JP2013064330A - Device for removing air mixed into working medium of electric power generator - Google Patents

Device for removing air mixed into working medium of electric power generator Download PDF

Info

Publication number
JP2013064330A
JP2013064330A JP2011201964A JP2011201964A JP2013064330A JP 2013064330 A JP2013064330 A JP 2013064330A JP 2011201964 A JP2011201964 A JP 2011201964A JP 2011201964 A JP2011201964 A JP 2011201964A JP 2013064330 A JP2013064330 A JP 2013064330A
Authority
JP
Japan
Prior art keywords
medium
air
mixed gas
mixed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201964A
Other languages
Japanese (ja)
Other versions
JP5849557B2 (en
Inventor
Ichiro Meigan
市郎 明翫
Hiroaki Shibata
浩晃 柴田
Yoshitaka Kawahara
義隆 川原
Isamu Osawa
勇 大澤
Yasumoto Kubota
康幹 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011201964A priority Critical patent/JP5849557B2/en
Publication of JP2013064330A publication Critical patent/JP2013064330A/en
Application granted granted Critical
Publication of JP5849557B2 publication Critical patent/JP5849557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device which detects air mixed into a medium passage of the device using a medium which is lower in boiling point than water, and automatically removes the mixed air.SOLUTION: The device comprises: an eductor using a liquid medium cooled by a cooler as a drive medium; a first vessel; a pressure gauge which measures the pressure of an air phase part of a passage of a mixed gas; and a temperature gauge which measures a temperature of the passage of the mixed gas. The device also comprises a control part which calculates a pressure threshold obtained by totaling a saturation vapor pressure value of the medium and an excess value which are calculated on the basis of a temperature of the temperature gauge and a pressure value of the pressure gauge, detects that the air is mixed into the medium when the pressure value of the pressure gauge is larger than the pressure threshold, takes the mixed gas out of the passage of the mixed gas by using the eductor by operating the cooler and a pump and transfers it to the first vessel, and performs control for returning the liquid medium which is separated into air and liquid by the first vessel to the passage of the mixed gas via a first valve.

Description

本発明は、水よりも低沸点の媒体を作動媒体とする発電装置において、作動媒体に混入した空気を除去する装置に関する。   The present invention relates to an apparatus for removing air mixed in a working medium in a power generation apparatus using a medium having a boiling point lower than that of water as a working medium.

従来の蒸気タービンを用いた地熱発電で活用されてこなかった低温熱源から熱エネルギーを回収し発電する低沸点媒体を用いた発電装置は、最近エネルギー回収装置として特別に注目されている(特許文献1参照)。   A power generation apparatus using a low boiling point medium that recovers heat energy from a low-temperature heat source that has not been used in geothermal power generation using a conventional steam turbine has recently attracted special attention as an energy recovery apparatus (Patent Document 1). reference).

従来の低沸点媒体を用いた発電装置の基本的系統図を図5に示す。この発電装置は、蒸発器100で水よりも低沸点の媒体と熱源との間で熱交換を行いこの媒体を蒸発させ、この媒体蒸気でタービン101を回転させ、その回転力で発電機102を作動させて電力を得る。タービンを出た媒体は凝縮器103で凝縮され循環ポンプ104で予熱器105を経由して再び蒸発器100に送られ、上記のサイクルが繰り返される。   FIG. 5 shows a basic system diagram of a power generator using a conventional low boiling point medium. In this power generation apparatus, the evaporator 100 exchanges heat between a medium having a boiling point lower than that of water and a heat source to evaporate the medium, rotate the turbine 101 with the medium vapor, and rotate the generator 102 with the rotational force. Activate to get power. The medium leaving the turbine is condensed by the condenser 103 and sent to the evaporator 100 again by the circulation pump 104 via the preheater 105, and the above cycle is repeated.

一般に、蒸気圧が高い(すなわち、沸点が低い)媒体を使用すると蒸発器での気化は容易であるが、凝縮器での凝縮が難しくなり、逆に、蒸気圧が低い(すなわち、沸点が高い)媒体を使用すると気化が難しくなるが、凝縮が容易になる。こうした観点から、使用される媒体は、タービン入口と出口のエンタルピー差(熱落差)がなるべく大きくなる媒体が選定される。例えば、地熱熱源温度130〜140℃、冷却源温度15℃〜30℃の条件で使用される天然媒体としてはn−ペンタン(nC12)が主に利用されている。 In general, when a medium having a high vapor pressure (ie, a low boiling point) is used, vaporization in the evaporator is easy, but condensing in the condenser becomes difficult, and conversely, the vapor pressure is low (ie, the boiling point is high). ) Use of a medium makes vaporization difficult but condensing is easy. From this viewpoint, the medium to be used is selected such that the enthalpy difference (heat drop) between the turbine inlet and outlet is as large as possible. For example, n-pentane (nC 5 H 12 ) is mainly used as a natural medium used under conditions of a geothermal heat source temperature of 130 to 140 ° C. and a cooling source temperature of 15 ° C. to 30 ° C.

凝縮器の冷却源は一般に循環冷却水または大気であるので、冬と夏では冷却源の温度が大幅に異なる。そのため、凝縮器が夏季に必要とされる冷却能力に基づいてのみ設計された場合、冬季に冷却源温度が低下すると、凝縮器の冷却能力が一段と増強される。   Since the cooling source of the condenser is generally circulating cooling water or air, the temperature of the cooling source differs greatly between winter and summer. Therefore, when the condenser is designed only based on the cooling capacity required in the summer, the cooling capacity of the condenser is further enhanced when the cooling source temperature decreases in the winter.

しかし、図3に示すように、n−ペンタンの蒸気圧は36℃以下になると101kPa以下になる為、冬季に凝縮器出口の温度が36℃以下になると媒体流路は大気圧以下になる場合がある。そうなると、凝縮器本体及びその接続配管の各種の継手またはタービンの軸のメカニカルシール部分などから媒体流路へ空気が混入する可能性がある。
そこで、発電に関係する装置において媒体に混入する空気を除去する装置として、下記特許文献2から6が知られている。
However, as shown in FIG. 3, when the vapor pressure of n-pentane falls below 36 ° C., it becomes 101 kPa or below. There is. Then, there is a possibility that air may be mixed into the medium flow path from various couplings of the condenser main body and its connecting pipe, or a mechanical seal portion of the turbine shaft.
Therefore, Patent Documents 2 to 6 below are known as apparatuses for removing air mixed in a medium in an apparatus related to power generation.

特許文献2には、低沸点媒体の代わりに水を使用するバイナリー発電装置において、復水器の排出水から空気を抽出するための空気抽出装置を備えた装置が開示されている。
特許文献3には、高沸点媒体と低沸点媒体とを混合してなる作動流体が、当該作動流体の溶液を加熱して蒸気を発生する蒸気発生器と、蒸気発生器から供給された蒸気により駆動する蒸気タービンと、蒸気タービンから排出された蒸気を冷却して溶液に復水させる復水器と、復水器から供給された溶液を蒸気発生器に供給する供給ポンプとの順に夫々を循環する動力サイクル回路を備えた動力システムであって、動力サイクル回路における復水器で起り得る最低圧力が大気圧近傍圧力となるように、復水器での作動流体の低沸点媒体の濃度が決定されている動力システムが開示されている。
Patent Document 2 discloses a device including an air extraction device for extracting air from the discharge water of a condenser in a binary power generation device that uses water instead of a low boiling point medium.
In Patent Document 3, a working fluid formed by mixing a high-boiling point medium and a low-boiling point medium is composed of a steam generator that generates a steam by heating a solution of the working fluid, and a steam supplied from the steam generator. A steam turbine to be driven, a condenser that cools the steam discharged from the steam turbine and condenses it into a solution, and a supply pump that supplies the solution supplied from the condenser to the steam generator are circulated in this order. The concentration of the low boiling point medium of the working fluid in the condenser is determined so that the lowest pressure that can occur in the condenser in the power cycle circuit is the pressure near the atmospheric pressure. A power system is disclosed.

特許文献4には、内部にピストンを備えたチャンバーを凝縮器の上部に備え、チャンバーのピストン下方の空間と凝縮器の間を接続するバルブと、壁を介してチャンバー下部を冷却材で冷却する冷却手段と、チャンバー下部に接続された排出バルブを備えている装置が開示されている。   In Patent Document 4, a chamber having a piston inside is provided in the upper part of the condenser, and a valve connecting the space below the piston of the chamber and the condenser and the lower part of the chamber are cooled by a coolant through a wall. An apparatus comprising cooling means and a discharge valve connected to the lower part of the chamber is disclosed.

特許文献5,6には、凝縮器の上部に密閉されたチャンバーを備え、このチャンバーは、チャンバー内を上部と下部に分ける可動のダイアフラムを備え、凝縮器とチャンバー下部の間に直列に配置された2つの流量制御バルブと、壁を介してチャンバー下部を冷却材で冷却する冷却手段と、チャンバー下部に接続された排出バルブを備えている装置が開示されている。   In Patent Documents 5 and 6, a sealed chamber is provided at the top of the condenser, and this chamber is provided with a movable diaphragm that divides the inside of the chamber into an upper part and a lower part, and is arranged in series between the condenser and the lower part of the chamber. Further, there is disclosed an apparatus including two flow control valves, a cooling means for cooling the lower part of the chamber with a coolant through a wall, and a discharge valve connected to the lower part of the chamber.

特許文献7には、復水器より数段のエダクター等を使って不凝結ガスを抽出し、復水器内の真空を保つ地熱発電プラントのガス抽出システムが開示されている。   Patent Document 7 discloses a gas extraction system for a geothermal power plant that extracts uncondensed gas from a condenser using several stages of eductors and the like, and maintains a vacuum in the condenser.

特開昭62−26304号公報JP 62-26304 A 特開2003−120513号公報JP 2003-120513 A 特開2007−262909号公報JP 2007-262909 A 米国特許5,119,635号公報US Pat. No. 5,119,635 米国特許5,113,927号公報US Patent No. 5,113,927 米国特許5,487,765号公報US Pat. No. 5,487,765 昭60−132006号公報Sho 60-132006

上記特許文献2は、媒体に水を用いているために、熱源が100℃以上でなければならず、より低温の熱源を用いることができないという課題があった。
上記特許文献3は、冬季に復水器で起こりうる最低圧力が大気圧近傍圧力になるように低沸点媒体の濃度が決定されているので、夏季の復水器の圧力が高くなり、発電効率が低下するという課題があった。
Since the above-mentioned Patent Document 2 uses water as a medium, there is a problem that the heat source must be 100 ° C. or higher and a lower temperature heat source cannot be used.
In Patent Document 3, since the concentration of the low boiling point medium is determined so that the minimum pressure that can occur in the condenser in winter is a pressure close to atmospheric pressure, the condenser pressure in summer increases and the power generation efficiency increases. There has been a problem of lowering.

上記特許文献4,5,6は、媒体から空気を除去する装置が開示されているが、その装置の作動タイミングは、20分毎に定期的に作動させる例を挙げているに過ぎないため、必要以上に空気除去動作が行われて媒体の流出量が多くなるという課題があった。   The above Patent Documents 4, 5, and 6 disclose an apparatus for removing air from a medium, but the operation timing of the apparatus merely gives an example of periodically operating every 20 minutes. There was a problem that the air removal operation was performed more than necessary, and the amount of medium outflow increased.

上記特許文献7は、エダクターの駆動に蒸気を使用しているので、後段のクーラーで駆動蒸気と復水器から取り出したガスの両方を冷却しなければならないので、冷却負荷が大きいという課題があった。   In Patent Document 7, since steam is used to drive the eductor, both the driving steam and the gas taken out from the condenser must be cooled by a subsequent cooler, which causes a problem that the cooling load is large. It was.

上記課題を鑑み、本発明は、自動で発電装置の媒体流路に混入した空気を検出し、混入した空気を装置外へ排出できる混入空気除去装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a mixed air removing device that can automatically detect air mixed in a medium flow path of a power generation device and discharge the mixed air to the outside of the device.

前記目的を達成するために、水よりも沸点が低い媒体と空気との混合ガスから空気を除去する本発明の混入空気除去装置は、媒体を冷却する冷却器と、冷却された液状の前記媒体を駆動媒体とし前記混合ガスの流路から前記混合ガスを吸引するエダクターと、前記エダクターに液状媒体を供給するポンプと、前記エダクターの吐出部と接続され、大気と連通する配管を備えた前記第1容器と、前記第1容器の下部と前記混合ガスの流路とを接続する配管に設けられた第1弁と、前記混合ガスの流路の気相部の圧力を測定する圧力計と、前記混合ガスの流路の温度を測定する温度計と、前記温度計の温度と前記圧力計の圧力値に基づいて算出した前記媒体の飽和蒸気圧値と余裕値とを合計した圧力閾値を算出し、前記圧力閾値より前記圧力計の圧力値が大きい場合に、前記媒体に空気が混入していることを検知し、前記冷却器と前記ポンプを作動させて前記エダクターにより前記混合ガスの流路から前記混合ガスを取り出して前記第1容器に移送し、前記第1容器で気液分離された液状の媒体を、前記第1弁を介して前記混合ガスの流路に戻す制御を行う制御部を備えていることを特徴とする。   In order to achieve the above object, the mixed air removing apparatus of the present invention for removing air from a mixed gas of a medium having a boiling point lower than that of water and air includes a cooler for cooling the medium, and the cooled liquid medium And an eductor for sucking the mixed gas from the mixed gas flow path, a pump for supplying a liquid medium to the eductor, and a pipe connected to the discharge part of the eductor and communicating with the atmosphere. A pressure valve for measuring the pressure of a gas phase part of the mixed gas flow path, a first valve provided in a pipe connecting the lower part of the first container and the mixed gas flow path, A thermometer that measures the temperature of the flow path of the mixed gas, and a pressure threshold that is the sum of the saturated vapor pressure value and the margin value of the medium calculated based on the temperature of the thermometer and the pressure value of the pressure gauge The pressure gauge from the pressure threshold When the force value is large, it is detected that air is mixed in the medium, the cooler and the pump are operated, the eductor takes out the mixed gas from the mixed gas flow path, and the first A control unit is provided that performs control to return the liquid medium, which is transferred to the container and separated into gas and liquid in the first container, to the mixed gas flow path via the first valve.

このような構成によれば、冷却された媒体の圧力を駆動力として、前記混合ガスの流路から混合ガスをエダクターにより取り出すため、エダクターで容易に混合ガスが冷却され、空気に含まれる媒体濃度を低下させることができる。そのため、装置外に放出される媒体の量を低減できる。   According to such a configuration, since the mixed gas is taken out from the mixed gas flow path by the eductor using the pressure of the cooled medium as a driving force, the mixed gas is easily cooled by the eductor, and the concentration of the medium contained in the air Can be reduced. As a result, the amount of the medium released outside the apparatus can be reduced.

また、前記混入空気除去装置に前記第1容器の液面を検出する液面計をさらに備えることが望ましい。このような構成によれば、第1容器内が空にならないように第1弁の開閉を制御するので、第1容器内の空気が前記混合ガスの流路に流入することを防止できる。   In addition, it is preferable that the mixed air removing device further includes a liquid level gauge that detects a liquid level of the first container. According to such a configuration, since the opening and closing of the first valve is controlled so that the inside of the first container is not emptied, the air in the first container can be prevented from flowing into the flow path of the mixed gas.

本発明の混入空気除去装置は、前記混合ガスに空気を供給する空気供給部と、前記空気供給部から供給する空気量を調節する第2弁と、前記第1容器から供給される混合ガスの流量を調整する第3弁と、前記第2弁と前記第3弁にそれぞれ接続され、前記第1容器から排出された前記媒体を燃焼する燃焼器を備え、前記制御部は、前記第2弁と、前記第3弁とを制御して、前記燃焼器で前記媒体を燃焼することとしても良い。このような態様によれば、可燃性の媒体を用いている場合は、本発明の混入空気除去装置外に安全に排出できる。   The mixed air removal apparatus of the present invention includes an air supply unit that supplies air to the mixed gas, a second valve that adjusts an amount of air supplied from the air supply unit, and a mixed gas supplied from the first container. A third valve for adjusting a flow rate; a combustor that is connected to each of the second valve and the third valve and burns the medium discharged from the first container; and the control unit includes the second valve And the third valve may be controlled to burn the medium in the combustor. According to such an aspect, when the flammable medium is used, it can be safely discharged out of the mixed air removing device of the present invention.

前記混入空気除去装置を発電装置に備えると、自動で媒体中の空気を除去できるので、発電効率を向上できる。
なお、本発明に用いられる媒体としては、特にR245faなどの各種フロンやn−ペンタンなどの沸点が水より低い有機性低沸点媒体が用いられる。
If the mixed air removing device is provided in the power generation device, air in the medium can be automatically removed, so that power generation efficiency can be improved.
In addition, as a medium used in the present invention, an organic low boiling point medium having a boiling point lower than that of water such as various chlorofluorocarbons such as R245fa and n-pentane is used.

本発明によれば、媒体貯留部の液相部の温度に基づいて算出された前記媒体の飽和蒸気圧値に余裕値を加えた圧力閾値と、媒体貯留部の気相部の圧力値を比較して空気の混入を検知しているので、発電装置の媒体流路に空気が混入したことを自動で検出できる。また、装置外へ排出される作動媒体の量を低減できる。そして、凝縮器で凝縮されない空気が媒体に混入して凝縮器の凝縮能力が低下することによる発電効率の低下を防止できる。   According to the present invention, the pressure threshold value obtained by adding a margin value to the saturated vapor pressure value of the medium calculated based on the temperature of the liquid phase part of the medium storage part and the pressure value of the gas phase part of the medium storage part are compared. Thus, since air contamination is detected, it is possible to automatically detect that air has entered the medium flow path of the power generation device. In addition, the amount of working medium discharged outside the apparatus can be reduced. And the fall of power generation efficiency by the air which is not condensed with a condenser mixes in a medium, and the condensation capability of a condenser falls can be prevented.

本発明の実施例に係る装置の構成を示す図である。It is a figure which shows the structure of the apparatus which concerns on the Example of this invention. 本発明の実施例に係る装置の作動シーケンス図である。It is an operation | movement sequence diagram of the apparatus which concerns on the Example of this invention. n−ペンタンの飽和蒸気圧線図である。It is a saturated vapor pressure diagram of n-pentane. 圧力101kPaにおいて、温度をパラメーターとして空気中に飽和するn−ペンタンの容積比率を表した図である。It is a figure showing the volume ratio of n-pentane which saturates in air, using temperature as a parameter at a pressure of 101 kPa. 従来の一般的な低沸点媒体を用いた発電装置の構成を示す図である。It is a figure which shows the structure of the electric power generating apparatus using the conventional general low boiling-point medium.

以下、この発明の実施の形態について図に基づいて説明する。図1は、この発明の実施例に係る混入空気除去装置の構成を示す図である。図1の凝縮器103は、図5の凝縮器103に相当する。媒体貯留部1は、凝縮液103の出口側コレクタの上部に接続されており、媒体貯留部1の液相部の温度を測定する温度計10と、媒体貯留部1の気相部の圧力を測定する圧力計11が設置されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a mixed air removing apparatus according to an embodiment of the present invention. The condenser 103 in FIG. 1 corresponds to the condenser 103 in FIG. The medium storage unit 1 is connected to the upper part of the outlet side collector of the condensate 103, and a thermometer 10 that measures the temperature of the liquid phase part of the medium storage unit 1 and the pressure of the gas phase part of the medium storage unit 1. A pressure gauge 11 to be measured is installed.

第1容器2は、弁12を介して配管で媒体貯留部1と接続している。さらに、媒体貯留部1とエダクター41を接続する配管が設置されており、この配管に弁16と圧力計45が設置されている。   The first container 2 is connected to the medium storage unit 1 by piping through a valve 12. Furthermore, a pipe connecting the medium storage unit 1 and the eductor 41 is installed, and a valve 16 and a pressure gauge 45 are installed in this pipe.

媒体タンク24は、ポンプ18に接続されている。ポンプ18は、流量計6と冷却器42と温度計15と弁13とを介して配管でエダクター41に接続されている。エダクター41の吐出口は、第1容器2上部に接続されている。   The medium tank 24 is connected to the pump 18. The pump 18 is connected to the eductor 41 by piping through the flow meter 6, the cooler 42, the thermometer 15, and the valve 13. The discharge port of the eductor 41 is connected to the upper part of the first container 2.

第1容器2には、容器上方から順に圧力計7と液面計(高液面)8と液面計(低液面)9が設置されている。
燃焼器4は、内部に燃焼触媒を備え、燃焼器4の下部は、弁14を介して第1容器2と配管で接続されている。空気供給手段19は、弁17を介して配管で燃焼器4と接続されている。第1容器2から供給された混合ガスは、空気供給手段19から供給された空気と混合され、燃焼器4の燃焼触媒で燃焼され、排ガスになる。生じた排ガスは、大気に放出される。燃焼器4には、燃焼触媒を機能させるために、燃焼触媒を所定の温度に制御するヒーターが設置されている。燃焼器4と空気供給部19と弁17およびそれらを接続する配管は必須の構成ではなく、弁14から排出されるガスを燃焼させずに大気で希釈する場合は、不要である。
A pressure gauge 7, a liquid level gauge (high liquid level) 8, and a liquid level gauge (low liquid level) 9 are installed in the first container 2 in order from the top of the container.
The combustor 4 includes a combustion catalyst therein, and a lower portion of the combustor 4 is connected to the first container 2 via a valve 14 by piping. The air supply means 19 is connected to the combustor 4 through a valve 17 by piping. The mixed gas supplied from the first container 2 is mixed with the air supplied from the air supply means 19 and burned by the combustion catalyst of the combustor 4 to become exhaust gas. The generated exhaust gas is released to the atmosphere. The combustor 4 is provided with a heater for controlling the combustion catalyst to a predetermined temperature in order to make the combustion catalyst function. The combustor 4, the air supply unit 19, the valve 17, and the pipes connecting them are not essential, and are not necessary when the gas discharged from the valve 14 is diluted with the atmosphere without being burned.

制御部5は、温度計10、15と圧力計11、7、45と液面計(高液面)8と液面計(低液面)9と流量計6とにそれぞれ信号線で接続されており、各機器からの信号はそれぞれ制御部5に入力される。また、制御部5は、弁12,13,14,16,17にそれぞれ電気配線で接続されており、各弁の開閉を制御している。   The control unit 5 is connected to the thermometers 10 and 15, the pressure gauges 11, 7 and 45, the liquid level gauge (high liquid level) 8, the liquid level gauge (low liquid level) 9 and the flow meter 6 through signal lines, respectively. The signal from each device is input to the control unit 5. The control unit 5 is connected to the valves 12, 13, 14, 16, and 17 by electric wiring, and controls the opening and closing of each valve.

次に本装置の動作について説明する。図2は、本発明の第1の実施形態に係る装置の作動シーケンスの概要を示す図である。制御部5は、空気混入検出工程S1、空気除去工程S2の順に実行し、その後、空気混入検出工程S1に戻る。なお、初期状態では、すべての弁は、閉じた状態である。   Next, the operation of this apparatus will be described. FIG. 2 is a diagram showing an outline of an operation sequence of the apparatus according to the first embodiment of the present invention. The control part 5 performs in order of air mixing detection process S1 and air removal process S2, and returns to air mixing detection process S1 after that. In the initial state, all valves are in a closed state.

まず、空気混入検出工程S1について説明する。混入空気除去装置は、圧力計11の圧力が大気圧以下(媒体がn−ペンタンの場合、36℃以下)になった事が確認された時のみ作動させる。なぜならば、媒体流路内の圧力が大気圧以上の状態が継続していれば、外気から媒体流路内に空気が混入し難いという点と、後述する空気除去工程S2の後半で、第1容器2に溜まった液状の媒体を媒体貯留部1に戻す際の駆動力として、大気圧と媒体貯留部1内部の圧力差を利用している点からである。第1容器2と弁12の間の配管に新たにポンプを設けて、この圧力差が無くても作動するようにしてもよい。   First, the air mixing detection step S1 will be described. The mixed air removing device is operated only when it is confirmed that the pressure of the pressure gauge 11 is equal to or lower than atmospheric pressure (or 36 ° C. or lower when the medium is n-pentane). This is because, if the pressure in the medium flow path continues to be equal to or higher than the atmospheric pressure, it is difficult for air to be mixed into the medium flow path from the outside air, and in the second half of the air removal step S2 described later, This is because the difference between the atmospheric pressure and the pressure inside the medium reservoir 1 is used as the driving force when returning the liquid medium collected in the container 2 to the medium reservoir 1. A new pump may be provided in the pipe between the first container 2 and the valve 12 so as to operate without this pressure difference.

制御部5は、まず、媒体貯留部1の気相部に設置された圧力計11の圧力値(PIa)が、101kPa未満かどうか判定する。圧力値(PIa)が、101kPa以上の場合は、この判定条件の上流にもどり、この判定を継続する。圧力値(PIa)が、101kPa未満の場合は、媒体貯留部1の気相部に設置された圧力計11の信号と媒体貯留部1の液相部に設置された温度計10の信号を取得し、温度計の温度に基づいて算出された媒体の飽和蒸気圧値に余裕値を加えた圧力閾値を計算する。そして、圧力計11の圧力値(PIa)が圧力閾値以下の場合は空気混入検出工程S1の最初に戻る。圧力計11の圧力値(PIa)が圧力閾値より高い場合は媒体に空気が混入したと判断し、次の工程に進む。また、上記余裕値は、固定値とするか、もしくは、前記温度計の温度に基づいて算出された前記媒体の飽和蒸気圧値に係数をかけた比例値とする。具体的には、例えば、nペンタンの場合、下記の式1を用いて、温度(T1)における飽和蒸気圧値(Pst)を演算する。グラフにしたものを図3に示す。用いる媒体が違う場合は、その媒体の特性に合わせて飽和蒸気圧値(Pst)を求める式を適宜変更する。
Pst=0.0003(T1)+0.0159(T1)+1.1844(T1)+24.316 ・・・(式1)
余裕値は、継手の数や状態を考慮して何回かの試験を経て決める。例えば、固定値の場合は、1気圧時の10%程度とする。比例値とする場合は、前記係数を0.1程度とする。
First, the control unit 5 determines whether or not the pressure value (PIa) of the pressure gauge 11 installed in the gas phase part of the medium storage unit 1 is less than 101 kPa. When the pressure value (PIa) is 101 kPa or more, the process returns to the upstream of this determination condition and continues this determination. When the pressure value (PIa) is less than 101 kPa, the signal of the pressure gauge 11 installed in the gas phase part of the medium storage unit 1 and the signal of the thermometer 10 installed in the liquid phase part of the medium storage unit 1 are acquired. Then, a pressure threshold value obtained by adding a margin value to the saturated vapor pressure value of the medium calculated based on the temperature of the thermometer is calculated. And when the pressure value (PIa) of the pressure gauge 11 is below a pressure threshold value, it returns to the beginning of air mixing detection process S1. If the pressure value (PIa) of the pressure gauge 11 is higher than the pressure threshold value, it is determined that air has entered the medium, and the process proceeds to the next step. The margin value is a fixed value or a proportional value obtained by multiplying the saturated vapor pressure value of the medium calculated based on the temperature of the thermometer by a coefficient. Specifically, for example, in the case of n pentane, the saturated vapor pressure value (Pst) at the temperature (T1) is calculated using the following formula 1. A graph is shown in FIG. If the medium to be used is different, the equation for obtaining the saturated vapor pressure value (Pst) is appropriately changed according to the characteristics of the medium.
Pst = 0.0003 (T1) 3 +0.0159 (T1) 2 +1.1844 (T1) +24.316 (Formula 1)
The margin value is determined through several tests in consideration of the number and condition of joints. For example, in the case of a fixed value, it is about 10% at 1 atmosphere. In the case of a proportional value, the coefficient is set to about 0.1.

次に、空気除去工程S2について説明する。この工程の主目的は、エダクター41により、媒体貯留部1から気相部の混合ガスを第1容器2へ移送することである。その際、エダクターの駆動媒体を冷却しておくことで混合ガスを冷却し、混合ガス中の媒体濃度を低下させることである。   Next, air removal process S2 is demonstrated. The main purpose of this step is to transfer the mixed gas in the gas phase part from the medium storage part 1 to the first container 2 by the eductor 41. At this time, the mixed gas is cooled by cooling the drive medium of the eductor, and the medium concentration in the mixed gas is reduced.

具体的には、図1に示す混入空気除去装置の弁12,13,16,14をそれぞれ閉じた後、冷却器42を作動させる。所定時間経過後、弁13と弁14を開き、ポンプ18を作動させる。そうすると、冷却器42で冷却された媒体が便13とエダクター41を経由して第1容器2に移送される。   Specifically, the cooler 42 is operated after the valves 12, 13, 16, and 14 of the mixed air removing apparatus shown in FIG. After a predetermined time has elapsed, the valves 13 and 14 are opened, and the pump 18 is operated. Then, the medium cooled by the cooler 42 is transferred to the first container 2 via the stool 13 and the eductor 41.

その後、一部の気化した媒体は、第1容器2から弁14を通って外部に排出される。この際、弁17も開けられる。この際、燃焼器4と空気供給部19と弁17およびそれらを接続する配管は必須の構成ではない。例えば、弁14から排出されるガスを燃焼させずに大気で希釈する場合は、弁14を開放して混合ガスを大気にそのまま放出してもよい。 混合ガスを燃やして大気に放出する場合は、混合ガスに含まれる酸素だけでは完全燃焼できないことが想定される。例えば、n−ペンタンの場合、空気との混合比がn−ペンタンの燃焼範囲(1.5%〜7.8%)を超える場合は、酸素を供給する必要がある。この範囲に空気量を調整する為、弁17を介して空気が投入される。この空気としては、圧縮空気供給設備から供給することが望ましく、例えば、装置の計装機器を作動させるための計装用空気を使用してもよい。具体的には、次の手順で行う。燃焼器4は、燃焼触媒として白金微粒子を担持させたセラミックハニカムフィルターを内部に備えている。燃焼器4内を200〜350℃になるようにヒーター4aで加熱された状態で、弁17と弁14を開いて燃焼器4へ混合ガスと空気を供給して媒体を燃焼する。   Thereafter, a part of the vaporized medium is discharged from the first container 2 through the valve 14 to the outside. At this time, the valve 17 is also opened. At this time, the combustor 4, the air supply unit 19, the valve 17, and piping connecting them are not essential components. For example, when the gas discharged from the valve 14 is diluted in the atmosphere without burning, the valve 14 may be opened to release the mixed gas to the atmosphere as it is. When the mixed gas is burned and released to the atmosphere, it is assumed that complete combustion cannot be achieved only with oxygen contained in the mixed gas. For example, in the case of n-pentane, when the mixing ratio with air exceeds the combustion range of n-pentane (1.5% to 7.8%), it is necessary to supply oxygen. In order to adjust the air amount within this range, air is supplied through the valve 17. The air is preferably supplied from a compressed air supply facility, and for example, instrument air for operating instrumentation equipment of the apparatus may be used. Specifically, the following procedure is used. The combustor 4 includes a ceramic honeycomb filter in which platinum fine particles are supported as a combustion catalyst. In a state where the inside of the combustor 4 is heated by the heater 4a so as to be 200 to 350 ° C., the valve 17 and the valve 14 are opened, and the mixed gas and air are supplied to the combustor 4 to burn the medium.

ここから、2つの同時並行的に動作する分岐シーケンスが実行される。
第1の分岐シーケンスは、媒体貯留部1の混合ガスをエダクターによって吸引し、冷却された媒体と共に第1容器2に移送する工程であり、第2の分岐シーケンスは、第1容器2に溜まった媒体を媒体貯留部1に戻す工程である。
From here, two branch sequences operating in parallel are executed.
The first branch sequence is a step of sucking the mixed gas in the medium storage unit 1 by the eductor and transferring it to the first container 2 together with the cooled medium, and the second branch sequence is stored in the first container 2. In this step, the medium is returned to the medium storage unit 1.

具体的に説明すると、第1の分岐シーケンスでは、圧力計45の圧力値(PIb)が圧力計11の圧力値(PIa)の半分の値未満かどうか判定される。この判定は、エダクターの真空度の到達具合をチェックしているだけであり、ここでは仮に、圧力計11の圧力値(PIa)の半分の値を用いているが、適宜任意に設定可能である。圧力計45の圧力値(PIb)が圧力計11の圧力値(PIa)の半分の値以上である場合は、この判定条件の上流にもどり、この判定を継続する。圧力計45の圧力値(PIb)が圧力計11の圧力値(PIa)の半分の値未満である場合は、弁16を開く。そうすると、媒体貯留部1の混合ガスは、エダクターによって吸引され、冷却された媒体と共に第1容器2に移送される。   More specifically, in the first branch sequence, it is determined whether or not the pressure value (PIb) of the pressure gauge 45 is less than half the pressure value (PIa) of the pressure gauge 11. This determination is merely checking the degree of vacuum of the eductor. Here, a half value of the pressure value (PIa) of the pressure gauge 11 is temporarily used, but can be arbitrarily set arbitrarily. . When the pressure value (PIb) of the pressure gauge 45 is equal to or more than half the pressure value (PIa) of the pressure gauge 11, the determination returns to the upstream of this determination condition and the determination is continued. When the pressure value (PIb) of the pressure gauge 45 is less than half the pressure value (PIa) of the pressure gauge 11, the valve 16 is opened. Then, the mixed gas in the medium storage unit 1 is sucked by the eductor and transferred to the first container 2 together with the cooled medium.

次に、圧力計45の圧力値(PIb)が判断閾値(F3 × Pst)未満かどうか判定される。この判断式におけるPstは、温度計15で測定された温度(TI2)での媒体の飽和蒸気圧である。F3は、係数であり、初期には1.1を用いる。この値で頻繁に本装置が停止するようなら、発電装置の効率低下が続く事になるので、継手部分の漏洩を点検を実施する。
この判定は、本発明の混入空気除去装置の空気除去能力の限界を検知するために設けられている。圧力計45の圧力値(PIb)が判断閾値(F3 × Pst)以上である場合は、エラー信号を発信し、本装置を停止させる。圧力計45の圧力値(PIb)が判断閾値(F3 x Pst)未満の場合は、所定時間経過後、弁16を閉じ、ポンプ18と冷却器42を停止し、弁13を閉じる。そして、空気混入検出工程S1の最初に戻る。
Next, it is determined whether the pressure value (PIb) of the pressure gauge 45 is less than the determination threshold value (F3 × Pst). Pst in this determination formula is the saturated vapor pressure of the medium at the temperature (TI2) measured by the thermometer 15. F3 is a coefficient, and 1.1 is used initially. If this device frequently stops at this value, the efficiency of the power generator will continue to decline, so check for leaks at the joints.
This determination is provided in order to detect the limit of the air removal capability of the mixed air removal apparatus of the present invention. When the pressure value (PIb) of the pressure gauge 45 is equal to or greater than the determination threshold value (F3 × Pst), an error signal is transmitted and the apparatus is stopped. When the pressure value (PIb) of the pressure gauge 45 is less than the determination threshold value (F3 × Pst), the valve 16 is closed after the predetermined time has elapsed, the pump 18 and the cooler 42 are stopped, and the valve 13 is closed. And it returns to the beginning of air mixing detection process S1.

一方、第2の分岐シーケンスでは、弁13が開いているか判定し、弁13が閉じている場合は、第1の分岐シーケンスが終了していることを意味しているので、第2の分岐シーケンスを停止し、空気混入検出工程S1の最初に戻る。弁13が開いている場合は、第1容器2内の液面が、液面計8の位置(LI1)より高いかどうか判定する。第1容器2内の液面が、液面計8の位置(LI1)以下の場合は、上述の弁13が開いているか判定する部分に戻る。第1容器2内の液面が、液面計8の位置(LI1)より高い場合は、弁12を開く。弁12を開くと、第1容器2に溜まった液状の媒体が、媒体貯留部1に戻る。これは、大気圧と媒体貯留部1内部の圧力とに差があるために、ポンプを用いなくても媒体を移送できる。なお、ポンプを用いて能動的に媒体を移送させてもよい。   On the other hand, in the second branch sequence, it is determined whether the valve 13 is open. If the valve 13 is closed, it means that the first branch sequence has ended. Is stopped, and the process returns to the beginning of the air mixing detection step S1. When the valve 13 is open, it is determined whether or not the liquid level in the first container 2 is higher than the position (LI1) of the liquid level gauge 8. When the liquid level in the 1st container 2 is below the position (LI1) of the liquid level indicator 8, it returns to the part which determines whether the above-mentioned valve 13 is open. When the liquid level in the first container 2 is higher than the position of the liquid level gauge 8 (LI1), the valve 12 is opened. When the valve 12 is opened, the liquid medium collected in the first container 2 returns to the medium storage unit 1. This is because there is a difference between the atmospheric pressure and the pressure inside the medium reservoir 1, so that the medium can be transferred without using a pump. Note that the medium may be actively transferred using a pump.

次に、上述と同じように、弁13が開いているか判定する。弁13が閉じている場合は、第1の分岐シーケンスが終了していることを意味しているので、第2の分岐シーケンスを停止し、空気混入検出工程S1の最初に戻る。弁13が開いている場合は、第1容器2内の液面が、液面計9の位置(LI2)より高いかどうか判定する。第1容器2内の液面が、液面計9の位置(LI2)以下の場合は、直前の弁13が開いているか判定する部分に戻る。第1容器2内の液面が、液面計9の位置(LI2)より高い場合は、弁12を閉じる。そして、第2の分岐シーケンスの最初に戻る。   Next, it is determined whether the valve 13 is open as described above. When the valve 13 is closed, it means that the first branch sequence has been completed, so the second branch sequence is stopped and the process returns to the beginning of the aeration detection step S1. When the valve 13 is open, it is determined whether or not the liquid level in the first container 2 is higher than the position (LI2) of the liquid level gauge 9. When the liquid level in the 1st container 2 is below the position (LI2) of the liquid level meter 9, it returns to the part which determines whether the valve 13 immediately before is open. When the liquid level in the first container 2 is higher than the position (LI2) of the liquid level gauge 9, the valve 12 is closed. Then, the process returns to the beginning of the second branch sequence.

ここで、空気と媒体の混合ガスが冷やされることで混合ガス中の媒体量を減らすことができる理由を説明する。空気に飽和するn−ペンタンの量Fstは、下記の式2で表わすことができる。
Fst=Fa×(Pst/(Pc−Pst)) ・・・・・・・・・・・・・(式2)
Fst:温度tで空気に飽和するn−ペンタンの標準状態量(Nm
Fa:空気の標準状態量(Nm
Pst:温度tでのn−ペンタンの飽和蒸気圧(kPa)
Pc:運転圧力(kPa)
この式2から、空気中に飽和するn−ペンタンの容積比率に関して、101kPaにおいて温度をパラメーターとして計算した結果を図4に示す。ここでいう容積比率とは、空気1に対して飽和するn−ペンタンの容積が空気の何倍かを表す値である。図4から解るように、温度が低い程、空気に飽和するペンタンが少ない事がわかる。
Here, the reason why the amount of medium in the mixed gas can be reduced by cooling the mixed gas of air and medium will be described. The amount Fst of n-pentane saturated with air can be expressed by the following equation 2.
Fst = Fa × (Pst / (Pc−Pst)) (Equation 2)
Fst: Standard state quantity of n-pentane saturated in air at temperature t (Nm 3 )
Fa: Standard state quantity of air (Nm 3 )
Pst: saturated vapor pressure of n-pentane at temperature t (kPa)
Pc: Operating pressure (kPa)
FIG. 4 shows the result of calculating the volume ratio of n-pentane saturated in the air from Equation 2 using the temperature as a parameter at 101 kPa. The volume ratio here is a value representing how many times the volume of n-pentane saturated with respect to the air 1 is that of air. As can be seen from FIG. 4, the lower the temperature, the less pentane is saturated in the air.

1:媒体貯留部
2:第1容器
4:燃焼器(燃焼触媒充填)
5:制御部
6:流量計
7:第1容器の圧力計
8:第1容器の液面計(高液面)
9:第1容器の液面計(低液面)
10,15:温度計
11,45:圧力計
12,13,14,16,17:弁
18:ポンプ
19:空気供給部
24:媒体タンク
41:エダクター
42:冷却器
S1:空気混入検出工程
S2:空気除去工程
100:蒸発器
101:タービン
102:発電機
103:凝縮器
104:循環ポンプ
105:予熱器
1: Medium storage part 2: First container 4: Combustor (combustion catalyst filling)
5: Control unit 6: Flow meter 7: Pressure gauge of the first container 8: Liquid level gauge of the first container (high liquid level)
9: Level gauge of the first container (low liquid level)
10, 15: Thermometer 11, 45: Pressure gauge 12, 13, 14, 16, 17: Valve 18: Pump 19: Air supply unit 24: Medium tank 41: Eductor 42: Cooler S1: Air contamination detection step S2: Air removal process 100: evaporator 101: turbine 102: generator 103: condenser 104: circulation pump 105: preheater

Claims (4)

水よりも沸点が低い媒体と空気との混合ガスから空気を除去する混入空気除去装置において、
媒体を冷却する冷却器と、
冷却された液状の前記媒体を駆動媒体とし前記混合ガスの流路から前記混合ガスを吸引するエダクターと、
前記エダクターに液状媒体を供給するポンプと、
前記エダクターの吐出部と接続され、大気と連通する配管を備えた前記第1容器と、
前記第1容器の下部と前記混合ガスの流路とを接続する配管に設けられた第1弁と、
前記混合ガスの流路の気相部の圧力を測定する圧力計と、
前記混合ガスの流路の温度を測定する温度計と、
前記温度計の温度と前記圧力計の圧力値に基づいて算出した前記媒体の飽和蒸気圧値と余裕値とを合計した圧力閾値を算出し、前記圧力閾値より前記圧力計の圧力値が大きい場合に、前記媒体に空気が混入していることを検知し、前記冷却器と前記ポンプを作動させて前記エダクターにより前記混合ガスの流路から前記混合ガスを取り出して前記第1容器に移送し、前記第1容器で気液分離された液状の媒体を、前記第1弁を介して前記混合ガスの流路に戻す制御を行う制御部を備えていることを特徴とする混入空気除去装置。
In the mixed air removal apparatus that removes air from a mixed gas of a medium having a lower boiling point than water and air,
A cooler for cooling the medium;
An eductor that draws the mixed gas from the flow path of the mixed gas using the cooled liquid medium as a driving medium;
A pump for supplying a liquid medium to the eductor;
The first container provided with a pipe connected to the discharge part of the eductor and communicating with the atmosphere;
A first valve provided in a pipe connecting the lower part of the first container and the flow path of the mixed gas;
A pressure gauge for measuring a pressure in a gas phase portion of the flow path of the mixed gas;
A thermometer for measuring the temperature of the mixed gas flow path;
When a pressure threshold value is calculated by adding the saturation vapor pressure value of the medium and a margin value calculated based on the temperature of the thermometer and the pressure value of the pressure gauge, and the pressure value of the pressure gauge is greater than the pressure threshold value In addition, it is detected that air is mixed in the medium, the cooler and the pump are operated, the eductor takes out the mixed gas from the flow path of the mixed gas, and transfers it to the first container, A mixed air removal apparatus comprising: a control unit that performs control to return the liquid medium gas-liquid separated in the first container to the flow path of the mixed gas through the first valve.
前記第1容器の液面を検出する液面計を備えることを特徴とする請求項1に記載の混入空気除去装置。 The mixed air removing apparatus according to claim 1, further comprising a liquid level gauge that detects a liquid level of the first container. 請求項1または2に記載の混入空気除去装置において、
前記混合ガスに空気を供給する空気供給部と、
前記空気供給部から供給する空気量を調節する第2弁と、
前記第1容器から供給される混合ガスの流量を調整する第3弁と、
前記第2弁と前記第3弁にそれぞれ接続され、前記第1容器から排出された前記媒体を燃焼する燃焼器を備え、
前記制御部は、前記第2弁と、前記第3弁とを制御して、前記燃焼器で前記媒体を燃焼することを特徴とする混入空気除去装置。
The mixed air removing device according to claim 1 or 2,
An air supply unit for supplying air to the mixed gas;
A second valve for adjusting the amount of air supplied from the air supply unit;
A third valve for adjusting the flow rate of the mixed gas supplied from the first container;
A combustor connected to the second valve and the third valve, respectively, for combusting the medium discharged from the first container;
The said control part controls the said 2nd valve and the said 3rd valve, and burns the said medium with the said combustor, The mixed air removal apparatus characterized by the above-mentioned.
請求項1ないし3のいずれか一項に記載の混入空気除去装置を備えた発電装置。 A power generation device comprising the mixed air removing device according to any one of claims 1 to 3.
JP2011201964A 2011-09-15 2011-09-15 Device to remove air mixed in working medium of power generator Active JP5849557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201964A JP5849557B2 (en) 2011-09-15 2011-09-15 Device to remove air mixed in working medium of power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201964A JP5849557B2 (en) 2011-09-15 2011-09-15 Device to remove air mixed in working medium of power generator

Publications (2)

Publication Number Publication Date
JP2013064330A true JP2013064330A (en) 2013-04-11
JP5849557B2 JP5849557B2 (en) 2016-01-27

Family

ID=48188040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201964A Active JP5849557B2 (en) 2011-09-15 2011-09-15 Device to remove air mixed in working medium of power generator

Country Status (1)

Country Link
JP (1) JP5849557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358498B2 (en) 2011-10-19 2016-06-07 Fuji Electric Co., Ltd. Mixed air removal device and power generator including the same
JP2017512941A (en) * 2014-04-04 2017-05-25 クリメオン・エイビイ Removal of non-condensable gases from closed-loop processes
JP2021055567A (en) * 2019-09-27 2021-04-08 株式会社神戸製鋼所 Inspection method and inspection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132006A (en) * 1983-12-19 1985-07-13 Mitsubishi Heavy Ind Ltd Gas extracting system of geothermal power plant
JPS6176707A (en) * 1984-09-21 1986-04-19 Hisaka Works Ltd Waste heat recovery equipment
JPH02221605A (en) * 1989-02-22 1990-09-04 Mitsubishi Heavy Ind Ltd Waste gas treating device of power plant
JPH03111605A (en) * 1989-09-22 1991-05-13 Hisaka Works Ltd Method of separating non-condensed gas from non-azeotropic mixture medium
JPH0658107A (en) * 1992-08-04 1994-03-01 Toshiba Corp Gas extractor in geothermal power plant
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132006A (en) * 1983-12-19 1985-07-13 Mitsubishi Heavy Ind Ltd Gas extracting system of geothermal power plant
JPS6176707A (en) * 1984-09-21 1986-04-19 Hisaka Works Ltd Waste heat recovery equipment
JPH02221605A (en) * 1989-02-22 1990-09-04 Mitsubishi Heavy Ind Ltd Waste gas treating device of power plant
JPH03111605A (en) * 1989-09-22 1991-05-13 Hisaka Works Ltd Method of separating non-condensed gas from non-azeotropic mixture medium
JPH0658107A (en) * 1992-08-04 1994-03-01 Toshiba Corp Gas extractor in geothermal power plant
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358498B2 (en) 2011-10-19 2016-06-07 Fuji Electric Co., Ltd. Mixed air removal device and power generator including the same
JP2017512941A (en) * 2014-04-04 2017-05-25 クリメオン・エイビイ Removal of non-condensable gases from closed-loop processes
JP2021055567A (en) * 2019-09-27 2021-04-08 株式会社神戸製鋼所 Inspection method and inspection device
JP7222862B2 (en) 2019-09-27 2023-02-15 株式会社神戸製鋼所 Inspection method and inspection device

Also Published As

Publication number Publication date
JP5849557B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP6127971B2 (en) Power generator
Drescher et al. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants
Pei et al. Construction and dynamic test of a small-scale organic rankine cycle
Li et al. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures
US20140102098A1 (en) Bypass and throttle valves for a supercritical working fluid circuit
KR101135686B1 (en) Control method of Organic Rankine Cycle System flowemeter
US11719134B2 (en) System and method for the generation of heat and power using multiple loops comprising a primary heat transfer loop, a power cycle loop and an intermediate heat transfer loop
JP5849557B2 (en) Device to remove air mixed in working medium of power generator
WO2016206318A1 (en) System and method utilizing mixed component working media for low temperature heat source thermoelectric conversion
Seckin Effect of operational parameters on a novel combined cycle of ejector refrigeration cycle and Kalina cycle
CN104727867B (en) The Application way of middle-low temperature heat and step-down heat absorbing type Steam Power Circulation system thereof
JP5757335B2 (en) MIXED AIR REMOVING DEVICE AND POWER GENERATION DEVICE HAVING THE SAME
JP6199428B2 (en) Superheated steam generator
Li et al. Experimental study of organic Rankine cycle in the presence of non-condensable gases
JP2008095673A (en) Hot water thermal power generator
JP5803494B2 (en) Device to remove air mixed in working medium of power generator
Mikielewicz et al. Gas boiler as a heat source for the domestic micro-CHP
CN204627689U (en) A kind of liquid step-down heat absorbing type Steam Power Circulation system
KR102042316B1 (en) Apparatus and Method for Supplying Working Fluid of Waste Heat Power Generation
Lei et al. Analysis of waste heat recovery of power plant thermal system based on organic Rankine cycle
Wang et al. Experimental investigation on start-up performance of a 315 kw organic rankine cycle system
NZ620693B2 (en) Power plant
RU2285132C1 (en) Thermal power station
Abdel-Ghaffar The Effect of Operating Parameters on the Performance of a Steam Ejector Refrigeration System with Barometric Condenser.
JP2012207533A (en) Energy recovery apparatus and method of operating the energy recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250