JP2013065527A - Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell - Google Patents

Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell Download PDF

Info

Publication number
JP2013065527A
JP2013065527A JP2011204834A JP2011204834A JP2013065527A JP 2013065527 A JP2013065527 A JP 2013065527A JP 2011204834 A JP2011204834 A JP 2011204834A JP 2011204834 A JP2011204834 A JP 2011204834A JP 2013065527 A JP2013065527 A JP 2013065527A
Authority
JP
Japan
Prior art keywords
group
dye
solar cell
sensitized solar
semiconductor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011204834A
Other languages
Japanese (ja)
Inventor
Takaaki Kasai
孝章 香西
Koichi Sumioka
孝一 住岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011204834A priority Critical patent/JP2013065527A/en
Publication of JP2013065527A publication Critical patent/JP2013065527A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To provide a dye for a dye-sensitized solar cell, having a color tone of blue purple to blue, and having an excellent photoelectric conversion characteristic, to provide a semiconductor electrode sensitized by the dye for a dye-sensitized solar cell, and to provide a dye-sensitized solar cell using the semiconductor electrode.SOLUTION: A tertiary nitrogen atom of an indoline ring acts as an electron donative portion (donor) and a quaternary nitrogen atom of a benzothiazolium ring acts as an electron-withdrawing portion (acceptor), and both of them have a structure coupled by conjugated double bond. The semiconductor electrode, sensitized with a dye having the above-mentioned chemical structure and the dye-sensitized solar cell, formed by using the semiconductor electrode, are provided.

Description

本発明は、色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池に関するものである。   The present invention relates to a dye for a dye-sensitized solar cell, a semiconductor electrode, and a dye-sensitized solar cell.

大量の化石燃料の使用で引き起こされる二酸化炭素濃度増加による地球温暖化、更に、人口増加に伴うエネルギー需要の増大は、人類の存亡にまで関わる問題と認識されている。そのため、近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものは住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。   Global warming due to the increase in carbon dioxide concentration caused by the use of large amounts of fossil fuels, and the increase in energy demand accompanying population growth are recognized as problems related to the survival of humankind. Therefore, in recent years, the use of sunlight that does not generate infinite and harmful substances has been energetically studied. Examples of solar energy that is currently used as a clean energy source include residential single crystal silicon, polycrystalline silicon, amorphous silicon, and inorganic solar cells such as cadmium telluride and indium copper selenide.

しかしながら、これらの無機系太陽電池にも欠点がある。例えばシリコン系では、非常に純度の高いものが要求され、当然精製の工程は複雑でプロセス数が多く、製造コストが高い。それ以外にも軽量化等の要求もあり、特に、ユーザーへのペイバックが長い点でも不利であり、普及には問題があった。   However, these inorganic solar cells also have drawbacks. For example, a silicon system is required to have a very high purity. Naturally, the purification process is complicated, the number of processes is large, and the manufacturing cost is high. In addition, there is a demand for weight reduction and the like, and in particular, it is disadvantageous in that payback to the user is long, and there is a problem in the spread.

その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料、または、これらの複合材料等である。これらを真空蒸着法、キャスト法またはディッピング法等により、薄膜化し電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、光電変換効率は1%以下と低いものが多く、また、耐久性も悪いという問題もあった。   On the other hand, many solar cells using organic materials have been proposed. As an organic solar cell, a Schottky photoelectric conversion element that joins a p-type organic semiconductor and a metal having a low work function, a p-type organic semiconductor and an n-type inorganic semiconductor, or a p-type organic semiconductor and an electron-accepting organic compound are joined. There are heterojunction photoelectric conversion elements and the like, and organic semiconductors used are synthetic dyes and pigments such as chlorophyll and perylene, conductive polymer materials such as polyacetylene, or composite materials thereof. These are thinned by a vacuum deposition method, a casting method, a dipping method or the like to form a battery material. Although organic materials have advantages such as low cost and easy area enlargement, there are many problems that the photoelectric conversion efficiency is as low as 1% or less, and the durability is poor.

こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(例えば、非特許文献1参照)。この文献には、電池作製に必要な材料及び製造技術も開示されている。この太陽電池は色素増感型太陽電池またはグレッツェル型太陽電池と呼ばれ、ルテニウム錯体(以下Ru錯体と記す)で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点は酸化チタン等の安価な半導体を高純度まで精製する必要がないために、前述の無機系太陽電池と比較して製造コストが低減できること、また、利用できる光は可視光領域に幅広くいきわたっているため、可視光領域のエネルギー強度が高いとされる太陽光を有効に電気へ変換できることである。   Under such circumstances, a solar cell exhibiting good characteristics has been reported by Dr. Gretzell of Switzerland (see, for example, Non-Patent Document 1). This document also discloses materials and manufacturing techniques necessary for battery fabrication. This solar cell is called a dye-sensitized solar cell or a Gretzel solar cell, and is a wet solar cell using a titanium oxide porous thin film spectrally sensitized with a ruthenium complex (hereinafter referred to as Ru complex) as a working electrode. The advantage of this method is that it is not necessary to purify an inexpensive semiconductor such as titanium oxide to a high purity, so that the manufacturing cost can be reduced compared to the inorganic solar cell described above, and the available light is in the visible light region. Because it is widespread, it is possible to effectively convert sunlight, which has a high energy intensity in the visible light region, into electricity.

しかしながら、資源的制約がある貴金属のRuが使われているため、色素増感型太陽電池が実用化された場合には、Ru錯体の安定供給に問題が生じる可能性がある。また、この資源的な制約から、Ru錯体自体が高価であり、大量製造の際にコスト面での問題も生じる可能性がある。このような問題を解決するため、Ru錯体の少なくとも一部をより安価な有機色素へ変更することを目的として、様々な提案がなされてきた。その例として、種々のメロシアニン色素、シアニン色素、9−フェニルキサンテン系色素、クマリン系色素等が開示されているが、これらは、光電変換特性において、Ru錯体よりもかなり劣っており、実用性に乏しいものがほとんどであった(例えば、特許文献1〜4参照)。   However, since noble metal Ru, which has resource limitations, is used, there is a possibility that a problem may occur in the stable supply of the Ru complex when a dye-sensitized solar cell is put into practical use. In addition, due to this resource limitation, the Ru complex itself is expensive, and there may be a problem in terms of cost during mass production. In order to solve such a problem, various proposals have been made for the purpose of changing at least part of the Ru complex to a cheaper organic dye. For example, various merocyanine dyes, cyanine dyes, 9-phenylxanthene dyes, coumarin dyes, and the like have been disclosed, but these are considerably inferior to Ru complexes in terms of photoelectric conversion characteristics, and are practical. Most of them were poor (see, for example, Patent Documents 1 to 4).

また有機色素は、ルテニウム錯体にはない黄色、赤色、青色といった鮮明な色調を有しているため、その色調を生かした意匠性用途での応用も多く提案されている(例えば非特許文献2など参照)。うち青紫〜青の色調を有する色素としては、種々のスチリル色素、スクアリリウム環含有色素等が提案されているが(例えば、特許文献5、6等参照)、十分な光電変換特性を有している色素はほとんどなく、更なる改良が求められている。   In addition, since organic dyes have clear colors such as yellow, red, and blue, which are not found in ruthenium complexes, many applications have been proposed for design applications that make use of the colors (for example, Non-Patent Document 2). reference). Among them, various styryl dyes, squarylium ring-containing dyes, and the like have been proposed as dyes having a blue-violet to blue color tone (see, for example, Patent Documents 5 and 6), but have sufficient photoelectric conversion characteristics. There is almost no pigment, and further improvements are required.

一方、特開2005−82678号公報(特許文献7)、特開2010−49990号公報(特許文献8)には、ある特定の構造を有するインドリン環と含窒素複素環四級塩より誘導されるヘミシアニン色素が開示されている。しかしながら、それらの公報中には、インドリン環の三級窒素原子の置換基についていくつかの例示があるものの、それらの置換基及び置換位置が該ヘミシアニン色素の光電変換特性に及ぼす影響に関しては詳細な記載がない。よって、該ヘミシアニン色素に関しては、上記インドリン環の三級窒素原子の置換基操作により、その色素の有する光電変換特性をいかに高めることができるか、予測できうるものではなかった。   On the other hand, JP 2005-82678 A (Patent Document 7) and JP 2010-49990 A (Patent Document 8) are derived from an indoline ring having a specific structure and a nitrogen-containing heterocyclic quaternary salt. Hemicyanine dyes are disclosed. However, although these publications have some examples of the substituents of the tertiary nitrogen atom of the indoline ring, details regarding the influence of these substituents and the substitution position on the photoelectric conversion characteristics of the hemicyanine dye are detailed. There is no description. Therefore, with respect to the hemicyanine dye, it has not been possible to predict how the photoelectric conversion characteristics of the dye can be improved by manipulation of the substituent of the tertiary nitrogen atom of the indoline ring.

特開平11−238905号公報JP 11-238905 A 特開2001−76773号公報JP 2001-76773 A 特開平10−92477号公報Japanese Patent Laid-Open No. 10-92477 特開2002−164089号公報JP 2002-164089 A 特開2003−234133号公報JP 2003-234133 A 特開2007−70509号公報JP 2007-70509 A 特開2005−82678号公報JP 2005-82678 A 特開2010−49990号公報JP 2010-49990 A

Nature,353,737(1991)Nature, 353, 737 (1991) 応用物理,第73巻,第12号,1549(2004)Applied Physics, Vol. 73, No. 12, 1549 (2004)

本発明の課題は、青紫〜青の色調を有し、かつ優れた光電変換特性を有する色素増感型太陽電池用色素と、この色素増感型太陽電池用色素により増感された半導体電極及びその半導体電極を用いてなる色素増感型太陽電池を提供することである。   An object of the present invention is to provide a dye-sensitized solar cell dye having a color tone of bluish purple to blue and having excellent photoelectric conversion characteristics, a semiconductor electrode sensitized by the dye-sensitized solar cell dye, and The object is to provide a dye-sensitized solar cell using the semiconductor electrode.

本発明者らは、上記課題を解決すべく鋭意検討した結果、一般式(1)で示される色素増感型太陽電池用色素(以下、「色素」という)、この色素により増感された半導体電極及び半導体電極を用いてなる色素増感型太陽電池によって、これらの目標を達成することができた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a dye for a dye-sensitized solar cell represented by the general formula (1) (hereinafter referred to as “dye”), a semiconductor sensitized by this dye These goals could be achieved by a dye-sensitized solar cell using an electrode and a semiconductor electrode.

Figure 2013065527
Figure 2013065527

一般式(1)において、Rはフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、2−オキサゾリニル基、5,6−ジヒドロ−4H−1,3−オキサジン−2−イル基のいずれかより選ばれる置換基を示す。RとRは水素原子またはアルキル基を示し、両者が連結してシクロペンタン環またはシクロヘキサン環を形成しても良い。L、Lは共役メチン基ユニットを示す。Lはアルキレン基を示す。Rはハメットの置換基定数σp値が負の値となる電子供与性基を示す。RはpKaが6未満の酸性基を示す。Xはカウンターアニオンを示す。 In the general formula (1), R 1 is a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group, a cyano group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a 2-oxazolinyl group, or 5,6-dihydro-4H. A substituent selected from any of -1,3-oxazin-2-yl groups is shown. R 2 and R 3 represent a hydrogen atom or an alkyl group, and both may be linked to form a cyclopentane ring or a cyclohexane ring. L 1 and L 2 each represent a conjugated methine group unit. L 3 represents an alkylene group. R 4 represents an electron donating group in which Hammett's substituent constant σp value is negative. R 5 represents an acidic group having a pKa of less than 6. X represents a counter anion.

上記一般式(1)で示される色素は、鮮やかな青紫〜青の色調を有し、かつ優れた光電変換特性を有しており、この色素で増感することによって、青紫〜青の色調を有し、かつ優れた光電変換効率を有する半導体電極及びその半導体電極を用いてなる色素増感型太陽電池を得ることができる。   The dye represented by the general formula (1) has a vivid blue-violet to blue color tone and excellent photoelectric conversion characteristics. By sensitizing with this dye, the blue-violet to blue color tone is obtained. A semiconductor electrode having excellent photoelectric conversion efficiency and a dye-sensitized solar cell using the semiconductor electrode can be obtained.

以下に本発明の色素について詳細に述べる。前記一般式(1)において、Rはフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、カルバモイル基(例えば、カルバモイル基、N−メチルカルバモイル基、N−エチルカルバモイル基、N−プロピルカルバモイル基、N−ブチルカルバモイル基、N−ペンチルカルバモイル基、N−ヘキシルカルバモイル基、N−ヘプチルカルバモイル基、N−オクチルカルバモイル基、N−デシルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジエチルカルバモイル基、N,N−ジプロピルカルバモイル基、N−メチル−N−エチルカルバモイル基、N−メチル−N−プロピルカルバモイル基、N−メチル−N−ブチルカルバモイル基、N−エチル−N−プロピルカルバモイル基、N−エチル−N−ブチルカルバモイル基、N,N−ペンタメチレンカルバモイル基、N,N−ヘキサメチレンカルバモイル基、N−フェニルカルバモイル基、N−(1−ナフチル)カルバモイル基、N−(2−ナフチル)カルバモイル基、N−(2−ピリジル)カルバモイル基、N−(3−ピリジル)カルバモイル基、N−(4−ピリジル)カルバモイル基、N−メチル−N−フェニルカルバモイル基、N−エチル−N−フェニルカルバモイル基、N,N−ジフェニルカルバモイル基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、オクチルオキシカルボニル基、デシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基、1−ナフチルオキシカルボニル基、2−ナフチルオキシカルボニル基等)、2−オキサゾリニル基、5,6−ジヒドロ−4H−1,3−オキサジン−2−イル基のいずれかより選ばれる置換基を示す。なお以上述べたカルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基においては、可能であるならば、更に種々の置換基を有していてもよい。その置換基の例としては、脂肪族基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基等のアルキル基、アリル基、ブテニル基等のアルケニル基、プロパルギル基等のアルキニル基、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、1−ナフチルメチル基、2−ナフチルメチル基等のアラルキル基等)、芳香族基(例えば、フェニル基、トリル基、ナフチル基等)、複素環基(例えば、インドリル基、ピリジル基、フリル基、チエニル基等)、アミノ基、ビニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヒドロキシ基、カルボキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子等があり、またこれらは可能であるならば更に置換基を有していても良い。なお以上述べたRが結合しているベンゼン環上には、R以外の置換基を有していないことが好ましい。 The dye of the present invention is described in detail below. In the general formula (1), R 1 represents a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group, a cyano group, a carbamoyl group (for example, a carbamoyl group, an N-methylcarbamoyl group, an N-ethylcarbamoyl group, an N-propyl group). Carbamoyl group, N-butylcarbamoyl group, N-pentylcarbamoyl group, N-hexylcarbamoyl group, N-heptylcarbamoyl group, N-octylcarbamoyl group, N-decylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N -Diethylcarbamoyl group, N, N-dipropylcarbamoyl group, N-methyl-N-ethylcarbamoyl group, N-methyl-N-propylcarbamoyl group, N-methyl-N-butylcarbamoyl group, N-ethyl-N- Propylcarbamoyl group, N-ethyl-N-butylcarba Moyl group, N, N-pentamethylenecarbamoyl group, N, N-hexamethylenecarbamoyl group, N-phenylcarbamoyl group, N- (1-naphthyl) carbamoyl group, N- (2-naphthyl) carbamoyl group, N- ( 2-pyridyl) carbamoyl group, N- (3-pyridyl) carbamoyl group, N- (4-pyridyl) carbamoyl group, N-methyl-N-phenylcarbamoyl group, N-ethyl-N-phenylcarbamoyl group, N, N -Diphenylcarbamoyl group, etc.), alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, octyloxycarbonyl group, decyloxycarbonyl group, etc.) , Aryloxycar Nyl group (for example, phenoxycarbonyl group, 1-naphthyloxycarbonyl group, 2-naphthyloxycarbonyl group, etc.), 2-oxazolinyl group, 5,6-dihydro-4H-1,3-oxazin-2-yl group The substituent selected from these is shown. The carbamoyl group, alkoxycarbonyl group and aryloxycarbonyl group described above may further have various substituents if possible. Examples of the substituent include aliphatic groups (for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, Alkyl groups such as pentadecyl groups, alkenyl groups such as allyl groups and butenyl groups, alkynyl groups such as propargyl groups, benzyl groups, phenethyl groups, phenylpropyl groups, phenylbutyl groups, 1-naphthylmethyl groups, 2-naphthylmethyl groups, etc. Aralkyl groups, etc.), aromatic groups (eg, phenyl, tolyl, naphthyl, etc.), heterocyclic groups (eg, indolyl, pyridyl, furyl, thienyl, etc.), amino groups, vinyl groups, alkoxy Group, aryloxy group, alkylthio group, arylthio group, hydroxy group, carboxy group, alkoxycarbo Group, an aryloxycarbonyl group, there are halogen atoms or the like, and may further have a substituent, if they are possible. In addition, it is preferable that the above-described benzene ring to which R 1 is bonded has no substituent other than R 1 .

とRは水素原子またはアルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基等)を示し、両者が連結してシクロペンタン環またはシクロヘキサン環を形成しても良い。うち好ましいものは両者が連結してシクロペンタン環またはシクロヘキサン環を形成しているものであり、中でも両者が連結してシクロペンタン環を形成しているものが特に好ましい。 R 2 and R 3 are each a hydrogen atom or an alkyl group (for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, Pentadecyl group or the like), and both may be linked to form a cyclopentane ring or a cyclohexane ring. Among them, preferred are those in which they are linked to form a cyclopentane ring or a cyclohexane ring, and particularly preferred are those in which both are linked to form a cyclopentane ring.

、Lは共役メチン基ユニットを示す。この共役メチン基ユニットは奇数炭素数の共役メチン鎖から構成されているが、その炭素数は1または3が好ましく、うち特に好ましいものはL、Lともに炭素数1個のものである。 L 1 and L 2 each represent a conjugated methine group unit. This conjugated methine group unit is composed of a conjugated methine chain having an odd number of carbon atoms. The number of carbon atoms is preferably 1 or 3, and particularly preferred are L 1 and L 2 having 1 carbon atom.

はアルキレン基(例えば、メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基等、なおこれらは直鎖構造であっても、分枝構造であっても良い)を示す。うち好ましいものは炭素数1から4のものであり、中でも炭素数1または2のものが特に好ましい。 L 3 represents an alkylene group (for example, a methylene group, an ethylene group, a propylene group, a tetramethylene group, a hexamethylene group, etc., which may be a linear structure or a branched structure). Of these, those having 1 to 4 carbon atoms are preferred, and those having 1 or 2 carbon atoms are particularly preferred.

はハメットの置換基定数σp値が負の値となる電子供与性基を示す。このハメットのσp値については、種々の成書に記載があるが、例えば、「薬物の構造活性相関−ドラッグデザインと作用機作研究への指針−」(化学の領域、増刊122号;南江堂(1979))、Chem.Rev.91,165(1991)等が詳しい。これら電子供与性基の具体的な例としては、アルキル基(例えばメチル基、エチル基、n−プロピル基、n−ブチル基、iso−ブチル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、n−ヘキシルオキシ基、n−オクチルオキシ基、ベンジルオキシ基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジ−n−ブチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、アセチルアミノ基等)、ヒドラジノ基、ウレイド基、ヒドロキシ基等が挙げられるが、むろんこれらに限定されるものではない。以上のうち好ましいものは、アルキル基、アルコキシ基、ジアルキル置換アミノ基、ヒドロキシ基等であり、中でもジアルキル置換アミノ基、アルコキシ基、ヒドロキシ基が特に好ましい。また上述の置換基は、可能であるならばその置換基の有する電子供与性因子を失活させない範囲で、更に種々の置換基により置換されていても良い。また、上述のR以外の置換基は、ベンゾチアゾリウム環上には存在しないことが好ましい。 R 4 represents an electron donating group in which Hammett's substituent constant σp value is negative. The Hammett's σp value is described in various books. For example, “Structure-activity relationship of drugs—Guidelines for drug design and mechanism of action research” (Chemistry domain, extra number 122; Nankodo ( 1979)), Chem. Rev. 91, 165 (1991). Specific examples of these electron donating groups include alkyl groups (for example, methyl group, ethyl group, n-propyl group, n-butyl group, iso-butyl group, etc.), alkoxy groups (for example, methoxy group, ethoxy group). N-propoxy group, iso-propoxy group, n-butoxy group, n-hexyloxy group, n-octyloxy group, benzyloxy group, etc.), amino group (for example, amino group, methylamino group, ethylamino group, Dimethylamino group, diethylamino group, di-n-propylamino group, di-n-butylamino group, phenylamino group, diphenylamino group, acetylamino group, etc.), hydrazino group, ureido group, hydroxy group and the like. Of course, it is not limited to these. Of these, preferred are an alkyl group, an alkoxy group, a dialkyl-substituted amino group, a hydroxy group and the like, and among them, a dialkyl-substituted amino group, an alkoxy group and a hydroxy group are particularly preferred. Further, if possible, the above-described substituent may be further substituted with various substituents as long as the electron-donating factor of the substituent is not deactivated. Moreover, it is preferable that substituents other than the above-mentioned R 4 do not exist on the benzothiazolium ring.

はpKaが6未満の酸性基を表す。このpKaが6未満の酸性基の例としては、例えばカルボキシ基、スルホ基、スルフィノ基、スルフェノ基、フォスフォノ基、フォスフィニコ基等が挙げられるが、中でもカルボキシ基が特に好ましい。またこれらの酸性基は、遊離酸であっても、塩(例えばアンモニウム塩、トリメチルアンモニウム塩、トリエチルアンモニウム塩、テトラ−n−ブチルアンモニウム塩等のアンモニウム塩、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩等)であってもよい。 R 5 represents an acidic group having a pKa of less than 6. Examples of the acidic group having a pKa of less than 6 include, for example, a carboxy group, a sulfo group, a sulfino group, a sulfeno group, a phosphono group, and a phosphinico group, and among them, a carboxy group is particularly preferable. These acidic groups may be free acids, such as salts (for example, ammonium salts such as ammonium salt, trimethylammonium salt, triethylammonium salt, tetra-n-butylammonium salt, lithium salt, sodium salt, potassium salt, etc. Alkali metal salts, etc.).

はカウンターアニオンを表す。その例としては、ハロゲンイオン(例えば、クロリド、ブロミド、ヨージド等)、アルキル硫酸イオン(例えば、メチル硫酸イオン、エチル硫酸イオン等)、有機スルホン酸イオン(例えば、メタンスルホナート、p−トルエンスルホナート等)、過塩素酸イオン等がある。また、色素分子が分子内塩を形成している場合は、このカウンターアニオンは存在しない。 X represents a counter anion. Examples thereof include halogen ions (for example, chloride, bromide, iodide, etc.), alkyl sulfate ions (for example, methyl sulfate ion, ethyl sulfate ion, etc.), organic sulfonate ions (for example, methanesulfonate, p-toluenesulfonate). Etc.) and perchlorate ions. Further, when the dye molecule forms an inner salt, this counter anion does not exist.

なお以上述べた一般式(1)におけるスチルベン構造部位においては、Z型とE型の幾何異性体が生じる可能性があるが、本発明においては、この幾何異性はいずれであっても構わない。またL、Lの共役メチン基ユニットについても、それぞれの共役炭素二重結合についての幾何構造の異性体(cis型、trans型)が生じる可能性があるが、本発明においては、これらの幾何異性の組み合わせもどのような組み合わせであっても構わない。 In the stilbene structure site in the general formula (1) described above, Z-type and E-type geometric isomers may be generated. In the present invention, any of these geometric isomers may be used. In addition, regarding the conjugated methine group units of L 1 and L 2 , geometrical isomers (cis type and trans type) of each conjugated carbon double bond may be generated. Any combination of geometric isomerism may be used.

また一般式(1)におけるRとRがいずれもアルキル基である組み合わせの場合には、RとRがそれぞれ結合するインドリン環2位及び3位の炭素原子が不斉炭素となり、それぞれの部位の光学異性体が生じる可能性があるが、本発明においては、これらの光学異性の組み合わせはどのような組み合わせであっても構わない。 When R 2 and R 3 in the general formula (1) are both alkyl groups, the carbon atoms at the 2-position and 3-position of the indoline ring to which R 2 and R 3 are respectively bonded are asymmetric carbons, There is a possibility that optical isomers of each site may be generated, but in the present invention, any combination of these optical isomers may be used.

本発明の一般式(1)で示される色素においては、インドリン環の三級窒素原子が電子供与性部位(ドナー)、そしてベンゾチアゾリウム環の四級窒素原子が電子吸引性部位(アクセプター)として作用し、そしてこの両者が共役二重結合で連結された構造を有している。一般に、光電変換材料における増感色素を分子設計するにあたっては、色素から半導体への電子注入をより効率的に行わせるために、電子が流れ込むアクセプター部位の近傍に半導体との吸着性を促進する酸性基を導入する。そして色素は、吸着性を促進する酸性基を介して半導体上に吸着する。色素は半導体へ電子注入した後には、色素カチオンとなり、ついで後述の電解質からの電子注入を受けて色素として再生する。この色素の電子授受のサイクルの繰り返しにより、色素増感型太陽電池は電池としての機能を発現する。   In the dye represented by the general formula (1) of the present invention, the tertiary nitrogen atom of the indoline ring is an electron donating site (donor), and the quaternary nitrogen atom of the benzothiazolium ring is an electron withdrawing site (acceptor). And has a structure in which both are linked by a conjugated double bond. In general, when molecularly designing a sensitizing dye in a photoelectric conversion material, in order to perform electron injection from the dye to the semiconductor more efficiently, an acid that promotes the adsorptivity to the semiconductor in the vicinity of the acceptor site into which electrons flow. Introduce a group. The dye adsorbs on the semiconductor via an acidic group that promotes adsorptivity. After the electron is injected into the semiconductor, the dye becomes a dye cation, and then regenerates as a dye by receiving electron injection from an electrolyte described later. The dye-sensitized solar cell exhibits a function as a battery by repeating the electron transfer cycle of the dye.

以下に、本発明の色素の具体例を挙げるが、本発明はむろんこれらに限定されるものではない。   Although the specific example of the pigment | dye of this invention is given to the following, this invention is not limited to these.

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

これらの化合物は、例えば特開2005−82678号公報等に記載の公知の合成法を参考にすれば容易に合成できる。   These compounds can be easily synthesized with reference to known synthesis methods described in, for example, JP-A-2005-82678.

色素増感型太陽電池は、導電性支持体、導電性支持体表面上に設けられた色素によって増感された半導体層(半導体電極)、電荷移動層及び対極からなる。半導体層は単層構成でも積層構成でもよく、目的に応じて設計される。また、導電性支持体の導電層と半導体層の境界、半導体層と移動層の境界等、この素子における境界においては、各層の構成成分は相互に拡散または混合してもよい。   The dye-sensitized solar cell includes a conductive support, a semiconductor layer (semiconductor electrode) sensitized with a dye provided on the surface of the conductive support, a charge transfer layer, and a counter electrode. The semiconductor layer may be a single layer structure or a stacked structure, and is designed according to the purpose. In addition, at the boundary of this element such as the boundary between the conductive layer and the semiconductor layer of the conductive support, the boundary between the semiconductor layer and the moving layer, the constituent components of each layer may be diffused or mixed with each other.

導電性支持体は、金属のように支持体そのものに導電性があるもの、または表面に導電剤を含む導電層を有するガラスあるいはプラスチックの支持体を用いることができる。後者の場合、導電剤としては白金、金、銀、銅、アルミニウム等の金属、炭素、あるいはインジウム−スズ複合酸化物(以降「ITO」と略記する)、フッ素をドーピングした酸化スズ等の金属酸化物(以降「FTO」と略記する)等が挙げられる。導電性支持体は、光を10%以上透過する透明性を有していることが好ましく、50%以上透過することがより好ましい。この中でも、ITOやFTOからなる導電層をガラス上に堆積した導電性ガラスが特に好ましい。   As the conductive support, there can be used a support made of glass or plastic having a conductive layer containing a conductive agent on its surface, such as a metal having a conductive property in itself. In the latter case, the conductive agent is a metal oxide such as platinum, gold, silver, copper, aluminum or the like, carbon or indium-tin composite oxide (hereinafter abbreviated as “ITO”), fluorine-doped tin oxide or the like. (Hereinafter abbreviated as “FTO”) and the like. The conductive support preferably has a transparency that transmits light of 10% or more, and more preferably transmits 50% or more. Among these, conductive glass in which a conductive layer made of ITO or FTO is deposited on glass is particularly preferable.

透明導電性基板の抵抗を下げる目的で、金属リード線を用いてもよい。金属リード線の材質はアルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。金属リード線は、透明導電性支持体に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法、あるいは表面に導電性を有する透明基板上に金属リード線を設置する方法がある。   A metal lead wire may be used for the purpose of reducing the resistance of the transparent conductive substrate. Examples of the material of the metal lead wire include metals such as aluminum, copper, silver, gold, platinum, and nickel. A metal lead wire is installed on a transparent conductive support by vapor deposition, sputtering, pressure bonding, etc., and a method of providing ITO or FTO thereon, or a method of installing a metal lead wire on a transparent substrate having conductivity on the surface. is there.

半導体層が含有する半導体としては、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等がある。金属のカルコゲニドとしてはチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、あるいはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が好ましいものとして挙げられる。その他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム等のリン化物やガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が好ましい。また、ペロブスカイト構造を有する化合物としては、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が好ましい。   Examples of the semiconductor contained in the semiconductor layer include a single semiconductor such as silicon and germanium, a compound semiconductor typified by a metal chalcogenide, or a compound having a perovskite structure. Metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, or tantalum oxides, cadmium, zinc, lead, silver, antimony, bismuth. And sulfides, cadmium, selenide of lead, telluride of cadmium, and the like. Other compound semiconductors are preferably phosphides such as zinc, gallium, indium, cadmium, gallium arsenide, copper-indium-selenide, copper-indium-sulfide, and the like. As the compound having a perovskite structure, strontium titanate, calcium titanate, sodium titanate, barium titanate, potassium niobate and the like are preferable.

本発明に用いられる半導体は、単結晶でも多結晶でもよい。光電変換効率から見ると、単結晶が好ましいが、製造コスト、原材料確保等から見ると、多結晶が好ましい。半導体の粒径は、2nm以上、1μm以下であることが好ましい。   The semiconductor used in the present invention may be single crystal or polycrystalline. From the viewpoint of photoelectric conversion efficiency, a single crystal is preferable, but from the viewpoint of manufacturing cost, securing raw materials, etc., polycrystalline is preferable. The particle size of the semiconductor is preferably 2 nm or more and 1 μm or less.

導電性支持体上に半導体層を形成する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、ゾル−ゲル法等がある。分散液の作製方法としては、ゾル−ゲル法、乳鉢等で機械的に粉砕する方法、ミルを使って粉砕しながら分散する方法、または、半導体を合成する際に溶媒中で微粒子として析出させ、そのまま使用する方法等が挙げられる。   Examples of a method for forming a semiconductor layer on a conductive support include a method in which a dispersion or colloidal solution of semiconductor fine particles is applied on a conductive support, a sol-gel method, and the like. As a method for preparing the dispersion, a sol-gel method, a method of mechanically pulverizing with a mortar, etc., a method of dispersing while pulverizing using a mill, or precipitating as fine particles in a solvent when synthesizing a semiconductor, The method of using as it is is mentioned.

機械的粉砕、または、ミルを使用して粉砕して作製する分散液の場合、少なくとも半導体微粒子単独または半導体微粒子と樹脂の混合物を、水または有機溶剤に分散して作製される。使用される樹脂としては、スチレン、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等によるビニル化合物の重合体や共重合体、シリコーン樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、セルロースエステル樹脂、セルロースエーテル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂等が挙げられる。   In the case of a dispersion prepared by mechanical pulverization or pulverization using a mill, the dispersion is prepared by dispersing at least semiconductor fine particles alone or a mixture of semiconductor fine particles and a resin in water or an organic solvent. Resins used include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, acrylic acid esters, methacrylic acid esters, silicone resins, phenoxy resins, polysulfone resins, polyvinyl butyral resins, polyvinyl formal resins, polyester resins. , Cellulose ester resin, cellulose ether resin, urethane resin, phenol resin, epoxy resin, polycarbonate resin, polyarylate resin, polyamide resin, polyimide resin and the like.

半導体微粒子を分散する媒体としては、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系媒体、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系媒体、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系媒体、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系媒体、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系媒体、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系媒体、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系媒体を挙げることができる。これらは、単独または2種以上の混合媒体として用いることができる。   As a medium for dispersing the semiconductor fine particles, alcohol media such as water, methanol, ethanol, or isopropyl alcohol, ketone media such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, ethyl formate, ethyl acetate, or n-butyl acetate, etc. Ester media such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane, and amide media such as N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2-pyrrolidone , Dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-dichlorobenzene, fluorobenzene, bromobenzene, iodine Halogenated hydrocarbon media such as debenzene or 1-chloronaphthalene, n-pentane, n-hexane, n-octane, 1,5-hexadiene, cyclohexane, methylcyclohexane, cyclohexadiene, benzene, toluene, o-xylene, Examples thereof include hydrocarbon-based media such as m-xylene, p-xylene, ethylbenzene, and cumene. These can be used alone or as a mixed medium of two or more.

分散液の塗布方法としては、ローラ法、ディップ法、エアーナイフ法、ブレード法、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、あるいはスプレー法を挙げることができる。   Examples of the dispersion application method include a roller method, a dip method, an air knife method, a blade method, a wire bar method, a slide hopper method, an extrusion method, a curtain method, a spin method, and a spray method.

半導体層は単層であっても多層であってもよい。多層の場合、粒径の異なる半導体微粒子の分散液を多層塗布したり、種類の異なる半導体や、樹脂、添加剤の組成が異なる塗布層を多層塗布することもできる。また、一度の塗布で膜厚が不足する場合には多層塗布は有効な手段である。   The semiconductor layer may be a single layer or multiple layers. In the case of multiple layers, a dispersion of semiconductor fine particles having different particle diameters can be applied in multiple layers, or different types of semiconductors, and application layers having different compositions of resins and additives can be applied in multiple layers. In addition, when the film thickness is insufficient with a single coating, the multilayer coating is an effective means.

一般的に、半導体層の膜厚が増大するほど単位投影面積当たりの担持色素量も増えるため光の捕獲率が高くなるが、生成した電子の拡散距離も増えるために電荷の再結合も多くなってしまう。従って、半導体層の膜厚は0.1〜100μmが好ましく、1〜30μmがより好ましい。   In general, as the thickness of the semiconductor layer increases, the amount of supported dye increases per unit projected area and the light capture rate increases. However, the diffusion distance of the generated electrons also increases, and the recombination of charges also increases. End up. Therefore, the film thickness of the semiconductor layer is preferably 0.1 to 100 μm, and more preferably 1 to 30 μm.

半導体微粒子は導電性支持体上に塗布した後、加熱処理してもよいし、しなくともよい。しかし、微粒子同士の電子的コンタクト及び塗膜強度の向上や支持体との密着性向上の点から、加熱処理をした方が好ましい。更に、マイクロ波照射、プレス処理あるいは電子線照射を行ってもよい。これらの処理は、単独で行っても構わないし、二種類以上行っても構わない。加熱処理の際、加熱温度は40〜700℃が好ましく、80〜600℃がより好ましい。また、加熱時間は5分〜50時間が好ましく、10分〜20時間がより好ましい。マイクロ波照射は、半導体電極の半導体層形成側から照射しても構わないし、裏側から照射しても構わない。照射時間には特に制限がないが、1時間以内で行うことが好ましい。プレス処理は、9.8×10N/m以上で行うことが好ましく、9.8×10N/m以上で行うことが更に好ましい。プレスする時間は、特に制限がないが、1時間以内で行うことが好ましい。 The semiconductor fine particles may or may not be heat-treated after being coated on the conductive support. However, heat treatment is preferred from the viewpoints of electronic contact between fine particles, improvement in coating film strength, and improvement in adhesion to the support. Further, microwave irradiation, press treatment, or electron beam irradiation may be performed. These treatments may be performed alone or in combination of two or more. In the heat treatment, the heating temperature is preferably 40 to 700 ° C, more preferably 80 to 600 ° C. The heating time is preferably 5 minutes to 50 hours, and more preferably 10 minutes to 20 hours. Microwave irradiation may be performed from the semiconductor layer forming side of the semiconductor electrode or from the back side. Although there is no restriction | limiting in particular in irradiation time, It is preferable to carry out within 1 hour. The press treatment is preferably performed at 9.8 × 10 6 N / m 2 or more, and more preferably at 9.8 × 10 7 N / m 2 or more. The pressing time is not particularly limited, but is preferably within 1 hour.

半導体微粒子は多くの色素を吸着できるように表面積の大きなものが好ましい。このため半導体層を支持体上に塗設した状態での表面積は、投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。   The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. For this reason, it is preferable that the surface area in the state which coated the semiconductor layer on the support body is 10 times or more with respect to a projection area, and it is more preferable that it is 100 times or more.

本発明の一般式(1)で示される色素増感型太陽電池用色素は、単独で使用しても良く、2種以上を併用しても構わない。また、ルテニウム(Ru)錯体も用いた色素増感型太陽電池におけるRuの使用量を減少させる目的から、本発明の色素とRu錯体を併用しても構わない。他のメロシアニン色素、シアニン色素、9−フェニルキサンテン系色素、クマリン系色素、フタロシアニン系色素、ナフタロシアニン系色素等と本発明の色素を併用しても構わない。   The dye-sensitized solar cell dye represented by the general formula (1) of the present invention may be used alone or in combination of two or more. In addition, for the purpose of reducing the amount of Ru used in a dye-sensitized solar cell that also uses a ruthenium (Ru) complex, the dye of the present invention and a Ru complex may be used in combination. Other merocyanine dyes, cyanine dyes, 9-phenylxanthene dyes, coumarin dyes, phthalocyanine dyes, naphthalocyanine dyes and the like may be used in combination.

半導体層に色素を吸着させる方法としては、色素溶液中あるいは色素分散液中に半導体微粒子を含有する作用電極を浸漬する方法、色素溶液あるいは分散液を半導体層に塗布して吸着させる方法を用いることができる。前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法等を用いることができ、後者の場合は、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等を用いることができる。   As a method of adsorbing the dye to the semiconductor layer, a method of immersing a working electrode containing semiconductor fine particles in a dye solution or a dye dispersion, or a method of applying a dye solution or a dispersion to the semiconductor layer and adsorbing it is used. Can do. In the former case, dipping method, dipping method, roller method, air knife method, etc. can be used, and in the latter case, wire bar method, slide hopper method, extrusion method, curtain method, spin method, spray method, etc. Can be used.

色素を吸着する際に、縮合剤を併用してもよい。縮合剤は、無機物表面に物理的あるいは化学的に色素を結合すると思われる触媒的作用をするもの、または、化学量論的に作用し、化学平衡を有利に移動させるもののいずれであってもよい。更に、縮合助剤としてチオールまたはヒドロキシ化合物を添加してもよい。   When adsorbing the dye, a condensing agent may be used in combination. The condensing agent may be either catalytically acting that physically or chemically binds the dye to the inorganic surface, or one that acts stoichiometrically to favorably shift the chemical equilibrium. . Furthermore, you may add a thiol or a hydroxy compound as a condensation adjuvant.

色素を溶解あるいは分散する媒体は、水、メタノール、エタノール、イソプロピルアルコール、あるいはt−ブチルアルコール等のアルコール系媒体、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系媒体、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系媒体、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系媒体、アセトニトリル、プロピオニトリル等のニトリル系媒体、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系媒体、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系媒体、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系媒体を挙げることができる。これらは、単独または2種以上混合して用いることができる。   The medium for dissolving or dispersing the pigment is water, methanol, ethanol, isopropyl alcohol, alcohol-based media such as t-butyl alcohol, ketone-based media such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, ethyl formate, ethyl acetate, or Ester media such as n-butyl acetate, ether media such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane, nitrile media such as acetonitrile and propionitrile, N, N-dimethylformamide, N, N- Amide-based media such as dimethylacetamide or N-methyl-2-pyrrolidone, dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, Halogenated hydrocarbon media such as lobenzene, o-dichlorobenzene, fluorobenzene, bromobenzene, iodobenzene, or 1-chloronaphthalene, n-pentane, n-hexane, n-octane, 1,5-hexadiene, cyclohexane, Examples thereof include hydrocarbon-based media such as methylcyclohexane, cyclohexadiene, benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and cumene. These can be used alone or in admixture of two or more.

色素を吸着する際の温度としては、−50℃以上200℃以下が好ましい。また、吸着は攪拌しながら行っても構わない。攪拌する場合の方法としては、スターラー、ボールミル、ペイントコンディショナー、サンドミル、アトライター、ディスパーザーまたは超音波分散等が挙げられるが、これらに限定されるものではない。吸着に要する時間は、5秒以上1000時間以下が好ましく、10秒以上500時間以下がより好ましく、1分以上150時間以下が更に好ましい。   The temperature for adsorbing the dye is preferably -50 ° C or higher and 200 ° C or lower. Further, the adsorption may be performed while stirring. Examples of the stirring method include, but are not limited to, a stirrer, a ball mill, a paint conditioner, a sand mill, an attritor, a disperser, and ultrasonic dispersion. The time required for adsorption is preferably 5 seconds to 1000 hours, more preferably 10 seconds to 500 hours, and even more preferably 1 minute to 150 hours.

本発明では、色素を半導体層に吸着させる際に、ステロイド系化合物を併用して、共吸着させても構わない。   In the present invention, when the dye is adsorbed on the semiconductor layer, a steroidal compound may be used in combination and co-adsorbed.

そのステロイド系化合物の具体例としては、下記E−1〜E−10に示すものが挙げられる。ステロイド系化合物の量は、色素1質量部に対して0.01〜1000質量部が好ましく、0.1〜100質量部がより好ましい。   Specific examples of the steroidal compound include those shown in E-1 to E-10 below. The amount of the steroidal compound is preferably 0.01 to 1000 parts by mass and more preferably 0.1 to 100 parts by mass with respect to 1 part by mass of the pigment.

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

色素を吸着した後、または、色素と上記ステロイド系化合物を共吸着した後、t−ブチルピリジン、2−ピコリン、2,6−ルチジン等の塩基性化合物、または、リン酸、リン酸エステル、アルキルリン酸、酢酸、プロピオン酸等の酸性化合物を含有する有機溶媒に浸漬処理しても構わない。   After adsorbing the dye, or after co-adsorbing the dye and the steroidal compound, basic compounds such as t-butylpyridine, 2-picoline, 2,6-lutidine, or phosphoric acid, phosphate ester, alkyl You may immerse in the organic solvent containing acidic compounds, such as phosphoric acid, an acetic acid, and propionic acid.

電荷移動層としては、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、無機正孔輸送物質、有機正孔輸送物質等を用いることができる。   As the charge transfer layer, an electrolytic solution in which a redox couple is dissolved in an organic solvent, a gel electrolyte in which a polymer matrix is impregnated with a liquid in which the redox couple is dissolved in an organic solvent, a molten salt containing a redox couple, a solid electrolyte, an inorganic A hole transport material, an organic hole transport material, or the like can be used.

電解液は、電解質、溶媒、及び添加物から構成されることが好ましい。好ましい電解質はヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム等の金属ヨウ化物−ヨウ素の組み合わせ、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩−ヨウ素の組み合わせ、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物−臭素の組み合わせ、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物の臭素塩−臭素の組み合わせ、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン−キノン等が挙げられる。上述の電解質は単独の組み合わせであっても混合であってもよい。また、電解質として、室温で溶融状態の溶融塩を用いることもできる。この溶融塩を用いた場合は、特に溶媒を用いなくても構わない。   The electrolytic solution is preferably composed of an electrolyte, a solvent, and an additive. Preferred electrolytes are metal iodide-iodine combinations such as lithium iodide, sodium iodide, potassium iodide, cesium iodide, and calcium iodide, and quaternary compounds such as tetraalkylammonium iodide, pyridinium iodide, and imidazolium iodide. Iodine salt of ammonium compound-iodine combination, metal bromide-bromine combination such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide, quaternary ammonium such as tetraalkylammonium bromide, pyridinium bromide Bromine-bromine combinations of compounds, metal complexes such as ferrocyanate-ferricyanate, ferrocene-ferricinium ions, sulfur compounds such as sodium polysulfide, alkylthiol-alkyldisulfides, viologen Dye, hydroquinone - quinones, and the like. The above-mentioned electrolytes may be a single combination or a mixture. Further, a molten salt in a molten state at room temperature can also be used as the electrolyte. When this molten salt is used, it is not necessary to use a solvent.

電解液における電解質濃度は、0.05〜20Mが好ましく、0.1〜15Mが更に好ましい。電解液に用いる溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、3−メチル−2−オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル等のエーテル系溶媒、メタノール、エタノール、ポリプロピレングリコールモノアルキルエーテル等のアルコール系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、ジメチルスルホキシド、スルホラン等の非プロトン性極性溶媒等が好ましい。また、t−ブチルピリジン、2−ピコリン、2,6−ルチジン等の塩基性化合物を併用しても構わない。   The electrolyte concentration in the electrolytic solution is preferably 0.05 to 20M, and more preferably 0.1 to 15M. Solvents used for the electrolyte include carbonate solvents such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether solvents such as dioxane, diethyl ether and ethylene glycol dialkyl ether, methanol, ethanol Alcohol solvents such as polypropylene glycol monoalkyl ether, nitrile solvents such as acetonitrile and benzonitrile, aprotic polar solvents such as dimethyl sulfoxide and sulfolane are preferred. Further, basic compounds such as t-butylpyridine, 2-picoline, and 2,6-lutidine may be used in combination.

電解質は、ポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法により、ゲル化させることもできる。ポリマー添加によりゲル化させる場合の好ましいポリマーとしては、ポリアクリロニトリル、ポリフッ化ビニリデン等を挙げることができる。オイルゲル化剤添加によりゲル化させる場合の好ましいゲル化剤としては、ジベンジリデン−D−ソルビトール、コレステロール誘導体、アミノ酸誘導体、トランス−(1R,2R)−1,2−シクロヘキサンジアミンのアルキルアミド誘導体、アルキル尿素誘導体、N−オクチル−D−グルコンアミドベンゾエート、双頭型アミノ酸誘導体、4級アンモニウム誘導体等を挙げることができる。   The electrolyte can also be gelled by techniques such as polymer addition, oil gelling agent addition, polymerization including polyfunctional monomers, and polymer crosslinking reaction. Preferable polymers in the case of gelation by polymer addition include polyacrylonitrile, polyvinylidene fluoride and the like. Preferred gelling agents for gelation by adding an oil gelling agent include dibenzylidene-D-sorbitol, cholesterol derivatives, amino acid derivatives, trans- (1R, 2R) -1,2-cyclohexanediamine alkylamide derivatives, alkyl Examples include urea derivatives, N-octyl-D-gluconamide benzoate, double-headed amino acid derivatives, quaternary ammonium derivatives, and the like.

多官能モノマーによって重合する場合の好ましいモノマーとしては、ジビニルベンゼン、エチレングルコールジメタクリレート、エチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等を挙げることができる。更に、アクリルアミド、メチルアクリレート等のアクリル酸やα−アルキルアクリル酸から誘導されるエステル類やアミド類、マレイン酸ジメチル、フマル酸ジエチル等のマレイン酸やフマル酸から誘導されるエステル類、ブタジエン、シクロペンタジエン等のジエン類、スチレン、p−クロロスチレン、スチレンスルホン酸ナトリウム等の芳香族ビニル化合物、ビニルエステル類、アクリロニトリル、メタクリロニトリル、含窒素複素環を有するビニル化合物、4級アンモニウム塩を有するビニル化合物、N−ビニルホルムアミド、ビニルスルホン酸、ビニリデンフルオライド、ビニルアルキルエーテル類、N−フェニルマレイミド等の単官能モノマーを含有してもよい。モノマー全量に占める多官能性モノマーは、0.5〜70質量%が好ましく、1.0〜50質量%がより好ましい。   Preferred monomers for polymerization with a polyfunctional monomer include divinylbenzene, ethylene glycol dimethacrylate, ethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, and the like. be able to. Furthermore, esters and amides derived from acrylic acid such as acrylamide and methyl acrylate and α-alkyl acrylic acid, esters derived from maleic acid and fumaric acid such as dimethyl maleate and diethyl fumarate, butadiene, cyclohexane and the like. Dienes such as pentadiene, aromatic vinyl compounds such as styrene, p-chlorostyrene and sodium styrene sulfonate, vinyl esters, acrylonitrile, methacrylonitrile, vinyl compounds having a nitrogen-containing heterocyclic ring, vinyl having a quaternary ammonium salt A monofunctional monomer such as a compound, N-vinylformamide, vinylsulfonic acid, vinylidene fluoride, vinyl alkyl ethers, N-phenylmaleimide may be contained. 0.5-70 mass% is preferable and the polyfunctional monomer which occupies for the monomer whole quantity has more preferable 1.0-50 mass%.

上述のモノマーは、ラジカル重合によって重合することができる。本発明で使用できるゲル電解質用モノマーは、加熱、光、電子線あるいは電気化学的にラジカル重合することができる。架橋高分子が加熱によって形成される場合に使用される重合開始剤は、2,2′−アゾビスイソブチロニトリル、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2′−アゾビス(2−メチルプロピオネート)等のアゾ系開始剤、ベンゾイルパーオキシド等の過酸化物系開始剤等が好ましい。これらの重合開始剤の添加量は、モノマー総量に対して、0.01〜20質量%が好ましく、0.1〜10質量%がより好ましい。   The above-mentioned monomers can be polymerized by radical polymerization. The monomer for gel electrolyte that can be used in the present invention can be radically polymerized by heating, light, electron beam or electrochemical. The polymerization initiator used when the crosslinked polymer is formed by heating is 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl-2 An azo initiator such as 2,2'-azobis (2-methylpropionate) and a peroxide initiator such as benzoyl peroxide are preferable. The addition amount of these polymerization initiators is preferably 0.01 to 20% by mass and more preferably 0.1 to 10% by mass with respect to the total amount of monomers.

ポリマーの架橋反応により電解質をゲル化させる場合、架橋反応に必要な反応性基を含有するポリマー及び架橋剤を併用することが望ましい。架橋反応に必要な反応性基の好ましい例としては、ピリジン、イミダゾール、チアゾール、オキサゾール、トリアゾール、モルフォリン、ピペリジン、ピペラジン等の含窒素複素環を挙げることができる。好ましい架橋剤は、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロリド、イソシアネート等の窒素原子に対して求電子反応可能な2官能以上の試薬を挙げることができる。   When the electrolyte is gelled by a polymer crosslinking reaction, it is desirable to use a polymer containing a reactive group necessary for the crosslinking reaction and a crosslinking agent in combination. Preferable examples of the reactive group necessary for the crosslinking reaction include nitrogen-containing heterocycles such as pyridine, imidazole, thiazole, oxazole, triazole, morpholine, piperidine and piperazine. Preferred cross-linking agents include bifunctional or higher functional reagents capable of electrophilic reaction with nitrogen atoms such as alkyl halides, halogenated aralkyls, sulfonic acid esters, acid anhydrides, acid chlorides, and isocyanates.

無機正孔輸送物質を電解質の代わりに用いる場合、ヨウ化銅、チオシアン化銅等をキャスト法、塗布法、スピンコート法、浸漬法、電解メッキ等の手法により電極内部に導入することができる。   When an inorganic hole transport material is used instead of the electrolyte, copper iodide, copper thiocyanide, or the like can be introduced into the electrode by a casting method, a coating method, a spin coating method, a dipping method, electrolytic plating, or the like.

また、電解質の代わりに有機電荷輸送物質を用いることも可能である。電荷輸送物質には正孔輸送物質と電子輸送物質がある。前者の例としては、例えば特公昭34−5466号公報等に示されているオキサジアゾール類、特公昭45−555号公報等に示されているトリフェニルメタン類、特公昭52−4188号公報等に示されているピラゾリン類、特公昭55−42380号公報等に示されているヒドラゾン類、特開昭56−123544号公報等に示されているオキサジアゾール類、特開昭54−58445号公報に示されているテトラアリールベンジジン類、特開昭58−65440号公報、あるいは特開昭60−98437号公報に示されているスチルベン類等を挙げることができる。その中でも、本発明に使用される電荷輸送物質としては、特開昭60−24553号公報、特開平2−96767号公報、特開平2−183260号公報、並びに特開平2−226160号公報に示されているヒドラゾン類、特開平2−51162号公報、並びに特開平3−75660号公報に示されているスチルベン類が特に好ましい。また、これらは単独、あるいは2種以上の混合物として用いることができる。   It is also possible to use an organic charge transport material instead of the electrolyte. Charge transport materials include hole transport materials and electron transport materials. Examples of the former include, for example, oxadiazoles disclosed in Japanese Patent Publication No. 34-5466, triphenylmethanes disclosed in Japanese Patent Publication No. 45-555, and Japanese Patent Publication No. 52-4188. Pyrazolines shown in the above, hydrazones shown in JP-B-55-42380, oxadiazoles shown in JP-A-56-123544, etc., JP-A-54-58445 And tetrasylbenzidines disclosed in JP-A No. 58-65440, and stilbenes disclosed in JP-A No. 60-98437. Among them, examples of the charge transport material used in the present invention are shown in JP-A-60-24553, JP-A-2-96767, JP-A-2-183260, and JP-A-2-226160. Particularly preferred are the hydrazones described, and the stilbenes shown in JP-A-2-51162 and JP-A-3-75660. Moreover, these can be used individually or in mixture of 2 or more types.

一方、電子輸送物質としては、例えばクロラニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、1,3,7−トリニトロジベンゾチオフェン、あるいは1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキシド等がある。これらの電子輸送物質は単独、あるいは2種以上の混合物として用いることができる。   On the other hand, examples of the electron transport material include chloranil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 1,3,7-trinitrodibenzothiophene, 1,3,7-trinitrodibenzothiophene-5,5-dioxide, etc. . These electron transport materials can be used alone or as a mixture of two or more.

更に、電荷移動層中の電荷移動効率を向上させる目的として、ある種の電子吸引性化合物を電荷移動層中に添加することもできる。この電子吸引性化合物としては例えば、2,3−ジクロロ−1,4−ナフトキノン、1−ニトロアントラキノン、1−クロロ−5−ニトロアントラキノン、2−クロロアントラキノン、フェナントレンキノン等のキノン類、4−ニトロベンズアルデヒド等のアルデヒド類、9−ベンゾイルアントラセン、インダンジオン、3,5−ジニトロベンゾフェノン、あるいは3,3′,5,5′−テトラニトロベンゾフェノン等のケトン類、無水フタル酸、4−クロロナフタル酸無水物等の酸無水物、テレフタラルマロノニトリル、9−アントリルメチリデンマロノニトリル、4−ニトロベンザルマロノニトリル、あるいは4−(p−ニトロベンゾイルオキシ)ベンザルマロノニトリル等のシアノ化合物、3−ベンザルフタリド、3−(α−シアノ−p−ニトロベンザル)フタリド、あるいは3−(α−シアノ−p−ニトロベンザル)−4,5,6,7−テトラクロロフタリド等のフタリド類等を挙げることができる。   Further, for the purpose of improving the charge transfer efficiency in the charge transfer layer, a certain electron withdrawing compound can be added to the charge transfer layer. Examples of the electron-withdrawing compound include quinones such as 2,3-dichloro-1,4-naphthoquinone, 1-nitroanthraquinone, 1-chloro-5-nitroanthraquinone, 2-chloroanthraquinone, and phenanthrenequinone, 4-nitro Aldehydes such as benzaldehyde, ketones such as 9-benzoylanthracene, indandione, 3,5-dinitrobenzophenone, or 3,3 ', 5,5'-tetranitrobenzophenone, phthalic anhydride, 4-chloronaphthalic anhydride Acid anhydrides such as terephthalalmalononitrile, 9-anthrylmethylidenemalononitrile, 4-nitrobenzalmalononitrile, or cyano compounds such as 4- (p-nitrobenzoyloxy) benzalmalononitrile, 3-benzalphthalide , 3- (α-cyano- - Nitorobenzaru) phthalide, or 3- (alpha-cyano -p- Nitorobenzaru) -4,5,6,7 can be mentioned phthalides such as tetrachloro phthalide like.

電荷輸送材料を用いて電荷移動層を形成する場合、樹脂を併用しても構わない。樹脂を併用する場合にはポリスチレン樹脂、ポリビニルアセタール樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アクリル樹脂、メタクリル樹脂、フェノキシ樹脂等が挙げられる。これらの中でも、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂が好ましい。これらの樹脂は、単独あるいは共重合体として2種以上を混合しても構わない。   When forming a charge transfer layer using a charge transport material, a resin may be used in combination. When resin is used in combination, polystyrene resin, polyvinyl acetal resin, polysulfone resin, polycarbonate resin, polyester resin, polyphenylene oxide resin, polyarylate resin, acrylic resin, methacrylic resin, phenoxy resin and the like can be mentioned. Among these, polystyrene resin, polyvinyl acetal resin, polycarbonate resin, polyester resin, and polyarylate resin are preferable. These resins may be used alone or as a copolymer in combination of two or more.

電荷移動層の形成方法は大きく2通りの方法が挙げられる。1つは、色素を吸着した半導体層の上に、先に対極を貼り合わせ、その隙間に液状の電荷移動層を挟み込む方法である。もう一つは、色素を吸着した半導体層の上に直接電荷移動層を付与する方法である。後者の場合、電荷移動層の上に対極を新たに付与することになる。   There are two main methods for forming the charge transfer layer. One is a method in which a counter electrode is first bonded onto a semiconductor layer that has adsorbed a dye, and a liquid charge transfer layer is sandwiched in the gap. The other is a method in which a charge transfer layer is provided directly on a semiconductor layer adsorbed with a dye. In the latter case, a counter electrode is newly provided on the charge transfer layer.

前者の場合、電荷移動層の挟み込み方法として、浸漬等による毛管現象を利用する常圧プロセスと常圧より低い圧力にして気相を液相に置換する真空プロセスが挙げられる。後者の場合、湿式の電荷移動層においては、未乾燥のまま対極を付与し、エッジ部の液漏洩防止を施す必要がある。また、ゲル電解液の場合においては、湿式で塗布して重合等の方法により固体化する方法もある。その場合、乾燥、固定化した後に対極を付与してもよい。電解液の他、有機電荷輸送材料の溶解液やゲル電解質を付与する方法としては、半導体層や色素の付与と同様に、浸漬法、ローラ法、ディップ法、エアーナイフ法、エクストルージョン法、スライドホッパー法、ワイヤーバー法、スピン法、スプレー法、キャスト法、各種印刷法等が挙げられる。   In the former case, examples of the method for sandwiching the charge transfer layer include a normal pressure process using a capillary phenomenon due to immersion and a vacuum process in which the gas phase is replaced with a liquid phase at a pressure lower than normal pressure. In the latter case, in the wet charge transfer layer, it is necessary to provide a counter electrode without being dried to prevent liquid leakage at the edge portion. In the case of a gel electrolyte, there is a method in which it is applied in a wet manner and solidified by a method such as polymerization. In that case, you may provide a counter electrode after drying and fixing. In addition to the electrolytic solution, the organic charge transport material solution and gel electrolyte can be applied in the same manner as the semiconductor layer and pigment application, as well as the immersion method, roller method, dipping method, air knife method, extrusion method, slide Examples thereof include a hopper method, a wire bar method, a spin method, a spray method, a casting method, and various printing methods.

対極は、前述の表面に導電性を有する基板と同様に導電層を有する支持体上に用いることができるが、導電層自体が強度や密封性を十分有する場合は必ずしも支持体は必要ではない。対極に用いる材料の具体例としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、炭素系化合物、ITO、FTO等の導電性金属酸化物等が挙げられる。対極の厚さには特に制限はない。   The counter electrode can be used on a support having a conductive layer in the same manner as the substrate having conductivity on the surface, but the support is not necessarily required when the conductive layer itself has sufficient strength and sealing properties. Specific examples of the material used for the counter electrode include metals such as platinum, gold, silver, copper, aluminum, rhodium and indium, carbon compounds, and conductive metal oxides such as ITO and FTO. There is no particular limitation on the thickness of the counter electrode.

半導体層に光が到達するためには、半導体層を保持した表面に導電性を有する基板と対極の少なくとも一方は実質的に透明でなければならない。本発明の光電変換素子においては、半導体微粒子層を保持した表面に導電性を有する基板が透明であり、太陽光を半導体層を保持した導電性基板側から入射させる方法が好ましい。この場合、対極には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチックまたは金属薄膜が好ましい。   In order for light to reach the semiconductor layer, at least one of the conductive substrate and the counter electrode on the surface holding the semiconductor layer must be substantially transparent. In the photoelectric conversion element of the present invention, a method in which the conductive substrate is transparent on the surface holding the semiconductor fine particle layer and sunlight is incident from the conductive substrate side holding the semiconductor layer is preferable. In this case, a material that reflects light is preferably used for the counter electrode, and a metal, glass, plastic, or metal thin film on which a conductive oxide is deposited is preferable.

対極の塗設については、前述の通り、電荷移動層の上に付与する場合と半導体層上に付与する場合の2通りがある。いずれの場合も対極材料の種類や電荷移動層の種類により、適宜、電荷移動層上または半導体層上に対極材料を塗布、ラミネート、蒸着、貼り合わせ等の手法により形成可能である。また、電荷移動層が固体の場合には、その上に直接、前述の導電性材料を塗布、蒸着、化学気相蒸着(CVD)等の手法で対極を形成することができる。   As described above, there are two types of coating of the counter electrode: when applied on the charge transfer layer and when applied on the semiconductor layer. In either case, the counter electrode material can be appropriately formed on the charge transfer layer or the semiconductor layer by a technique such as coating, laminating, vapor deposition, or bonding depending on the type of the counter electrode material or the type of the charge transfer layer. When the charge transfer layer is solid, the counter electrode can be directly formed on the charge transfer layer by a technique such as coating, vapor deposition, or chemical vapor deposition (CVD).

次に本発明を実施例により更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these at all.

(合成例1:色素D−1の合成)
中間体A;0.50g、中間体B;0.42g、メタノール20mlを混合し、2時間加熱還流を行った。ついで室温まで冷却、そして析出した固体を濾取し、更にメタノール15mlで洗浄後乾燥して、0.48gの粗生成物を得た。これをシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/メタノール=10/1(容量比))で精製して、0.25gの色素D−1を得た。
吸収極大(メタノール溶液):556nm
(Synthesis Example 1: Synthesis of Dye D-1)
Intermediate A: 0.50 g, Intermediate B: 0.42 g, and 20 ml of methanol were mixed and heated under reflux for 2 hours. Subsequently, the mixture was cooled to room temperature, and the precipitated solid was collected by filtration, further washed with 15 ml of methanol and dried to obtain 0.48 g of a crude product. This was purified by silica gel column chromatography (developing solvent: chloroform / methanol = 10/1 (volume ratio)) to obtain 0.25 g of dye D-1.
Absorption maximum (methanol solution): 556 nm

Figure 2013065527
Figure 2013065527

(実施例1)
<色素増感型太陽電池の作製>
酸化チタン(日本アエロジル社製、商品名:P−25)2g、アセチルアセトン0.2g、界面活性剤(アルドリッチ社製、商品名:Triton X−100)0.3gを水6.5gと共にペイントコンディショナー(レッドデビル社製)で6時間分散処理を施した。更に、この分散液4.0gに対して濃硝酸0.2ml、エタノール0.4ml、ポリエチレングリコール(#20,000)1.2gを加えてペーストを作製した。このペーストをFTOガラス基板上に膜厚10μmになるように塗布し、室温で乾燥後、100℃で1時間、更に550℃で1時間焼成し、半導体電極を得た。
Example 1
<Preparation of dye-sensitized solar cell>
Paint conditioner (2 g titanium oxide (Nippon Aerosil Co., Ltd., trade name: P-25), 0.2 g acetylacetone, 0.3 g surfactant (trade name: Triton X-100, made by Aldrich Co.) together with 6.5 g water (Red Devil) for 6 hours. Further, 0.2 g of concentrated nitric acid, 0.4 ml of ethanol, and 1.2 g of polyethylene glycol (# 20,000) were added to 4.0 g of this dispersion to prepare a paste. This paste was applied on a FTO glass substrate so as to have a film thickness of 10 μm, dried at room temperature, and then baked at 100 ° C. for 1 hour and further at 550 ° C. for 1 hour to obtain a semiconductor electrode.

表1に示す本発明の色素及び下記比較の色素を、それぞれt−ブチルアルコール/アセトニトリル(1/1=容積比)の混合溶液に溶解し、0.3mMの濃度の色素溶液を作製した。これらの色素溶液に、先に作製した半導体電極を室温で3時間浸漬して吸着処理を施し、色素吸着半導体電極(作用電極)を作製した。対極にはチタニウム板上に白金をスパッタリングしたものを使用した。両電極を互いに向かい合うように配置し、それらの間に電解液を注入して色素増感型太陽電池を作製した。電解液はヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾリウム0.5M、4−t−ブチルピリジン0.05Mの3−メトキシプロピオニトリル溶液を使用した。   The dye of the present invention shown in Table 1 and the dye of the following comparison were each dissolved in a mixed solution of t-butyl alcohol / acetonitrile (1/1 = volume ratio) to prepare a dye solution having a concentration of 0.3 mM. A semiconductor electrode prepared previously was immersed in these dye solutions at room temperature for 3 hours to perform an adsorption treatment, thereby preparing a dye-adsorbing semiconductor electrode (working electrode). As the counter electrode, a titanium plate on which platinum was sputtered was used. Both electrodes were placed so as to face each other, and an electrolyte was injected between them to produce a dye-sensitized solar cell. The electrolyte was 3-methoxypropionitrile of lithium iodide 0.1M, iodine 0.05M, 1,2-dimethyl-3-n-propylimidazolium iodide 0.5M, 4-t-butylpyridine 0.05M. The solution was used.

<光電変換効率の評価>
このようにして作製した色素増感型太陽電池の作用電極側から、光源としてソーラーシミュレーター(山下電装(株)製、装置名:YSS−40S)から発生した擬似太陽光(AM1.5G、照射強度100mW/cm)を照射し、電気化学測定装置(ソーラートロン社製、装置名:SI−1280B)を用いて光電変換特性を測定した。以上のようにして得られた本発明及び比較の色素を用いて作製した各々の色素増感型太陽電池の光電変換効率について、比較色素C−1の光電変換効率を100とした場合の相対値として評価した。また作用電極の色調を目視で評価した。以上の結果を表1に示す。
<Evaluation of photoelectric conversion efficiency>
Pseudo sunlight (AM1.5G, irradiation intensity) generated from a solar simulator (manufactured by Yamashita Denso Co., Ltd., device name: YSS-40S) as a light source from the working electrode side of the dye-sensitized solar cell thus produced. 100mW / cm < 2 >) was irradiated, and the photoelectric conversion characteristic was measured using the electrochemical measuring device (The solartron company make, apparatus name: SI-1280B). About the photoelectric conversion efficiency of each dye-sensitized solar cell produced using the present invention and the comparative dye obtained as described above, the relative value when the photoelectric conversion efficiency of the comparative dye C-1 is 100 As evaluated. Moreover, the color tone of the working electrode was visually evaluated. The results are shown in Table 1.

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

Figure 2013065527
Figure 2013065527

(実施例2)
本発明の色素(D−1、D−5、D−7、D−10、D−16)及び比較の色素(C−1、C−2)をt−ブチルアルコール/アセトニトリル(1/1=容積比)の混合溶液に溶解し、0.3mMの濃度の色素溶液を作製した。この色素溶液に、ステロイド化合物(E−1)を0.6mMの濃度で溶解した。ついで、この色素溶液に、実施例1で作製した半導体電極を室温で3時間浸漬して吸着処理を施した。以下実施例1と同様の方法で、光電変換特性を評価した。以上のようにして得られた本発明及び比較の色素を用いて作製した各々の色素増感型太陽電池の光電変換効率について、比較色素C−1の光電変換効率を100とした場合の相対値として評価した。また作用電極の色調を目視で評価した。その結果を表2に示す。
(Example 2)
The dyes of the present invention (D-1, D-5, D-7, D-10, D-16) and the comparative dyes (C-1, C-2) were mixed with t-butyl alcohol / acetonitrile (1/1 = A dye solution having a concentration of 0.3 mM was prepared by dissolving in a mixed solution of (volume ratio). The steroid compound (E-1) was dissolved in this dye solution at a concentration of 0.6 mM. Subsequently, the semiconductor electrode produced in Example 1 was immersed in this dye solution for 3 hours at room temperature to perform an adsorption treatment. Hereinafter, photoelectric conversion characteristics were evaluated in the same manner as in Example 1. About the photoelectric conversion efficiency of each dye-sensitized solar cell produced using the present invention and the comparative dye obtained as described above, the relative value when the photoelectric conversion efficiency of the comparative dye C-1 is 100 As evaluated. Moreover, the color tone of the working electrode was visually evaluated. The results are shown in Table 2.

Figure 2013065527
Figure 2013065527

表1、表2の結果から明らかなように、本発明の化合物を使用した光電変換材料は、青紫〜青の色調を有し、かつ光電変換効率が比較化合物より高く、優れた光電変換特性を有していることがわかる。   As is clear from the results of Tables 1 and 2, the photoelectric conversion material using the compound of the present invention has a color tone of bluish purple to blue, has a higher photoelectric conversion efficiency than the comparative compound, and has excellent photoelectric conversion characteristics. You can see that it has.

本発明の色素増感型太陽電池用色素は、色素増感型太陽電池に加えて、特定波長の光に感応する光センサー等に活用することができる。   The dye for a dye-sensitized solar cell of the present invention can be used for an optical sensor sensitive to light of a specific wavelength in addition to a dye-sensitized solar cell.

Claims (3)

下記一般式(1)で示される色素増感型太陽電池用色素。
Figure 2013065527
(一般式(1)において、Rはフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、2−オキサゾリニル基、5,6−ジヒドロ−4H−1,3−オキサジン−2−イル基のいずれかより選ばれる置換基を示す。RとRは水素原子またはアルキル基を示し、両者が連結してシクロペンタン環またはシクロヘキサン環を形成しても良い。両者が連結してシクロペンタン環またはシクロヘキサン環を形成しても良い。L、Lは共役メチン基ユニットを示す。Lはアルキレン基を示す。Rはハメットの置換基定数σp値が負の値となる電子供与性基を示す。RはpKaが6未満の酸性基を示す。Xはカウンターアニオンを示す。)
A dye for a dye-sensitized solar cell represented by the following general formula (1).
Figure 2013065527
(In the general formula (1), R 1 represents a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group, a cyano group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a 2-oxazolinyl group, 5,6-dihydro- 4H-1,3-oxazin-2-yl represents a substituent selected from any of the following groups: R 2 and R 3 represent a hydrogen atom or an alkyl group, and they are linked to form a cyclopentane ring or a cyclohexane ring. They may be linked to form a cyclopentane ring or a cyclohexane ring, L 1 and L 2 each represent a conjugated methine group unit, L 3 represents an alkylene group, and R 4 represents a Hammett substitution. .X .R 5 to group constant σp value is a negative value and becomes an electron-donating group showing an acidic group of less than pKa of 6 - represents a counter anion )
請求項1に記載の色素増感型太陽電池用色素により増感された半導体電極。   A semiconductor electrode sensitized with the dye for a dye-sensitized solar cell according to claim 1. 請求項2記載の半導体電極を用いてなる色素増感型太陽電池。   A dye-sensitized solar cell using the semiconductor electrode according to claim 2.
JP2011204834A 2011-09-20 2011-09-20 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell Withdrawn JP2013065527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204834A JP2013065527A (en) 2011-09-20 2011-09-20 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204834A JP2013065527A (en) 2011-09-20 2011-09-20 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2013065527A true JP2013065527A (en) 2013-04-11

Family

ID=48188843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204834A Withdrawn JP2013065527A (en) 2011-09-20 2011-09-20 Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2013065527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045293A (en) * 2019-12-03 2020-04-21 Tcl华星光电技术有限公司 Color photoresist composition and liquid crystal display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045293A (en) * 2019-12-03 2020-04-21 Tcl华星光电技术有限公司 Color photoresist composition and liquid crystal display panel

Similar Documents

Publication Publication Date Title
JP5416450B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP5498894B2 (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2010027749A (en) Material for photoelectric conversion element
JP2009176526A (en) Dye-sensitized solar cell
JP5166708B2 (en) Photoelectric conversion material and semiconductor electrode
JP5856915B2 (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP6100638B2 (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2009059521A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP6224403B2 (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP5351467B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP2013065527A (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP6583960B2 (en) Dye for dye-sensitized solar cell, semiconductor layer, and dye-sensitized solar cell
JP6159654B2 (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP5238168B2 (en) Photoelectric conversion material and semiconductor electrode
JP6360001B2 (en) Semiconductor layer and dye-sensitized solar cell
JP2012169242A (en) Dye for dye sensitized solar cell, semiconductor electrode and dye sensitized solar cell
JP2013234279A (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2008091137A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using it
JP2017050299A (en) Dye for dye-sensitized solar cell, semiconductor layer, and dye-sensitized solar cell
JP2013041748A (en) Dye for dye-sensitized solar battery, semiconductor electrode, and dye-sensitized solar battery
JP2014086238A (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2015233110A (en) Dye for dye-sensitized solar batteries, semiconductor layer, and dye-sensitized solar battery
JP2016086113A (en) Dye for dye-sensitization type solar cell, semiconductor layer, and dye-sensitization type solar cell
JP2011187371A (en) Dye for dye-sensitized solar cell, semiconductor electrode, and dye-sensitized solar cell
JP2009272198A (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202