JP2013065477A - Method of manufacturing separator for secondary battery, nonaqueous electrolyte secondary battery, and apparatus of manufacturing separator for secondary battery - Google Patents

Method of manufacturing separator for secondary battery, nonaqueous electrolyte secondary battery, and apparatus of manufacturing separator for secondary battery Download PDF

Info

Publication number
JP2013065477A
JP2013065477A JP2011203931A JP2011203931A JP2013065477A JP 2013065477 A JP2013065477 A JP 2013065477A JP 2011203931 A JP2011203931 A JP 2011203931A JP 2011203931 A JP2011203931 A JP 2011203931A JP 2013065477 A JP2013065477 A JP 2013065477A
Authority
JP
Japan
Prior art keywords
separator
magnetic field
secondary battery
die
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011203931A
Other languages
Japanese (ja)
Other versions
JP5948771B2 (en
Inventor
Tomoyoshi Ueki
智善 上木
Harunari Shimamura
治成 島村
Yusuke Fukumoto
友祐 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011203931A priority Critical patent/JP5948771B2/en
Publication of JP2013065477A publication Critical patent/JP2013065477A/en
Application granted granted Critical
Publication of JP5948771B2 publication Critical patent/JP5948771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a separator for a secondary battery which suppresses deterioration of output performance of a battery, a nonaqueous electrolyte secondary battery, and an apparatus of manufacturing the separator for the secondary battery.SOLUTION: In a method of manufacturing a separator 63 for a secondary battery, the separator 63 is manufactured by an extrusion molding. And a magnetic field is formed in the surrounding of a die 71 by magnetic field formation parts 74, 75 connected to an AC power supply 80 during the extrusion molding of the separator 63. This magnetic field is formed such that a magnetic flux strides over a flow channel 712 of a resin material 630 in the die 71. The resin material 630 constituting the separator 63 passes through the magnetic field. Consequently, at least a portion of molecules of the resin material 630 is oriented in a constant direction.

Description

本発明は,二次電池用セパレータの製造方法および製造装置に関する。さらには,そのセパレータを利用した発電要素を有する非水電解質二次電池に関するものである。   The present invention relates to a method and apparatus for manufacturing a secondary battery separator. Furthermore, the present invention relates to a non-aqueous electrolyte secondary battery having a power generation element using the separator.

近年,リチウムイオン二次電池に代表される非水電解質二次電池は,携帯型PCや携帯電話を始めとする電子機器のみならず,ハイブリッド車や電気自動車の電源として注目されている。リチウムイオン二次電池は,一般的に,リチウム金属酸化物を含む正極合剤層を有する正極板と,リチウムを吸蔵ないし放出し得る素材を含む負極合剤層を有する負極板とを,多孔質セパレータを挟んで積層してなる発電要素を有している。   In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have attracted attention as power sources not only for electronic devices such as portable PCs and mobile phones, but also for hybrid vehicles and electric vehicles. A lithium ion secondary battery generally includes a positive electrode plate having a positive electrode mixture layer containing a lithium metal oxide and a negative electrode plate having a negative electrode mixture layer containing a material capable of inserting and extracting lithium. It has a power generation element that is laminated with a separator in between.

非水電解質二次電池の技術分野では,出力性能の向上のため,日々技術改良が行われている。例えば,特許文献1には,多孔質セパレータの設計によって性能を向上させる技術が開示されている。特許文献1に開示されたセパレータは,長期信頼性と高出力とを両立させるため,高い気孔率を有するとともに,突刺強度等の特定の物性を規定している。   In the technical field of nonaqueous electrolyte secondary batteries, technical improvements are being made on a daily basis to improve output performance. For example, Patent Document 1 discloses a technique for improving performance by designing a porous separator. The separator disclosed in Patent Document 1 has high porosity and defines specific physical properties such as puncture strength in order to achieve both long-term reliability and high output.

特開2009−242631号公報JP 2009-242631 A

しかしながら,前記した従来の多孔質セパレータには,次のような問題があった。すなわち,多孔質セパレータの気孔率を高め過ぎると,セパレータ自身の強度が低下してしまう。そのため,形状を維持することが困難となり,反って電池の出力性能を低下させてしまうおそれがある。   However, the conventional porous separator described above has the following problems. That is, if the porosity of the porous separator is increased too much, the strength of the separator itself decreases. For this reason, it is difficult to maintain the shape, and there is a risk that the output performance of the battery will be lowered.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,電池の出力性能の低下を抑制する二次電池用セパレータの製造方法,非水電解質二次電池,および二次電池用セパレータの製造装置を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, the problem is to provide a method for manufacturing a secondary battery separator, a non-aqueous electrolyte secondary battery, and a secondary battery separator manufacturing apparatus that suppress a decrease in the output performance of the battery.

この課題の解決を目的としてなされた二次電池用セパレータの製造方法は,樹脂材料をダイから押し出すことで,長尺状の前記セパレータを作製する押出成形工程を有し,前記押出成形工程では,磁束が前記ダイ内の前記樹脂材料の流路を跨ぐ磁場を形成することを特徴としている。   The method for manufacturing a separator for a secondary battery made for the purpose of solving this problem has an extrusion process for producing a long separator by extruding a resin material from a die. In the extrusion process, The magnetic flux forms a magnetic field across the flow path of the resin material in the die.

本発明の二次電池用セパレータの製造方法では,セパレータを押出成形によって作製する。そして,セパレータの押出成形時に,磁場を印加している。この磁場は,押出成形用のダイの,セパレータを構成する樹脂材料(例えば,ポリオレフィン系樹脂)の流路を,磁束が跨ぐように形成される。そして,その磁場内を樹脂材料が通過することで,少なくとも一部の分子が一定方向へ配向する。そして,セパレータ中をイオンが移動するにあたって,セパレータを構成する樹脂の分子が配向していることで,分子との吸着エネルギーの影響を低減することが期待できる。その結果,出力性能の低下を抑制することが期待できる。   In the method for producing a separator for a secondary battery of the present invention, the separator is produced by extrusion molding. A magnetic field is applied during the extrusion of the separator. This magnetic field is formed so that the magnetic flux straddles the flow path of the resin material (for example, polyolefin resin) constituting the separator of the die for extrusion molding. Then, as the resin material passes through the magnetic field, at least some of the molecules are oriented in a certain direction. And, when ions move in the separator, the resin molecules constituting the separator are oriented, so that it can be expected to reduce the influence of adsorption energy with the molecules. As a result, it can be expected to suppress a decrease in output performance.

また,前記押出成形時に形成する前記磁場は,前記セパレータの厚さ方向の磁場であるとよい。この構成によれば,セパレータの厚さ方向に樹脂の分子が配向することで,セパレータ中をイオンがより移動し易くなると考えられる。そのため,出力性能の低下をより抑制することが期待できる。   The magnetic field formed during the extrusion molding may be a magnetic field in the thickness direction of the separator. According to this configuration, it is considered that ions move more easily in the separator by orienting the resin molecules in the thickness direction of the separator. For this reason, it can be expected to further suppress the decrease in output performance.

また,前記押出成形時に形成する前記磁場は,前記流路のうち,少なくとも前記ダイの前記樹脂材料の出力口を含む下流側の部位を跨ぐとよい。この構成のように,少なくともダイの出力口が磁場に覆われることで,樹脂材料がダイから押し出される直前まで磁場の影響を受けることになる。そのため,分子配向した状態のセパレータを安定して作製することが期待できる。   Further, the magnetic field formed at the time of extrusion molding may straddle at least a downstream portion of the flow path including the output port of the resin material of the die. As in this configuration, at least the output port of the die is covered with a magnetic field, so that the resin material is affected by the magnetic field until just before the resin material is pushed out of the die. Therefore, it can be expected that a molecularly oriented separator is stably produced.

また,本発明は,別の態様として,電極板と,セパレータとを交互に挟んで積層してなる発電要素を有する非水電解質二次電池において,前記セパレータは,樹脂材料をダイから押し出す押出成形によって作製され,さらに前記樹脂材料は,当該押出成形時に磁場を通過したものであることを特徴とする非水電解質二次電池を含んでいる。   As another aspect, the present invention provides a non-aqueous electrolyte secondary battery having a power generation element in which electrode plates and separators are alternately sandwiched and laminated, and the separator is formed by extruding a resin material from a die. The resin material further includes a non-aqueous electrolyte secondary battery that has passed a magnetic field during the extrusion molding.

また,本発明は,別の態様として,二次電池用セパレータの製造装置であって,前記セパレータの型となる押出成形用のダイと,磁束が前記ダイ内の樹脂材料の流路を跨ぐ磁場を形成する一対の磁場形成部とを有することを特徴とする二次電池用セパレータの製造装置を含んでいる。   In another aspect, the present invention provides an apparatus for manufacturing a separator for a secondary battery, in which an extrusion die serving as a mold for the separator and a magnetic field in which magnetic flux straddles a flow path of a resin material in the die. And a pair of magnetic field forming portions for forming a secondary battery separator.

本発明によれば,電池の出力性能の低下を抑制する二次電池用セパレータの製造方法,非水電解質二次電池,および二次電池用セパレータの製造装置が実現される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the separator for secondary batteries which suppresses the fall of the output performance of a battery, the nonaqueous electrolyte secondary battery, and the manufacturing apparatus of the separator for secondary batteries are implement | achieved.

実施の形態にかかるリチウムイオン二次電池を示す斜視透視図である。It is a perspective perspective view which shows the lithium ion secondary battery concerning embodiment. リチウムイオン二次電池に内蔵される発電要素を構成する積層体を示す展開図である。It is an expanded view which shows the laminated body which comprises the electric power generation element incorporated in a lithium ion secondary battery. 実施の形態に係るセパレータ製造システムの構成を示す図である。It is a figure which shows the structure of the separator manufacturing system which concerns on embodiment. 実施の形態に係る押出成形装置の押出箇所を示す図である。It is a figure which shows the extrusion location of the extrusion molding apparatus which concerns on embodiment. 耐熱層付きセパレータの評価結果を示す図である。It is a figure which shows the evaluation result of a separator with a heat-resistant layer.

以下,本発明にかかる非水電解質二次電池を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,以下の形態では,ハイブリッド自動車に車載される車両駆動電源用のリチウムイオン二次電池に本発明を適用する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a nonaqueous electrolyte secondary battery according to the present invention will be described in detail with reference to the accompanying drawings. In the following embodiment, the present invention is applied to a lithium ion secondary battery for vehicle drive power source mounted on a hybrid vehicle.

[リチウムイオン二次電池の構成]
本形態のリチウムイオン二次電池100は,図1に示すように,発電要素60と,発電要素60を収容し,リチウムイオン二次電池100の外殻を形成する外装部50とを有するものである。図1は,外装部50を透視した状態を示している。
[Configuration of lithium ion secondary battery]
As shown in FIG. 1, the lithium ion secondary battery 100 of this embodiment includes a power generation element 60 and an exterior portion 50 that houses the power generation element 60 and forms the outer shell of the lithium ion secondary battery 100. is there. FIG. 1 shows a state in which the exterior portion 50 is seen through.

外装部50は,容器となる電池ケース10と,電池ケース10の開口部を封止する封口蓋20とを有している。電池ケース10は,アルミニウム,アルミニウム合金,めっき鋼板,ステンレス鋼板等の金属材からなる。封口蓋20は,アルミニウム,めっき鋼板,ステンレス鋼板等の金属材からなる。電池ケース10や封口蓋20に利用する金属材は,成形が容易であって,剛性があるものであればよい。電池ケース10の内側全面には,不図示の絶縁フィルムが貼付されている。   The exterior portion 50 includes a battery case 10 serving as a container and a sealing lid 20 that seals an opening of the battery case 10. The battery case 10 is made of a metal material such as aluminum, an aluminum alloy, a plated steel plate, or a stainless steel plate. The sealing lid 20 is made of a metal material such as aluminum, a plated steel plate, or a stainless steel plate. The metal material used for the battery case 10 and the sealing lid 20 may be any material that can be easily molded and has rigidity. An insulating film (not shown) is attached to the entire inner surface of the battery case 10.

電池ケース10は,有底矩形の箱体,すなわち上面が開口した直方体をなしている。電池ケース10は,発電要素60を収納しており,矩形板状の封口蓋20にてその開口部を塞ぐことによって発電要素60を密封をしている。具体的に,外装部50は,電池ケース10と封口蓋20とがレーザ溶接によって一体となっている。なお,電池ケース10の外形は一例であって,有底矩形の箱体に限るものではない。例えば,有底円筒形の箱体であってもよい。   The battery case 10 is a bottomed rectangular box, that is, a rectangular parallelepiped having an upper surface opened. The battery case 10 houses the power generation element 60 and seals the power generation element 60 by closing the opening with a rectangular plate-shaped sealing lid 20. Specifically, in the exterior part 50, the battery case 10 and the sealing lid 20 are integrated by laser welding. The outer shape of the battery case 10 is an example and is not limited to a bottomed rectangular box. For example, it may be a bottomed cylindrical box.

封口蓋20には,封口蓋20を貫通し,封口蓋20から外装部50の外側に向けて突出する正極集電端子31および負極集電端子32が取り付けられている。正極集電端子31の封口蓋20への取り付け箇所には,樹脂製の絶縁部材33が介在し,正極集電端子31と封口蓋20とを絶縁している。同様に,負極集電端子32の封口蓋20への取り付け箇所には,樹脂製の絶縁部材34が介在し,負極集電端子32と封口蓋20とを絶縁している。また,封口蓋20には,矩形板状の安全弁23も溶接されている。安全弁23は,封口蓋20を貫通する注液孔を封止しており,その注液孔から電解液が注入される。   A positive electrode collector terminal 31 and a negative electrode collector terminal 32 are attached to the sealing lid 20 so as to penetrate the sealing lid 20 and protrude from the sealing lid 20 toward the outside of the exterior portion 50. An insulating member 33 made of resin is interposed at a position where the positive current collecting terminal 31 is attached to the sealing lid 20 to insulate the positive current collecting terminal 31 from the sealing lid 20. Similarly, an insulating member 34 made of resin is interposed at a location where the negative electrode current collecting terminal 32 is attached to the sealing lid 20 to insulate the negative electrode current collecting terminal 32 from the sealing lid 20. A rectangular plate-shaped safety valve 23 is also welded to the sealing lid 20. The safety valve 23 seals a liquid injection hole that penetrates the sealing lid 20, and an electrolytic solution is injected from the liquid injection hole.

電池ケース10内に注入される電解液は,エチレンカーボネート(EC)と,ジメチルカーボネート(DMC)とを,体積比でEC:DMC=3:7に調整した混合有機溶媒に,溶質として6フッ化リン酸リチウム(LiPF6 )を添加し,リチウムイオンを1.0mol/lの濃度とした有機電解液である。リチウムイオン二次電池100では,電解質中のリチウムイオンが電気伝導を担う。 The electrolytic solution injected into the battery case 10 is hexafluoride as a solute in a mixed organic solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are adjusted to a volume ratio of EC: DMC = 3: 7. It is an organic electrolytic solution in which lithium phosphate (LiPF 6 ) is added to adjust the lithium ion concentration to 1.0 mol / l. In the lithium ion secondary battery 100, lithium ions in the electrolyte are responsible for electrical conduction.

発電要素60は,図2に示すように,長尺状の正極板61と,同じく長尺状の負極板62とを,ポリオレフィン系微多孔膜からなるセパレータ63を挟んで積層した積層体から構成される。正極板61は,アルミ箔からなる正極集電箔611の両面に正極合剤層612を担持している。正極合剤層612には,例えば,正極活物質のリチウムニッケルコバルトマンガン酸化物(NCM)の他,アセチレンブラック,ポリフッ化ビニリデン(PVdF)等が含まれる。また,負極板62は,銅箔からなる負極集電箔621の両面に負極合剤層622を担持している。負極合剤層622には,例えば,負極活物質のアモルファスコートグラファイトの他,カルボキシルメチルセルロース(CMC),スチレンブタジエンゴム(SBR)等が含まれる。   As shown in FIG. 2, the power generation element 60 is composed of a laminate in which a long positive electrode plate 61 and a similarly long negative electrode plate 62 are laminated with a separator 63 made of a polyolefin microporous film interposed therebetween. Is done. The positive electrode plate 61 carries a positive electrode mixture layer 612 on both surfaces of a positive electrode current collector foil 611 made of an aluminum foil. The positive electrode mixture layer 612 includes, for example, acetylene black, polyvinylidene fluoride (PVdF), etc., in addition to lithium nickel cobalt manganese oxide (NCM) as a positive electrode active material. The negative electrode plate 62 carries a negative electrode mixture layer 622 on both surfaces of a negative electrode current collector foil 621 made of copper foil. The negative electrode mixture layer 622 includes, for example, carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), etc. in addition to amorphous coated graphite as a negative electrode active material.

また,セパレータ63は,ポリプロピレン(PP)やポリエチレン(PE)等からなる公知の微多孔質樹脂(多孔度40〜70%)である。また,セパレータ63の両面には耐熱層が設けられている。耐熱層には,例えば,アルミナ等の無機フィラーの他,SBR,ポリテトラフルオロエチレン(PTFE),CMC,MCが含まれる。   The separator 63 is a known microporous resin (porosity 40 to 70%) made of polypropylene (PP) or polyethylene (PE). Further, heat resistant layers are provided on both surfaces of the separator 63. The heat-resistant layer includes, for example, SBR, polytetrafluoroethylene (PTFE), CMC, and MC in addition to an inorganic filler such as alumina.

なお,正極集電箔611,正極合剤層612,負極集電箔621,負極合剤層622,セパレータ63,電解液に利用される物質や比率は一例であり,一般的にリチウムイオン二次電池に利用されるものを適宜選択すればよい。   The positive electrode current collector foil 611, the positive electrode material mixture layer 612, the negative electrode current collector foil 621, the negative electrode material mixture layer 622, the separator 63, and the substances and ratios used for the electrolyte are examples, and are generally lithium ion secondary What is used for a battery may be appropriately selected.

また,正極板61の幅方向(図2中のY方向)の一方の端部は,正極合剤層612が形成されておらず,正極集電箔611が露出している。また,負極板62の幅方向の一方の端部も,負極合剤層622が形成されておらず,負極集電箔621が露出している。そして,正極板61の正極集電箔611が露出している箇所と,負極板62の負極集電箔621が露出している箇所とが,幅方向において互いに逆側の端部となるように積層される。さらに,正極合剤層612と負極合剤層622とが厚さ方向から見て重なるように,すなわち正極合剤層612と負極合剤層622とがセパレータ63を介して対向するように配置される。   Further, the positive electrode mixture layer 612 is not formed at one end portion in the width direction (Y direction in FIG. 2) of the positive electrode plate 61, and the positive electrode current collector foil 611 is exposed. Also, the negative electrode mixture layer 622 is not formed at one end in the width direction of the negative electrode plate 62, and the negative electrode current collector foil 621 is exposed. Then, the portion where the positive electrode current collector foil 611 of the positive electrode plate 61 is exposed and the portion where the negative electrode current collector foil 621 of the negative electrode plate 62 is exposed are opposite to each other in the width direction. Laminated. Further, the positive electrode mixture layer 612 and the negative electrode mixture layer 622 are arranged so as to overlap each other when viewed from the thickness direction, that is, the positive electrode mixture layer 612 and the negative electrode mixture layer 622 are arranged to face each other with the separator 63 interposed therebetween. The

また,セパレータ63は,幅方向において正極合剤層612および負極合剤層622を被覆するように,さらに正極板61の正極集電箔611が露出している箇所(未塗工領域)の一部と,負極板62の負極集電箔621が露出している箇所(未塗工領域)の一部を被覆しないように,正極板61と負極板62との間に配置される。   Further, the separator 63 is one of the portions where the positive electrode current collector foil 611 of the positive electrode plate 61 is exposed (uncoated region) so as to cover the positive electrode mixture layer 612 and the negative electrode mixture layer 622 in the width direction. And the portion of the negative electrode plate 62 where the negative electrode current collector foil 621 is exposed (uncoated region) is disposed between the positive electrode plate 61 and the negative electrode plate 62 so as not to be covered.

発電要素60は,図2に示したように配置された積層体を捲回し,扁平状にしたものである(図1参照)。正極板61の幅方向の一方の端部は,正極集電箔611が露出した状態でセパレータ63から突出していることから,発電要素60では,捲回軸方向(図2中のY方向)の一方の端部から正極板61(正極集電箔611)が渦巻状をなしてから突出している。一方,負極板62の幅方向の一方の端部は,負極集電箔621が露出した状態でセパレータ63から突出していることから,捲回した状態の発電要素60では,捲回軸方向の他方の端部から負極板62(負極集電箔621)が渦巻状をなして突出している。   The power generation element 60 is obtained by winding and flattening the laminated body arranged as shown in FIG. 2 (see FIG. 1). Since one end of the positive electrode plate 61 in the width direction protrudes from the separator 63 with the positive electrode current collector foil 611 exposed, the power generation element 60 has a winding axis direction (Y direction in FIG. 2). The positive electrode plate 61 (positive electrode current collector foil 611) protrudes from one end portion after forming a spiral shape. On the other hand, one end portion in the width direction of the negative electrode plate 62 protrudes from the separator 63 with the negative electrode current collector foil 621 exposed, so that the power generation element 60 in the wound state has the other end in the winding axis direction. A negative electrode plate 62 (negative electrode current collector foil 621) protrudes in a spiral shape from the end of the electrode.

また,発電要素60のうち,正極板61が突出している箇所は,図1に示したように,クランク状に屈曲した板状の正極集電端子31と電気的に接合される。一方,負極板62が突出している箇所は,同じくクランク状に屈曲した板状の負極集電端子32と電気的に接合される。具体的に,正極集電端子31は,発電要素60の幅方向の一方の端部に露出する正極集電箔611と接合している。一方,負極集電端子32は,発電要素60の幅方向の他方の端部に露出する負極集電箔621と接合している。   Further, the portion of the power generation element 60 where the positive electrode plate 61 protrudes is electrically joined to the plate-shaped positive electrode current collecting terminal 31 bent in a crank shape as shown in FIG. On the other hand, the portion where the negative electrode plate 62 protrudes is electrically joined to the plate-shaped negative electrode current collecting terminal 32 which is also bent in a crank shape. Specifically, the positive electrode current collector terminal 31 is joined to the positive electrode current collector foil 611 exposed at one end in the width direction of the power generation element 60. On the other hand, the negative electrode current collector terminal 32 is joined to the negative electrode current collector foil 621 exposed at the other end in the width direction of the power generation element 60.

[セパレータの製造システム]
続いて,前述した発電要素60を構成するセパレータ63の製造システムについて説明する。本形態のセパレータ製造システムは,セパレータ63の原反,すなわち耐熱層無しの状態のセパレータを製造するシステムである。
[Separator manufacturing system]
Then, the manufacturing system of the separator 63 which comprises the electric power generation element 60 mentioned above is demonstrated. The separator manufacturing system of this embodiment is a system for manufacturing a raw material of the separator 63, that is, a separator without a heat-resistant layer.

本形態のセパレータ製造システム200では,図3に示すように,押出成形によってセパレータ63の原反631を作製する押出成形機70と,高調波電力を供給する交流電源80と,セパレータ63の原反631を回収する巻取りロール90とを備えている。   In the separator manufacturing system 200 of the present embodiment, as shown in FIG. 3, an extruder 70 that produces a raw material 631 of the separator 63 by extrusion molding, an AC power supply 80 that supplies harmonic power, and a raw material of the separator 63. And a take-up roll 90 for collecting 631.

押出成形機70には,溶融状態のセパレータ63の樹脂材料630が収容され,図4に示すように,長尺状のセパレータ63の原反631が押し出される。セパレータ63の原反631は,冷却後,巻取りロール90によって巻き取られ,巻取りロール90上にはセパレータ63の原反631の捲回体である原反ロール632が形成される。所定の長さまで巻き取られた原反ロール632は,端部が切り取られる。   The extruder 70 accommodates the resin material 630 of the separator 63 in a molten state, and as shown in FIG. 4, the raw fabric 631 of the long separator 63 is extruded. The original fabric 631 of the separator 63 is taken up by the take-up roll 90 after cooling, and an original fabric roll 632 that is a wound body of the original fabric 631 of the separator 63 is formed on the take-up roll 90. The end of the roll 632 wound up to a predetermined length is cut off.

なお,耐熱層は,押出成形機70からセパレータ63の原反631が押し出された後,巻取りロール90に巻き取られるまでの工程で塗布されてもよいし,原反631を巻取りロール90に巻き取った後,別の工程でその原反ロール632から原反631を巻き出して塗布してもよい。   The heat-resistant layer may be applied in a process from when the raw fabric 631 of the separator 63 is extruded from the extrusion molding machine 70 until it is wound on the winding roll 90, or the raw fabric 631 is applied to the winding roll 90. After being wound up, the original fabric 631 may be unwound from the original fabric roll 632 and applied in another step.

押出成形機70は,溶融した樹脂材料630を収容するコンテナ72と,樹脂材料630の流路712および通過断面穴710を持った金型であるダイ71と,コンテナ72内に収容された樹脂材料630をダイ71に押し出すスクリュウ73と,磁場を形成する磁場形成部74,75とを有している。ダイ71の通過断面穴710は,セパレータ63の断面と同形状である。すなわち,ダイ71の通過断面穴710の幅は,セパレータ63の幅に等しく,ダイ71の通過断面穴710の高さは,セパレータ63の厚さに等しい。   The extrusion molding machine 70 includes a container 72 that stores a molten resin material 630, a die 71 that is a mold having a flow path 712 and a passage section hole 710 of the resin material 630, and a resin material that is stored in the container 72. A screw 73 for pushing 630 to the die 71 and magnetic field forming portions 74 and 75 for forming a magnetic field are provided. The passage cross-sectional hole 710 of the die 71 has the same shape as the cross section of the separator 63. That is, the width of the passage cross-sectional hole 710 of the die 71 is equal to the width of the separator 63, and the height of the passage cross-sectional hole 710 of the die 71 is equal to the thickness of the separator 63.

押出成形機70では,コンテナ72内に溶融した樹脂材料630が投入され,その樹脂材料630がスクリュウ73によってダイ71に向けて押し込まれる。ダイ71に押し込まれた樹脂材料630は,ダイ71内の流路712内を通過する。樹脂材料630は,ダイ71内の流路712内を通過することで,温度や圧力が安定する。その後,樹脂材料630は,ダイ71の通過断面穴710から外部に押し出される。樹脂材料630がダイ71の通過断面穴710を通過することで,長尺状の原反631が形成される。   In the extrusion molding machine 70, the molten resin material 630 is put into the container 72, and the resin material 630 is pushed toward the die 71 by the screw 73. The resin material 630 pushed into the die 71 passes through the flow path 712 in the die 71. As the resin material 630 passes through the flow path 712 in the die 71, the temperature and pressure are stabilized. Thereafter, the resin material 630 is pushed out from the passage sectional hole 710 of the die 71. When the resin material 630 passes through the passage cross-sectional hole 710 of the die 71, a long original fabric 631 is formed.

また,押出成形機70は,ダイ71の上方に磁場形成部74を,ダイ71の下方に磁場形成部75を配置している。すなわち,一対の磁場形成部74,75を,ダイ71を挟んで対向配置している。磁場形成部74,75の対向方向(磁束の方向)と,ダイ71から押し出されるセパレータ63の厚さ方向(ダイ71の通過断面穴710の高さ方向)とは等しい。   In the extrusion molding machine 70, a magnetic field forming unit 74 is disposed above the die 71 and a magnetic field forming unit 75 is disposed below the die 71. In other words, the pair of magnetic field forming portions 74 and 75 are arranged to face each other with the die 71 interposed therebetween. The opposing direction (magnetic flux direction) of the magnetic field forming portions 74 and 75 is equal to the thickness direction of the separator 63 pushed out from the die 71 (the height direction of the passage cross-sectional hole 710 of the die 71).

磁場形成部74,75は,それぞれ励磁コイルと磁性体コアとを収納している。また,励磁コイルは,交流電源80と電気的に接続し,交流電源80により交流バイアスが印加される。この磁場形成部74,75の励磁コイルに交流バイアスが印加されることで,磁性体コアが磁化され,磁場形成部74と磁場形成部75との間に磁場が形成される。すなわち,ダイ71の周辺には,磁場形成部74,75によって,磁束がダイ71の流路710を跨ぐように,セパレータ63の厚さ方向の磁場が形成される。   Each of the magnetic field forming units 74 and 75 accommodates an exciting coil and a magnetic core. The exciting coil is electrically connected to an AC power source 80 and an AC bias is applied by the AC power source 80. By applying an AC bias to the excitation coils of the magnetic field forming units 74 and 75, the magnetic core is magnetized, and a magnetic field is formed between the magnetic field forming unit 74 and the magnetic field forming unit 75. That is, a magnetic field in the thickness direction of the separator 63 is formed around the die 71 by the magnetic field forming units 74 and 75 so that the magnetic flux straddles the flow path 710 of the die 71.

本形態のセパレータ製造システム200では,磁場の形成条件として,3T(テスラ)の磁場が形成されるように交流電源80の出力を調整する。より具体的には,交流電源80によって,磁場形成部74および磁場形成部75に,1500V〜4000Vの電圧,20Hz〜80Hzの周波数の,交流バイアスを印加する。なお,磁場の形成条件は,これに限るものではなく,セパレータ材料の種類,厚さ等によって適宜選択すればよい。本形態の材料では,概ね,1.5T〜5Tの磁場であればよい。   In the separator manufacturing system 200 of this embodiment, the output of the AC power supply 80 is adjusted so that a 3T (Tesla) magnetic field is formed as a magnetic field forming condition. More specifically, an AC bias having a voltage of 1500 V to 4000 V and a frequency of 20 Hz to 80 Hz is applied to the magnetic field forming unit 74 and the magnetic field forming unit 75 by the AC power source 80. The magnetic field formation conditions are not limited to this, and may be selected as appropriate depending on the type and thickness of the separator material. In the material of this embodiment, a magnetic field of 1.5T to 5T is generally sufficient.

また,磁場形成部74,75は,ダイ71内の樹脂材料630の流路712全体に磁場を形成する。これにより,ダイ71から押し出されるセパレータ63の原反631は,セパレータ63の幅方向にムラなく磁場の影響を受ける。なお,磁場形成部74,75によって形成される磁場は,必ずしもダイ71の流路712全体に形成する必要はなく,流路712のうち,少なくとも搬送方向の一部に形成する。幅方向については全体に形成する。これにより,ダイ71に押し込まれた樹脂材料630は,通過断面穴710から押し出されるまでに,少なからず磁場の影響を受ける。   Further, the magnetic field forming units 74 and 75 form a magnetic field in the entire flow path 712 of the resin material 630 in the die 71. Thereby, the original fabric 631 of the separator 63 pushed out from the die 71 is affected by the magnetic field in the width direction of the separator 63 without unevenness. Note that the magnetic field formed by the magnetic field forming units 74 and 75 is not necessarily formed in the entire flow path 712 of the die 71, and is formed in at least a part of the flow path 712 in the transport direction. The entire width direction is formed. As a result, the resin material 630 pushed into the die 71 is affected by the magnetic field to some extent before being pushed out from the passage cross section hole 710.

[リチウムイオン二次電池の評価]
続いて,耐熱層付き多孔質セパレータを用いたリチウムイオン二次電池の評価について説明する。本評価では,18650セルを用いて,25℃の環境で10秒目のIV抵抗を測定(1/3C,1C,3C,5Cでの各測定値をプロット)した。
[Evaluation of lithium ion secondary battery]
Subsequently, evaluation of a lithium ion secondary battery using a porous separator with a heat-resistant layer will be described. In this evaluation, using the 18650 cell, the IV resistance at 10 seconds was measured in an environment of 25 ° C. (each measured value at 1 / 3C, 1C, 3C, and 5C was plotted).

本評価では,押出成形時に磁場を形成せずに作製したセパレータを利用した基準セルと,押出成形時に磁場を形成して作製したセパレータを利用した評価セルとを作製し,各セルについてIV抵抗を測定した。そして,基準セルの測定値を100%とした場合の,評価セルの相対値を求めた。   In this evaluation, a reference cell using a separator produced without forming a magnetic field at the time of extrusion molding and an evaluation cell using a separator produced by forming a magnetic field at the time of extrusion molding were produced. It was measured. Then, the relative value of the evaluation cell was obtained when the measured value of the reference cell was 100%.

具体的に本評価では,PE単層のセパレータを利用した基準セル(「基準セル1」とする)と,PP/PE/PPの3層のセパレータを利用した基準セル(「基準セル2」とする)との,2つの基準セルを作製した。また,評価セルについても,基準セルと同様に,PE単層のセパレータを利用した評価セル(「評価セル1」とする)と,PP/PE/PPの3層のセパレータを利用したセルとを作製した。また,3層のセパレータについては,PPのみに磁場を印加し,PEには磁場を印加していない3層のセパレータを利用した評価セル(「評価セル2」とする)と,PPとPEともに磁場を印加した3層のセパレータを利用した評価セル(「評価セル3」とする)とを作製した。   Specifically, in this evaluation, a reference cell using a PE single-layer separator (referred to as “reference cell 1”) and a reference cell using a PP / PE / PP three-layer separator (referred to as “reference cell 2”). Two reference cells were prepared. Similarly to the reference cell, the evaluation cell includes an evaluation cell using a PE single-layer separator (referred to as “evaluation cell 1”) and a cell using a PP / PE / PP three-layer separator. Produced. For the three-layer separator, an evaluation cell (referred to as “evaluation cell 2”) using a three-layer separator in which a magnetic field is applied only to PP and no magnetic field is applied to PE, and both PP and PE An evaluation cell (referred to as “evaluation cell 3”) using a three-layer separator to which a magnetic field was applied was produced.

本評価で使用した各部材の,共通の仕様については次の通りである。
<耐熱層付きセパレータ>
・セパレータ
ポリオレフィン系樹脂
厚さ:16〜20μm(基準セル2,評価セル2,および評価セル3については3層合計の厚さ)
気孔率:45〜70%(基準セル1および評価セル1),40〜55%(基準セル2,評価セル2,および評価セル3)
・耐熱層フィラー
無機フィラー
アルミナ(D50=0.2〜1.2μm,BET比表面積=1.3〜18m2/g)
ベーマイト(D50=0.4〜1.8μm,BET比表面積=2.8〜27m2/g)
・耐熱層バインダ
アクリル系バインダ,SBR,ポリオレフィン系バインダ,PTFE
・耐熱層増粘剤
CMC,MC
<正極板>
・活物質
NCM111
・導電材
アセチレンブラック
・バインダ
PVdF
・集電箔
アルミ箔(厚さ:15μm)
・目付け
9.8〜15.2mg/cm2
・密度
1.8〜2.4g/cc
<負極板>
・活物質
アモルファスコートグラファイト
・バインダ
SBR
・増粘材
CMC
・集電箔
銅箔(厚さ:10μm)
・目付け
4.8〜10.2mg/cm2
・密度
0.8〜1.4g/cc
<電解液>
・塩
LiPF6(濃度:1.0mol/l)
・溶媒
EC:DEC=3:7
The common specifications of each member used in this evaluation are as follows.
<Separator with heat-resistant layer>
Separator Polyolefin resin Thickness: 16 to 20 μm (Three layers total thickness for reference cell 2, evaluation cell 2, and evaluation cell 3)
Porosity: 45 to 70% (reference cell 1 and evaluation cell 1), 40 to 55% (reference cell 2, evaluation cell 2, and evaluation cell 3)
Heat resistant layer filler Inorganic filler Alumina (D50 = 0.2-1.2 μm, BET specific surface area = 1.3-18 m 2 / g)
Boehmite (D50 = 0.4-1.8 μm, BET specific surface area = 2.8-27 m 2 / g)
・ Heat resistant layer binder Acrylic binder, SBR, polyolefin binder, PTFE
・ Heat-resistant layer thickener CMC, MC
<Positive electrode plate>
・ Active material NCM111
・ Conductive material Acetylene black ・ Binder PVdF
・ Collector foil Aluminum foil (thickness: 15μm)
-Weight per unit area 9.8-15.2 mg / cm < 2 >
・ Density 1.8-2.4g / cc
<Negative electrode plate>
-Active material Amorphous coated graphite-Binder SBR
・ Thickener CMC
・ Collector foil Copper foil (thickness: 10μm)
・ Weight per unit: 4.8 to 10.2 mg / cm 2
・ Density 0.8 ~ 1.4g / cc
<Electrolyte>
・ Salt LiPF 6 (concentration: 1.0 mol / l)
Solvent EC: DEC = 3: 7

評価結果を,図5に示す。図5(A)は,基準セル1と評価セル1とを対比したグラフである。図5(A)に示すように,評価セル1では,基準セル1と比較してIV抵抗が16%低減した。この結果により,押出成形時に磁場を通過したセパレータを利用する方が,磁場を通過しなかったセパレータを利用するよりも出力性能が高いことが確認された。   The evaluation results are shown in FIG. FIG. 5A is a graph comparing the reference cell 1 and the evaluation cell 1. As shown in FIG. 5A, in the evaluation cell 1, the IV resistance was reduced by 16% compared to the reference cell 1. This result confirmed that the output performance was higher when using a separator that passed the magnetic field during extrusion molding than when using a separator that did not pass the magnetic field.

また,図5(B)は,基準セル2と評価セル2および評価セル3とを対比したグラフである。図5(B)に示すように,評価セル2では,基準セル2と比較してIV抵抗が6%低減した。この結果により,押出成形時に磁場を通過したセパレータを一部に利用する方が,磁場を通過しなかったセパレータのみを利用するよりも出力性能が高いことが確認された。また,評価セル3では,評価セル2と比較してさらにIV抵抗が4%低減した。この結果により,押出成形時に磁場を通過したセパレータのみを利用する方が,磁場を通過したセパレータを一部に利用するよりも出力性能が高いことが確認された。これらの結果から,押出成形時に磁場を形成したセパレータをより多く利用する方が,出力性能を向上させる上で好ましいことがわかる。   FIG. 5B is a graph comparing the reference cell 2 with the evaluation cell 2 and the evaluation cell 3. As shown in FIG. 5B, in the evaluation cell 2, the IV resistance was reduced by 6% compared to the reference cell 2. From this result, it was confirmed that the output performance was higher when the separator that passed the magnetic field during extrusion molding was used in part than when only the separator that did not pass the magnetic field was used. Moreover, in the evaluation cell 3, the IV resistance was further reduced by 4% as compared with the evaluation cell 2. The results confirmed that the output performance was higher when only the separator that passed the magnetic field during extrusion molding was used than when the separator that passed the magnetic field was partially used. From these results, it can be seen that it is preferable to use more separators that form a magnetic field during extrusion to improve output performance.

磁場形成による抵抗低減効果についての,正確なメカニズムは明らかになっていないが,次のような要因があると推測される。すなわち,セパレータ63を分子レベルで考えた場合,セパレータ63の原反631を押し出す際にセパレータ63の厚さ方向に磁場を形成することで,セパレータ63の厚み方向へ分子が配向したものと考えられる。そして,二次電池として利用した際,セパレータ63中をイオンが移動するにあたって,ポリオレフィン系樹脂の分子が配向していることで,分子との吸着エネルギーの影響が低減したものと考えられる。その結果として,IV抵抗が低減することになったと推察される。   Although the exact mechanism for the resistance reduction effect due to magnetic field formation has not been clarified, the following factors are presumed. That is, when the separator 63 is considered at the molecular level, it is considered that the molecules are oriented in the thickness direction of the separator 63 by forming a magnetic field in the thickness direction of the separator 63 when the raw material 631 of the separator 63 is pushed out. . And when it uses as a secondary battery, when the ion moves in the separator 63, it is thought that the influence of the adsorption energy with a molecule | numerator is reduced because the molecule | numerator of polyolefin resin is orientated. As a result, it is presumed that the IV resistance was reduced.

以上詳細に説明したように本形態のセパレータ63の製造方法では,セパレータ63の原反631を押出成形する際に,ダイ71に磁場を印加している。この磁場は,磁場形成部74,75によって,ダイ71の流路712を磁束が跨ぐように形成される。そして,その磁場内をセパレータ63を構成する樹脂材料630が通過することで,少なくとも一部の分子が一定方向へ配向すると考えられる。そして,セパレータ63中をイオンが移動するにあたって,樹脂材料630の分子が配向していることで,分子との吸着エネルギーの影響を低減することが期待できる。そのことから,セパレータ63を利用するリチウムイオン二次電池100の,出力性能の低下を抑制することが期待できる。   As described above in detail, in the method of manufacturing the separator 63 according to this embodiment, a magnetic field is applied to the die 71 when the material 631 of the separator 63 is extruded. This magnetic field is formed by the magnetic field forming units 74 and 75 so that the magnetic flux straddles the flow path 712 of the die 71. Then, it is considered that at least a part of the molecules are oriented in a certain direction by passing the resin material 630 constituting the separator 63 through the magnetic field. In addition, when the ions move in the separator 63, the molecules of the resin material 630 are oriented, so that it can be expected to reduce the influence of the adsorption energy with the molecules. Therefore, it can be expected to suppress a decrease in output performance of the lithium ion secondary battery 100 using the separator 63.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,リチウムイオン二次電池は,車両駆動電源用に限らず,家電製品やパソコンに利用されるものであってもよい。また,非水電解質二次電池は,リチウムイオン二次電池に限らず,ニッケル水素二次電池等,他の非水電解質二次電池であっても適用可能である。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the lithium ion secondary battery is not limited to the vehicle driving power source, but may be used for home appliances and personal computers. Further, the nonaqueous electrolyte secondary battery is not limited to the lithium ion secondary battery, but can be applied to other nonaqueous electrolyte secondary batteries such as a nickel hydride secondary battery.

また,実施の形態では,セパレータ63は,その両面に耐熱層を有する耐熱層付きセパレータであるが,耐熱層は必須構成ではない。すなわち,耐熱層を有していないセパレータであっても,本発明を適用できる。   In the embodiment, the separator 63 is a separator with a heat-resistant layer having heat-resistant layers on both sides, but the heat-resistant layer is not an essential component. That is, the present invention can be applied even to a separator having no heat-resistant layer.

また,実施の形態では,磁場形成部74,75がダイ71の外側に配置されているが,これに限るものではない。例えば,磁場形成部74,75は,ダイ71の内部に埋め込まれていてもよい。ただし,実施の形態のように,磁場形成部74,75をダイ71の外側に配置することで,磁場形成部74,75をダイ71の内部に埋め込む場合と比較して,磁場形成部74,75のメンテナンスが容易であり,磁場形成部74,75の配置の自由度も高くなる。   In the embodiment, the magnetic field forming units 74 and 75 are disposed outside the die 71, but the present invention is not limited to this. For example, the magnetic field forming units 74 and 75 may be embedded in the die 71. However, by arranging the magnetic field forming units 74 and 75 outside the die 71 as in the embodiment, the magnetic field forming units 74 and 75 are compared with the case where the magnetic field forming units 74 and 75 are embedded in the die 71. 75 is easy to maintain, and the degree of freedom of arrangement of the magnetic field forming units 74 and 75 is also increased.

また,実施の形態では,磁場形成部74,75がダイ71内の樹脂材料630の流路712全体に磁場を形成しているが,これに限るものではない。すなわち,流路712のうち,一部の部位であってもよい。この場合,少なくともダイ71の通過断面穴710を含む下流側の部位を磁束が跨ぐ方が好ましい。少なくともダイ71の通過断面穴710が磁場内にいることで,樹脂材料630がダイ71から押し出される直前まで磁場の影響を受けることになり,分子配向した状態のセパレータ63を安定して作製することが期待できる。   In the embodiment, the magnetic field forming units 74 and 75 form a magnetic field in the entire flow path 712 of the resin material 630 in the die 71. However, the present invention is not limited to this. That is, a part of the flow path 712 may be used. In this case, it is preferable that the magnetic flux straddles at least a downstream portion including the passage cross-sectional hole 710 of the die 71. Since at least the passage sectional hole 710 of the die 71 is in the magnetic field, the resin material 630 is affected by the magnetic field until immediately before the resin material 630 is pushed out of the die 71, and the separator 63 in a molecularly oriented state can be stably manufactured. Can be expected.

60 発電要素
61 正極板
62 負極板
63 セパレータ
630 樹脂材料
70 押出成形機
71 ダイ
710 通過断面穴
712 流路
74,75 磁場形成部
80 交流電源
90 巻取りロール
100 リチウムイオン二次電池
60 Electricity generating element 61 Positive electrode plate 62 Negative electrode plate 63 Separator 630 Resin material 70 Extruder 71 Die 710 Passing cross-sectional hole 712 Flow path 74, 75 Magnetic field forming unit 80 AC power supply 90 Winding roll 100 Lithium ion secondary battery

Claims (6)

二次電池用セパレータの製造方法において,
樹脂材料をダイから押し出すことで,長尺状の前記セパレータを作製する押出成形工程を有し,
前記押出成形工程では,磁束が前記ダイ内の前記樹脂材料の流路を跨ぐ磁場を形成することを特徴とする二次電池用セパレータの製造方法。
In the method for manufacturing a secondary battery separator,
Extruding the resin material from the die to have an extrusion process for producing the long separator,
In the extrusion molding process, a magnetic field forms a magnetic field across the flow path of the resin material in the die.
請求項1に記載する二次電池用セパレータの製造方法において,
前記磁場は,前記セパレータの厚さ方向の磁場であることを特徴とする二次電池用セパレータの製造方法。
In the manufacturing method of the separator for secondary batteries of Claim 1,
The method of manufacturing a separator for a secondary battery, wherein the magnetic field is a magnetic field in a thickness direction of the separator.
請求項1または請求項2に記載する二次電池用セパレータの製造方法において,
前記磁場は,前記流路のうち,少なくとも前記ダイの前記樹脂材料の出力口を含む下流側の部位を跨ぐことを特徴とする二次電池用セパレータの製造方法。
In the manufacturing method of the separator for secondary batteries of Claim 1 or Claim 2,
The method of manufacturing a separator for a secondary battery, wherein the magnetic field straddles at least a downstream portion including the output port of the resin material of the die in the flow path.
請求項1から請求項3のいずれか1つに記載する二次電池用セパレータの製造方法において,
前記樹脂材料は,ポリオレフィン系樹脂であることを特徴とする二次電池用セパレータの製造方法。
In the manufacturing method of the separator for secondary batteries given in any 1 paragraph of Claims 1-3,
The method for producing a separator for a secondary battery, wherein the resin material is a polyolefin resin.
電極板と,セパレータとを交互に挟んで積層してなる発電要素を有する非水電解質二次電池において,
前記セパレータは,樹脂材料をダイから押し出す押出成形によって作製され,さらに前記樹脂材料は,当該押出成形時に磁場を通過したものであることを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery having a power generation element formed by alternately laminating electrode plates and separators,
The non-aqueous electrolyte secondary battery, wherein the separator is manufactured by extrusion molding in which a resin material is extruded from a die, and the resin material has passed a magnetic field during the extrusion molding.
二次電池用セパレータの製造装置において,
前記セパレータの型となる押出成形用のダイと,
磁束が前記ダイ内の樹脂材料の流路を跨ぐ磁場を形成する一対の磁場形成部と,
を有することを特徴とする二次電池用セパレータの製造装置。
In the secondary battery separator manufacturing equipment,
An extrusion die serving as the mold of the separator;
A pair of magnetic field forming portions for forming a magnetic field in which the magnetic flux straddles the flow path of the resin material in the die;
An apparatus for producing a separator for a secondary battery, comprising:
JP2011203931A 2011-09-19 2011-09-19 Secondary battery separator manufacturing method, non-aqueous electrolyte secondary battery, and secondary battery separator manufacturing apparatus Active JP5948771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203931A JP5948771B2 (en) 2011-09-19 2011-09-19 Secondary battery separator manufacturing method, non-aqueous electrolyte secondary battery, and secondary battery separator manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203931A JP5948771B2 (en) 2011-09-19 2011-09-19 Secondary battery separator manufacturing method, non-aqueous electrolyte secondary battery, and secondary battery separator manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013065477A true JP2013065477A (en) 2013-04-11
JP5948771B2 JP5948771B2 (en) 2016-07-06

Family

ID=48188808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203931A Active JP5948771B2 (en) 2011-09-19 2011-09-19 Secondary battery separator manufacturing method, non-aqueous electrolyte secondary battery, and secondary battery separator manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5948771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005355A (en) * 2013-06-19 2015-01-08 株式会社Gsユアサ Power storage element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564435A (en) * 1979-06-23 1981-01-17 Koichi Hirata Manufacturing of reinforced film
JPS61100430A (en) * 1984-10-23 1986-05-19 Furukawa Electric Co Ltd:The Manufacture of composite plastic molded item
JPS63242513A (en) * 1987-03-30 1988-10-07 Sumitomo Bakelite Co Ltd Preparation of wholly aromatic liquid crystal polyester film
US5888666A (en) * 1996-03-05 1999-03-30 Canon Kabushiki Kaisha Secondary battery
WO2007046226A1 (en) * 2005-10-18 2007-04-26 Toray Industries, Inc. Microporous film for power storage device separator and power storage device separator making use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564435A (en) * 1979-06-23 1981-01-17 Koichi Hirata Manufacturing of reinforced film
JPS61100430A (en) * 1984-10-23 1986-05-19 Furukawa Electric Co Ltd:The Manufacture of composite plastic molded item
JPS63242513A (en) * 1987-03-30 1988-10-07 Sumitomo Bakelite Co Ltd Preparation of wholly aromatic liquid crystal polyester film
US5888666A (en) * 1996-03-05 1999-03-30 Canon Kabushiki Kaisha Secondary battery
WO2007046226A1 (en) * 2005-10-18 2007-04-26 Toray Industries, Inc. Microporous film for power storage device separator and power storage device separator making use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016016081; 山登正文,高橋弘紀,渡辺和雄: '磁場配向結晶性高分子の力学特性評価' 東北大学金属材料研究所強磁場超伝導材料研究センター年次報告 Vol.2010, 201108, pp.150-151 *
JPN6016016082; 山登正文,高橋弘紀,渡辺和雄: '結晶性高分子の磁場配向挙動の解明' 東北大学金属材料研究所強磁場超伝導材料研究センター年次報告 Vol.2007, 200806, pp.141-142 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005355A (en) * 2013-06-19 2015-01-08 株式会社Gsユアサ Power storage element

Also Published As

Publication number Publication date
JP5948771B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP6354982B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP4470124B2 (en) battery
EP3229305B1 (en) Rectangular secondary battery
JP2011216403A (en) Square-shape lithium ion secondary battery
JP5730321B2 (en) Lithium ion capacitor
US20160254569A1 (en) Assembled battery
JP2013243062A (en) Battery
JP2011216399A (en) Square shape lithium secondary battery
JP2019021805A (en) Electrode body and electric storage device
KR101570587B1 (en) Lithium ion battery and process of producing same
JP2010086728A (en) Lithium ion battery
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
JP2016110838A (en) Sealed battery and method of manufacturing the same
JP2014036010A (en) Nonaqueous electrolyte secondary battery
JP2013012320A (en) Lithium ion secondary battery
JP6037171B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013084483A (en) Secondary battery and manufacturing method of the same
JP5948771B2 (en) Secondary battery separator manufacturing method, non-aqueous electrolyte secondary battery, and secondary battery separator manufacturing apparatus
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2009252397A (en) Battery
JP6489360B2 (en) Secondary battery
JP2015099658A (en) Nonaqueous electrolyte secondary battery
JP6216203B2 (en) Winding type secondary battery
CN202395076U (en) Winding structural lithium ion battery packaged by aluminum plastic films
EP4312292A2 (en) Battery comprising a wound electrode body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5948771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250