JP2013065873A - Lpd-reducing agent and method for reducing defects of silicon wafer using the same - Google Patents
Lpd-reducing agent and method for reducing defects of silicon wafer using the same Download PDFInfo
- Publication number
- JP2013065873A JP2013065873A JP2012250463A JP2012250463A JP2013065873A JP 2013065873 A JP2013065873 A JP 2013065873A JP 2012250463 A JP2012250463 A JP 2012250463A JP 2012250463 A JP2012250463 A JP 2012250463A JP 2013065873 A JP2013065873 A JP 2013065873A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- lpd
- wafer
- polishing composition
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 239000003638 chemical reducing agent Substances 0.000 title claims abstract description 21
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 21
- 239000010703 silicon Substances 0.000 title claims abstract description 21
- 230000007547 defect Effects 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000005498 polishing Methods 0.000 claims abstract description 137
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 29
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 15
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 15
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 11
- 230000009467 reduction Effects 0.000 claims abstract description 7
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 description 65
- 239000006061 abrasive grain Substances 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000003513 alkali Substances 0.000 description 15
- 239000011164 primary particle Substances 0.000 description 15
- 239000008119 colloidal silica Substances 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000002738 chelating agent Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000007517 polishing process Methods 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- GLUUGHFHXGJENI-UHFFFAOYSA-N diethylenediamine Natural products C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229960003330 pentetic acid Drugs 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 1
- RAEOEMDZDMCHJA-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-[2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]ethyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CCN(CC(O)=O)CC(O)=O)CC(O)=O RAEOEMDZDMCHJA-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- RUSUZAGBORAKPY-UHFFFAOYSA-N acetic acid;n'-[2-(2-aminoethylamino)ethyl]ethane-1,2-diamine Chemical group CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.NCCNCCNCCN RUSUZAGBORAKPY-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical group [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、シリコンウエハを研磨する用途で使用されるLPD低減剤及びそのLPD低減剤を用いたシリコンウエハの欠陥低減方法に関する。 The present invention relates to an LPD reducing agent used in an application for polishing a silicon wafer and a method for reducing defects in a silicon wafer using the LPD reducing agent.
従来、シリコンウエハ等の半導体ウエハの研磨は予備研磨と仕上げ研磨の少なくとも二段階に分けて行われる。そのうち予備研磨は、更なる高品位化及び効率化を目的としてさらに二段階以上に分けて行われることがある。仕上げ研磨で使用可能な研磨用組成物として、例えば特許文献1に記載の研磨用組成物が知られている。特許文献1の研磨用組成物は、水、コロイダルシリカ、ポリアクリルアミドやシゾフィランのような水溶性高分子、及び塩化カリウムのような水溶性塩類を含有している。 Conventionally, polishing of a semiconductor wafer such as a silicon wafer is performed in at least two stages of preliminary polishing and final polishing. Of these, preliminary polishing may be performed in two or more stages for the purpose of further improving the quality and efficiency. As a polishing composition that can be used in finish polishing, for example, a polishing composition described in Patent Document 1 is known. The polishing composition of Patent Document 1 contains water, a colloidal silica, a water-soluble polymer such as polyacrylamide or schizophyllan, and a water-soluble salt such as potassium chloride.
ところで近年、半導体デバイスのデザインルールが細線化するに従って、研磨用組成物を用いて研磨した後のウエハ表面で観察される欠陥の一種であるLPD(light point defects)について、半導体デバイスの性能に影響するとして、これまで問題とされていなかった小さいサイズのものまで低減が要求されている。具体的には、これまで問題とされていたLPDは0.12μm以上の大きさのものであり、これはウエハ表面に付着したパーティクルが主な原因であるため、洗浄技術の向上によってかなりの低減がなされている。ところが、それよりもサイズの小さいLPD(>0.065μm)は主に予備研磨時にウエハ表面に生じる傷によるもの、つまり研磨加工に起因するものであり、これは仕上げ研磨や洗浄によっては除去できない虞がある。この点、特許文献1の研磨用組成物を用いて仕上げ研磨を行った場合であっても、研磨加工に起因するLPDの数が従来に比べて低減されることはない。 By the way, in recent years, as semiconductor device design rules become finer, LPD (light point defects), which is a type of defects observed on the wafer surface after polishing with a polishing composition, affects the performance of semiconductor devices. As a result, there is a demand for reduction to a small size that has not been considered a problem so far. Specifically, LPD, which has been regarded as a problem until now, has a size of 0.12 μm or more, and this is mainly caused by particles adhering to the wafer surface, so that it is considerably reduced by improving the cleaning technique. Has been made. However, LPD (> 0.065 μm) having a smaller size is mainly caused by scratches generated on the wafer surface during preliminary polishing, that is, due to polishing, which may not be removed by finish polishing or cleaning. There is. In this regard, even when finish polishing is performed using the polishing composition of Patent Document 1, the number of LPDs resulting from polishing is not reduced as compared with the prior art.
本発明の目的は、LPD低減剤を用いて研磨した後の研磨対象物表面における研磨加工に起因するLPDの数を低減することが可能なLPD低減剤及びそのLPD低減剤を用いたシリコンウエハの欠陥低減方法を提供することにある。 An object of the present invention is to provide an LPD reducing agent capable of reducing the number of LPDs resulting from polishing on the surface of an object to be polished after polishing using the LPD reducing agent, and a silicon wafer using the LPD reducing agent. It is to provide a defect reduction method.
上記の目的を達成するために、請求項1に記載の発明は、ポリビニルピロリドン及びポリN−ビニルホルムアミドから選ばれる少なくとも一種類の水溶性高分子を含有し、シリコンウエハの研磨において用いられることを特徴とするLPD低減剤を提供する。 In order to achieve the above object, the invention described in claim 1 contains at least one water-soluble polymer selected from polyvinyl pyrrolidone and poly N-vinylformamide, and is used in polishing a silicon wafer. An LPD reducing agent is provided.
請求項2に記載の発明は、シリコンウエハの予備研磨に用いられることを特徴とする請求項1に記載のLPD低減剤を提供する。
請求項3に記載の発明は、請求項1又は請求項2に記載のLPD低減剤を用いてシリコンウエハの表面を研磨することを特徴とするシリコンウエハの欠陥低減方法を提供する。
The invention according to claim 2 provides the LPD reducing agent according to claim 1, which is used for preliminary polishing of a silicon wafer.
According to a third aspect of the present invention, there is provided a defect reduction method for a silicon wafer, wherein the surface of the silicon wafer is polished using the LPD reducing agent according to the first or second aspect.
本発明によれば、LPD低減剤を用いて研磨した後の研磨対象物表面における研磨加工に起因するLPDの数を低減することが可能なLPD低減剤及びそのLPD低減剤を用いたシリコンウエハの欠陥低減方法が提供される。 According to the present invention, an LPD reducing agent capable of reducing the number of LPDs resulting from polishing on the surface of an object to be polished after polishing using the LPD reducing agent, and a silicon wafer using the LPD reducing agent A defect reduction method is provided.
以下、本発明の一実施形態を説明する。
本実施形態の研磨用組成物は、所定量の水溶性高分子とアルカリと砥粒を水と混合することにより製造される。従って、本実施形態の研磨用組成物は、水溶性高分子、アルカリ、砥粒及び水からなる。この研磨用組成物は、シリコンウエハ等の半導体ウエハを研磨する用途で使用されるものであり、特にウエハの予備研磨、予備研磨が二段階以上に分けて行われる場合には最終段階の予備研磨で使用されるものである。
Hereinafter, an embodiment of the present invention will be described.
The polishing composition of this embodiment is produced by mixing a predetermined amount of a water-soluble polymer, an alkali, and abrasive grains with water. Therefore, the polishing composition of this embodiment comprises a water-soluble polymer, alkali, abrasive grains, and water. This polishing composition is used for polishing a semiconductor wafer such as a silicon wafer. In particular, when the preliminary polishing and preliminary polishing of the wafer are performed in two or more stages, the final preliminary polishing is performed. It is used in.
本実施形態の研磨用組成物に含まれる水溶性高分子は、ポリビニルピロリドン及びポリN−ビニルホルムアミドから選ばれる少なくとも一種類である。これらの水溶性高分子は、ウエハ表面に親水膜を形成する作用を有している。この親水膜は、砥粒をはじめとする粗大粒子からウエハに与えられるウエハ表面に対して垂直方向の力を水平方向に分散する働きをし、その結果、研磨時のウエハ表面における欠陥の発生が抑制され、研磨加工に起因するLPDの数が低減するものと推測される。 The water-soluble polymer contained in the polishing composition of the present embodiment is at least one selected from polyvinyl pyrrolidone and poly N-vinylformamide. These water-soluble polymers have a function of forming a hydrophilic film on the wafer surface. This hydrophilic film works to disperse the force in the vertical direction against the wafer surface applied to the wafer from coarse particles such as abrasive grains in the horizontal direction, and as a result, defects are generated on the wafer surface during polishing. It is conjectured that the number of LPDs resulting from the polishing process is reduced.
研磨用組成物に含まれる水溶性高分子がポリビニルピロリドンである場合には、ポリN−ビニルホルムアミドである場合に比べて、研磨加工に起因するLPDの数を低減することができる。従って、研磨用組成物に含まれる水溶性高分子はポリビニルピロリドンであることが好ましい。 When the water-soluble polymer contained in the polishing composition is polyvinyl pyrrolidone, the number of LPDs resulting from the polishing process can be reduced as compared with the case where it is poly N-vinylformamide. Therefore, the water-soluble polymer contained in the polishing composition is preferably polyvinyl pyrrolidone.
研磨用組成物中の水溶性高分子の含有量は、0.0003g/L以上であることが好ましく、より好ましくは0.001g/L以上、さらに好ましくは0.003g/L以上、最も好ましくは0.005g/L以上である。水溶性高分子の含有量が多くなるにつれて、欠陥の発生を抑制するのに十分な親水膜がウエハ表面に形成されやすくなるために、研磨加工に起因するLPDの数はより大きく低減する。この点において、研磨用組成物中の水溶性高分子の含有量が0.0003g/L以上、さらに言えば0.001g/L以上、もっと言えば0.003g/L以上、さらにもっと言えば0.005g/L以上であれば、研磨加工に起因するLPDの数を大きく低減することができる。 The content of the water-soluble polymer in the polishing composition is preferably 0.0003 g / L or more, more preferably 0.001 g / L or more, still more preferably 0.003 g / L or more, and most preferably 0.005 g / L or more. As the content of the water-soluble polymer increases, a hydrophilic film sufficient to suppress the occurrence of defects is easily formed on the wafer surface, so that the number of LPDs resulting from the polishing process is greatly reduced. In this respect, the content of the water-soluble polymer in the polishing composition is 0.0003 g / L or more, further 0.001 g / L or more, more preferably 0.003 g / L or more, and still more 0. If it is 0.005 g / L or more, the number of LPDs resulting from polishing can be greatly reduced.
研磨用組成物中の水溶性高分子の含有量はまた、0.1g/L以下であることが好ましく、より好ましくは0.02g/L以下、さらに好ましくは0.015g/L以下、最も好ましくは0.01g/L以下である。水溶性高分子による親水膜は研磨用組成物によるウエハの研磨速度(除去速度)の低下を招く。そのため、研磨用組成物中の水溶性高分子の含有量が少なくなるにつれて、親水膜による研磨速度の低下はより強く抑制される。この点において、研磨用組成物中の水溶性高分子の含有量が0.1g/L以下、さらに言えば0.02g/L以下、もっと言えば0.015g/L以下、さらにもっと言えば0.01g/L以下であれば、親水膜による研磨速度の低下を強く抑制することができる。 The content of the water-soluble polymer in the polishing composition is also preferably 0.1 g / L or less, more preferably 0.02 g / L or less, still more preferably 0.015 g / L or less, and most preferably Is 0.01 g / L or less. A hydrophilic film made of a water-soluble polymer causes a reduction in the polishing rate (removal rate) of the wafer by the polishing composition. Therefore, as the content of the water-soluble polymer in the polishing composition decreases, the decrease in the polishing rate due to the hydrophilic film is more strongly suppressed. In this respect, the content of the water-soluble polymer in the polishing composition is 0.1 g / L or less, more specifically 0.02 g / L or less, more preferably 0.015 g / L or less, and still more preferably 0. If it is 0.01 g / L or less, a decrease in the polishing rate due to the hydrophilic film can be strongly suppressed.
研磨用組成物に含まれる水溶性高分子の重量平均分子量は6,000以上であることが好ましい。水溶性高分子の重量平均分子量が大きくなるにつれて、欠陥の発生を抑制するのに十分な親水膜がウエハ表面に形成されやすくなるために、研磨加工に起因するLPDの数はより大きく低減する。この点において、研磨用組成物中の水溶性高分子の重量平均分子量が6,000以上であれば、研磨加工に起因するLPDの数を大きく低減することができる。 The water-soluble polymer contained in the polishing composition preferably has a weight average molecular weight of 6,000 or more. As the weight average molecular weight of the water-soluble polymer increases, a hydrophilic film sufficient to suppress the occurrence of defects is more likely to be formed on the wafer surface, so that the number of LPDs resulting from polishing is further reduced. In this respect, if the weight average molecular weight of the water-soluble polymer in the polishing composition is 6,000 or more, the number of LPDs resulting from polishing can be greatly reduced.
研磨用組成物に含まれる水溶性高分子の重量平均分子量はまた、4,000,000以下であることが好ましく、より好ましくは3,000,000以下である。水溶性高分子の重量平均分子量が小さくなるにつれて、親水膜によるウエハの研磨速度の低下はより強く抑制される。この点において、研磨用組成物中の水溶性高分子の重量平均分子量が4,000,000以下、さらに言えば3,000,000以下であれば、親水膜による研磨速度の低下を強く抑制することができる。 The weight average molecular weight of the water-soluble polymer contained in the polishing composition is also preferably 4,000,000 or less, more preferably 3,000,000 or less. As the weight average molecular weight of the water-soluble polymer decreases, the decrease in the wafer polishing rate by the hydrophilic film is more strongly suppressed. In this respect, if the weight average molecular weight of the water-soluble polymer in the polishing composition is 4,000,000 or less, and more specifically 3,000,000 or less, the decrease in the polishing rate by the hydrophilic film is strongly suppressed. be able to.
本実施形態の研磨用組成物に含まれるアルカリは、例えば、アルカリ金属水酸化物、アンモニア、アミン、第4級アンモニウム塩のいずれであってもよい。これらのアルカリは、ウエハを化学的に研磨する作用を有し、研磨用組成物によるウエハの研磨速度を向上させる働きをする。 The alkali contained in the polishing composition of the present embodiment may be any of alkali metal hydroxide, ammonia, amine, and quaternary ammonium salt, for example. These alkalis have an action of chemically polishing the wafer, and work to improve the polishing rate of the wafer by the polishing composition.
研磨用組成物に含まれるアルカリがアルカリ金属水酸化物又は第4級アンモニウム塩である場合には、その他のアルカリを用いた場合に比べて、研磨用組成物によるウエハの研磨速度が大きく向上するとともに、研磨後のウエハの表面粗さの増大が抑制される。従って、研磨用組成物に含まれるアルカリは、アルカリ金属水酸化物又は第4級アンモニウム塩であることが好ましい。 When the alkali contained in the polishing composition is an alkali metal hydroxide or a quaternary ammonium salt, the polishing rate of the wafer by the polishing composition is greatly improved as compared with the case where other alkalis are used. At the same time, an increase in the surface roughness of the wafer after polishing is suppressed. Therefore, the alkali contained in the polishing composition is preferably an alkali metal hydroxide or a quaternary ammonium salt.
研磨用組成物中のアルカリの含有量は、0.1g/L以上であることが好ましく、より好ましくは0.25g/L以上、さらに好ましくは0.5g/L以上である。アルカリの含有量が多くなるにつれて、研磨用組成物によるウエハの研磨速度はより大きく向上する。この点において、研磨用組成物中のアルカリの含有量が0.1g/L以上、さらに言えば0.25g/L以上、もっと言えば0.5g/L以上であれば、研磨用組成物によるウエハの研磨速度を大きく向上させることができる。 The alkali content in the polishing composition is preferably 0.1 g / L or more, more preferably 0.25 g / L or more, and further preferably 0.5 g / L or more. As the alkali content increases, the polishing rate of the wafer by the polishing composition is greatly improved. In this respect, if the alkali content in the polishing composition is 0.1 g / L or more, more specifically 0.25 g / L or more, and more specifically 0.5 g / L or more, it depends on the polishing composition. The polishing rate of the wafer can be greatly improved.
研磨用組成物中のアルカリの含有量はまた、5g/L以下であることが好ましく、より好ましくは4g/L以下、さらに好ましくは3g/L以下である。アルカリは、研磨後のウエハの表面粗さの増大を招く虞がある。そのため、研磨用組成物中のアルカリの含有量が少なくなるにつれて、研磨後のウエハの表面粗さの増大はより強く抑制される。この点において、研磨用組成物中のアルカリの含有量が5g/L以下、さらに言えば4g/L以下、もっと言えば3g/L以下であれば、研磨後のウエハの表面粗さの増大を強く抑制することができる。 The alkali content in the polishing composition is also preferably 5 g / L or less, more preferably 4 g / L or less, and still more preferably 3 g / L or less. Alkali may increase the surface roughness of the wafer after polishing. Therefore, as the alkali content in the polishing composition decreases, the increase in the surface roughness of the polished wafer is more strongly suppressed. In this respect, if the alkali content in the polishing composition is 5 g / L or less, more specifically 4 g / L or less, and more specifically 3 g / L or less, the surface roughness of the wafer after polishing is increased. It can be strongly suppressed.
本実施形態の研磨用組成物に含まれる砥粒は、例えば、コロイダルシリカ及びフュームドシリカのいずれであってもよい。これらの砥粒は、ウエハを機械的に研磨する作用を有し、研磨用組成物によるウエハの研磨速度を向上させる働きをする。 The abrasive grains contained in the polishing composition of the present embodiment may be, for example, colloidal silica or fumed silica. These abrasive grains have an action of mechanically polishing the wafer, and work to improve the polishing rate of the wafer by the polishing composition.
研磨用組成物に含まれる砥粒がコロイダルシリカである場合には、その他の砥粒を用いた場合に比べて、研磨用組成物の安定性が向上し、その結果、研磨後のウエハの表面のスクラッチが低減する。従って、研磨用組成物に含まれる砥粒はコロイダルシリカであることが好ましい。 When the abrasive grains contained in the polishing composition are colloidal silica, the stability of the polishing composition is improved as compared with the case where other abrasive grains are used. As a result, the surface of the wafer after polishing is improved. Scratch is reduced. Therefore, the abrasive grains contained in the polishing composition are preferably colloidal silica.
研磨用組成物中の砥粒の含有量は、1g/L以上であることが好ましく、より好ましくは3g/L以上、さらに好ましくは5g/L以上である。砥粒の含有量が多くなるにつれて、研磨用組成物によるウエハの研磨速度はより大きく向上する。この点において、研磨用組成物中の砥粒の含有量が1g/L以上、さらに言えば3g/L以上、もっと言えば5g/L以上であれば、研磨速度を大きく向上させることができる。 The content of abrasive grains in the polishing composition is preferably 1 g / L or more, more preferably 3 g / L or more, and still more preferably 5 g / L or more. As the abrasive content increases, the polishing rate of the wafer by the polishing composition is greatly improved. In this respect, the polishing rate can be greatly improved if the content of the abrasive grains in the polishing composition is 1 g / L or more, more specifically 3 g / L or more, and more specifically 5 g / L or more.
研磨用組成物中の砥粒の含有量はまた、45g/L以下であることが好ましく、より好ましくは35g/L以下、さらに好ましくは25g/L以下である。砥粒の含有量が少なくなるにつれて、研磨用組成物のコロイド安定性はより大きく向上する。この点において、研磨用組成物中の砥粒の含有量が45g/L以下、さらに言えば35g/L以下、もっと言えば25g/L以下であれば、研磨用組成物のコロイド安定性を大きく向上させることができる。 The content of abrasive grains in the polishing composition is also preferably 45 g / L or less, more preferably 35 g / L or less, and still more preferably 25 g / L or less. As the abrasive content decreases, the colloidal stability of the polishing composition is greatly improved. In this respect, if the content of abrasive grains in the polishing composition is 45 g / L or less, more specifically 35 g / L or less, and more specifically 25 g / L or less, the colloidal stability of the polishing composition is greatly increased. Can be improved.
研磨用組成物に含まれる砥粒の平均一次粒子径は、5nm以上であることが好ましく、より好ましくは10nm以上、さらに好ましくは15nm以上である。砥粒の平均一次粒子径が大きくなるにつれて、ウエハを機械的に研磨する砥粒の作用がより強まるため、研磨用組成物によるウエハの研磨速度はより大きく向上する。この点において、砥粒の平均一次粒子径が5nm以上、さらに言えば10nm以上、もっと言えば15nm以上であれば、研磨用組成物によるウエハの研磨速度を大きく向上させることができる。 The average primary particle diameter of the abrasive grains contained in the polishing composition is preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more. As the average primary particle diameter of the abrasive grains increases, the action of the abrasive grains that mechanically polish the wafer becomes stronger, so that the polishing rate of the wafer by the polishing composition is greatly improved. In this respect, if the average primary particle diameter of the abrasive grains is 5 nm or more, more specifically 10 nm or more, and more specifically 15 nm or more, the polishing rate of the wafer by the polishing composition can be greatly improved.
研磨用組成物に含まれる砥粒の平均一次粒子径はまた、200nm以下であることが好ましく、より好ましくは150nm以下、さらに好ましくは100nm以下である。平均一次粒子径の大きい砥粒は、研磨後のウエハ表面のスクラッチの増加を招く虞がある。そのため、砥粒の平均一次粒子径が小さくなるにつれて、研磨後のウエハ表面のスクラッチの増加はより強く抑制される。この点において、砥粒の平均一次粒子径が200nm以下、さらに言えば150nm以下、もっと言えば100nm以下であれば、研磨後のウエハ表面のスクラッチの増加をより強く抑制することができる。 The average primary particle diameter of the abrasive grains contained in the polishing composition is also preferably 200 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less. Abrasive grains having a large average primary particle size may cause an increase in scratches on the wafer surface after polishing. Therefore, as the average primary particle diameter of the abrasive grains decreases, the increase in the scratches on the wafer surface after polishing is more strongly suppressed. In this respect, if the average primary particle diameter of the abrasive grains is 200 nm or less, more specifically 150 nm or less, and more specifically 100 nm or less, an increase in scratches on the wafer surface after polishing can be more strongly suppressed.
本実施形態によれば以下の利点が得られる。
・ 本実施形態の研磨用組成物は、ポリビニルピロリドン及びポリN−ビニルホルムアミドから選ばれる少なくとも一種類の水溶性高分子を含有しており、この水溶性高分子によりウエハ表面に形成される親水膜は、研磨加工に起因するLPDの数を低減する働きをする。そのため、本実施形態の研磨用組成物によれば、研磨用組成物を用いて研磨した後のウエハ表面における研磨加工に起因するLPDの数を低減することができる。
According to the present embodiment, the following advantages can be obtained.
The polishing composition of this embodiment contains at least one water-soluble polymer selected from polyvinyl pyrrolidone and poly N-vinylformamide, and a hydrophilic film formed on the wafer surface by this water-soluble polymer Serves to reduce the number of LPDs resulting from polishing. Therefore, according to the polishing composition of the present embodiment, the number of LPDs resulting from polishing processing on the wafer surface after polishing using the polishing composition can be reduced.
前記実施形態を次のように変更してもよい。
・ 前記実施形態の研磨用組成物はキレート剤をさらに含有してもよい。キレート剤は、研磨用組成物中の金属不純物と錯イオンを形成してこれを捕捉することにより、金属不純物による研磨対象物の汚染を抑制する働きをする。キレート剤は、アミノカルボン酸系キレート剤又はホスホン酸系キレート剤であってもよく、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四メチル燐酸、又はジエチレントリアミン五メチル燐酸を含むことが好ましい。エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四メチル燐酸、及びジエチレントリアミン五メチル燐酸は、金属不純物を捕捉する能力が特に高い。
You may change the said embodiment as follows.
-The polishing composition of the said embodiment may further contain a chelating agent. The chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming and capturing complex ions with metal impurities in the polishing composition. The chelating agent may be an aminocarboxylic acid chelating agent or a phosphonic acid chelating agent, and includes ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetramethylphosphoric acid, or diethylenetriaminepentamethylphosphoric acid. preferable. Ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetramethylphosphoric acid, and diethylenetriaminepentamethylphosphoric acid have a particularly high ability to trap metal impurities.
・ 前記実施形態の研磨用組成物には必要に応じて防腐剤や消泡剤のような公知の添加剤を添加してもよい。
・ 前記実施形態の研磨用組成物は使用前に濃縮原液を希釈することによって調製されてもよい。
-You may add well-known additives like antiseptic | preservative and an antifoamer to the polishing composition of the said embodiment as needed.
-The polishing composition of the said embodiment may be prepared by diluting a concentrate concentrate before use.
次に、本発明の実施例及び比較例を説明する。
水溶性高分子、アルカリ、砥粒及びキレート剤を適宜に水と混合することにより実施例1〜53及び比較例1〜26の研磨用組成物を調製した。各研磨用組成物中の水溶性高分子、アルカリ、砥粒及びキレート剤の詳細は表1に示すとおりである。
Next, examples and comparative examples of the present invention will be described.
The polishing composition of Examples 1-53 and Comparative Examples 1-26 was prepared by mixing water-soluble polymer, an alkali, an abrasive grain, and a chelating agent with water suitably. The details of the water-soluble polymer, alkali, abrasive grains, and chelating agent in each polishing composition are as shown in Table 1.
表1及び表2の“水溶性高分子”欄中、PVP*1は重量平均分子量が10,000であるポリビニルピロリドンを表し、PVP*2は重量平均分子量が3,500,000であるポリビニルピロリドンを表し、PVP*3は重量平均分子量が1,600,000であるポリビニルピロリドンを表し、PVP*4は重量平均分子量が67,000であるポリビニルピロリドンを表し、PNVFは重量平均分子量が100,000であるポリN−ビニルホルムアミドを表し、PVAは重量平均分子量が62,000であるケン化度95%のポリビニルアルコールを表し、PVMEは重量平均分子量が10,000であるポリビニルメチルエーテルを表し、PEGは重量平均分子量が26,000であるポリエチレングリコールを表し、PEOは重量平均分子量が200,000であるポリエチレンオキサイドを表し、PPPは重量平均分子量が9,000であるポリオキシエチレンポリオキシプロピレンブロック共重合体を表し、PEIは重量平均分子量が10,000であるポリエチレンイミンを表し、PAAは重量平均分子量が25,000であるポリアクリル酸を表し、PAA−NH4は重量平均分子量が20,000であるポリアクリル酸アンモニウムを表し、PAA−Naは重量平均分子量が20,000であるポリアクリル酸ナトリウムを表し、PAAMは重量平均分子量が1,000,000であるポリアクリルアミドを表し、PSS−Naは重量平均分子量が100,000であるポリスチレンスルホン酸ナトリウムを表し、HECは重量平均分子量が1,000,000であるヒドロキシエチルセルロースを表し、CMC−Na*1は重量平均分子量が10,000であるカルボキシメチルセルロースナトリウムを表し、CMC−Na*2は重量平均分子量が330,000であるカルボキシメチルセルロースナトリウムを表し、CMC−Na*3は重量平均分子量が90,000であるカルボキシメチルセルロースナトリウムを表し、CMC−Na*4は重量平均分子量が20,000であるカルボキシメチルセルロースナトリウムを表す。 In the “Water-soluble polymer” column of Tables 1 and 2, PVP * 1 represents polyvinylpyrrolidone having a weight average molecular weight of 10,000, and PVP * 2 is polyvinylpyrrolidone having a weight average molecular weight of 3,500,000. PVP * 3 represents polyvinylpyrrolidone having a weight average molecular weight of 1,600,000, PVP * 4 represents polyvinylpyrrolidone having a weight average molecular weight of 67,000, and PNVF has a weight average molecular weight of 100,000. PVA represents a 95% saponification polyvinyl alcohol having a weight average molecular weight of 62,000, PVME represents a polyvinyl methyl ether having a weight average molecular weight of 10,000, and PEG Represents polyethylene glycol having a weight average molecular weight of 26,000, PEO Represents a polyethylene oxide having a weight average molecular weight of 200,000, PPP represents a polyoxyethylene polyoxypropylene block copolymer having a weight average molecular weight of 9,000, and PEI has a weight average molecular weight of 10,000. represents polyethyleneimine, PAA represents polyacrylic acid having a weight average molecular weight of 25,000, PAA-NH 4 represents ammonium polyacrylate having a weight average molecular weight of 20,000, PAA-Na the weight average molecular weight Represents sodium polyacrylate having a weight average molecular weight of 1,000,000, and PSS-Na represents sodium polystyrene sulfonate having a weight average molecular weight of 100,000. HEC has a weight average molecular weight of 1,000. CMC-Na * 1 represents sodium carboxymethylcellulose having a weight average molecular weight of 10,000, and CMC-Na * 2 represents sodium carboxymethylcellulose having a weight average molecular weight of 330,000. , CMC-Na * 3 represents carboxymethylcellulose sodium having a weight average molecular weight of 90,000, and CMC-Na * 4 represents sodium carboxymethylcellulose having a weight average molecular weight of 20,000.
表1及び表2の“アルカリ”欄中、TMAHは水酸化テトラメチルアンモニウムを表し、KOHは水酸化カリウムを表し、NaOHは水酸化ナトリウムを表し、NH3はアンモニアを表し、PIZは無水ピペラジンを表し、IMZはイミダゾールを表す。 In the “Alkali” column of Tables 1 and 2, TMAH represents tetramethylammonium hydroxide, KOH represents potassium hydroxide, NaOH represents sodium hydroxide, NH 3 represents ammonia, and PIZ represents anhydrous piperazine. And IMZ represents imidazole.
表1及び表2の“砥粒”欄中、CS*1は平均一次粒子径が35nmであるコロイダルシリカを表し、CS*2は平均一次粒子径が200nmであるコロイダルシリカを表し、CS*3は平均一次粒子径が150nmであるコロイダルシリカを表し、CS*4は平均一次粒子径が100nmであるコロイダルシリカを表し、CS*5は平均一次粒子径が55nmであるコロイダルシリカを表し、CS*6は平均一次粒子径が15nmであるコロイダルシリカを表し、CS*7は平均一次粒子径が10nmであるコロイダルシリカを表し、CS*8は平均一次粒子径が5nmであるコロイダルシリカを表す。 In the “Abrasive” column of Tables 1 and 2, CS * 1 represents colloidal silica having an average primary particle diameter of 35 nm, CS * 2 represents colloidal silica having an average primary particle diameter of 200 nm, and CS * 3 Represents colloidal silica having an average primary particle diameter of 150 nm, CS * 4 represents colloidal silica having an average primary particle diameter of 100 nm, CS * 5 represents colloidal silica having an average primary particle diameter of 55 nm, and CS * 6 represents colloidal silica having an average primary particle diameter of 15 nm, CS * 7 represents colloidal silica having an average primary particle diameter of 10 nm, and CS * 8 represents colloidal silica having an average primary particle diameter of 5 nm.
表1及び表2の“キレート剤”欄中、TTHAはトリエチレンテトラミン六酢酸を表し、DTPAはジエチレントリアミン五酢酸を表し、EDTPOはエチレンジアミン四エチレンホスホン酸を表す。 In the “chelating agent” column of Tables 1 and 2, TTHA represents triethylenetetramine hexaacetic acid, DTPA represents diethylenetriaminepentaacetic acid, and EDTPO represents ethylenediaminetetraethylenephosphonic acid.
表1及び表2の“研磨速度”欄には、実施例1〜53及び比較例1〜26の研磨用組成物を用いて、直径200mm、厚さ730μmのシリコンウエハ(p−型、結晶方位<100>、COP(crystal originated particles)フリー)を表3に示す条件で研磨したときに得られる研磨速度を測定した結果を示す。研磨速度は、研磨前後の各ウエハの厚みの差を研磨時間で除することにより求めた。ウエハの厚みの計測には、黒田精工株式会社製の平坦度検査装置“NANOMETRO 300TT”を使用した。 In the “polishing rate” column of Tables 1 and 2, a silicon wafer having a diameter of 200 mm and a thickness of 730 μm (p-type, crystal orientation) using the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26. The result of measuring the polishing rate obtained when <100>, COP (crystal originated particles) free) is polished under the conditions shown in Table 3 is shown. The polishing rate was determined by dividing the difference in thickness of each wafer before and after polishing by the polishing time. For measuring the thickness of the wafer, a flatness inspection device “NANOMETRO 300TT” manufactured by Kuroda Seiko Co., Ltd. was used.
表1及び表2の“欠陥”欄には、実施例1〜53及び比較例1〜26の研磨用組成物を用いて研磨した後のシリコンウエハ表面で測定される研磨加工に起因するLPDの数について評価した結果を示す。具体的には、直径200mm、厚さ730μmのシリコンウエハ(p−型、結晶方位<100>、COPフリー)を、実施例1〜53及び比較例1〜26の研磨用組成物を用いて表3に示す条件で予備研磨した後、純水で20倍希釈した株式会社フジミインコーポレーテッド製の“GLANZOX−3900”を用いて表4に示す条件でさらに仕上げ研磨した。仕上げ研磨後のウエハに対し、SC−1洗浄(Standard Clean 1)及びIPA(isopropyl alcohol)蒸気乾燥を行ってからケーエルエー・テンコール社製の“SURFSCAN SP1-TBI”を用いてまず第1回目のLPDの測定を行った。その後、同じウエハに対し、再びSC−1洗浄及びIPA蒸気乾燥を行ってから“SURFSCAN SP1-TBI”を用いて第2回目のLPDの測定を行った。第1回目と第2回目の測定で位置が変わらないLPDを研磨加工に起因するLPDと定義し、ウエハ表面当たりの研磨加工に起因するLPDの数を測定した。“欠陥”欄中、◎(優)はウエハ表面当たりの研磨加工に起因するLPDの数が10個未満であったことを示し、○(良)は10個以上20個未満、△(可)は20個以上30個未満、×(不良)は30個以上であったことを示す。 In the “Defect” column of Tables 1 and 2, the LPD resulting from the polishing process measured on the surface of the silicon wafer after polishing using the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 is shown. The result evaluated about the number is shown. Specifically, a silicon wafer (p-type, crystal orientation <100>, COP free) having a diameter of 200 mm and a thickness of 730 μm is represented using the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26. After preliminary polishing under the conditions shown in No. 3, further polishing was performed under the conditions shown in Table 4 using “GLANZOX-3900” manufactured by Fujimi Incorporated, which was diluted 20 times with pure water. The wafer after final polishing is subjected to SC-1 cleaning (Standard Clean 1) and IPA (isopropyl alcohol) vapor drying, and then the first LPD using “SURFSCAN SP1-TBI” manufactured by KLA-Tencor. Was measured. Thereafter, SC-1 cleaning and IPA vapor drying were performed again on the same wafer, and then the second LPD measurement was performed using “SURFSCAN SP1-TBI”. The LPD whose position did not change between the first measurement and the second measurement was defined as LPD resulting from the polishing process, and the number of LPDs resulting from the polishing process per wafer surface was measured. In the “Defects” column, ◎ (excellent) indicates that the number of LPDs resulting from the polishing process per wafer surface was less than 10, ○ (good) indicates 10 or more and less than 20, Δ (possible) Indicates 20 or more and less than 30, and x (defect) indicates 30 or more.
表1及び表2の“濡れ”欄には、水溶性高分子の作用によるウエハ表面への親水膜の形成を評価するべく、実施例1〜53及び比較例1〜26の研磨用組成物を用いて表3に示す条件で研磨した後のシリコンウエハ表面の濡れを評価した結果を示す。具体的には、研磨後のウエハを軽く水洗してから目視により表面の濡れ状態を確認して評価した。“濡れ”欄中、0はウエハ表面が全く濡れていなかったことを示し、3はウエハ表面の30%が濡れていたこと、6はウエハ表面の60%が濡れていたこと、7はウエハ表面の70%が濡れていたこと、8はウエハ表面の80%が濡れていたこと、9はウエハ表面の90%が濡れていたこと、10はウエハ表面の100%が濡れていたことを示す。 In the “wetting” column of Tables 1 and 2, the polishing compositions of Examples 1 to 53 and Comparative Examples 1 to 26 are used to evaluate the formation of a hydrophilic film on the wafer surface by the action of the water-soluble polymer. The result of having evaluated the wettability of the silicon wafer surface after using and polishing on the conditions shown in Table 3 is shown. Specifically, the polished wafer was lightly washed and then visually evaluated for the wet state of the surface. In the “Wet” column, 0 indicates that the wafer surface is not wet at all, 3 indicates that 30% of the wafer surface is wet, 6 indicates that 60% of the wafer surface is wet, and 7 indicates the wafer surface. 70 is wet, 8 is 80% of the wafer surface is wet, 9 is 90% of the wafer surface is wet, and 10 is 100% of the wafer surface is wet.
なお、比較例11の研磨用組成物はゲル化が激しく、ウエハの研磨に使用することができなかった。 The polishing composition of Comparative Example 11 was so gelled that it could not be used for wafer polishing.
前記実施形態より把握できる技術的思想について以下に記載する。
・ コロイダルシリカ及びフュームドシリカから選ばれる少なくとも一種類の砥粒をさらに含有するLPD低減剤。この場合、LPD低減剤による研磨対象物の研磨速度を向上させることができる。
The technical idea that can be grasped from the embodiment will be described below.
-An LPD reducing agent further containing at least one abrasive selected from colloidal silica and fumed silica. In this case, the polishing rate of the object to be polished by the LPD reducing agent can be improved.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012250463A JP5656960B2 (en) | 2012-11-14 | 2012-11-14 | LPD reducing agent and silicon wafer defect reducing method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012250463A JP5656960B2 (en) | 2012-11-14 | 2012-11-14 | LPD reducing agent and silicon wafer defect reducing method using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006227614A Division JP5204960B2 (en) | 2006-08-24 | 2006-08-24 | Polishing composition and polishing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013065873A true JP2013065873A (en) | 2013-04-11 |
JP5656960B2 JP5656960B2 (en) | 2015-01-21 |
Family
ID=48189038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012250463A Active JP5656960B2 (en) | 2012-11-14 | 2012-11-14 | LPD reducing agent and silicon wafer defect reducing method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5656960B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016215336A (en) * | 2015-05-22 | 2016-12-22 | 株式会社フジミインコーポレーテッド | Polishing method and composition conditioner |
CN110832622A (en) * | 2017-07-14 | 2020-02-21 | 信越半导体株式会社 | Polishing method |
JP2022043176A (en) * | 2020-06-30 | 2022-03-15 | 株式会社荏原製作所 | Substrate processing apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63272459A (en) * | 1987-04-27 | 1988-11-09 | Mitsubishi Monsanto Chem Co | Composition for finely polishing wafer |
JPH02158684A (en) * | 1988-12-12 | 1990-06-19 | Mitsubishi Monsanto Chem Co | Fine-polishing composition for wafer |
JPH11116942A (en) * | 1997-10-14 | 1999-04-27 | Fujimi Inc | Abrasive composition |
-
2012
- 2012-11-14 JP JP2012250463A patent/JP5656960B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63272459A (en) * | 1987-04-27 | 1988-11-09 | Mitsubishi Monsanto Chem Co | Composition for finely polishing wafer |
JPH02158684A (en) * | 1988-12-12 | 1990-06-19 | Mitsubishi Monsanto Chem Co | Fine-polishing composition for wafer |
JPH11116942A (en) * | 1997-10-14 | 1999-04-27 | Fujimi Inc | Abrasive composition |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016215336A (en) * | 2015-05-22 | 2016-12-22 | 株式会社フジミインコーポレーテッド | Polishing method and composition conditioner |
CN110832622A (en) * | 2017-07-14 | 2020-02-21 | 信越半导体株式会社 | Polishing method |
JP2022043176A (en) * | 2020-06-30 | 2022-03-15 | 株式会社荏原製作所 | Substrate processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5656960B2 (en) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5204960B2 (en) | Polishing composition and polishing method | |
JP7148506B2 (en) | Polishing composition and polishing method using the same | |
CN106663619B (en) | Composition for polishing silicon wafer | |
JP2008053414A (en) | Polishing composition and polishing method | |
JP7534283B2 (en) | Polishing composition | |
JP7353051B2 (en) | Composition for polishing silicon wafers | |
JP2006005246A (en) | Rinsing composition and rinsing method using the same | |
KR102565682B1 (en) | Silicon substrate intermediate polishing composition and silicon substrate polishing composition set | |
JP5656960B2 (en) | LPD reducing agent and silicon wafer defect reducing method using the same | |
JP7534282B2 (en) | Polishing composition | |
JP2020027834A (en) | Composition for silicon wafer polishing | |
JP5460827B2 (en) | Silicon wafer manufacturing method | |
JP7061965B2 (en) | Polishing composition | |
WO2015159507A1 (en) | Composition for polishing silicon wafers | |
JP7502267B2 (en) | Method for polishing object containing material having silicon-silicon bond | |
CN113631679B (en) | Polishing composition | |
JP2013034026A (en) | Polishing composition and method for manufacturing semiconductor wafer using the same | |
JP7450532B2 (en) | polishing composition | |
WO2024029457A1 (en) | Polishing composition | |
WO2024190532A1 (en) | Polishing composition, concentrated liquid of polishing composition, and polishing method | |
WO2023181929A1 (en) | Polishing composition | |
JP2013016832A (en) | Polishing composition, lpd reduction agent, lpd reduction method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140910 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5656960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |