JP2013064709A - Tire inspection device - Google Patents

Tire inspection device Download PDF

Info

Publication number
JP2013064709A
JP2013064709A JP2011221343A JP2011221343A JP2013064709A JP 2013064709 A JP2013064709 A JP 2013064709A JP 2011221343 A JP2011221343 A JP 2011221343A JP 2011221343 A JP2011221343 A JP 2011221343A JP 2013064709 A JP2013064709 A JP 2013064709A
Authority
JP
Japan
Prior art keywords
cross
tire
wheel
rotation axis
sectional images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011221343A
Other languages
Japanese (ja)
Other versions
JP5817990B2 (en
Inventor
Masaji Fujii
正司 藤井
Kiichiro Uyama
喜一郎 宇山
Masaaki Sonoda
正明 園田
Junichi Iwasawa
純一 岩澤
Hironori Daimon
弘典 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2011221343A priority Critical patent/JP5817990B2/en
Publication of JP2013064709A publication Critical patent/JP2013064709A/en
Application granted granted Critical
Publication of JP5817990B2 publication Critical patent/JP5817990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire inspection device that inspects a tire in loaded conditions without using a large-scale mechanism part.SOLUTION: The tire inspection device includes: a load mechanism 4b for pressing a pressure plate 4c against a ground surface to apply a load to a tire 2 mounted on a wheel 3 and containing pressured air; a CT part 5 for imaging the tire 2 in loaded conditions to image cross section images 7 (7a, 7b, 7c) in parallel with each other; and an image processing part 6 that generates a plurality of cross section images inclined to each other passing a rotating axis HA of the wheel 3 by multi-planar reconstruction from the parallel cross section images 7.

Description

本発明は、タイヤを非破壊で検査するタイヤ検査装置に関する。特に、タイヤの断面像を撮影するCT装置に関する。  The present invention relates to a tire inspection apparatus that inspects a tire in a nondestructive manner. In particular, the present invention relates to a CT apparatus that takes a cross-sectional image of a tire.

タイヤの内部を非破壊で検査する装置としては、近年、タイヤの断面像を得るタイヤ用CT(Computed Tomography)装置が用いられている。  In recent years, as a device for inspecting the inside of a tire in a nondestructive manner, a CT (Computed Tomography) device for obtaining a cross-sectional image of a tire has been used.

図10は、従来のタイヤ用CT装置の概念図(正面図)である。これは、特許文献1に記載されているタイヤ用CT装置である。タイヤ101は、一般市販のホイール102に装着され、ホイール102はホイールの回転軸HAが規定位置になるようにホルダ103に取り付けられ、ホルダ103には負荷機構104が固定され、負荷機構104は加圧板105をタイヤ101の接地面(外周面)に押し付けて負荷を掛ける構成である。  FIG. 10 is a conceptual diagram (front view) of a conventional tire CT apparatus. This is a tire CT apparatus described in Patent Document 1. The tire 101 is attached to a general commercially available wheel 102, and the wheel 102 is attached to a holder 103 so that the rotation axis HA of the wheel is in a specified position. A load mechanism 104 is fixed to the holder 103, and the load mechanism 104 is added to the wheel 103. In this configuration, the pressure plate 105 is pressed against the ground contact surface (outer peripheral surface) of the tire 101 to apply a load.

ホルダ103はホイールの回転軸HAに対して回転できるように支持台106により支持され、傾斜駆動部107が伸縮することで、負荷が掛けられたタイヤがホルダ103ごとホイールの回転軸HAを中心に傾斜され、位置決めされる。  The holder 103 is supported by a support base 106 so as to be rotatable with respect to the rotation axis HA of the wheel, and the tilted drive unit 107 expands and contracts, so that the loaded tire is centered on the rotation axis HA of the wheel together with the holder 103. Tilted and positioned.

CT部108は、X線源108a、X線検出器108b、CT用機構部108c、制御処理部(不図示)より成る。CT部108は、ホイールの回転軸HAを通る水平な撮影面TPの断面像を撮影するものである。X線源108aは撮影面TPに沿ってファン状のX線108dを放射し、X線検出器108bは被検体を透過したX線108dをファンに沿って分解して測定する。測定は所謂TR方式CT装置として行われる。すなわち、支持台106及び傾斜駆動部107ごとタイヤ101をファンに沿って水平方向(図の紙面に垂直な方向)に、X線が被検体を完全に横切る範囲で平行移動(Translate)しつつ測定し、次に、撮影面TPに垂直なCT用回転軸RAに対し、支持台106及び傾斜駆動部107ごとタイヤ101をX線108dのファン角分だけステップ回転(Rotate)させる。この横移動しつつの測定とステップ回転とを繰り返すことで180°方向からの測定データを得ると、このデータからタイヤ101とホイール102(及び加圧板105とホルダ103と支持台106の一部)の撮影面TP位置の断面像を再構成する。  The CT unit 108 includes an X-ray source 108a, an X-ray detector 108b, a CT mechanism unit 108c, and a control processing unit (not shown). The CT unit 108 captures a cross-sectional image of a horizontal imaging surface TP that passes through the rotation axis HA of the wheel. The X-ray source 108a emits a fan-shaped X-ray 108d along the imaging surface TP, and the X-ray detector 108b decomposes and measures the X-ray 108d transmitted through the subject along the fan. The measurement is performed as a so-called TR type CT apparatus. That is, the tire 101 is measured along the fan in the horizontal direction (direction perpendicular to the paper surface of the drawing) together with the fan 106 and the tilt drive unit 107 while the X-ray completely traverses the subject (Translate). Then, the tire 101 is rotated stepwise (Rotate) by the fan angle of the X-ray 108d with respect to the CT rotation axis RA perpendicular to the imaging surface TP together with the support base 106 and the tilt driving unit 107. When measurement data from 180 ° direction is obtained by repeating the measurement while moving laterally and step rotation, the tire 101 and the wheel 102 (and the pressure plate 105, the holder 103, and a part of the support base 106) are obtained from this data. A cross-sectional image at the photographing plane TP position is reconstructed.

さらに、傾斜駆動部107によって、ホルダ103の傾斜位置を変えて断面像を撮影することで、ホイールの回転軸HAを通る複数の互いに傾斜した断面像を得ることができる。図11は、従来例におけるタイヤ101と加圧板105に対して撮影された断面像の位置109を示す図である。  Furthermore, a plurality of mutually inclined sectional images passing through the rotation axis HA of the wheel can be obtained by photographing the sectional image by changing the inclination position of the holder 103 by the inclination driving unit 107. FIG. 11 is a diagram showing a position 109 of a cross-sectional image taken with respect to the tire 101 and the pressure plate 105 in the conventional example.

従来例においては、負荷を掛けたタイヤに対して、ホイールの回転軸HAを通る複数の互いに傾斜した断面像を得ることができ、加圧板105に直交する面から任意角度傾斜した面での変形を角度ごとに求めることができる。  In the conventional example, it is possible to obtain a plurality of mutually inclined cross-sectional images passing through the rotation axis HA of the wheel with respect to a loaded tire, and deformation on a surface inclined at an arbitrary angle from a surface orthogonal to the pressure plate 105. Can be obtained for each angle.

この傾斜角度ごとの断面像は、タイヤが回転したときの時間経過に沿ったタイヤ形状の変形、及びタイヤ内部の部材の変形と移動量が判るので、タイヤの耐久性、クッション性、振動、騒音等を解析する上で重要である。  This cross-sectional image for each inclination angle shows the deformation of the tire shape over time when the tire rotates, and the deformation and movement amount of the members inside the tire, so that the durability, cushioning, vibration, noise of the tire It is important to analyze the etc.

特開平6−218844号公報JP-A-6-218844

しかしながら、従来例においては、固定した撮影面TPに対し、タイヤ101及び、ホイール102、ホルダ103、負荷機構104、加圧板105の全てを負荷を掛けた状態で傾斜させて、断面位置を変更している。ここで、ホルダ103、負荷機構104、加圧板105は、傾斜しても負荷状態が変わらないようにするため高い剛性が必要となり、大型で大重量と成っている。さらに、そのために、それらを傾斜させる大規模な傾斜駆動部107および支持台106が必要であり、また、CT用機構部108cの平行移動やステップ回転の機構も大掛かりとなり、精度確保や製作の困難さが課題となっている。  However, in the conventional example, the tire 101, the wheel 102, the holder 103, the load mechanism 104, and the pressure plate 105 are all inclined with respect to the fixed imaging surface TP to change the cross-sectional position. ing. Here, the holder 103, the load mechanism 104, and the pressure plate 105 are required to have high rigidity so that the load state does not change even when inclined, and are large and heavy. For this purpose, a large-scale tilt driving unit 107 and a support base 106 for tilting them are necessary, and the mechanism for parallel movement and step rotation of the CT mechanism unit 108c becomes large, which makes it difficult to ensure accuracy and manufacture. Is an issue.

本発明は上記事情に鑑みてなされたもので、その目的は、大規模な機構部を用いることなく負荷が掛かったタイヤを検査するタイヤ検査装置を提供することである。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a tire inspection apparatus that inspects a loaded tire without using a large-scale mechanism.

前記目的を達成するため、請求項1記載の発明は、ホイールに装着保持され内部の空気が加圧されたタイヤに対し、接地面に加圧板を押し付けて負荷を掛ける負荷手段と、前記負荷を掛けられたタイヤを撮影して複数の互いに平行な断面像を撮影するCT手段と、前記複数の互いに平行な断面像から断面変換して前記ホイールの回転軸を通る複数の互いに傾斜した断面像を作る画像処理部を有することを要旨とする。  In order to achieve the above-mentioned object, the invention according to claim 1 is directed to a load means for applying a load by pressing a pressure plate against a ground contact surface with respect to a tire mounted and held on a wheel and pressurized with air therein, and the load. CT means for photographing a plurality of cross-sectional images parallel to each other by photographing the tire that has been hung, and a plurality of cross-sectional images inclined from each other through the rotation axis of the wheel by converting the cross-section from the plurality of parallel cross-sectional images The gist is to have an image processing unit to make.

この構成により、複数の互いに平行な断面像を撮影し、ホイールの回転軸を通る複数の互いに傾斜した断面像を断面変換で得るので、タイヤ、ホイール、及び負荷手段の全てを、負荷を掛けた状態でホイールの回転軸に対して傾斜させる大規模な傾斜駆動部を無くすことができる。  With this configuration, a plurality of mutually parallel cross-sectional images are taken, and a plurality of mutually inclined cross-sectional images passing through the rotation axis of the wheel are obtained by cross-sectional conversion. Therefore, all the tires, wheels, and load means are loaded. In this state, it is possible to eliminate a large-scale tilt drive unit that tilts with respect to the rotation axis of the wheel.

また、得られた複数の傾斜した断面像は、タイヤに固定した1つの断面に対するタイヤが回転したときの時系列の複数断面像に相当し、タイヤを解析する上で有用である。  The obtained plurality of inclined sectional images correspond to time-series plural sectional images when the tire rotates with respect to one section fixed to the tire, and are useful for analyzing the tire.

前記目的を達成するため、請求項2記載の発明は、ホイールに装着保持され内部の空気が加圧され、かつ、負荷手段により接地面に加圧板を押し付けて負荷を掛けられたタイヤを撮影した複数の互いに平行な断面像を入力して、前記複数の互いに平行な断面像から断面変換して前記ホイールの回転軸を通る複数の互いに傾斜した断面像を作る画像処理部を有することを要旨とする。  In order to achieve the above-mentioned object, the invention according to claim 2 photographed a tire loaded and held on a wheel so that the air inside is pressurized and a load is applied by pressing a pressure plate against a ground contact surface by a load means. It has an image processing unit that inputs a plurality of parallel cross-sectional images, converts a cross-section from the plurality of parallel cross-sectional images, and creates a plurality of mutually inclined cross-sectional images passing through the rotation axis of the wheel. To do.

この構成により、請求項1記載の発明と同様な作用、効果が得られる。  With this configuration, the same operation and effect as the first aspect of the invention can be obtained.

前記目的を達成するため、請求項3記載の発明は、請求項1または請求項2に記載のタイヤ検査装置において、前記画像処理部は、前記複数の互いに平行な断面像から前記ホイールの回転軸の位置を求めることを要旨とする。  In order to achieve the object, according to a third aspect of the present invention, in the tire inspection apparatus according to the first or second aspect, the image processing unit is configured to rotate the rotation axis of the wheel from the plurality of parallel cross-sectional images. The gist is to determine the position of

この構成により、互いに平行な複数の断面像自身から、ホイールの回転軸を求めて断面変換するので、ホイールとCT手段との位置関係を正確に合わせる必要がなく、正確に断面変換できる。  With this configuration, the rotational axis of the wheel is obtained from a plurality of cross-sectional images themselves that are parallel to each other, and the cross-section is converted, so that it is not necessary to accurately match the positional relationship between the wheel and the CT means, and the cross-section can be accurately converted.

前記目的を達成するため、請求項4記載の発明は、請求項3に記載のタイヤ検査装置において、前記画像処理部は、前記複数の互いに平行な断面像から、前記ホイールの回転軸方向の端面と平行な少なくとも2つの平面に対応するホイールの断面像をそれぞれ求め、前記求めたホイールの断面像上でホイールの中心座標をそれぞれ求め、前記求めたホイールの中心座標を結ぶ線として前記ホイールの回転軸の位置を求めることを要旨とする。  In order to achieve the above object, according to a fourth aspect of the present invention, in the tire inspection apparatus according to the third aspect, the image processing unit is configured to end the end surface of the wheel in the rotation axis direction from the plurality of parallel cross-sectional images. The cross-sectional images of the wheel corresponding to at least two planes parallel to each other are obtained, the center coordinates of the wheel are obtained on the obtained cross-sectional image of the wheel, and the rotation of the wheel as a line connecting the obtained center coordinates of the wheel The gist is to determine the position of the shaft.

この構成により、ホイールの回転軸の位置を3次元的に正確に求めることができる。  With this configuration, the position of the rotating shaft of the wheel can be accurately determined three-dimensionally.

前記目的を達成するため、請求項5記載の発明は、請求項1乃至請求項4のいずれか1項に記載のタイヤ検査装置において、前記画像処理部は、前記ホイールの回転軸を通る複数の互いに傾斜した断面像の1つにおいて、前記ホイールの回転軸を挟んだ2つのタイヤ断面像を、一方を前記ホイールの回転軸で折り返して互いに重ねて表示する、または、一方を前記ホイールの回転軸で折り返して互いに重ねたときの互いの重なりのずれ量を求めることを要旨とする。  In order to achieve the above object, a fifth aspect of the present invention is the tire inspection apparatus according to any one of the first to fourth aspects, wherein the image processing unit includes a plurality of pieces passing through a rotation axis of the wheel. In one of the cross-sectional images inclined with respect to each other, two tire cross-sectional images sandwiching the rotation axis of the wheel are displayed by overlapping one another with the rotation axis of the wheel, or one of the rotation images of the wheel. The gist is to obtain the amount of deviation of the overlap when folded and overlapped with each other.

この構成により、ホイールの回転軸を挟んだ2つのタイヤ断面像を、一方をホイールの回転軸で折り返して互いに重ねて表示するので、加圧板に遠いタイヤ断面像を基準として、加圧板に近いタイヤ断面像の変形を容易に視認できる。  With this configuration, two tire cross-sectional images sandwiching the rotation axis of the wheel are displayed with one of them folded back on the rotation axis of the wheel so as to overlap each other, so that the tire close to the pressure plate with reference to the tire cross-sectional image far from the pressure plate The deformation of the cross-sectional image can be easily visually confirmed.

または、ホイールの回転軸を挟んだ2つのタイヤ断面像を、一方をホイールの回転軸で折り返して互いに重ねたときの互いの重なりのずれ量を求めるので、加圧板に遠いタイヤ断面像を基準として、加圧板に近いタイヤ断面像の変形を定量的に求めることができる。  Alternatively, since the two tire cross-sectional images sandwiching the wheel rotation axis are folded back on one side of the wheel rotation axis and overlapped with each other, the amount of misalignment between the two tires is obtained. The deformation of the tire cross-sectional image close to the pressure plate can be obtained quantitatively.

前記目的を達成するため、請求項6記載の発明は、請求項1乃至請求項4のいずれか1項に記載のタイヤ検査装置において、前記画像処理部は、前記ホイールの回転軸を通る複数の互いに傾斜した断面像の1つにおいて、前記ホイールの回転軸を挟んだ2つのタイヤ断面像を、互いにずらして所定の部位をフィッティングして重ねて表示する、または、互いにずらして所定の部位をフィッティングして重ねたときの互いの重なりのずれ量を求めることを要旨とする。  In order to achieve the above object, a sixth aspect of the present invention is the tire inspection apparatus according to any one of the first to fourth aspects, wherein the image processing unit includes a plurality of pieces passing through the rotation axis of the wheel. In one of the cross-sectional images inclined with respect to each other, two tire cross-sectional images sandwiching the rotation axis of the wheel are shifted from each other and a predetermined portion is fitted and overlapped, or they are shifted from each other and a predetermined portion is fitted. Thus, the gist is to obtain the amount of deviation of the overlap when they are overlapped.

この構成により、加圧板に遠いタイヤ断面像に対する加圧板に近いタイヤ断面像の変形を、所定の部位を基準(不動点)として、視認することができる。  With this configuration, the deformation of the tire cross-sectional image close to the pressure plate relative to the tire cross-sectional image far from the pressure plate can be visually recognized using a predetermined portion as a reference (fixed point).

または、加圧板に遠いタイヤ断面像に対する加圧板に近いタイヤ断面像の変形を、所定の部位を基準(不動点)として、定量的に求めることができる。  Alternatively, the deformation of the tire cross-sectional image close to the pressure plate relative to the tire cross-sectional image far from the pressure plate can be quantitatively obtained with a predetermined portion as a reference (fixed point).

前記目的を達成するため、請求項7記載の発明は、請求項1乃至請求項4のいずれか1項に記載のタイヤ検査装置において、前記画像処理部は、前記ホイールの回転軸を通る複数の互いに傾斜した断面像を用いて、前記タイヤの所定の部位が形作る円環について前記ホイールの回転軸に対する変形を求めることを要旨とする。  In order to achieve the above object, according to a seventh aspect of the present invention, in the tire inspection apparatus according to any one of the first to fourth aspects, the image processing unit includes a plurality of pieces passing through the rotation axis of the wheel. The gist is to determine deformation of the wheel with respect to the rotation axis of a ring formed by a predetermined portion of the tire using cross-sectional images inclined with respect to each other.

この構成により、ホイールの回転軸を通る複数の断面像を用いて、タイヤの所定の部位の位置をホイールの回転軸と直交する平面にプロットしたときのタイヤの所定の部位が形作る円環について、ホイールの回転軸に対する変形を求めることができる。  With this configuration, using a plurality of cross-sectional images passing through the rotation axis of the wheel, the ring formed by the predetermined portion of the tire when the position of the predetermined portion of the tire is plotted on a plane orthogonal to the rotation axis of the wheel, The deformation of the wheel with respect to the rotation axis can be obtained.

本発明によれば、大規模な機構部を用いることなく負荷が掛かったタイヤを検査するタイヤ検査装置を提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the tire inspection apparatus which test | inspects the loaded tire can be provided, without using a large-scale mechanism part.

本発明の第一の実施形態に係るタイヤ検査装置の構成を示した模式図(正面図)。The schematic diagram (front view) which showed the structure of the tire inspection apparatus which concerns on 1st embodiment of this invention. 第一の実施形態におけるタイヤと加圧板に対して撮影された断面像の位置を示す図。The figure which shows the position of the cross-sectional image image | photographed with respect to the tire and pressurization board in 1st embodiment. 第一の実施形態におけるタイヤと加圧板に対して撮影された断面像の一例。An example of the cross-sectional image image | photographed with respect to the tire and pressurization board in 1st embodiment. 第一の実施形態に係る画像処理部が行う断面変換処理のフロー図。The flowchart of the cross-section conversion process which the image process part which concerns on 1st embodiment performs. 第一の実施形態に係るホイール端面とそれに平行な2つの面の位置を示す断面図。Sectional drawing which shows the position of the wheel end surface which concerns on 1st embodiment, and two surfaces parallel to it. 第一の実施形態に係る傾斜面の設定を示す幾何図。The geometric diagram which shows the setting of the inclined surface which concerns on 1st embodiment. 第一の実施形態に係る傾斜面での断面像の一例。An example of the cross-sectional image in the inclined surface which concerns on 1st embodiment. 第一の実施形態においてビードが形作る円環の変形を示すグラフ。The graph which shows the deformation | transformation of the annular ring which a bead forms in 1st embodiment. 第一の実施形態においてビードが形作る円環の変形状態を示す図。The figure which shows the deformation | transformation state of the annular ring which a bead forms in 1st embodiment. 従来のタイヤ用CT装置の概念図(正面図)。The conceptual diagram (front view) of the conventional CT apparatus for tires. 従来例におけるタイヤと加圧板に対して撮影された断面像の位置を示す図。The figure which shows the position of the cross-sectional image image | photographed with respect to the tire and pressure plate in a prior art example.

以下図面を参照して、本発明の実施形態を説明する。  Embodiments of the present invention will be described below with reference to the drawings.

(本発明の第一の実施の形態の構成)
以下、本発明の第一の実施形態の構成について図1を参照して説明する。
(Configuration of the first embodiment of the present invention)
The configuration of the first embodiment of the present invention will be described below with reference to FIG.

図1は本発明の第一の実施形態に係るタイヤ検査装置の構成を示した模式図(正面図)である。  FIG. 1 is a schematic diagram (front view) showing a configuration of a tire inspection apparatus according to a first embodiment of the present invention.

タイヤ検査装置1は、タイヤ2に負荷を掛ける負荷機構部4、断面像を撮影するCT部(CT手段)5、断面像を画像処理してタイヤを評価する画像処理部6より成る。  The tire inspection apparatus 1 includes a load mechanism unit 4 that applies a load to the tire 2, a CT unit (CT unit) 5 that captures a cross-sectional image, and an image processing unit 6 that performs image processing on the cross-sectional image and evaluates the tire.

負荷機構部4は、ホルダ4a、負荷機構(負荷手段)4b及び加圧板4cより成る。タイヤ2は一般市販のホイール3に装着保持されて内部の空気が加圧された状態とされ、ホイール3はホイールの回転軸HA(以下適宣、軸HAと略記する)が規定位置になるようにボルトでホルダ4aに取り付けられ、ホルダ4aには負荷機構4bが固定され、負荷機構4bは加圧板4cをタイヤ2の接地面(外周面)に押し付けて負荷を掛ける構成である。なお、負荷機構4bは負荷制御部(図示省略)により制御される。  The load mechanism unit 4 includes a holder 4a, a load mechanism (load means) 4b, and a pressure plate 4c. The tire 2 is mounted and held on a general commercially available wheel 3 so that the internal air is pressurized, and the wheel 3 has a rotational axis HA (hereinafter abbreviated as “axis HA”) at a specified position. The load mechanism 4b is fixed to the holder 4a. The load mechanism 4b presses the pressure plate 4c against the ground contact surface (outer peripheral surface) of the tire 2 to apply a load. The load mechanism 4b is controlled by a load control unit (not shown).

CT部5は、X線源5a、X線検出器5b、回転・平行移動機構5c、昇降機構5d,5e、制御処理部5gより成る。CT部5は、水平な撮影面TPの断面像を撮影するものである。X線源5aは撮影面TPに沿ってファン状のX線5fを放射し、X線検出器5bは被検体を透過したX線5fをファンに沿って分解して測定し、透過データとして出力する。  The CT unit 5 includes an X-ray source 5a, an X-ray detector 5b, a rotation / translation mechanism 5c, elevating mechanisms 5d and 5e, and a control processing unit 5g. The CT unit 5 captures a cross-sectional image of the horizontal imaging surface TP. The X-ray source 5a emits fan-shaped X-rays 5f along the imaging plane TP, and the X-ray detector 5b measures the X-rays 5f that have passed through the subject by decomposing along the fan and outputs them as transmission data. To do.

回転・平行移動機構5cは、ホルダ4aごとタイヤ2を撮影面TPに沿ってX線5fを横切るように水平方向(図の紙面に垂直な方向)に平行移動(姿勢を変えずに移動すること)させる。また、回転・平行移動機構5cは、撮影面TPに垂直でタイヤ2のほぼ中心を通るCT用回転軸RAに対し、ホルダ4aごとタイヤ2を回転させる。  The rotation / translation mechanism 5c moves the tire 2 together with the holder 4a in a horizontal direction (a direction perpendicular to the drawing in the drawing) so as to cross the X-ray 5f along the imaging surface TP (without changing the posture). ) Further, the rotation / translation mechanism 5c rotates the tire 2 together with the holder 4a with respect to the CT rotation axis RA perpendicular to the imaging surface TP and passing through the substantially center of the tire 2.

昇降機構5d,5eは、それぞれ、X線源5aとX線検出器5bを同じ量だけ昇降(紙面に沿った上下方向)させて位置決めすることで、撮影面TP(及びX線5f)を昇降させる。  The elevating mechanisms 5d and 5e move the X-ray source 5a and the X-ray detector 5b up and down by the same amount (up and down along the plane of the paper) to position the imaging plane TP (and the X-ray 5f). Let

制御処理部5gは、通常のコンピュータで、CPU、記憶部、インターフェース、表示部、入力部、機構制御部、通信部などを有する。制御処理部5gは、CPUがプログラムに基づいて実施する機能として、X線源5a、X線検出器5b、回転・平行移動機構5c、昇降機構5d,5eを制御してスキャン(断面像撮影走査)を実施する機能、またスキャンで得られた透過データからタイヤ2とホイール3の断面像を再構成する機能等を有する。  The control processing unit 5g is a normal computer and includes a CPU, a storage unit, an interface, a display unit, an input unit, a mechanism control unit, a communication unit, and the like. The control processing unit 5g controls the X-ray source 5a, the X-ray detector 5b, the rotation / translation mechanism 5c, and the elevating mechanisms 5d and 5e as functions performed by the CPU based on the program. ) And a function of reconstructing cross-sectional images of the tire 2 and the wheel 3 from transmission data obtained by scanning.

画像処理部6は、通常のコンピュータで、CPU、記憶部、インターフェース、表示部、入力部、通信部などを有する。画像処理部6は、CPUがプログラムに基づいて実施する機能として、制御処理部5gから取り込んだ複数の断面像を断面変換する機能や、タイヤ2を評価する機能等を有する。  The image processing unit 6 is a normal computer and includes a CPU, a storage unit, an interface, a display unit, an input unit, a communication unit, and the like. The image processing unit 6 has a function of converting a plurality of cross-sectional images taken from the control processing unit 5g, a function of evaluating the tire 2, and the like as functions performed by the CPU based on a program.

(第一の実施の形態の作用)
図1乃至図9を参照して第一の実施形態の作用について説明する。
(Operation of the first embodiment)
The operation of the first embodiment will be described with reference to FIGS.

図1を参照して、まず、負荷機構部4は、タイヤ2に所定の負荷を掛けた状態とする。昇降機構5d,5eはX線源5aとX線検出器5bを昇降位置決めして撮影面TPを設定する。この状態で、CT部5がスキャン(断面像撮影走査)を行ってタイヤ2の断面像を撮影する。  Referring to FIG. 1, first, the load mechanism unit 4 is in a state where a predetermined load is applied to the tire 2. The elevating mechanisms 5d and 5e raise and lower the X-ray source 5a and the X-ray detector 5b to set the imaging surface TP. In this state, the CT unit 5 performs scanning (cross-sectional image capturing scanning) to capture a cross-sectional image of the tire 2.

スキャンは所謂TR方式CT装置として行われる。すなわち、ホルダ4a(及びCT用回転軸RA)ごとタイヤ2を撮影面TPに沿って、X線5fがタイヤ2を完全に横切る範囲で平行移動(Translate)しつつ透過したX線を測定し、次に、CT用回転軸RAに対し、ホルダ4aごとタイヤ2をX線5fのファン角分だけステップ回転(Rotate)させる。この横移動しつつの測定とステップ回転とを繰り返すことで180°方向からの測定データを得る。以上の測定は、制御処理部5gより制御され、X線検出器の出力する透過データは制御処理部5gに取り込まれる。制御処理部5gは取り込んだ透過データからタイヤ2とホイール3(及び加圧板4cとホルダ4aの一部)の撮影面TP位置の断面像を再構成する。再構成は公知の処理で行なう。  Scanning is performed as a so-called TR type CT apparatus. That is, the X-rays transmitted through the holder 4a (and the CT rotation axis RA) and the tire 2 along the imaging surface TP while translating the X-ray 5f completely across the tire 2 (Translate) are measured, Next, the tire 2 together with the holder 4a is rotated stepwise (Rotate) by the fan angle of the X-ray 5f with respect to the CT rotation axis RA. Measurement data from the 180 ° direction is obtained by repeating this lateral movement measurement and step rotation. The above measurement is controlled by the control processing unit 5g, and the transmission data output from the X-ray detector is taken into the control processing unit 5g. The control processing unit 5g reconstructs a cross-sectional image of the photographing surface TP position of the tire 2 and the wheel 3 (and the pressure plate 4c and a part of the holder 4a) from the acquired transmission data. Reconfiguration is performed by a known process.

1回目のスキャンに引き続き、タイヤ2を同一負荷に保った状態で、昇降機構5d,5eは撮影面TPを変更して設定し、2回目のスキャンと再構成を同様に行う。  Subsequent to the first scan, in the state where the tire 2 is kept at the same load, the elevating mechanisms 5d and 5e change and set the imaging surface TP, and perform the second scan and reconstruction in the same manner.

さらに、タイヤ2を同一負荷に保った状態で、制御処理部5gは、撮影面TPを所定間隔で変更しながら、同様にスキャンを制御し、再構成し、負荷状態のタイヤ2の複数の互いに平行な断面像を得て、記憶すると共に、画像処理部6に送信する。  Further, in a state in which the tire 2 is kept at the same load, the control processing unit 5g similarly controls scanning and reconfiguration while changing the imaging surface TP at a predetermined interval, and a plurality of tires 2 in the loaded state are mutually connected. Parallel cross-sectional images are obtained, stored, and transmitted to the image processing unit 6.

図2は、第一の実施形態におけるタイヤ2と加圧板4cに対して撮影された断面像7の位置を示す図である。複数の断面像7はxy面に平行で、z方向に所定間隔で並んでおり、所定サイズのボクセルを積み重ねた3次元データを成している。ボクセル位置は座標xyzで表せる。なお、ホイール3の回転軸HAは、y軸と概略平行であるが、誤差のため正確には平行ではなく、断面像7上の位置も正確には定まっていない。  FIG. 2 is a diagram showing the position of the cross-sectional image 7 taken with respect to the tire 2 and the pressure plate 4c in the first embodiment. The plurality of cross-sectional images 7 are parallel to the xy plane and arranged at predetermined intervals in the z direction, and form three-dimensional data in which voxels of a predetermined size are stacked. The voxel position can be expressed by coordinates xyz. Although the rotation axis HA of the wheel 3 is substantially parallel to the y-axis, it is not exactly parallel due to an error, and the position on the cross-sectional image 7 is not accurately determined.

図3は、第一の実施形態におけるタイヤ2と加圧板4cに対して撮影された断面像7の一例である。図3(a)、図3(b)図3(c)は、それぞれ、図2で位置を示した断面像7a,7b,7cで、それぞれ、ホイール3のz方向下端寄り、約中央、上端寄りを通る断面像である。なお、断面像7a,7b,7cには、ホルダ4aも現れるが、図示省略している。  FIG. 3 is an example of a cross-sectional image 7 taken with respect to the tire 2 and the pressure plate 4c in the first embodiment. 3 (a), 3 (b), and 3 (c) are cross-sectional images 7a, 7b, and 7c showing the positions in FIG. 2, respectively. It is a cross-sectional image passing through the side. In addition, although the holder 4a also appears in the cross-sectional images 7a, 7b, and 7c, illustration is omitted.

画像処理部6は受信したタイヤ2の複数の互いに平行な断面像7を断面変換処理すると共にタイヤ2の評価を行う。  The image processing unit 6 performs cross-sectional conversion processing on the plurality of parallel cross-sectional images 7 of the received tire 2 and evaluates the tire 2.

図4を参照して断面変換処理を説明する。図4は画像処理部6が行う断面変換処理のフロー図である。  The cross section conversion process will be described with reference to FIG. FIG. 4 is a flowchart of the cross-section conversion process performed by the image processing unit 6.

ステップS1で、次のように軸HA方向のホイール端面を求出する。先ず、断面像7a(図3(a))を用いて、ホイール3の二つの端点P1,P2を求める。これには、2値化処理でホイール3を抽出し、ホイール3が「1」で他が「0」の画像を作り、画面の上半分で最右端の「1」を求めP1とし、画面の下半分で最右端の「1」を求めP2とすることで、点P1,P2の位置がx,y,z座標で得られる。  In step S1, the wheel end face in the axis HA direction is obtained as follows. First, two end points P1 and P2 of the wheel 3 are obtained using the cross-sectional image 7a (FIG. 3A). To do this, the wheel 3 is extracted by binarization processing, an image is created where the wheel 3 is “1” and the others are “0”, and the rightmost “1” in the upper half of the screen is determined as P1, and the screen By obtaining “1” at the rightmost end in the lower half and setting it to P2, the positions of the points P1, P2 can be obtained in the x, y, z coordinates.

次に、同様に、断面像7c(図3(c))を用いて、ホイール3の二つの端点P3,P4を求める。  Next, similarly, two end points P3 and P4 of the wheel 3 are obtained using the cross-sectional image 7c (FIG. 3C).

ホイール端面は面上の3点が分かれば決定するので、例えば、点P1,P2,P3から、端面を求める。具体的には、ホイール端面を表す方程式を、
y=a・x+b・z+c ………(1)
としたとき、3点P1,P2,P3の座標値(x1,y1,z1)、(x2,y2,z2)、(x3,y3,z3)をそれぞれ式(1)のx,y,zに代入してできるa,b,cに対する連立方程式を解くことで、a,b,cが求まり、ホイール端面が求まる。
Since the wheel end surface is determined when three points on the surface are known, for example, the end surface is obtained from the points P1, P2, and P3. Specifically, the equation representing the wheel end face is
y = a.x + b.z + c (1)
, The coordinate values (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) of the three points P1, P2, and P3 are respectively expressed as x, y, and z in Equation (1). By solving simultaneous equations for a, b, and c that can be substituted, a, b, and c are obtained, and the wheel end face is obtained.

さらに、図5を参照して、ホイール端面に平行な2つの面を求める。  Further, referring to FIG. 5, two planes parallel to the wheel end face are obtained.

図5はホイール端面とそれに平行な2つの面の位置を示す断面図であり、断面像7bとの交線で表している。ホイール端面に平行な平面9a、9bは、ホイール端面8をそれぞれy方向にd1、d2だけ移動させた面で、それぞれホイール3の両端に近い面で、リム部(タイヤと接触する部分)を通る面である。ここで、d1、d2は予めホイール種ごとに定めておく定数である。既知の係数a,b,cを用いて、平面9aは方程式、
y=a・x+b・z+c−d1 ………(2)
で、平面9bは方程式、
y=a・x+b・=z+c−d2 ………(3)
で設定される。
FIG. 5 is a cross-sectional view showing the position of the wheel end surface and two surfaces parallel to the wheel end surface, and is represented by a line of intersection with the cross-sectional image 7b. The planes 9a and 9b parallel to the wheel end surface are surfaces obtained by moving the wheel end surface 8 by d1 and d2 in the y direction, respectively, and are surfaces close to both ends of the wheel 3 and pass through the rim portion (portion contacting the tire). Surface. Here, d1 and d2 are constants determined in advance for each wheel type. Using known coefficients a, b, c, the plane 9a is an equation:
y = a · x + b · z + c−d1 (2)
And the plane 9b is an equation,
y = a · x + b · = z + c−d2 (3)
Set by.

ステップS2で、端面に平行な平面9aでの第一断面像を断面変換により作成する。これは、式(2)で既知である平面9a上に格子状に点を設定すると、各点のx,y,z座標が計算できるので、断面像7から、断面変換することができるのである。  In step S2, a first cross-sectional image on a plane 9a parallel to the end face is created by cross-sectional transformation. This is because if the points are set in a grid pattern on the plane 9a known from the equation (2), the x, y, z coordinates of each point can be calculated, so that the cross section can be converted from the cross section image 7. .

ステップS3で、ステップS2で作成した第一断面像上で、ホイール3の外周が作る円弧の中心点Aを求める。これには、例えば、外周と円とのフィッティングなどを用いる。中心点Aは、x,y,z座標で求め、座標値(xa,ya,za)(中心座標)を得る。  In step S3, the center point A of the arc formed by the outer periphery of the wheel 3 is obtained on the first cross-sectional image created in step S2. For this, for example, fitting between the outer circumference and a circle is used. The center point A is obtained by x, y, z coordinates, and a coordinate value (xa, ya, za) (center coordinates) is obtained.

ステップS4では、ステップS2と同様に、端面に平行な平面9bでの第二断面像を断面変換により作成する。  In step S4, similarly to step S2, a second cross-sectional image on the plane 9b parallel to the end face is created by cross-sectional transformation.

ステップS5では、ステップS3と同様に、ステップS4で作成した第二断面像上で、ホイール3の外周が作る円弧の中心点Bを、x,y,z座標で求め、座標値(xb,yb,zb)(中心座標)を得る。  In step S5, as in step S3, the center point B of the arc formed by the outer periphery of the wheel 3 is obtained by the x, y, z coordinates on the second cross-sectional image created in step S4, and the coordinate values (xb, yb , Zb) (center coordinates).

ステップS6で、ホイール3の回転軸HAの位置を求める。すなわち、軸HAは中心点Aと中心点Bを結ぶ線として決定される。軸HAは、例えば、軸HA上の1点Bの座標と軸HA方向の単位ベクトルηで記述する。  In step S6, the position of the rotation axis HA of the wheel 3 is obtained. That is, the axis HA is determined as a line connecting the center point A and the center point B. The axis HA is described by, for example, the coordinates of one point B on the axis HA and the unit vector η in the direction of the axis HA.

ステップS7で、以下のように軸HAを通る傾斜面を設定する。  In step S7, an inclined surface passing through the axis HA is set as follows.

図6は傾斜面の設定を示す幾何図である。軸HAは点Bと単位ベクトルηで規定され、既知である。ηのx,y,z成分をηx,ηy,ηzとする。  FIG. 6 is a geometric view showing the setting of the inclined surface. The axis HA is defined by the point B and the unit vector η and is known. Let x, y, and z components of η be ηx, ηy, and ηz.

先ず、ηに直交しxy平面に平行な単位ベクトルξ(のx,y,z成分)を、式、
ξx=ηy/√(ηx^2+ηy^2),
ξy=−ηx/√(ηx^2+ηy^2),
ξz=0 ………(4)
で求める。点Bとηとξで規定される面が軸HAを通って最も水平に近い面で、負荷板4cと直交する基準面10である。
First, a unit vector ξ (x, y, z component thereof) orthogonal to η and parallel to the xy plane is expressed by
ξx = ηy / √ (ηx ^ 2 + ηy ^ 2),
ξy = −ηx / √ (ηx ^ 2 + ηy ^ 2),
ξz = 0 (4)
Ask for. The surface defined by the points B, η, and ξ is the surface that is closest to the horizontal through the axis HA and is the reference surface 10 that is orthogonal to the load plate 4c.

次に、ベクトル積、
ζ=ξ×η ………(5)
で基準面10の法線ベクトルζが求められる。次に、ξを軸HAに対してθi回転した単位ベクトルξiが、式、
ξi=ξ・cos(θi)+ζ・sin(θi) ………(6)
で求まり、基準面10からθi傾斜した傾斜面10−iが、面内の点B、及び、面に沿った直交する2つの単位ベクトル,ηとξiとで設定される。
Then the vector product,
ζ = ξ × η (5)
Thus, the normal vector ζ of the reference plane 10 is obtained. Next, a unit vector ξi obtained by rotating ξ by θi with respect to the axis HA is expressed by the following equation:
ξi = ξ · cos (θi) + ζ · sin (θi) (6)
An inclined plane 10-i inclined by θi from the reference plane 10 is set by a point B in the plane and two orthogonal unit vectors η and ξi along the plane.

なお、予め枚数Iと傾斜角度θiを設定しておくことで、複数の傾斜面10−i(i=1,2…I)が自動的に設定される。また、傾斜面10−iは、一般に、傾斜してない面(θi=0)も含む。  Note that by setting the number I and the inclination angle θi in advance, a plurality of inclined surfaces 10-i (i = 1, 2,... I) are automatically set. Further, the inclined surface 10-i generally includes a non-inclined surface (θi = 0).

ステップS8で、傾斜面10−i(i=1,2…I)全てに対し、傾斜面10−iでの断面像11−iを断面変換により作成する。これは、単位ベクトル,ηとξiとを用いて傾斜面10−i上に格子状に点(n・ξi+m・η)を設定すると、各点のx,y,z座標が計算できるので、断面像7から、断面変換することができるのである。  In step S8, a cross-sectional image 11-i on the inclined surface 10-i is created by cross-sectional transformation for all of the inclined surfaces 10-i (i = 1, 2,... I). This is because if the unit vector, η and ξi are used to set points (n · ξi + m · η) on the inclined surface 10-i in a lattice shape, the x, y, and z coordinates of each point can be calculated. The cross section can be converted from the image 7.

以上のステップS1乃至ステップS8で断面変換処理が終わる。  The cross-section conversion process ends in steps S1 to S8.

画像処理部6は断面変換処理した傾斜面10−iでの断面像を用いて、以下のように、タイヤ2の評価を行う。  The image processing unit 6 evaluates the tire 2 as follows using the cross-sectional image of the inclined surface 10-i subjected to the cross-section conversion processing.

図7は、傾斜面での断面像の一例である。これは傾斜面10−iでの断面像11−iを示す。全ての断面像11−i(i=1,2…I)はホイール3の回転軸HAを通る断面で、互いに、加圧板4cの位置とタイヤの変形具合が異なったものである。  FIG. 7 is an example of a cross-sectional image on an inclined surface. This shows a cross-sectional image 11-i on the inclined surface 10-i. All cross-sectional images 11-i (i = 1, 2,... I) are cross-sections passing through the rotation axis HA of the wheel 3, and are different from each other in the position of the pressure plate 4c and the deformation of the tire.

画像処理部6は、1つの断面像11−iにおいて、ホイールの回転軸HAを挟んだ2つのタイヤ断面像2a,2bを、一方をホイールの回転軸HAで折り返して互いに重ねて表示する。この重ねた表示は加算画像でも差画像でも差分を強調した画像でもよい。これにより、加圧板4cに遠いタイヤ断面像2aの変形と近いタイヤ断面像2bの変形とを目視して比較できる。また、画像処理部6は、折り返して互いに重ねたときの遠いタイヤ断面像2aと近いタイヤ断面像2bの互いの重なりのずれ量の分布を定量的に計算して表示する。このずれ量は、例えば、重ねた断面像上あるいは重ねてない断面像上のタイヤ縁部に、ずれ量に対応した長さの矢印を重ねて、または、ずれ量に対応させた色をつけるなどして表示できる。また、断面像上のタイヤ縁部に、ずれ量に対応した高さの棒を立てた3D表示のグラフ等でも表示できる。  The image processing unit 6 displays two tire cross-sectional images 2a and 2b sandwiching the wheel rotation axis HA in one cross-sectional image 11-i so that one of them is folded by the wheel rotation axis HA and overlapped with each other. This superimposed display may be an added image, a difference image, or an image with enhanced differences. Thereby, the deformation | transformation of the tire cross-sectional image 2a far from the pressurization board 4c and the deformation | transformation of the tire cross-sectional image 2b near can be visually compared. Further, the image processing unit 6 quantitatively calculates and displays the distribution of the amount of deviation of the overlap between the distant tire cross-sectional image 2a and the tire cross-sectional image 2b when they are folded and overlapped with each other. The amount of deviation is, for example, by overlapping an arrow having a length corresponding to the amount of deviation on a tire edge on a cross-sectional image that is overlapped or not superimposed, or by adding a color that corresponds to the amount of deviation. Can be displayed. It can also be displayed as a 3D display graph or the like in which a bar having a height corresponding to the amount of deviation is set on the tire edge on the cross-sectional image.

加圧板4cに遠い側では変形が少ないので、上述した重ねた表示及びずれ量の表示は、概略として、加圧板4cに近い側のタイヤの変形を表している。  Since there is little deformation on the side far from the pressure plate 4c, the superimposed display and the display of the displacement amount described above generally represent the deformation of the tire near the pressure plate 4c.

さらに、この処理を各断面像11−i毎に、それぞれで行って傾斜角度θi毎の変形を比較することができる。  Furthermore, this process can be performed for each cross-sectional image 11-i to compare the deformation for each inclination angle θi.

次に、第二の評価として、画像処理部6は、タイヤ2の所定の部位が形作る円環について、軸HAに対する変形(軸HAを中心とする円からの変形)を求める。所定の部位としては、ビード12(補強ワイヤ)、内壁13の外周側、あるいはトレッド14(接地部)の接地面、等がある。変形が無い場合のこれらの円環は、軸HAを中心とした円筒ないし円となるものである。  Next, as a second evaluation, the image processing unit 6 obtains deformation with respect to the axis HA (deformation from a circle centered on the axis HA) with respect to the ring formed by a predetermined part of the tire 2. The predetermined part includes a bead 12 (reinforcing wire), an outer peripheral side of the inner wall 13, or a grounding surface of the tread 14 (grounding part). When there is no deformation, these circular rings are cylinders or circles centered on the axis HA.

具体的に、ここでは片側(右側)のビード12を考える。各断面像11−iにおいて、ビード12の4つの断面を2値化処理で抽出し、それぞれの位置、正確にはそれぞれの重心または中心の位置を求める。次に、加圧板4cに遠いビード12a位置(右側)と軸HAとの距離(局所的半径)Raと、加圧板4cに近いビード12b位置(右側)と軸HAとの距離Rbとを求める。さらに、図8に示すように傾斜角度θiと距離Rの関係をグラフとして表示する。距離、Ra,Rbは、ビード12が形作る円環の軸HAに対する変形(軸HAを中心とする半径R0の円からの変形)を示す。  Specifically, the bead 12 on one side (right side) is considered here. In each cross-sectional image 11-i, four cross-sections of the bead 12 are extracted by binarization processing, and each position, more precisely, the center of gravity or the center position is obtained. Next, the distance (local radius) Ra between the position of the bead 12a (right side) far from the pressure plate 4c and the axis HA and the distance Rb between the position of the bead 12b (right side) close to the pressure plate 4c and the axis HA are obtained. Furthermore, as shown in FIG. 8, the relationship between the inclination angle θi and the distance R is displayed as a graph. The distances Ra and Rb indicate deformation of the ring formed by the bead 12 with respect to the axis HA (deformation from a circle having a radius R0 centered on the axis HA).

また、図9に示すように、軸HAに直交する平面上でのビード12の円環の変形状態を表示する。これは、ビード12の位置(θi,Ra,Rb)をプロットすることで描画でき、同時に変形の無い場合の円15(軸HA中心の半径R0の円)も描画して比較表示する。差分が小さくて観づらいときは拡大表示や差分強調表示を行う。さらに、変形のパラメータとして、プロットしたビード12の円環を円でフィッティングして円環の平均的中心を求め、この円環の平均的中心について軸HAからのずれを求めることができる。  Moreover, as shown in FIG. 9, the deformation state of the ring of the bead 12 on the plane orthogonal to the axis HA is displayed. This can be drawn by plotting the position (θi, Ra, Rb) of the bead 12, and at the same time, a circle 15 (circle with a radius R0 at the center of the axis HA) is also drawn and compared for display. When the difference is small and difficult to see, enlargement display and difference highlight display are performed. Furthermore, as a deformation parameter, the circle of the plotted bead 12 is fitted with a circle to obtain the average center of the circle, and the deviation of the average center of the circle from the axis HA can be obtained.

なお、ここでは片側(右側)のビード12を考えたが、他方(左側)のビード12も同様に評価できる他、左右の平均を評価してもよい。  Here, the bead 12 on one side (right side) is considered, but the bead 12 on the other side (left side) can be evaluated in the same manner, and the average of left and right may be evaluated.

同様に、タイヤ2の内壁13の外周側、トレッド14(接地部)の接地面、等が軸HAに直交する平面上で形作る円環の変形及び円環の平均的中心のずれも同様に求めることができる。この場合は、軸HA方向の複数位置で円環の変形及び円環の平均的中心のずれを求めることができ、グラフィカルに表示することができる。  Similarly, the deformation of the ring formed on the outer peripheral side of the inner wall 13 of the tire 2, the grounding surface of the tread 14 (grounding part), etc. on a plane orthogonal to the axis HA, and the deviation of the average center of the ring are similarly obtained. be able to. In this case, the deformation of the ring and the deviation of the average center of the ring can be obtained at a plurality of positions in the direction of the axis HA, and can be displayed graphically.

次に、第三の評価として、タイヤの応力を解析する。軸HAを通る複数の断面像11−iを傾斜角度θiごとに得るので、断面像11−iは、タイヤに固定した1つの断面について、タイヤが回転したときの時間経過に沿った複数断面像と見なすことができ、変形の時間変化が判り、断面各部の応力(張力、圧力、せん断力等)の繰り返し変化成分としての応力分布が判る。これにより、応力分布の強い位置(すなわち強く曲げ伸ばしされる部分)が判り、繰り返し応力を受けたときの劣化しやすい部分が判る。  Next, as a third evaluation, the stress of the tire is analyzed. Since a plurality of cross-sectional images 11-i passing through the axis HA are obtained for each inclination angle θi, the cross-sectional image 11-i is a multi-sectional image along the passage of time when the tire rotates with respect to one cross-section fixed to the tire. It can be considered that the deformation changes with time, and the stress distribution as a repeated change component of the stress (tensile, pressure, shearing force, etc.) of each section is known. As a result, a position where the stress distribution is strong (that is, a portion that is strongly bent and stretched) can be found, and a portion that is easily deteriorated when subjected to repeated stress can be found.

この評価は、応力分布を一様にして耐久性を向上させたタイヤの設計製造に役立てることができる。なお、設計時に応力分布をシュミュレーションして推定している場合は、比較することでシュミュレーションの妥当性を評価することもできる。  This evaluation can be used for designing and manufacturing a tire having a uniform stress distribution and improved durability. When the stress distribution is simulated and estimated at the time of design, the validity of the simulation can be evaluated by comparing.

以上で述べた、撮影と評価は、タイヤの負荷、また、タイヤ内部の空気圧を変えて行い、比較して評価することができる。  The photographing and evaluation described above can be performed by comparing the tire load and the air pressure inside the tire, and comparing and evaluating them.

(第一の実施の形態の効果)
第一の実施形態によれば、互いに平行な複数の断面像7を撮影し、ホイールの回転軸HAを通る複数の互いに傾斜した断面像を断面変換で得るので、タイヤ2、ホイール3、及び負荷機構部4の全てを、負荷を掛けた状態でホイールの回転軸HAに対して傾斜させる大規模な傾斜駆動部を無くすことができる。また、傾斜を無くしたために、負荷機構部4に高い剛性が不要となり、さらに、CT部5の回転・平行移動機構5cも大掛かりとならず、精度確保や製作の困難さが著しく改善される。
(Effects of the first embodiment)
According to the first embodiment, a plurality of cross-sectional images 7 that are parallel to each other are photographed, and a plurality of cross-sectional images that are inclined with respect to the rotation axis HA of the wheel are obtained by cross-sectional conversion. Therefore, the tire 2, the wheel 3, and the load It is possible to eliminate a large-scale tilt drive unit that tilts all the mechanism units 4 with respect to the rotation axis HA of the wheel in a loaded state. Further, since the inclination is eliminated, the load mechanism portion 4 does not require high rigidity, and the rotation / translation mechanism 5c of the CT portion 5 does not become large, so that accuracy and manufacturing difficulty are remarkably improved.

第一の実施形態によれば、得られた複数の互いに傾斜した断面像は、タイヤに固定した1つの断面に対するタイヤが回転したときの時系列の複数断面像に相当し、タイヤを解析する上で有用である。  According to the first embodiment, the obtained plurality of cross-sectional images that are inclined to each other correspond to a time-series multi-sectional image when the tire rotates with respect to one cross-section fixed to the tire. It is useful in.

第一の実施形態によれば、互いに平行な複数の断面像7自身から、ホイールの回転軸HAを求めて断面変換するので、負荷機構部4とCT部5(すなわちホイール3とCT部5)との位置関係を正確に合わせる必要がなく、正確に断面変換できる。また、ホイール3の負荷機構部4への取り付け誤差や負荷を掛けたときの軸HAのずれなども自動的に補正され、正確に断面変換できる。  According to the first embodiment, the rotation mechanism HA of the wheel is obtained from a plurality of cross-sectional images 7 themselves that are parallel to each other, and the cross-section is converted, so that the load mechanism unit 4 and the CT unit 5 (that is, the wheel 3 and the CT unit 5). It is not necessary to match the positional relationship between and accurately, and the cross-section can be accurately converted. Further, an attachment error of the wheel 3 to the load mechanism 4 or a shift of the axis HA when a load is applied is automatically corrected, and the cross section can be accurately converted.

第一の実施形態によれば、ホイールの回転軸HAを通る面の断面像を用いて、ホイールの回転軸HAを挟んだ2つのタイヤ断面像2a,2bを、一方をホイールの回転軸HAで折り返して互いに重ねて表示するので、加圧板4cに遠いタイヤ断面像2aを基準として、加圧板4cに近いタイヤ断面像2bの変形を容易に視認できる。  According to the first embodiment, using the cross-sectional image of the surface passing through the wheel rotation axis HA, two tire cross-sectional images 2a and 2b sandwiching the wheel rotation axis HA are used, one of which is the wheel rotation axis HA. Since they are folded and overlapped and displayed, the deformation of the tire cross-sectional image 2b close to the pressure plate 4c can be easily visually recognized with reference to the tire cross-sectional image 2a far from the pressure plate 4c.

第一の実施形態によれば、ホイールの回転軸HAを通る面の断面像を用いて、ホイールの回転軸HAを挟んだ2つのタイヤ断面像2a,2bを、一方をホイールの回転軸HAで折り返して互いに重ねたときの互いの重なりのずれ量を求めるので、加圧板4cに遠いタイヤ断面像2aを基準として、加圧板4cに近いタイヤ断面像2bの変形を定量的に求めることができる。  According to the first embodiment, using the cross-sectional image of the surface passing through the wheel rotation axis HA, two tire cross-sectional images 2a and 2b sandwiching the wheel rotation axis HA are used, one of which is the wheel rotation axis HA. Since the amount of deviation of the overlap when folded and overlapped with each other is obtained, the deformation of the tire cross-sectional image 2b close to the pressure plate 4c can be quantitatively obtained on the basis of the tire cross-sectional image 2a far from the pressure plate 4c.

第一の実施形態によれば、ホイールの回転軸HAを通る面の断面像を用いて、タイヤ2の所定の部位の位置を軸HAと直交する平面にプロットしたときのタイヤ2の所定の部位が形作る円環について、軸HA(を中心とする円)に対する変形を求めることができる。また、所定の部位が形作る円環の平均的中心について、軸HAからのずれを求めることができる。所定の部位として、特に、タイヤのビード、内壁またはトレッドが形作る円環、等の変形を求めることができる。  According to the first embodiment, the predetermined part of the tire 2 when the position of the predetermined part of the tire 2 is plotted on a plane orthogonal to the axis HA using the cross-sectional image of the surface passing through the rotation axis HA of the wheel. Can be determined for the axis HA (a circle centered on the axis). Further, the deviation from the axis HA can be obtained with respect to the average center of the ring formed by the predetermined part. As the predetermined portion, in particular, deformation of a bead, an inner wall or a ring formed by a tread of a tire can be obtained.

また、第一の実施形態によれば、タイヤ2の負荷や空気圧を変えて撮影することで、負荷や空気圧の違いによるタイヤ2の変形の違いを比較できる。  Moreover, according to 1st embodiment, the difference of a deformation | transformation of the tire 2 by the difference in a load and air pressure can be compared by imaging | photography by changing the load and air pressure of the tire 2. FIG.

(第一の実施の形態の変形)
その他、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。以下に示す変形例は組合せて実施することもできる。
(Modification of the first embodiment)
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The following modifications can be implemented in combination.

(変形例1)
第一の実施形態では、ホイール3の3つの端点P1,P2,P3からホイールの端面8を求めているが、4点、P1〜P4から平均的に求めてもよい。また、断面像7の中の3つ以上の断面像で端点を求め、それらの端点から平均的にホイールの端面8を求めてもよい。
(Modification 1)
In the first embodiment, the end face 8 of the wheel is obtained from the three end points P1, P2, P3 of the wheel 3, but may be obtained from four points, P1 to P4 on average. Alternatively, the end points may be obtained from three or more cross-sectional images in the cross-sectional image 7, and the wheel end face 8 may be obtained on the average from these end points.

(変形例2)
第一の実施形態では、ホイールの端面8と平行な第一断面像と第二断面像上で、それぞれホイール3の中心点Aと中心点Bを求めることで、ホイールの回転軸HAを求めているが、平行な3つ以上の断面像上でそれぞれホイール3の中心点を求め、求めた3つ以上の中心点から平均的にホイールの回転軸HAを求めることもできる。
(Modification 2)
In the first embodiment, the rotation axis HA of the wheel is obtained by obtaining the center point A and the center point B of the wheel 3 on the first sectional image and the second sectional image parallel to the end face 8 of the wheel, respectively. However, the center point of the wheel 3 can be obtained on three or more parallel cross-sectional images, and the wheel rotation axis HA can be obtained on average from the obtained three or more center points.

(変形例3)
第一の実施形態で、傾斜断面像11−iにおいて、軸HAでタイヤ2を折り返し、重ねて表示するが、軸HAで折り返す代わりに、軸HAを挟んだ一方のタイヤ断面像を180°回転させるか鏡像反転した後、ずらして、他方のタイヤ断面像に、所定の部位の重なりが最も良いようにフィッティングして重ねて表示しても良い。フィッティングする所定の部位としては、例えば、ビード12、ホイール3のリム部(タイヤと接触する部分)、タイヤ内壁13全体あるいは内壁13の指定した部分、トレッド14の接地面、タイヤ2全体(平均的に全体が合うようにする)、等がある。
(Modification 3)
In the first embodiment, in the inclined cross-sectional image 11-i, the tire 2 is folded and displayed with the axis HA, but instead of being folded with the axis HA, one tire cross-sectional image sandwiching the axis HA is rotated by 180 °. Alternatively, after the mirror image is inverted, the image may be shifted and fitted to the other tire cross-sectional image so that the predetermined portion is best overlapped and displayed. The predetermined parts to be fitted include, for example, the bead 12, the rim portion of the wheel 3 (the portion in contact with the tire), the entire tire inner wall 13 or a designated portion of the inner wall 13, the ground contact surface of the tread 14, the entire tire 2 (average ), Etc.

これにより、加圧板4cに遠いタイヤ断面像2aに対する加圧板4cに近いタイヤ断面像2bの変形を、所定の部位を基準(不動点)として、容易に視認することができる。  Thereby, the deformation | transformation of the tire cross-sectional image 2b close | similar to the pressurization board 4c with respect to the tire cross-sectional image 2a far from the pressurization board 4c can be easily visually recognized on the basis of a predetermined | prescribed site | part (fixed point).

また、軸HAを挟んだ一方のタイヤ断面像を180°回転させるか鏡像反転した後、ずらして、他方のタイヤ断面像に所定の部位の重なりが最も良いようにフィッティングして重ねたときの互いの重なりのずれ量を、第一の実施形態と同様に求めて表示を行う。  In addition, after rotating one of the tire cross-sectional images sandwiching the axis HA by 180 ° or reversing the mirror image and shifting the two tire cross-sectional images, the other tire cross-sectional images are fitted and overlapped so that the overlapping of the predetermined part is the best. The amount of deviation of the overlap is obtained and displayed in the same manner as in the first embodiment.

これにより、加圧板4cに遠いタイヤ断面像2aに対する加圧板4cに近いタイヤ断面像2bの変形を、所定の部位を基準(不動点)として、定量的に求めることができる。  Thereby, the deformation | transformation of the tire cross-sectional image 2b close | similar to the pressurization board 4c with respect to the tire cross-sectional image 2a far from the pressurization board 4c can be calculated | required quantitatively on the basis of a predetermined | prescribed site | part (fixed point).

(変形例4)
第一の実施形態では、傾斜断面像11−iにおいて、軸HAでタイヤ2を折り返し、重ねて表示または重ねたときの重なりのずれ量を求めるが、負荷を掛けたときの傾斜断面像11−iと負荷を掛けないときの傾斜断面像11−iを軸HAが合致するように、重ねて表示または重ねたときの重なりのずれ量を求めるようにしてもよい。
(Modification 4)
In the first embodiment, in the inclined cross-sectional image 11-i, the tire 2 is folded back with the axis HA, and the amount of deviation of the overlap when it is displayed or overlapped is obtained, but the inclined cross-sectional image 11- when the load is applied. You may make it obtain | require the shift | offset | difference amount of an overlap when it displays so that the axis | shaft HA may correspond, and the axis | shaft HA matches the inclination cross-sectional image 11-i when i and no load are applied.

荷重により軸HAがずれてもずれが補正されて正確に重ねられるので、負荷を掛けないときのタイヤ断面像を基準として、タイヤ断面像の変形を容易に視認、または変形を定量的に求めることができる。  Even if the axis HA is displaced due to the load, the displacement is corrected and accurately overlapped. Therefore, the deformation of the tire cross-sectional image can be easily visually confirmed or the deformation can be obtained quantitatively based on the tire cross-sectional image when no load is applied. Can do.

(変形例5)
変形例3では、傾斜断面像11−iにおいて、軸HAを挟んだ一方のタイヤ断面像を、他方のタイヤ断面像に、所定の部位の重なりが最も良いようにフィッティングして、重ねて表示または重ねたときの重なりのずれ量を求めているが、負荷を掛けたときの傾斜断面像11−iと負荷を掛けないときの傾斜断面像11−iを所定の部位の重なりが最も良いようにフィッティングして、重ねて表示または重ねたときの重なりのずれ量を求めるようにしてもよい。
(Modification 5)
In the modified example 3, in the inclined cross-sectional image 11-i, one tire cross-sectional image sandwiching the axis HA is fitted to the other tire cross-sectional image so that the overlap of a predetermined part is the best, The amount of deviation of the overlap when overlapped is obtained. The sloped cross-sectional image 11-i when the load is applied and the sloped cross-sectional image 11-i when the load is not applied are such that the overlap between the predetermined portions is the best. Fitting may be performed so as to obtain the amount of deviation of the overlap when displayed or superimposed.

荷重により軸HAがずれてもずれが補正されて正確に重ねられるので、負荷を掛けないときのタイヤ断面像に対するタイヤ断面像の変形を、所定の部位を基準(不動点)として、容易に視認または変形を定量的に求めることができる。  Even if the axis HA is displaced due to the load, the displacement is corrected and accurately superimposed, so that the deformation of the tire cross-sectional image with respect to the tire cross-sectional image when no load is applied can be easily viewed using the predetermined part as a reference (fixed point) Alternatively, the deformation can be obtained quantitatively.

(変形例6)
第一の実施形態では、第二の評価として、画像処理部6は、タイヤ2の所定の部位が形作る円環について、軸HAに対する変形を求めているが、ここで、さらにタイヤ2の内壁13、タイヤ2の外壁(トレッド14の接地面を含む)、等が軸HAにたいして形作る円環の全体の変形を求め、3次元表示することができる。
(Modification 6)
In the first embodiment, as a second evaluation, the image processing unit 6 seeks deformation with respect to the axis HA with respect to the ring formed by a predetermined part of the tire 2, but here, the inner wall 13 of the tire 2 is further calculated. The entire deformation of the ring formed by the outer wall of the tire 2 (including the contact surface of the tread 14), etc., with respect to the axis HA can be obtained and displayed three-dimensionally.

例えば、点Bを原点とし、単位ベクトルξ、η、ζで規定される直交座標系での座標
(ξ,η,ζ)(図6参照)を用いて3次元表示を行うことができる。
具体的には、各傾斜角θiで、傾斜断面像11−i上で各部位(内壁,外壁等)の軸HA方向の各位置(η)での軸HAからの距離Rを求めて点群(θi,η,R)を得て、これを直交座標(ξ,η,ζ)に変換した3D点群データとする。この3D点群データ、あるいはこの3D点群データを変換して作ったSTL(Standard Triangulated Language)データを用いて、各部位(内壁,外壁)の3次元表示を行う。
For example, three-dimensional display can be performed using the point B as the origin and coordinates (ξ, η, ζ) (see FIG. 6) in an orthogonal coordinate system defined by the unit vectors ξ, η, ζ.
Specifically, the point cloud is obtained by obtaining the distance R from the axis HA at each position (η) in the axis HA direction of each part (inner wall, outer wall, etc.) on the tilted sectional image 11-i at each tilt angle θi. (Θi, η, R) is obtained and used as 3D point cloud data converted into orthogonal coordinates (ξ, η, ζ). Three-dimensional display of each part (inner wall, outer wall) is performed using this 3D point cloud data or STL (Standard Triangulated Language) data created by converting the 3D point cloud data.

また、さらに、作成した各部位(内壁,外壁等)の3D点群データあるいはSTLデータを用いて、タイヤの3D−CADデータ(設計データ)に対する誤差検証ができる。誤差検証は、作成したデータとCADデータ間で所定箇所をフィッティングして重ねたときの差異を求め3D表示することで行う。フィッティングする所定箇所としては、例えば、ホイールの回転軸HA、ビード12、ホイール3のリム部(タイヤと接触する部分)、タイヤ内壁13全体あるいは内壁13の指定した部分、トレッド14の接地面、タイヤ2全体(平均的に全体が合うようにする)、等がある。  Further, using the 3D point cloud data or STL data of each part (inner wall, outer wall, etc.) created, error verification for the 3D-CAD data (design data) of the tire can be performed. The error verification is performed by obtaining a difference when fitting a predetermined portion between the created data and CAD data and overlaying them to display in 3D. Examples of the predetermined places to be fitted include, for example, the rotation axis HA of the wheel, the bead 12, the rim portion of the wheel 3 (the portion in contact with the tire), the entire tire inner wall 13 or a designated portion of the inner wall 13, the contact surface of the tread 14, and the tire 2 whole (on average, make the whole fit), etc.

上述した誤差検証は、3D−CADデータの代わりに、他の機械的な評価試験で性能確認された同一型式の別のタイヤについて断面撮影して作成された3D点群データあるいはSTLデータとの間で行うこともできる。  The error verification described above is performed between 3D point cloud data or STL data created by photographing a cross section of another tire of the same type whose performance has been confirmed by another mechanical evaluation test, instead of 3D-CAD data. Can also be done.

(変形例7)
変形例6では、各傾斜断面像11−iで、各部位(内壁,外壁等)が作る点群(θi,η,R)を得て、これを直交座標(ξ,η,ζ)に変換して3D点群データを求めているが、撮影で得られた互いに平行な複数の断面像7から直接3D点群データ(あるいはSTLデータ)を求めてもよい。
(Modification 7)
In the modified example 6, a point group (θi, η, R) created by each part (inner wall, outer wall, etc.) is obtained from each inclined cross-sectional image 11-i, and this is converted into orthogonal coordinates (ξ, η, ζ). 3D point cloud data is obtained, but 3D point cloud data (or STL data) may be obtained directly from a plurality of parallel cross-sectional images 7 obtained by imaging.

具体的には、点Bと単位ベクトルξ、η、ζが(ステップS7で)xyz座標系で得られているので、平行な複数の断面像7上で各部位(内壁,外壁等)が作る点群(x,y,z)を求めれば、これを座標(ξ,η,ζ)に変換して軸HAを基準とした3D点群データに変換できるのである。  Specifically, since the point B and the unit vectors ξ, η, ζ are obtained in the xyz coordinate system (in step S7), each part (inner wall, outer wall, etc.) is created on a plurality of parallel sectional images 7. If the point group (x, y, z) is obtained, it can be converted into coordinates (ξ, η, ζ) and converted into 3D point group data based on the axis HA.

(変形例8)
第一の実施形態で、負荷機構4bは加圧板4cをタイヤ2の接地面(外周面)に押し付けて負荷を掛けるが、負荷の掛け方は色々ある。
(Modification 8)
In the first embodiment, the load mechanism 4b applies a load by pressing the pressure plate 4c against the ground contact surface (outer peripheral surface) of the tire 2, but there are various ways of applying the load.

通常は加圧板4cを軸HAと平行とし、加圧板4cと垂直の方向(図1で左方向)に力を掛ける。  Usually, the pressure plate 4c is parallel to the axis HA, and a force is applied in a direction perpendicular to the pressure plate 4c (left direction in FIG. 1).

ブレーキング(または加速)を模擬した試験では、加圧板4cを軸HAと平行とし、力は、加圧板4cと垂直の方向からタイヤ2の周方向(図1で上下方向)に傾けて掛ける。  In a test simulating braking (or acceleration), the pressure plate 4c is parallel to the axis HA, and the force is applied while being inclined from the direction perpendicular to the pressure plate 4c in the circumferential direction of the tire 2 (vertical direction in FIG. 1).

コーナーリングを模擬した試験では、加圧板4cを軸HAと平行とし、力は、加圧板4cと垂直の方向から軸HA方向に傾けて掛ける。  In a test simulating cornering, the pressure plate 4c is parallel to the axis HA, and the force is applied while being inclined in the direction of the axis HA from a direction perpendicular to the pressure plate 4c.

また、軸HAが地面と平行でない場合(コーナーリング時の傾斜や前輪の傾斜配置など)を模擬する場合は、加圧板4cを軸HAと平行から傾斜(z軸と平行な軸について回転)させた状態で、加圧板4cに垂直な方向、または垂直な方向から傾いた方向に負荷を掛ける。  Further, when simulating the case where the axis HA is not parallel to the ground (inclination at the time of cornering, inclination arrangement of the front wheels, etc.), the pressure plate 4c is inclined from the parallel to the axis HA (rotated about an axis parallel to the z axis). In this state, a load is applied in a direction perpendicular to the pressure plate 4c or in a direction inclined from the perpendicular direction.

さらに、ブレーキング(または加速)とコーナーリングと軸HAが地面と平行でない場合とを任意に組合せて負荷を掛けることができる。  Furthermore, the load can be applied by arbitrarily combining braking (or acceleration), cornering, and the case where the axis HA is not parallel to the ground.

(変形例9)
第一の実施形態では、得られた複数の互いに傾斜した断面像11−iは、タイヤに固定した1つの断面に対するタイヤが回転したときの時系列の複数断面像と見なすことができるが、実際は異なった箇所の断面で、周に沿った違い(トレッド14の溝模様等)が多少、生じる。
(Modification 9)
In the first embodiment, the plurality of obtained cross-sectional images 11-i inclined with respect to each other can be regarded as time-series multi-sectional images when the tire rotates with respect to one cross-section fixed to the tire. There are some differences along the circumference (such as the groove pattern of the tread 14) in the cross-sections at different locations.

これに対し、厳密に同じ1つの断面が回転したときの時系列の断面像の変化を撮影することが可能である。  On the other hand, it is possible to photograph changes in time-series cross-sectional images when exactly the same cross-section is rotated.

これには、ホイール3をホルダ4aに固定するとき、ホイールの軸HAで回転可能にベアリングを介して固定する。そしてタイヤ2の回転位置φjを固定し、第一の実施形態と同じスキャンと断面変換をすることで複数の傾斜した断面像11−iを得る。ここで、断面像11−iの傾斜角θiはΔθの等ピッチとする。  For this purpose, when the wheel 3 is fixed to the holder 4a, the wheel 3 is fixed via a bearing so as to be rotatable about the wheel axis HA. Then, the rotation position φj of the tire 2 is fixed, and a plurality of inclined cross-sectional images 11-i are obtained by performing the same scanning and cross-sectional conversion as in the first embodiment. Here, the inclination angle θi of the cross-sectional image 11-i is set to an equal pitch of Δθ.

次に、回転位置φjをΔθずつ変更して、それぞれで、複数の傾斜した断面像11−iを得る。φjを変えての断面像11−i(3Dデータ)の複数組は、タイヤの回転をピッチΔθで追った複数組の3Dデータなので、これにより、タイヤに固定した断面の実際に回転したときの時系列の断面像が得られる。  Next, the rotational position φj is changed by Δθ, and a plurality of inclined cross-sectional images 11-i are obtained respectively. A plurality of sets of cross-sectional images 11-i (3D data) with φj changed are a plurality of sets of 3D data obtained by following the rotation of the tire with a pitch Δθ. A time-series cross-sectional image is obtained.

(変形例10)
第一の実施形態では、CT部5は、TR方式で1列検出器(1断面/1スキャン)のCT部5であったが、CT部5は他の方式でもよい。
(Modification 10)
In the first embodiment, the CT unit 5 is the CT unit 5 of the single-row detector (one section / one scan) in the TR method, but the CT unit 5 may be in other methods.

例えば、多列検出器のTR方式として、複数の平行断面像を1回のスキャンで得るCT部でもよい。また、多列の場合、さらに、z移動させて複数スキャンすることで、広いz範囲の平行断面像を少ないスキャンで得ることができる。  For example, as a TR system of a multi-row detector, a CT unit that obtains a plurality of parallel sectional images by one scan may be used. Further, in the case of multiple rows, a parallel z-sectional image in a wide z range can be obtained with a small number of scans by moving a plurality of scans with z movement.

また、TR方式で無く、回転のみのRR方式のCT部であってもよく、この場合の検出器も、1列でも多列でもよい。1列の場合はz移動させてスキャンして複数の平行断面像を得、多列の場合は1回のスキャンで複数の平行断面像を得る。多列の場合は、さらに、z移動させて複数スキャンすることで、広いz範囲の平行断面像を少ないスキャンで得ることができる。  Further, the CT unit may be an RR type that is not only the TR type but only the rotation, and the detector in this case may be one or more rows. In the case of one row, z is moved and scanned to obtain a plurality of parallel sectional images, and in the case of multiple rows, a plurality of parallel sectional images are obtained by one scan. In the case of multiple rows, a parallel z-section image in a wide z range can be obtained with a small number of scans by moving a plurality of scans with z movement.

(変形例11)
第一の実施形態では、X線を用いているが、X線は他の透過性の放射線でもよい。例えば、γ線や中性子線などでもよい。
(Modification 11)
In the first embodiment, X-rays are used, but X-rays may be other transmissive radiation. For example, γ rays or neutron rays may be used.

1…タイヤ検査装置、2…タイヤ、2a,2b…タイヤ断面像、3…ホイール、4…負荷機構部、4a…ホルダ、4b…負荷機構、4c…加圧板、5…CT部、5a…X線源、5b…X線検出器、5c…回転・平行移動機構、5d,5e…昇降機構、5f…X線、5g…制御処理部、6…画像処理部、7,7a,7b,7c…断面像、8…ホイール端面、9a,9b…平面、10…基準面、10−i…傾斜面、11−i…断面像、12,12a,12b…ビード、13,13a,13b…内壁、14,14a,14b…トレッド、15…円
TP…撮影面、HA…ホイールの回転軸、RA…CT用回転軸、θi…傾斜角度、
101…タイヤ、102…ホイール、103…ホルダ、104…負荷機構、105…加圧板、106…支持台、107…傾斜駆動部、108…CT部、109…断面像の位置
DESCRIPTION OF SYMBOLS 1 ... Tire inspection apparatus, 2 ... Tire, 2a, 2b ... Tire sectional image, 3 ... Wheel, 4 ... Load mechanism part, 4a ... Holder, 4b ... Load mechanism, 4c ... Pressure plate, 5 ... CT part, 5a ... X Radiation source, 5b ... X-ray detector, 5c ... Rotation / translation mechanism, 5d, 5e ... Elevating mechanism, 5f ... X-ray, 5g ... Control processing unit, 6 ... Image processing unit, 7, 7a, 7b, 7c ... Cross-sectional image, 8 ... wheel end face, 9a, 9b ... plane, 10 ... reference plane, 10-i ... inclined surface, 11-i ... cross-sectional image, 12, 12a, 12b ... bead, 13, 13a, 13b ... inner wall, 14 , 14a, 14b ... tread, 15 ... circle TP ... imaging surface, HA ... wheel rotation axis, RA ... CT rotation axis, [theta] i ... inclination angle,
DESCRIPTION OF SYMBOLS 101 ... Tire, 102 ... Wheel, 103 ... Holder, 104 ... Load mechanism, 105 ... Pressure plate, 106 ... Support stand, 107 ... Inclination drive part, 108 ... CT part, 109 ... Position of cross-sectional image

Claims (7)

ホイールに装着保持され内部の空気が加圧されたタイヤに対し、接地面に加圧板を押し付けて負荷を掛ける負荷手段と、
前記負荷を掛けられたタイヤを撮影して複数の互いに平行な断面像を撮影するCT手段と、
前記複数の互いに平行な断面像から断面変換して前記ホイールの回転軸を通る複数の互いに傾斜した断面像を作る画像処理部を有することを特徴とするタイヤ検査装置。
Load means for applying a load by pressing a pressure plate against the ground surface against a tire that is mounted and held on a wheel and whose internal air is pressurized,
CT means for photographing the loaded tire and photographing a plurality of parallel sectional images;
A tire inspection apparatus comprising: an image processing unit configured to convert a plurality of cross-sectional images parallel to each other to generate a plurality of cross-sectional images inclined with respect to each other and passing through a rotation axis of the wheel.
ホイールに装着保持され内部の空気が加圧され、かつ、負荷手段により接地面に加圧板を押し付けて負荷を掛けられたタイヤを撮影した複数の互いに平行な断面像を入力して、前記複数の互いに平行な断面像から断面変換して前記ホイールの回転軸を通る複数の互いに傾斜した断面像を作る画像処理部を有することを特徴とするタイヤ検査装置。  A plurality of parallel cross-sectional images obtained by photographing a tire loaded and held on a wheel and pressurized with internal air being pressurized and a pressure plate pressed against a ground contact surface by a load means, A tire inspection apparatus comprising: an image processing unit that converts a cross-section from a cross-sectional image parallel to each other to generate a plurality of cross-sectional images inclined through the rotation axis of the wheel. 請求項1または請求項2に記載のタイヤ検査装置において、
前記画像処理部は、前記複数の互いに平行な断面像から前記ホイールの回転軸の位置を求めることを特徴とするタイヤ検査装置。
In the tire inspection apparatus according to claim 1 or 2,
The tire inspection apparatus, wherein the image processing unit obtains a position of a rotation axis of the wheel from the plurality of parallel cross-sectional images.
請求項3に記載のタイヤ検査装置において、
前記画像処理部は、前記複数の互いに平行な断面像から、前記ホイールの回転軸方向の端面と平行な少なくとも2つの平面に対応するホイールの断面像をそれぞれ求め、前記求めたホイールの断面像上でホイールの中心座標をそれぞれ求め、前記求めたホイールの中心座標を結ぶ線として前記ホイールの回転軸の位置を求めることを特徴とするタイヤ検査装置。
In the tire inspection apparatus according to claim 3,
The image processing unit obtains a cross-sectional image of the wheel corresponding to at least two planes parallel to the end surface in the rotation axis direction of the wheel from the plurality of parallel cross-sectional images, and displays the obtained cross-sectional image of the wheel. A tire inspection apparatus characterized in that the center coordinates of the wheel are respectively obtained and the position of the rotation axis of the wheel is obtained as a line connecting the obtained center coordinates of the wheel.
請求項1乃至請求項4のいずれか1項に記載のタイヤ検査装置において、
前記画像処理部は、前記ホイールの回転軸を通る複数の互いに傾斜した断面像の1つにおいて、前記ホイールの回転軸を挟んだ2つのタイヤ断面像を、一方を前記ホイールの回転軸で折り返して互いに重ねて表示する、または、一方を前記ホイールの回転軸で折り返して互いに重ねたときの互いの重なりのずれ量を求めることを特徴とするタイヤ検査装置。
In the tire inspection apparatus according to any one of claims 1 to 4,
The image processing unit folds two tire cross-sectional images sandwiching the rotation axis of the wheel, one of the plurality of inclined cross-sectional images passing through the rotation axis of the wheel, with the rotation axis of the wheel. A tire inspecting apparatus characterized in that it displays overlapping each other, or obtains the amount of deviation of each other when one of them is folded back by the rotation axis of the wheel and overlapped with each other.
請求項1乃至請求項4のいずれか1項に記載のタイヤ検査装置において、
前記画像処理部は、前記ホイールの回転軸を通る複数の互いに傾斜した断面像の1つにおいて、前記ホイールの回転軸を挟んだ2つのタイヤ断面像を、互いにずらして所定の部位をフィッティングして重ねて表示する、または、互いにずらして所定の部位をフィッティングして重ねたときの互いの重なりのずれ量を求めることを特徴とするタイヤ検査装置。
In the tire inspection apparatus according to any one of claims 1 to 4,
The image processing unit fits a predetermined part by shifting two tire cross-sectional images sandwiching the rotation axis of the wheel in one of a plurality of inclined cross-sectional images passing through the rotation axis of the wheel. A tire inspection apparatus characterized in that the amount of overlap is calculated when overlapping and displaying, or by shifting a predetermined part to fit each other and overlapping.
請求項1乃至請求項4のいずれか1項に記載のタイヤ検査装置において、
前記画像処理部は、前記ホイールの回転軸を通る複数の互いに傾斜した断面像を用いて、前記タイヤの所定の部位が形作る円環について前記ホイールの回転軸に対する変形を求めることを特徴とするタイヤ検査装置。
In the tire inspection apparatus according to any one of claims 1 to 4,
The image processing unit uses a plurality of mutually inclined cross-sectional images passing through the rotation axis of the wheel to obtain a deformation with respect to the rotation axis of the wheel for a ring formed by a predetermined portion of the tire. Inspection device.
JP2011221343A 2011-09-16 2011-09-16 Tire inspection device Active JP5817990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221343A JP5817990B2 (en) 2011-09-16 2011-09-16 Tire inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221343A JP5817990B2 (en) 2011-09-16 2011-09-16 Tire inspection device

Publications (2)

Publication Number Publication Date
JP2013064709A true JP2013064709A (en) 2013-04-11
JP5817990B2 JP5817990B2 (en) 2015-11-18

Family

ID=48188331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221343A Active JP5817990B2 (en) 2011-09-16 2011-09-16 Tire inspection device

Country Status (1)

Country Link
JP (1) JP5817990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083451A (en) * 2013-09-19 2015-04-30 住友ゴム工業株式会社 Wheel for x-ray photography
CN109254021A (en) * 2018-10-18 2019-01-22 合肥美亚光电技术股份有限公司 tire level detection method and tire level detection device
CN110455209A (en) * 2018-05-07 2019-11-15 通伊欧轮胎株式会社 Tire strain detecting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445299A (en) * 2015-12-12 2016-03-30 佛山市南海中南铝车轮制造有限公司 Special wheel-type X ray detection auxiliary method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218844A (en) * 1993-01-28 1994-08-09 Toshiba Corp Ct device for tire
JPH081377B2 (en) * 1984-12-28 1996-01-10 株式会社東芝 Tire load test tomography equipment
JP2008304422A (en) * 2007-06-11 2008-12-18 Shimadzu Corp X-ray ct apparatus
JP2011169737A (en) * 2010-02-18 2011-09-01 Bridgestone Corp Ct device for tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081377B2 (en) * 1984-12-28 1996-01-10 株式会社東芝 Tire load test tomography equipment
JPH06218844A (en) * 1993-01-28 1994-08-09 Toshiba Corp Ct device for tire
JP2008304422A (en) * 2007-06-11 2008-12-18 Shimadzu Corp X-ray ct apparatus
JP2011169737A (en) * 2010-02-18 2011-09-01 Bridgestone Corp Ct device for tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083451A (en) * 2013-09-19 2015-04-30 住友ゴム工業株式会社 Wheel for x-ray photography
CN110455209A (en) * 2018-05-07 2019-11-15 通伊欧轮胎株式会社 Tire strain detecting method
US11002639B2 (en) 2018-05-07 2021-05-11 Toyo Tire Corporation Tire distortion detection method
DE102019110469B4 (en) 2018-05-07 2023-01-26 Toyo Tire Corporation tire deformation detection method
CN109254021A (en) * 2018-10-18 2019-01-22 合肥美亚光电技术股份有限公司 tire level detection method and tire level detection device
CN109254021B (en) * 2018-10-18 2021-05-28 合肥美亚光电技术股份有限公司 Tire level detection method and tire level detection device

Also Published As

Publication number Publication date
JP5817990B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2016170685A1 (en) X-ray inspection device, x-ray inspection method, and method for manufacturing structure
JP4196436B2 (en) Computerized tomographic inspection method of composite layer structure
CN106605122B (en) System, method and the non-transitory computer usable medium of measurement object
JP5817990B2 (en) Tire inspection device
US8687861B2 (en) Image reconstructing method using X-ray volume photography
US10368824B2 (en) X-ray CT device and processing device
CN100464707C (en) Processing system and method for reconstructing 3D pyramidal CT image
CN102590243B (en) Whole-body CT (Computed Tomography) scanning imaging method for railway casting
US20160335756A1 (en) Inspection system
US20140368500A1 (en) Method and apparatus of measuring objects using selective imaging
US11954848B2 (en) Method and installation for the in-line dimensional control of manufactured objects
US20180172606A1 (en) Image acquisition device, image acquisition method, and image correction program
JP2019158534A (en) X-ray ct apparatus for measurement and method for generating fault image
CN103226113A (en) Automatic calibration method for reconstructing voxel sizes of cone beam 3D-CT scanning system
CN103759679A (en) Measuring method for angular deviation of cone-beam CT system
CN101825433B (en) Measuring method of offset of rotating center of rotating table of fan beam 2D-CT scanning system
WO2016129035A1 (en) Image reconstruction method for x-ray measurement device, method for manufacturing structure, image reconstruction program for x-ray measurement device, and x-ray measurement device
US20210049794A1 (en) Method for image reconstruction of an object, in particular based on computed-tomography image reconstruction, and apparatus, system and computer program product for the same
JP6781481B2 (en) X-ray inspection device and control method of X-ray inspection device
JP2009237704A (en) Three-dimensional imaging method and tomograph
JP6776890B2 (en) X-ray imaging system
JP2020094893A (en) Data processing method, data processing device, and data processing program
CN106255875A (en) System and method for X-ray tyre inspection
JPH1043178A (en) Method, device for setting reconstitutive faces, reconstitutive image preparing method and x-ray ct device
JP2005265618A (en) Computerized tomographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5817990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250