記検出した情報に基づいて、前記第1工程を停止する第2工程と、
を有するシリカ粒子の製造方法。
A first step of introducing and discharging supercritical carbon dioxide into a treatment tank containing silica particle dispersion or silica particles, and bringing the supercritical carbon dioxide into contact with the silica particle dispersion or silica particles;
Detecting the information of supercritical carbon dioxide discharged from the treatment tank, and based on the detected information, a second step of stopping the first step;
A method for producing silica particles having
前記第1工程が、前記処理槽にヘキサメチルジシラザン(HMDS)を導入して、前記シリカ粒子の疎水化処理を行う工程であり、
前記第2工程が、前記処理槽に超臨界二酸化炭素を導入・排出して、前記処理槽から排出した超臨界二酸化炭素に含まれるアンモニア濃度を検出して、前記検出したアンモニア濃度に基づいて、前記第1工程を停止する工程である請求項1に記載のシリカ粒子の製造方法。
The first step is a step of introducing hexamethyldisilazane (HMDS) into the treatment tank to perform a hydrophobic treatment of the silica particles;
The second step introduces and discharges supercritical carbon dioxide into the treatment tank, detects the ammonia concentration contained in the supercritical carbon dioxide discharged from the treatment tank, and based on the detected ammonia concentration, The method for producing silica particles according to claim 1, which is a step of stopping the first step.
JP2011205354A 2011-09-20 2011-09-20 Method for producing silica particles Active JP5862150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205354A JP5862150B2 (en) 2011-09-20 2011-09-20 Method for producing silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205354A JP5862150B2 (en) 2011-09-20 2011-09-20 Method for producing silica particles

Publications (2)

Publication Number Publication Date
JP2013067521A true JP2013067521A (en) 2013-04-18
JP5862150B2 JP5862150B2 (en) 2016-02-16

Family

ID=48473680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205354A Active JP5862150B2 (en) 2011-09-20 2011-09-20 Method for producing silica particles

Country Status (1)

Country Link
JP (1) JP5862150B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234237A (en) * 2012-05-08 2013-11-21 Shin-Etsu Chemical Co Ltd Method for producing organomodified inorganic filler, organomodified inorganic filler, and thermoconductive silicone composition
JP2015182935A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Sol-gel silica particles, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image formation device and image formation method
JP2016204168A (en) * 2015-04-15 2016-12-08 信越化学工業株式会社 Method for producing inorganic oxide fine particle-dispersed liquid
WO2020122664A1 (en) 2018-12-13 2020-06-18 주식회사 엘지화학 Method for supercritical drying of silica hydrogel blanket
KR20200077284A (en) * 2018-12-20 2020-06-30 주식회사 엘지화학 Supercritical drying method for silica wetgel blanket
KR20220037782A (en) 2020-09-18 2022-03-25 주식회사 엘지화학 Supercritical drying method
CN115159531A (en) * 2022-08-01 2022-10-11 郑州大学 By using supercritical CO 2 Method for realizing plasticizing deformation of silicon dioxide nano microspheres

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070389A (en) * 2005-09-05 2007-03-22 Shiyoufuu:Kk Hemispherical hollow microcapsule

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070389A (en) * 2005-09-05 2007-03-22 Shiyoufuu:Kk Hemispherical hollow microcapsule

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234237A (en) * 2012-05-08 2013-11-21 Shin-Etsu Chemical Co Ltd Method for producing organomodified inorganic filler, organomodified inorganic filler, and thermoconductive silicone composition
JP2015182935A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Sol-gel silica particles, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image formation device and image formation method
JP2016204168A (en) * 2015-04-15 2016-12-08 信越化学工業株式会社 Method for producing inorganic oxide fine particle-dispersed liquid
WO2020122664A1 (en) 2018-12-13 2020-06-18 주식회사 엘지화학 Method for supercritical drying of silica hydrogel blanket
KR20200073161A (en) 2018-12-13 2020-06-23 주식회사 엘지화학 Supercritical drying method for silica wetgel blanket
US11365125B2 (en) 2018-12-13 2022-06-21 Lg Chem, Ltd. Supercritical drying method for silica wet gel blanket
JP2021528348A (en) * 2018-12-20 2021-10-21 エルジー・ケム・リミテッド Supercritical drying method for silica wet gel blanket
KR20200077284A (en) * 2018-12-20 2020-06-30 주식회사 엘지화학 Supercritical drying method for silica wetgel blanket
JP7089604B2 (en) 2018-12-20 2022-06-22 エルジー・ケム・リミテッド Supercritical drying method for silica wet gel blanket
KR102429099B1 (en) 2018-12-20 2022-08-04 주식회사 엘지화학 Supercritical drying method for silica wetgel blanket
US12060279B2 (en) 2018-12-20 2024-08-13 Lg Chem, Ltd. Supercritical drying method for silica wet gel blanket
KR20220037782A (en) 2020-09-18 2022-03-25 주식회사 엘지화학 Supercritical drying method
CN115159531A (en) * 2022-08-01 2022-10-11 郑州大学 By using supercritical CO 2 Method for realizing plasticizing deformation of silicon dioxide nano microspheres
CN115159531B (en) * 2022-08-01 2023-09-15 郑州大学 Supercritical CO utilization 2 Method for realizing plasticizing deformation of silicon dioxide nano-microspheres

Also Published As

Publication number Publication date
JP5862150B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5862150B2 (en) Method for producing silica particles
RU2704219C2 (en) Sol-gel method of producing silicon dioxide aerogels
US20210269317A1 (en) Preparation Method of SiO2 Aerogels
WO2014174150A1 (en) A method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
JP2008542163A (en) Method for producing precipitated silica, resulting precipitated silica, especially use as a filler in silicon matrix
Mahmoudi et al. Preparation and characterization of activated carbon from date pits by chemical activation with zinc chloride for methyl orange adsorption
CN101137587A (en) Process for the production of monoliths by means of the sol-gel process
JP2009054629A (en) Recycling method of polishing slurry
US3794713A (en) Preparation of silica gels
CA2938696A1 (en) Novel method of preparing precipitated silicas, novel precipitated silicas, and their uses, in particular for reinforcing polymers
EP1261550B1 (en) Amorphous silica particles comprising boron
US20150141532A1 (en) Solvent-Substitution Solvent Used in Aerogel Production, and Hydrophobised Aerogel Production Method Using Same
WO2015121333A1 (en) Novel method for preparing precipitated silicas, novel precipitated silicas and the uses of same, in particular for reinforcing polymers
JP5479502B2 (en) Production of high purity suspension containing precipitated silica by electrodialysis
Eslami et al. Surface grafting of silica nanoparticles using 3‐aminopropyl (triethoxysilane) to improve the CO2 absorption and enhance the gas consumption during the CO2 hydrate formation
Zhong et al. A new hydrothermal cross-linking ion-imprinted chitosan for high-efficiency uranium removal
Dzyazko et al. Effect of the porous structure of polymer on the kinetics of Ni 2+ exchange on hybrid inorganic-organic ionites
Fernández et al. Poly (ionic liquid) s nanoparticles applied in CO2 capture
US8741252B2 (en) Process for producing porous object and apparatus therefor
CN110627074A (en) Preparation method and application of low-heat-conductivity and low-bulk-density white carbon black
Shahraki et al. Investigation on CO2 solubility in aqueous amine solution of MDEA/PZ with SiO2 nanoparticles additive as novel solvent
JP2017538571A (en) Method for separating water from gaseous working medium and water separator for working medium
KR101950579B1 (en) Absorbent For Carbon Dioxide and Method for Manufacturing The Same
CA2939385A1 (en) Novel method for preparing precipitated silicas, novel precipitated silicas, and uses thereof, particularly for polymer reinforcement
JP2017001915A (en) Nanodiamond-dispersed liquid and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350