JP2013060498A - Powdery ionic water-soluble polymer, and use method thereof - Google Patents

Powdery ionic water-soluble polymer, and use method thereof Download PDF

Info

Publication number
JP2013060498A
JP2013060498A JP2011198549A JP2011198549A JP2013060498A JP 2013060498 A JP2013060498 A JP 2013060498A JP 2011198549 A JP2011198549 A JP 2011198549A JP 2011198549 A JP2011198549 A JP 2011198549A JP 2013060498 A JP2013060498 A JP 2013060498A
Authority
JP
Japan
Prior art keywords
water
soluble
ion
general formula
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198549A
Other languages
Japanese (ja)
Other versions
JP5864972B2 (en
Inventor
Yoshiya Yamaguchi
佳也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2011198549A priority Critical patent/JP5864972B2/en
Publication of JP2013060498A publication Critical patent/JP2013060498A/en
Application granted granted Critical
Publication of JP5864972B2 publication Critical patent/JP5864972B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing, at a low cost, a powdery water-soluble polymer whose solution viscosity decreases and whose salt content in the powder is low, because although a polymerization method making an inorganic salt to be present during the polymerization includes a water-in-oil emulsion polymerization method and an in-aqueous salt solution dispersion polymerization method, and a polymer produced exhibits a decreased solution viscosity and a good dispersibility when the polymer produced is dissolved, the in-aqueous salt solution dispersion polymer has a high content of a salt after drying and the water-in-oil emulsion polymerization method costs high.SOLUTION: The powdery ionic water-soluble polymer having a low salt content is produced by using an aqueous solution composed of a specific ionic water-soluble monomer, (meth)acrylamide, and a water-soluble inorganic salt and having a concentration of the monomer in the range of 20 to 80 mass%, and drying, then crushing and finely granulating a polymer or a copolymer produced.

Description

本発明は、粉末状イオン性水溶性高分子およびその使用方法に関するものであり、詳しくは特定の単量体及び無機塩からなる単量体あるいは単量体混合物水溶液濃度が20〜80質量%の範囲にある水溶液を、重合した重合物あるいは共重合物を乾燥した後、粉砕し細粒化したことを特徴とする粉末状イオン性水溶性高分子に関し、更に歩留および/または濾水を向上させることを目的として、抄紙前の製紙原料に製紙原料に添加することを特徴とする製紙方法、および汚泥に添加し凝集後、脱水することを特徴とする汚泥の脱水方法に関する。 The present invention relates to a powdered ionic water-soluble polymer and a method for using the same, and more specifically, a monomer or monomer mixture aqueous solution concentration of a specific monomer and an inorganic salt is 20 to 80% by mass. A powdered ionic water-soluble polymer characterized in that an aqueous solution in the range is dried after polymerized or copolymerized and then pulverized and further refined, further improving yield and / or drainage The present invention relates to a papermaking method that is added to a papermaking raw material before papermaking, and a sludge dewatering method that is added to sludge and dehydrated after aggregation.

高分子凝集剤には粉末状製品と液状製品があり、液状製品は水溶液製品と分散型製品がある。いずれも一長一短が、あり使い分けが重要な要素とみられる。粉末状製品は輸送が有利であり、物性の維持も容易であり長期間安定性を保つ。一方、液状製品は輸送と物性の維持には粉末状製品と相反するが、乾燥工程がなくエネルギー的には有利であり溶解も容易である。粉末状製品で最も多く採用されている製造方法は、高濃度単量体水溶液を重合し、ゲル状物を造粒、乾燥、粉砕し粉末化する方法である(特許文献1、特許文献2)。 Polymer flocculants include powder products and liquid products, and liquid products include aqueous solution products and dispersed products. Both have advantages and disadvantages, and proper use seems to be an important factor. Powdered products are advantageous to transport, maintain physical properties easily, and maintain stability for a long time. On the other hand, liquid products are contrary to powdered products in terms of transportation and maintenance of physical properties, but do not have a drying process and are advantageous in terms of energy and are easy to dissolve. The most widely used production method for powdered products is a method in which a high-concentration monomer aqueous solution is polymerized, and a gel-like product is granulated, dried, pulverized, and pulverized (Patent Documents 1 and 2). .

重合時無機塩を存在させる方法に関して、油中水型エマルジョン重合する方法は開示されているが乾燥に関しては記載がなく(特許文献3)、またこの重合法による乾燥方法は、分散相の高分子水溶液濃度が50〜80質量%になること、分散媒のオイルや乳化剤が共存している分散液を乾燥させるため、水溶液の重合物の乾燥物方法とは状況が大きく異なる。
特開2003−251106号公報 特開2004−059719号公報 特開2011−099076号公報
Regarding the method of allowing the presence of an inorganic salt during polymerization, a method of water-in-oil emulsion polymerization is disclosed, but there is no description regarding drying (Patent Document 3), and the drying method by this polymerization method is a polymer in a dispersed phase. Since the aqueous solution concentration is 50 to 80% by mass and the dispersion liquid in which the oil and emulsifier of the dispersion medium coexist is dried, the situation is greatly different from the dry method of the polymer of the aqueous solution.
JP 2003-251106 A JP 2004-059719 A JP 2011-099076 A

重合時無機塩を存在させる重合法は、油中水型エマルジョン重合法や塩水溶液中分散重合法などあるが、生成した重合物を溶解した場合、溶解液粘性が低下し、汚泥や製紙原料に添加すると、分散性が良好で汚泥の脱水性能や製紙原料の地合が改善されることが知られている(特許文献3)。しかし塩水溶液中分散重合物は、分散液中の水溶性高分子と無機塩の質量比が1対1かそれ以上であり、乾燥、粉末化しても塩含有率が高すぎる。水溶性高分子の重合物を乾燥、粉末化する方法として油中水型エマルジョン重合を噴霧乾燥させる方法がある。この方法は架橋性高分子を乾燥させる場合は有利であるが、一般的には高濃度重合、造粒、乾燥、粉砕などをする方法が操作も単純でありコスト的には最も有利である。従って本発明の課題は、溶解液粘性が低下する粉末型水溶性高分子を製造する方法において、粉末中の塩含有量が少なく、しかも効率よく粉末型水溶性高分子を製造する方法を提供することにある。 Polymerization methods in which inorganic salts are present during polymerization include water-in-oil emulsion polymerization methods and dispersion polymerization methods in aqueous salt solutions, but when the produced polymer is dissolved, the viscosity of the solution decreases, and sludge and papermaking raw materials are used. When added, it is known that the dispersibility is good and the dewatering performance of sludge and the formation of the papermaking raw material are improved (Patent Document 3). However, the dispersion polymer in the salt aqueous solution has a mass ratio of the water-soluble polymer and the inorganic salt in the dispersion of 1: 1 or more, and the salt content is too high even when dried and powdered. As a method for drying and pulverizing a polymer of water-soluble polymer, there is a method of spray-drying water-in-oil emulsion polymerization. This method is advantageous when the crosslinkable polymer is dried, but generally a method of high concentration polymerization, granulation, drying, pulverization, etc. is simple in operation and most advantageous in terms of cost. Accordingly, an object of the present invention is to provide a method for producing a powder-type water-soluble polymer with low salt content and efficiently in a method for producing a powder-type water-soluble polymer having a reduced solution viscosity. There is.

本発明者等は、上記課題を解決するため鋭意検討した結果、以下のような発明に達した。すなわち請求項1の発明は、下記一般式(1)および/または下記一般式(2)で表される水溶性単量体、下記一般式(3)で表される水溶性単量体、(メタ)アクリルアミド、および水溶性無機塩からなる水溶液であって、該水溶液中の単量体濃度が20〜70質量%の範囲にある水溶液を、重合した重合物あるいは共重合物を乾燥した後、粉砕し細粒化したことを特徴とする粉末状イオン性水溶性高分子である。
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキル基、アルコキシ基、R4は水素、炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X2は陰イオンをそれぞれ表わす。

一般式(3)
は水素、メチル基またはカルボキシメチル基、Rは水素またはカルボキシル基、QはSO、CSO、CONHC(CHCHSOあるいはCOO、Mは水素または陽イオンをそれぞれ表す。
As a result of intensive studies to solve the above problems, the present inventors have reached the following invention. That is, the invention of claim 1 includes a water-soluble monomer represented by the following general formula (1) and / or the following general formula (2), a water-soluble monomer represented by the following general formula (3), ( An aqueous solution composed of (meth) acrylamide and a water-soluble inorganic salt, and after drying the polymer or copolymer obtained by polymerizing an aqueous solution having a monomer concentration in the aqueous solution in the range of 20 to 70% by mass, It is a powdered ionic water-soluble polymer characterized by being pulverized and finely divided.
General formula (1)
R1 is hydrogen or a methyl group, R2 and R3 are alkyl groups having 1 to 3 carbon atoms, alkoxy groups, and R4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxy group, or a benzyl group, which may be the same or different. A represents oxygen or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
General formula (2)
R5 represents hydrogen or a methyl group, R6 and R7 each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X2 represents an anion.

General formula (3)
R 8 is hydrogen, methyl group or carboxymethyl group, R 9 is hydrogen or carboxyl group, Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, M is hydrogen or positive Each represents an ion.

請求項2の発明は、前記一般式(1)および/または下記一般式(2)で表される水溶性単量体の共重合比が5〜40モル%、前記一般式(3)で表される水溶性単量体の共重合比が0〜10モル%、および(メタ)アクリルアミドの共重合比が50〜95モル%であることを特徴とする請求項1に記載の粉末状イオン性水溶性高分子である。 In the invention of claim 2, the copolymerization ratio of the water-soluble monomer represented by the general formula (1) and / or the following general formula (2) is 5 to 40 mol%, and represented by the general formula (3). The powdered ionicity according to claim 1, wherein the copolymerization ratio of the water-soluble monomer is 0 to 10 mol%, and the copolymerization ratio of (meth) acrylamide is 50 to 95 mol%. It is a water-soluble polymer.

請求項3の発明は、前記水溶液中の前記無機塩濃度が、3〜15質量%であることを特徴とする請求項1に記載の粉末状イオン性水溶性高分子である。 The invention according to claim 3 is the powdered ionic water-soluble polymer according to claim 1, wherein the concentration of the inorganic salt in the aqueous solution is 3 to 15% by mass.

請求項4の発明は、前記水溶性無機塩が、陽イオンとしてナトリウム、カリウム、アンモニウムイオンから選択された一種と、陰イオンとしてハロゲン化物イオン、硫酸イオン、リン酸イオンから選択された一種の組み合わせであることを特徴とする請求項1に記載の粉末状イオン性水溶性高分子である。 The invention of claim 4 is characterized in that the water-soluble inorganic salt is a combination of one selected from sodium, potassium and ammonium ions as a cation and one combination selected from a halide ion, sulfate ion and phosphate ion as an anion. The powdered ionic water-soluble polymer according to claim 1, wherein

請求項5の発明は、請求項1〜4に記載の粉末状イオン性水溶性高分子の水溶液を、歩留および/または濾水を向上させることを目的として、抄紙前の製紙原料に添加することを特徴とする製紙方法である。 The invention of claim 5 adds the aqueous solution of the powdered ionic water-soluble polymer according to claims 1 to 4 to a papermaking raw material before papermaking for the purpose of improving yield and / or drainage. This is a paper manufacturing method characterized by the above.

請求項6の発明は、請求項1〜4に記載の粉末状イオン性水溶性高分子の水溶液を、水性懸濁液に添加し凝集後、固液分離することを特徴とする水性懸濁液の処理方法である。 The invention according to claim 6 is an aqueous suspension characterized in that the aqueous solution of the powdered ionic water-soluble polymer according to any one of claims 1 to 4 is added to an aqueous suspension and agglomerated and then solid-liquid separated. It is a processing method.

既存の塩共存下油中水型エマルジョン重合品は、粉末化後界面活性剤や分散媒としてのオイルが混入し、また塩水溶液中分散重合品の粉末化製品は、塩濃度が全体に対し40〜50質量%をも含有する。これに対し本発明の単量体の高濃度溶液を重合し、造粒、乾燥、粉砕などによって製造した粉末製品は、含有する塩濃度が低く添加剤の濃度も低く、安定性は現状の粉末製品と同様である。そして性能は、見かけの水溶液粘性が低いため水処理対象とする水性分散液への分散性が高く、その結果添加量の削減にも繋がり、さらに汚泥脱水剤へ応用した場合、脱水ケーキ含水率の低下も期待できる。また製紙薬剤へ応用した場合は、分散性の高さにより紙の地合が向上し、製紙原料への添加時、薬剤濃度を高く設定することが期待でき、希釈水の節約にも繋がる。 The existing water-in-oil emulsion polymerized product in the presence of salt is mixed with a surfactant and oil as a dispersion medium after pulverization, and the powdered product of the dispersion polymerized product in salt aqueous solution has a salt concentration of 40% of the total. Also contains ~ 50% by weight. In contrast, a powder product produced by polymerizing a high-concentration solution of the monomer of the present invention and granulating, drying, pulverizing, etc. has a low salt concentration and a low additive concentration, and the stability is the current powder. It is the same as the product. And the performance is high in dispersibility in the aqueous dispersion targeted for water treatment due to its low apparent aqueous solution viscosity, resulting in a reduction in the amount added, and when applied to sludge dewatering agents, A decline can also be expected. In addition, when applied to papermaking chemicals, the texture of the paper is improved due to its high dispersibility, and when added to the papermaking raw material, it can be expected that the chemical concentration will be set high, leading to saving of dilution water.

本発明の粉末状イオン性水溶性高分子は、カチオン性水溶性単量体、(メタ)アクリルアミド0〜95mol%、および水溶性無機塩からなる単量体あるいは単量体混合物水溶液濃度が20〜80質量%の範囲にある水溶液を、重合した重合物あるいは共重合物を乾燥した後、粉砕し細粒化することによって製造できる。重合開始は、ラジカル重合開始剤あるいは光増感剤と紫外光あるいは可視光、電子線などの照射によって行う。重合物の形態は、シートなど薄膜状のものあるいは直方体など厚みのある形態に重合し、その後粗砕し、ミートチョッパーなどのよって造粒し、乾燥、乾燥物の粉砕、篩い分けなどの工程を経て粉末状のイオン性水溶性高分子製品にすることができる。 The powdered ionic water-soluble polymer of the present invention has a water-soluble monomer or monomer mixture aqueous solution concentration of 20 to 20 consisting of a cationic water-soluble monomer, 0 to 95 mol% of (meth) acrylamide, and a water-soluble inorganic salt. An aqueous solution in the range of 80% by mass can be produced by drying a polymerized or copolymerized product and then pulverizing and granulating it. The polymerization is initiated by irradiation with a radical polymerization initiator or photosensitizer and ultraviolet light, visible light, electron beam or the like. The polymer form is polymerized into a thin form such as a sheet or a thick form such as a rectangular parallelepiped, then crushed, granulated with a meat chopper, etc., dried, pulverized dry matter, sieving, etc. After that, a powdered ionic water-soluble polymer product can be obtained.

乾燥前にゲル状になった重合物を造粒することで粗大な塊状の場合よりも効率的に乾燥が可能である。乾燥前造粒物の平均粒子径については、0.5mmより小さいと造粒時に造粒装置の負荷が大きくなってしまい、効率的ではない。造粒物の粒子径が20mmを超えると、乾燥時に十分に内部まで乾燥することが困難になる。乾燥前の造粒物の平均粒子径は0.5mm〜20mmが好ましく、更に好ましくは1.0mm〜10mmである。 By granulating the polymer in a gel state before drying, the drying can be performed more efficiently than in the case of a coarse lump. If the average particle size of the granulated product before drying is less than 0.5 mm, the load on the granulating device increases during granulation, which is not efficient. When the particle diameter of the granulated product exceeds 20 mm, it becomes difficult to dry the inside sufficiently during drying. The average particle size of the granulated product before drying is preferably 0.5 mm to 20 mm, more preferably 1.0 mm to 10 mm.

造粒後の乾燥方法に特に制限は無く、熱風乾燥、伝導伝熱乾燥、輻射熱乾燥等の方法を用いることができる。特に流動乾燥、通気乾燥のような乾燥効率の良い熱風乾燥が好ましい。乾燥後に乾燥された固体物を各種粉砕機で処理することで、比較的大きい粒子のほかにマイクロメートルオーダーの平均粒子径を有する微細粒子を得ることもできる。 There is no restriction | limiting in particular in the drying method after granulation, Methods, such as hot air drying, conductive heat transfer drying, and radiant heat drying, can be used. In particular, hot air drying with good drying efficiency such as fluidized drying and aeration drying is preferable. By treating the solid material dried after drying with various pulverizers, fine particles having an average particle diameter of the order of micrometers can be obtained in addition to relatively large particles.

単量体あるいは単量体混合物水溶液濃度は、20〜80質量%の範囲であるが、濃度が高ければ乾燥工程は早いが、水溶性高分子の重合度が上がらない場合があり注意を要する。また濃度が高すぎて粗砕、造粒が不可能になる場合もある。従って一般的には20〜80質量%であるが好ましは25〜60質量%である。 The concentration of the monomer or monomer mixture aqueous solution is in the range of 20 to 80% by mass. However, if the concentration is high, the drying process is quick, but the degree of polymerization of the water-soluble polymer may not be increased. In some cases, the concentration is too high to allow coarse crushing and granulation. Therefore, it is generally 20 to 80% by mass, but preferably 25 to 60% by mass.

開始温度は、ラジカル重合開始剤を使用する場合は、10〜40℃が好ましいが、光増感剤と紫外光あるいは可視光、電子線などの照射によって開始する場合は、0℃でも開始可能であるが、好ましくは10〜40℃である。一般にアクリルアミドなどの含有量が高い単量体組成の場合は、10〜30℃など低温で開始し、アクリロイルオキシエチルトリメチルアンモニウムクロリドなどの含有量が高い単量体組成の場合は、25〜40など高温域により重合開始する。 The starting temperature is preferably 10 to 40 ° C. when a radical polymerization initiator is used, but can be started even at 0 ° C. when it is started by irradiation with a photosensitizer and ultraviolet light, visible light, or an electron beam. Although it exists, Preferably it is 10-40 degreeC. In general, in the case of a monomer composition having a high content such as acrylamide, it starts at a low temperature such as 10 to 30 ° C., and in the case of a monomer composition having a high content such as acryloyloxyethyltrimethylammonium chloride, 25 to 40 or the like. Polymerization starts at a high temperature range.

重合開始剤は、ラジカル重合開始剤としてアゾ系開始剤、レドックス系開始剤等が使用できる。また光重合を行う場合は、光重合開始剤を使用する。 As the polymerization initiator, an azo initiator, a redox initiator, or the like can be used as a radical polymerization initiator. Moreover, when performing photopolymerization, a photoinitiator is used.

ラジカル重合開始剤は油溶性あるいは水溶性のどちらでも使用可能であるが、アゾ系、過酸化物系、レドックス系何れでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1−アゾビスシクロヘキサンカルボニトリル、2、2’−アゾビス−2−メチルブチロニトリル、2、2’−アゾビス−2−メチルプロピオネート、4、4’−アゾビス−(4−メトキシ−2、4−ジメチル)バレロニトリル等が挙げられる。 The radical polymerization initiator can be either oil-soluble or water-soluble, but can be polymerized by any of azo, peroxide, and redox systems. Examples of oil-soluble azo initiators are 2,2′-azobisisobutyronitrile, 1,1-azobiscyclohexanecarbonitrile, 2,2′-azobis-2-methylbutyronitrile, 2,2 Examples include '-azobis-2-methylpropionate, 4,4'-azobis- (4-methoxy-2,4-dimethyl) valeronitrile.

水溶性アゾ開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス[2−(5−メチル−イミダゾリン−2−イル)プロパン]二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)等が挙げられる。またレドックス系の例としては、ペルオキソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン等との組み合わせが挙げられる。更に過酸化物の例としては、ペルオキソ二硫酸アンモニウム或いはカリウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t−ブチルペルオキシ−2−エチルヘキサノエート等を挙げることができる。 Examples of water soluble azo initiators are 2,2'-azobis (amidinopropane) dichloride, 2,2'-azobis [2- (5-methyl-imidazolin-2-yl) propane] hydrogen dichloride And 4,4′-azobis (4-cyanovaleric acid). Examples of redox systems include a combination of ammonium peroxodisulfate and sodium sulfite, sodium hydrogen sulfite, trimethylamine, tetramethylethylenediamine and the like. Examples of peroxides include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy-2-ethylhexanoate, etc. Can be mentioned.

光重合開始剤は、光の照射によってラジカルを生じ、水溶性単量体の重合を開始させることのできる化合物であれば特に限定されない。α−ヒドロキシケトン類、アシルホスフィンオキサイド化合物等が使用可能であり、その例は1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、2,4,6−トリメチチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイン、ベンゾインエチルエーテル、ベンゾフェノン等があげられる。本発明においては水溶性単量体を主に使用するため水に溶解して単量体溶液に添加することが好ましいが、水に不溶の場合は水に混和性のアルコールなど有機溶媒が好ましいが、水に非混和性トルエンなどの有機溶媒も使用できる。 A photoinitiator will not be specifically limited if it is a compound which produces a radical by irradiation of light and can start superposition | polymerization of a water-soluble monomer. α-hydroxy ketones, acylphosphine oxide compounds and the like can be used, and examples thereof include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- ( 2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethyl Examples thereof include tilbenzoyldiphenylphosphine oxide, benzoin, benzoin ethyl ether, and benzophenone. In the present invention, since a water-soluble monomer is mainly used, it is preferably dissolved in water and added to the monomer solution. However, when insoluble in water, an organic solvent such as a water-miscible alcohol is preferable. An organic solvent such as toluene that is immiscible with water can also be used.

光重合開始剤は、上記アゾ系重合開始剤が使用できる。また光重合を実施する場合、上記ラジカル重合開始剤を併用すると重合が順調に進行し好ましい。ラジカル重合開始剤は、レドックス開始剤あるいはアゾ系開始剤が好ましい。レドックス開始剤には、例えば過硫酸ナトリウムと亜硫酸ナトリウム、あるいは過硫酸アンモニウム(APS)とN,N,N’,N’−テトラメチルエチレンジアミン(TEMED)の組合せなどがあげられるが、これに限定されるものではない。 The azo polymerization initiator can be used as the photopolymerization initiator. When carrying out photopolymerization, it is preferable to use the above radical polymerization initiator in combination, since the polymerization proceeds smoothly. The radical polymerization initiator is preferably a redox initiator or an azo initiator. Examples of redox initiators include, but are not limited to, sodium persulfate and sodium sulfite, or a combination of ammonium persulfate (APS) and N, N, N ′, N′-tetramethylethylenediamine (TEMED). It is not a thing.

光重合を行う場合、紫外域の光、特に近紫外線を照射することが好ましい。近紫外線の発生は、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、蛍光ケミカルランプ、蛍光青色ランプ等があげられる。また、近紫外線の波長領域としては、300nm以上であり、また、500nm以下であることが好ましい。 When performing photopolymerization, it is preferable to irradiate ultraviolet light, particularly near ultraviolet light. The generation of near ultraviolet rays includes high pressure mercury lamps, low pressure mercury lamps, metal halide lamps, fluorescent chemical lamps, fluorescent blue lamps and the like. Further, the wavelength region of near ultraviolet rays is 300 nm or more, and preferably 500 nm or less.

紫外線の照射強度は、0.1〜100W/m2の強度で照射することが好ましい。特に近紫外線を10W/m2以下の強度で照射して重合を開始させることが好ましい。また好ましくは、8W/m2以下であり、更に好ましくは、6W/m2以下である。また、近紫外線を照射して重合する間は、近紫外線の照射強度が一定であっても変化させてもよいが、上記照射強度の最大が10W/m2以下になるように調節して重合を開始させることが好ましい。 The irradiation intensity of the ultraviolet rays is preferably 0.1 to 100 W / m 2 . In particular, it is preferable to initiate polymerization by irradiating near ultraviolet rays with an intensity of 10 W / m 2 or less. Further, it is preferably 8 W / m 2 or less, and more preferably 6 W / m 2 or less. Further, during the polymerization by irradiation with near ultraviolet rays, the irradiation intensity of near ultraviolet rays may be constant or may be changed, but the polymerization is performed by adjusting the maximum irradiation intensity to 10 W / m 2 or less. Is preferably initiated.

本発明で使用するカチオン性単量体は、以下の様なものがある。すなわち、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミド、メチルジアリルアミン等の塩化メチルや塩化ベンジルによる四級化物である。その例として一般式(1)であらわされる単量体は、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物である。一般式(2)であらわされる単量体は、ジアリルジメチルアンモニウム塩化物などがある。 The cationic monomers used in the present invention include the following. That is, it is a quaternized product of methyl chloride or benzyl chloride such as dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, and methyldiallylamine. Examples of the monomer represented by the general formula (1) include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy-2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium. Chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy-2-hydroxypropyldimethylbenzylammonium chloride, (meth) acryloylaminopropyldimethylbenzylammonium chloride. Examples of the monomer represented by the general formula (2) include diallyldimethylammonium chloride.

両性水溶性高分子を製造する場合は、上記ビニル系カチオン性単量体の他、ビニル系アニオン性単量体を併用する。その例としては前記一般式(3)で表されるビニルスルホン酸、ビニルベンゼンスルホン酸あるいは2−アクリルアミド−2−メチルプロパンスルホン酸、メタクリル酸、アクリル酸、イタコン酸、マレイン酸、フタル酸あるいはp−カルボキシスチレン酸等があげられる。 In the case of producing an amphoteric water-soluble polymer, a vinyl anionic monomer is used in combination with the vinyl cationic monomer. Examples thereof include vinyl sulfonic acid, vinyl benzene sulfonic acid or 2-acrylamido-2-methylpropane sulfonic acid represented by the general formula (3), methacrylic acid, acrylic acid, itaconic acid, maleic acid, phthalic acid or p. -Carboxystyrene acid etc. are mention | raise | lifted.

また非イオン性単量体を共重合する場合は、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、アクリロニトリル、(メタ)アクリル酸−2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリン等が挙げられる。 When copolymerizing nonionic monomers, (meth) acrylamide, N, N-dimethylacrylamide, acrylonitrile, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinylpyrrolidone, N- Vinylformamide, N-vinylacetamide, acryloylmorpholine and the like can be mentioned.

これら単量体の共重合比率は、以下のようである。カチオン性単量体5〜100モル%、アニオン性単量体0〜30モル%、非イオン性単量体0〜95モル%である。本発明では汚泥の脱水剤として使用する場合は、カチオン性はある程度高いことが必要であるため好ましくはカチオン性単量体20〜100モル%、アニオン性単量体0〜20モル%、非イオン性単量体0〜80モル%が好ましく、更に好ましくは
カチオン性単量体40〜100モル%、アニオン性単量体0〜20モル%、非イオン性単量体0〜60モル%である。また製紙用歩留剤として使用する場合は、カチオン性単量体5〜40モル%、アニオン性単量体0〜10モル%、非イオン性単量体60〜90モル%が好ましく、更に好ましくはカチオン性単量体5〜30モル%、アニオン性単量体0〜10モル%、非イオン性単量体70〜95モル%である。
The copolymerization ratio of these monomers is as follows. The cationic monomer is 5 to 100 mol%, the anionic monomer is 0 to 30 mol%, and the nonionic monomer is 0 to 95 mol%. In the present invention, when used as a dewatering agent for sludge, it is necessary that the cationicity is high to some extent, and therefore preferably 20 to 100 mol% of a cationic monomer, 0 to 20 mol% of an anionic monomer, and nonionic 0 to 80 mol% of the ionic monomer is preferable, more preferably 40 to 100 mol% of the cationic monomer, 0 to 20 mol% of the anionic monomer, and 0 to 60 mol% of the nonionic monomer. . When used as a papermaking yield, 5-40 mol% of cationic monomers, 0-10 mol% of anionic monomers, 60-90 mol% of nonionic monomers are preferred, and more preferred. Is 5 to 30 mol% of a cationic monomer, 0 to 10 mol% of an anionic monomer, and 70 to 95 mol% of a nonionic monomer.

重合時、単量体水溶液に共存させる無機塩は、単量体水溶液中に溶解度の高いものが好ましいが、以下のようなものである。すなわちナトリウムやカリウムの様なアルカリ金属イオンやアンモニウムイオン等の陽イオンと、ハロゲン化物イオン、硫酸イオン、硝酸イオン、オルトリン酸イオン等の陰イオンとを組み合わせた塩が使用可能である。これら塩類の濃度としては、水溶液全体に対し3〜15質量%であり、好ましくは5%〜15質量%である。また具体的な塩として硫酸アンモニウム、塩化ナトリウム、硫酸ナトリウム、硫酸マグネシウムなどが好ましく、特に硫酸アンモニウムが好ましい。 The inorganic salt that is allowed to coexist in the monomer aqueous solution during polymerization is preferably one having high solubility in the monomer aqueous solution, but is as follows. That is, a salt in which a cation such as alkali metal ion or ammonium ion such as sodium or potassium and an anion such as halide ion, sulfate ion, nitrate ion or orthophosphate ion can be used. The concentration of these salts is 3 to 15% by mass, preferably 5% to 15% by mass, based on the entire aqueous solution. Further, as specific salts, ammonium sulfate, sodium chloride, sodium sulfate, magnesium sulfate and the like are preferable, and ammonium sulfate is particularly preferable.

本発明の無機塩共存下において重合したイオン性水溶性高分子は、水溶液の見かけ粘度が低下する。例えばアクリロイルオキシエチルトリメチルアンモニウム塩化物20モル%とアクリルアミド80モル%からなる重合体では、0.2質量%溶液が149mP・s(B型粘度計、25℃)であるが、これと同様の化学組成を通常の無機塩非存在下で重合し粉末化した市販の粉末製品では、重合体の0.2質量%溶液は526mP・sであることからも認識することができる。 The apparent viscosity of the aqueous solution of the ionic water-soluble polymer polymerized in the presence of the inorganic salt of the present invention is lowered. For example, in a polymer composed of 20 mol% of acryloyloxyethyltrimethylammonium chloride and 80 mol% of acrylamide, a 0.2 mass% solution is 149 mP · s (B type viscometer, 25 ° C.). It can be recognized from the fact that in a commercially available powder product whose composition is polymerized and powdered in the absence of a normal inorganic salt, a 0.2 mass% solution of the polymer is 526 mP · s.

本発明による無機塩存在下における20〜80質量%の高濃度水溶液
重合によって製造された重合物は、塩の非存在下でイオン性水溶性高分子を水溶液重合した重合物と、塩水溶液中における分散重合のように塩析重合による重合との中間的な重合物と考えることができる。塩析重合による重合物は、完全に塩析し不溶化した状態になっている。
塩存在下の水溶液中で重合した重合物は、共存させる塩濃度によって
高分子鎖の収縮状態は異なっていると考えられる。単量体濃度20質量%の場合、残余は80質量%であるが、無機塩濃度が10質量%とすると水は70質量%となり、単量体、無機塩、水の質量比は1:0.5:3.5となり、単量体:無機塩、単量体:水ともかなりの高濃度となる。また単量体濃度40質量%の場合、残余は60質量%であるが、無機塩濃度が10質量%とすると水は50質量%となり、単量体、無機塩、水の質量比は1:0.25:0.8となる。比較的少量の水に塩が比較的大量に存在するとこになり、特異的な物理・化学的な状態となっている。従って結晶化あるいは物理的な架橋などしている可能性もある。そのため高分子鎖がコンパクトな状態にあり、それだけ分散性がよくなっていると考えられる。
According to the present invention, a polymer produced by high-concentration aqueous solution polymerization of 20 to 80% by mass in the presence of an inorganic salt is a polymer obtained by polymerizing an ionic water-soluble polymer in the absence of a salt and an aqueous salt solution. It can be considered as a polymer intermediate between polymerization by salting-out polymerization such as dispersion polymerization. The polymer obtained by salting-out polymerization is completely salted out and insolubilized.
It is considered that the polymer polymerized in an aqueous solution in the presence of salt differs in the contraction state of the polymer chain depending on the coexisting salt concentration. When the monomer concentration is 20% by mass, the remainder is 80% by mass, but when the inorganic salt concentration is 10% by mass, the water is 70% by mass, and the mass ratio of monomer, inorganic salt, and water is 1: 0. .5: 3.5, and both the monomer: inorganic salt and the monomer: water have a considerably high concentration. When the monomer concentration is 40% by mass, the balance is 60% by mass, but when the inorganic salt concentration is 10% by mass, the water is 50% by mass, and the mass ratio of monomer, inorganic salt, and water is 1: 0.25: 0.8. A relatively large amount of salt is present in a relatively small amount of water, resulting in a specific physical and chemical state. Therefore, it may be crystallized or physically cross-linked. Therefore, it is considered that the polymer chain is in a compact state and the dispersibility is improved accordingly.

本発明により単量体を重合して得られるイオン性水溶性高分子の分子量は、光散乱による重量平均分子量として、300万から3000万であり、使用目的により調節することができる。例えば汚泥脱水剤として使用する場合は、300万〜1000万であるが、好ましくは500万〜800万である。300万より低いと凝集が不十分となり脱水機に掛からない場合があり、推奨できない。また1000万より高いと巨大フロックが生成し、脱水後のケーキ含水率が返って低下しない場合がある。また製紙用歩留剤として使用する場合は、500万〜3000万であるが、好ましくは700万〜3000万である。500万より低いと歩留率が向上せず実用的ではなく、3000万より高いと凝集力が強すぎて、成紙の地合の乱れなど発生し好ましくない。 The molecular weight of the ionic water-soluble polymer obtained by polymerizing the monomer according to the present invention is 3 million to 30 million as a weight average molecular weight by light scattering, and can be adjusted according to the purpose of use. For example, when used as a sludge dehydrating agent, it is 3 million to 10 million, preferably 5 million to 8 million. If it is lower than 3 million, agglomeration is insufficient and the dehydrator may not be applied, which is not recommended. On the other hand, if it is higher than 10 million, huge flocs are produced, and the moisture content of the cake after dehydration may not be returned to decrease. When used as a papermaking yield, it is 5 million to 30 million, preferably 7 million to 30 million. If it is lower than 5 million, the yield rate is not improved and is not practical, and if it is higher than 30 million, the cohesive force is too strong and the formation of the formed paper is disturbed.

(実施例)
以下に示す実施例によって本発明のカチオン性あるいは両性重合体の油中水型エマルジョンからなる汚泥脱水剤を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(Example)
The sludge dehydrating agent comprising the water-in-oil emulsion of the cationic or amphoteric polymer of the present invention will be specifically described by the following examples, but the present invention is not limited to the following examples.

(実施例1)
500mLポリビ−カーにアクリロイロキシエチルトリメチルアンモニウムクロライド80質量%水溶液201.0gと50質量%アクリルアミド溶液78.4g、硫酸アンモニウム12.0gを仕込み、20質量%硫酸水溶液によりpHを3.5に調節後、溶液全体を398gに調整した。この時のアクリロイロキシエチルトリメチルアンモニウムクロライドとアクリルアミド共重合モル比は60:40であり、硫酸アンモニウムの溶液中の濃度は3.0質量%である。その後、窒素雰囲気下液温を35℃に保ち、重合開始剤として2、2’−アゾビス[2−(5−メチル−イミダゾリン−2−イル)プロパン]二塩化水素化物5質量%水溶液1.2g(対単量体300ppm)を加え、全体を攪拌し均一にし、深さ3cm、直径20cmのステンレス製容器に流し込んだ。この時の溶液厚みは約1.3cmである。重合開始後、2時間窒素を流し続けた。重合後、ステンレス製容器より取り出し、ミートチョッパーにより重合ゲル状物を1〜3mmに造粒し、通風乾燥機により100℃、10時間乾燥した。乾燥後、粉砕し平均粒径1.5mmの粉末状水溶性高分子を得た。前記粉末状水溶性高分子を再溶解し、0.5質量%、1N食塩水中の粘度をB型粘度計により測定し(25℃)、更に1N食塩水中、25℃において、0.2、0.1、0.05g/dlの各濃度の溶液を調製し、還元粘度をオストワルト型粘度計で測定したのち、濃度0に外挿することにより固有粘度(IV)を求めた。この試料を試料−1とし結果を表1および表2に示す。
Example 1
A 500 mL polyvinyl beaker was charged with 201.0 g of an 80% by weight aqueous solution of acryloyloxyethyltrimethylammonium chloride, 78.4 g of a 50% by weight acrylamide solution, and 12.0 g of ammonium sulfate, and the pH was adjusted to 3.5 with a 20% by weight aqueous sulfuric acid solution. The whole solution was adjusted to 398 g. At this time, the molar ratio of acryloyloxyethyltrimethylammonium chloride and acrylamide copolymer is 60:40, and the concentration of ammonium sulfate in the solution is 3.0% by mass. Thereafter, the liquid temperature was kept at 35 ° C. in a nitrogen atmosphere, and 1.2 g of a 2,2′-azobis [2- (5-methyl-imidazolin-2-yl) propane] dihydrochloride 5% by mass aqueous solution as a polymerization initiator. (300 ppm monomer) was added, the whole was stirred and made uniform, and poured into a stainless steel container having a depth of 3 cm and a diameter of 20 cm. The solution thickness at this time is about 1.3 cm. Nitrogen was kept flowing for 2 hours after the start of polymerization. After superposition | polymerization, it pick_out | removed from the stainless steel container, the superposition | polymerization gel-like thing was granulated to 1-3 mm with the meat chopper, and it dried at 100 degreeC with the ventilation dryer for 10 hours. After drying, it was pulverized to obtain a powdery water-soluble polymer having an average particle size of 1.5 mm. The powdery water-soluble polymer was redissolved and the viscosity in 0.5% by mass of 1N saline was measured with a B-type viscometer (25 ° C.), and further 0.2, 0 at 25 ° C. in 1N saline. 0.1, 0.05 g / dl of each concentration solution was prepared, the reduced viscosity was measured with an Ostwald viscometer, and extrapolated to a concentration of 0 to obtain the intrinsic viscosity (IV). This sample was designated as Sample-1 and the results are shown in Tables 1 and 2.

実施例1と同様の操作により試作−2〜試作−14を合成し、粘度の測定を行った。結果を表1および表2に示す。 Prototype-2 to prototype-14 were synthesized in the same manner as in Example 1, and the viscosity was measured. The results are shown in Tables 1 and 2.

(実施例2)
500mLポリビ−カーにアクリロイロキシエチルトリメチルアンモニウムクロライド80質量%水溶液201.0gと50質量%アクリルアミド溶液78.4g、硫酸アンモニウム28.0g、10%リボフラビン燐酸ナトリウム溶液1.0g(対単量体0.05質量%)をそれぞれ仕込み、20質量%硫酸水溶液によりpHを3.5に調節後、溶液全体を398gに調整した。この時のアクリロイロキシエチルトリメチルアンモニウムクロライドとアクリルアミド共重合モル比は60:40であり、硫酸アンモニウムの溶液中の濃度は9.0質量%である。その後、窒素雰囲気下液温を20℃に保ち、光重合開始剤として2、2’−アゾビス[2−(5−メチル−イミダゾリン−2−イル)プロパン]二塩化水素化物5質量%水溶液1.2g(対単量体300ppm)を加え、全体を攪拌し均一にし、深さ3cm、直径20cmのステンレス製容器に流し込んだ。この時の溶液厚みは約1.3cmである。その後400W高圧水銀灯にてUV(365nmの光量20mW/cm)を照射し、重合を開始させた。UV照射と窒素流入を2時間継続した。重合後、ステンレス製容器より取り出し、ミートチョッパーにより重合ゲル状物を1〜3mmに造粒し、通風乾燥機により100℃、15時間乾燥した。乾燥後、粉砕し平均粒径1.5mmの粉末状水溶性高分子を得た。前記粉末状水溶性高分子を再溶解し、0.5質量%、1N食塩水中の粘度をB型粘度計により測定し(25℃)、
更に1N食塩水中、25℃において、0.2、0.1、0.05g/dlの各濃度の溶液を調製し、還元粘度をオストワルト型粘度計で測定したのち、濃度0に外挿することにより固有粘度(IV)を求めた。
この試料を試料−15とする。同様な操作にて試料−16を作成した。これらの結果を表1および表2に示す。
(Example 2)
In a 500 mL polyvinyl beaker, 201.0 g of an 80% by weight aqueous solution of acryloyloxyethyltrimethylammonium chloride, 78.4 g of a 50% by weight acrylamide solution, 28.0 g of ammonium sulfate, and 1.0 g of a 10% sodium riboflavin sodium phosphate solution (compared with 0.1% monomer). 05% by mass), the pH was adjusted to 3.5 with a 20% by mass sulfuric acid aqueous solution, and the whole solution was adjusted to 398 g. At this time, the molar ratio of acryloyloxyethyltrimethylammonium chloride and acrylamide copolymer is 60:40, and the concentration of ammonium sulfate in the solution is 9.0% by mass. Thereafter, the liquid temperature was kept at 20 ° C. under a nitrogen atmosphere, and a 2,2′-azobis [2- (5-methyl-imidazolin-2-yl) propane] dihydrochloride 5 mass% aqueous solution as a photopolymerization initiator. 2 g (with respect to monomer 300 ppm) was added, the whole was stirred and made uniform, and poured into a stainless steel container having a depth of 3 cm and a diameter of 20 cm. The solution thickness at this time is about 1.3 cm. Thereafter, UV (light quantity of 365 nm, 20 mW / cm 2 ) was irradiated with a 400 W high-pressure mercury lamp to initiate polymerization. UV irradiation and nitrogen inflow were continued for 2 hours. After superposition | polymerization, it took out from the stainless steel container, the superposition | polymerization gel-like thing was granulated to 1-3 mm with the meat chopper, and it dried at 100 degreeC with the ventilation dryer for 15 hours. After drying, it was pulverized to obtain a powdery water-soluble polymer having an average particle size of 1.5 mm. The powdery water-soluble polymer was redissolved, and the viscosity in 0.5% by mass and 1N saline was measured with a B-type viscometer (25 ° C.),
Furthermore, after preparing solutions with various concentrations of 0.2, 0.1 and 0.05 g / dl at 25 ° C. in 1N saline solution, measuring the reduced viscosity with an Ostwald viscometer, extrapolating to a concentration of 0 Thus, the intrinsic viscosity (IV) was determined.
This sample is designated as Sample-15. Sample-16 was prepared in the same manner. These results are shown in Tables 1 and 2.











(表1)
DMC:メタクリロイロキシエチルトリメチルアンモニウムクロライド、DMQ:アクリロイロキシエチルトリメチルアンモニウムクロライド、AAM:アクリルアミド、AAC;アクリル酸、
無機塩種類(質量%);溶液全体に対する無機塩濃度、
a;硫安、b;食塩、c;硫酸ナトリウム、d;硫酸マグネシウム、










(Table 1)
DMC: methacryloyloxyethyltrimethylammonium chloride, DMQ: acryloyloxyethyltrimethylammonium chloride, AAM: acrylamide, AAC; acrylic acid,
Inorganic salt type (mass%); inorganic salt concentration with respect to the whole solution,
a: ammonium sulfate, b: salt, c: sodium sulfate, d: magnesium sulfate,










(表2)
粉末平均粒径;mm、0.2%水溶液粘度;mPa・s、
固有粘度;dL/g









(Table 2)
Powder average particle size; mm, 0.2% aqueous solution viscosity; mPa · s,
Intrinsic viscosity; dL / g

(実施例3)
試料−31、試料−32、比較−24、および比較−24の溶解液に硫酸アンモニウムを対水溶性高分子7.0質量%(重合前の対単量体質量%に同じ)添加したもの(比較−27)に関して、製紙原料中における分散性の試験を実施した。使用原料は、固形分濃度1.2質量%で、軽質炭酸カルシウム等Ash分として32.0%対固形分濃度含んだ中質紙抄造原料を用いた。製紙原料の物性値は、pH7.5、Whatman No.41濾紙濾過液のミューテック社製PCD−03型を使用したカチオン要求量は、0.005meq/Lである。分散性の試験には、コーエイ工業株式会社製、「Flocckey Tester」を用いた。これは水溶性高分子を製紙原料に添加すると、製紙原料が凝集し、攪拌子に抵抗がかかり、これを電気的な信号に変換し電圧を凝集状態として測定する。電圧が高ければ凝集が高い状態にあり、また添加時から電圧が早く高くなれば凝集が早期に起こり水溶性高分子の分散が早いことを表している。試験は表3に示す0秒後に「Flocckey Tester」の攪拌を開始し、10秒後に水溶性高分子を添加し、時間経過の凝集状態がパソコンにより自動的に記録される。結果を表3に示す。
(Example 3)
Samples 31-32, Comparative-24, and Comparative-24 with ammonium sulfate added to 7.0% by mass of water-soluble polymer (same as mass% of monomer before polymerization) (comparative) With respect to -27), a dispersibility test in papermaking raw materials was performed. The raw material used was a solid paper making raw material having a solid content concentration of 1.2% by mass and a light calcium calcium carbonate or other Ash content containing 32.0% solid content concentration. The physical properties of the papermaking raw material are pH 7.5, Whatman No. The required cation amount of 41 filter paper filtrate using the Mutec PCD-03 type is 0.005 meq / L. For the dispersibility test, “Flockkey Tester” manufactured by Koei Kogyo Co., Ltd. was used. When a water-soluble polymer is added to a papermaking raw material, the papermaking raw material is agglomerated and resistance is applied to the stirrer. When the voltage is high, the aggregation is in a high state, and when the voltage is quickly increased from the time of addition, the aggregation occurs early and the water-soluble polymer is dispersed quickly. In the test, stirring of “Flockey Tester” is started after 0 seconds shown in Table 3, and a water-soluble polymer is added after 10 seconds, and the aggregation state over time is automatically recorded by a personal computer. The results are shown in Table 3.

(表3)
攪拌時間;秒、
(Table 3)
Stirring time; seconds,

試料−31および試料−32は、塩を添加し重合時した水溶性高分子であり、添加後20秒で良好な凝集状態を示し、分散性の良いことを表している。これに対し比較−24は、添加後20秒後においてもあまり凝集が起きてなく、添加30秒後で最大凝集状態を示しているが、その最大値は試料−31および試料−32に較べ低く、凝集性のそのものも低いことを表している。また比較−27は、水溶性高分子の溶解液に試料−31および試料−32と同じ比率の塩を添加したものであるが、添加20秒後における凝集が向上しているが、共重合率が同様であり重合時塩を添加した試料−31に較べると、凝集性能は低いことが分かる。 Sample-31 and Sample-32 are water-soluble polymers added with salt and polymerized, and show a good aggregation state 20 seconds after the addition, indicating that the dispersibility is good. On the other hand, Comparative -24 shows little aggregation even after 20 seconds after addition, and shows the maximum aggregation state 30 seconds after addition, but the maximum value is lower than that of Sample-31 and Sample-32. This means that the cohesiveness itself is low. Comparative-27 is a solution obtained by adding a salt of the same ratio as Sample-31 and Sample-32 to a water-soluble polymer solution, but the aggregation after 20 seconds from the addition is improved. Is similar, and it can be seen that the agglomeration performance is low as compared with Sample-31 to which salt was added during polymerization.

(実施例4)
ブリット式ダイナミックジャーテスターによる歩留率の測定試験を行なった。200メッシュワイヤー使用。使用原料は、固形分濃度1.2質量%で、軽質炭酸カルシウム等Ash分として32.0%対固形分濃度含んだ中質紙抄造原料を用いた。製紙原料の物性値は、pH7.5、Whatman No.41濾紙濾過液のミューテック社製PCD−03型を使用したカチオン要求量は、0.005meq/Lである。攪拌回転数1200rpmで20秒間攪拌後、試料−22および試料−31〜試料−33を対紙料固形分に対して150ppm添加し攪拌回転数1200rpmで10秒間攪拌後、濾液を採取しADVANTEC、No.2濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。結果を表4に示す。
Example 4
Yield rate measurement test was performed with a Brit dynamic jar tester. Use 200 mesh wire. The raw material used was a solid paper making raw material having a solid content concentration of 1.2% by mass and a light calcium calcium carbonate or other Ash content containing 32.0% solid content concentration. The physical properties of the papermaking raw material are pH 7.5, Whatman No. The required cation amount of 41 filter paper filtrate using the Mutec PCD-03 type is 0.005 meq / L. After stirring for 20 seconds at a stirring speed of 1200 rpm, Sample-22 and Sample-31 to Sample-33 were added at 150 ppm with respect to the solid content of the paper, and stirred for 10 seconds at a stirring speed of 1200 rpm, and the filtrate was collected and ADVANTEC, No. . After filtration with two filter papers, SS was measured, and the total yield was measured. Then, the filter paper was ashed at 525 ° C. for 2 hours, and the ash yield was measured. The results are shown in Table 4.

次にTAPPIスタンダード抄紙機(60メッシュワイヤー使用)により坪量90g/mの紙を抄いた。抄紙時のpHは7.0であった。抄紙した湿紙を4.1kgf/cmで5分間、プレス機にてプレス脱水し、回転式ドラムドライヤーで105℃、3分間乾燥後、25℃、湿度65%の条件で18時間調湿し、JIS P8131に準拠して比破裂強度及び地合い指数を測定した。地合い指数はM/K・System・Inc.社製「3D・Sheet・Analyzer」により測定した。この数値は高い程、地合いは良いことを表わしている。 Next, paper with a basis weight of 90 g / m 2 was made using a TAPPI standard paper machine (using 60 mesh wire). The pH at the time of papermaking was 7.0. The wet paper we made is press dehydrated with a press at 4.1 kgf / cm 2 for 5 minutes, dried with a rotary drum dryer at 105 ° C. for 3 minutes, and then conditioned for 18 hours at 25 ° C. and 65% humidity. The specific burst strength and the formation index were measured in accordance with JIS P8131. The texture index is M / K System Inc. It was measured by “3D Sheet Analyzer” manufactured by the company. The higher this number, the better the texture.

(比較例1)
実施例4と同様な製紙原料を用いて、比較−24〜比較−26を対紙料固形分に対して150ppm添加し、攪拌回転数1200rpmで20秒間攪拌後、試料−22および試料−31〜試料−33を対紙料固形分に対して150ppm添加し攪拌回転数1200rpmで10秒間攪拌後、濾液を採取しADVANTEC、No.2濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。実施例4と同様に抄紙後の地合も測定した。
結果を表4に示す。
(Comparative Example 1)
Using the same papermaking raw material as in Example 4, 150 ppm of Comparative-24 to Comparative-26 was added to the solid content of the paper stock, and stirred for 20 seconds at 1200 rpm, followed by Sample-22 and Sample-31-31. Sample 33 was added at 150 ppm with respect to the solid content of the paper and stirred at a rotation speed of 1200 rpm for 10 seconds, and then the filtrate was collected to obtain ADVANTEC, After filtration with two filter papers, SS was measured, and the total yield was measured. Then, the filter paper was ashed at 525 ° C. for 2 hours, and the ash yield was measured. In the same manner as in Example 4, the formation after papermaking was also measured.
The results are shown in Table 4.

実施例の各試料は、総歩留率および炭酸カルシウム歩留率は向上し良好な効果を発現している。また地合性も80%前後と良好な値を発現している。これに対し比較各試料は、総歩留率および炭酸カルシウム歩留率が、実施例の各試料に比べ低下し、地合性も低い。これは比較各試料が製紙原料への分散性が実施例の各試料より低く、凝集作用が遅延し、均一なフロック形成が送れ、歩留率の低下、および地合性も低下したと考えられる。 Each sample of the examples improves the total yield rate and the calcium carbonate yield rate, and exhibits a good effect. In addition, the formation has a good value of around 80%. In contrast, each of the comparative samples has a lower total yield rate and a calcium carbonate yield rate than the respective samples of the examples, and the formation is also low. This is because each comparative sample has a lower dispersibility in the papermaking raw material than each sample in the examples, the agglomeration action is delayed, uniform floc formation can be sent, the yield rate is lowered, and the formation is also lowered. .

(表4)
(Table 4)

(実施例5)
下水処理場より発生する下水混合生汚泥(汚泥性状がpH6.4、SS:35,000mg/L)について凝集濾過試験及び圧搾試験を実施した。300mL容のポリプロピレン製ビーカーに汚泥を200mL入れた後、乾燥粉末化後試料−21〜試料−27、試料−30および試料−33〜試料−35をそれぞれ対SS分0.70質量%添加し、1000rpm、30秒間の攪拌により汚泥を凝集させた。その後フロックの大きさを観察後、40メッシュの濾布付きビーカーにより濾過速度を調べた。また濾過後の凝集物を1kgf/cmの圧搾圧力で30秒間プレス脱水後に脱水ケーキの含水率を求めた。結果を表5に示す。
(Example 5)
A coagulation filtration test and a squeezing test were performed on sewage mixed raw sludge generated from a sewage treatment plant (sludge property is pH 6.4, SS: 35,000 mg / L). After 200 mL of sludge was put into a 300 mL polypropylene beaker, after dry powderization, Sample-21 to Sample-27, Sample-30 and Sample-33 to Sample-35 were added to each SS content 0.70% by mass, Sludge was agglomerated by stirring at 1000 rpm for 30 seconds. Then, after observing the size of the floc, the filtration rate was examined with a 40 mesh beaker with a filter cloth. Further, the water content of the dehydrated cake was determined after press dewatering the aggregate after filtration for 30 seconds at a pressing pressure of 1 kgf / cm 2 . The results are shown in Table 5.

(比較例2)
実施例5と同じ汚泥を使用し同様な操作を、乾燥粉末化後比較−21〜比較−23に関して実施した。結果を表5に示す。
(Comparative Example 2)
The same sludge as Example 5 was used, and the same operation was performed regarding Comparative-21 to Comparative-23 after dry powderization. The results are shown in Table 5.

(表5)
10秒後濾液量;mL、ケーキ含水率;質量%、フロック径;mm
(Table 5)
10 seconds later, filtrate amount; mL, cake moisture content; mass%, floc diameter; mm

実施例の各試料は、十分な凝集効果を示しケーキ含水率も低下し良好な効果を発現している。これに対し比較各試料は、凝集効果が低下し、ケーキ含水率が低下しない。これは比較各試料が薬剤の汚泥への分散性が実施例の各試料より低く凝集作用が遅れていることを表わしていると考えられる。 Each sample of the examples shows a sufficient agglomeration effect, and the moisture content of the cake is also reduced and a good effect is exhibited. On the other hand, in each comparative sample, the agglomeration effect is lowered and the moisture content of the cake is not lowered. It is considered that this indicates that each of the comparative samples has a lower dispersibility of the drug in the sludge than each sample of the example, and the coagulation action is delayed.

Claims (6)

下記一般式(1)および/または下記一般式(2)で表される水溶性単量体、下記一般式(3)で表される水溶性単量体、(メタ)アクリルアミド、および水溶性無機塩からなる水溶液であって、該水溶液中の単量体濃度が20〜70質量%の範囲にある水溶液を、重合した重合物あるいは共重合物を乾燥した後、粉砕し細粒化したことを特徴とする粉末状イオン性水溶性高分子。
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキル基、アルコキシ基、R4は水素、炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす。
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X2は陰イオンをそれぞれ表わす。

一般式(3)
は水素、メチル基またはカルボキシメチル基、Rは水素またはカルボキシル基、QはSO、CSO、CONHC(CHCHSOあるいはCOO、Mは水素または陽イオンをそれぞれ表す。
Water-soluble monomer represented by the following general formula (1) and / or the following general formula (2), water-soluble monomer represented by the following general formula (3), (meth) acrylamide, and water-soluble inorganic An aqueous solution comprising a salt, the monomer concentration in the aqueous solution being in the range of 20 to 70% by mass, after drying the polymerized product or copolymer, pulverized and finely divided A characteristic powdered ionic water-soluble polymer.
General formula (1)
R1 is hydrogen or a methyl group, R2 and R3 are alkyl groups having 1 to 3 carbon atoms, alkoxy groups, and R4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxy group, or a benzyl group, which may be the same or different. A represents oxygen or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
General formula (2)
R5 represents hydrogen or a methyl group, R6 and R7 each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X2 represents an anion.

General formula (3)
R 8 is hydrogen, methyl group or carboxymethyl group, R 9 is hydrogen or carboxyl group, Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, M is hydrogen or positive Each represents an ion.
前記一般式(1)および/または前記一般式(2)で表される水溶性単量体の共重合比が5〜40モル%、前記一般式(3)で表される水溶性単量体の共重合比が0〜10モル%、および(メタ)アクリルアミドの共重合比が50〜95モル%であることを特徴とする請求項1に記載の粉末状イオン性水溶性高分子。 The copolymerization ratio of the water-soluble monomer represented by the general formula (1) and / or the general formula (2) is 5 to 40 mol%, and the water-soluble monomer represented by the general formula (3) The powdered ionic water-soluble polymer according to claim 1, wherein the copolymerization ratio is 0 to 10 mol%, and the copolymerization ratio of (meth) acrylamide is 50 to 95 mol%. 前記水溶液中の前記無機塩濃度が、3〜15質量%であることを特徴とする請求項1あるいは2に記載の粉末状イオン性水溶性高分子。 The powdered ionic water-soluble polymer according to claim 1 or 2, wherein the concentration of the inorganic salt in the aqueous solution is 3 to 15% by mass. 前記水溶性無機塩が、陽イオンとしてナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、バリウムイオン、アンモニウムイオンから選択された一種と、陰イオンとして塩化物イオン、臭化物イオン、ヨウ化物イオン、硫酸イオン、リン酸イオンから選択された一種の組み合わせであることを特徴とする請求項1〜3に記載の粉末状イオン性水溶性高分子。 The water-soluble inorganic salt is one selected from sodium ion, potassium ion, calcium ion, magnesium ion, barium ion, ammonium ion as cation, and chloride ion, bromide ion, iodide ion, sulfate ion as anion. The powdered ionic water-soluble polymer according to claim 1, which is a kind of combination selected from phosphate ions. 請求項1〜4に記載の粉末状イオン性水溶性高分子の水溶液を、歩留および/または濾水を向上させることを目的として、抄紙前の製紙原料に添加することを特徴とする製紙方法。 A papermaking method comprising adding the aqueous solution of the powdered ionic water-soluble polymer according to claims 1 to 4 to a papermaking raw material before papermaking for the purpose of improving yield and / or drainage. . 請求項1〜4に記載の粉末状イオン性水溶性高分子の水溶液を、水性懸濁液に添加し凝集後、固液分離することを特徴とする水性懸濁液の処理方法。 A method for treating an aqueous suspension, comprising adding the aqueous solution of the powdered ionic water-soluble polymer according to claims 1 to 4 to the aqueous suspension and aggregating the mixture, followed by solid-liquid separation.
JP2011198549A 2011-09-12 2011-09-12 Powdered ionic water-soluble polymer and method of using the same Expired - Fee Related JP5864972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198549A JP5864972B2 (en) 2011-09-12 2011-09-12 Powdered ionic water-soluble polymer and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198549A JP5864972B2 (en) 2011-09-12 2011-09-12 Powdered ionic water-soluble polymer and method of using the same

Publications (2)

Publication Number Publication Date
JP2013060498A true JP2013060498A (en) 2013-04-04
JP5864972B2 JP5864972B2 (en) 2016-02-17

Family

ID=48185449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198549A Expired - Fee Related JP5864972B2 (en) 2011-09-12 2011-09-12 Powdered ionic water-soluble polymer and method of using the same

Country Status (1)

Country Link
JP (1) JP5864972B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003255A (en) * 2014-06-16 2016-01-12 ハイモ株式会社 Water-soluble polymer dispersion of low inorganic salt content and method for producing the same
WO2020059557A1 (en) * 2018-09-18 2020-03-26 荒川化学工業株式会社 Powdered paper strengthener, paper strengthening solution, and paper
JP2020147875A (en) * 2019-03-15 2020-09-17 荒川化学工業株式会社 Powder type paper-strengthening agent, manufacturing method of powder type paper-strengthening agent, paper-strengthening agent solution and paper
WO2021024703A1 (en) * 2019-08-02 2021-02-11 荒川化学工業株式会社 Powdery paper-strengthening agent, paper-strengthening-agent solution, and paper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300599A (en) * 2000-04-24 2001-10-30 Kurita Water Ind Ltd Sludge dehydrating method
JP2002355682A (en) * 2001-05-31 2002-12-10 Hymo Corp Treatment method for used paper wastewater
JP2010077567A (en) * 2008-09-29 2010-04-08 Hymo Corp Chemical used for papermaking, and method for using the same
JP2013023520A (en) * 2011-07-19 2013-02-04 Mt Aquapolymer Inc Method for producing cationic or amphoteric polymer, dehydrating agent for sludge, and retention aid agent for papermaking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300599A (en) * 2000-04-24 2001-10-30 Kurita Water Ind Ltd Sludge dehydrating method
JP2002355682A (en) * 2001-05-31 2002-12-10 Hymo Corp Treatment method for used paper wastewater
JP2010077567A (en) * 2008-09-29 2010-04-08 Hymo Corp Chemical used for papermaking, and method for using the same
JP2013023520A (en) * 2011-07-19 2013-02-04 Mt Aquapolymer Inc Method for producing cationic or amphoteric polymer, dehydrating agent for sludge, and retention aid agent for papermaking

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003255A (en) * 2014-06-16 2016-01-12 ハイモ株式会社 Water-soluble polymer dispersion of low inorganic salt content and method for producing the same
WO2020059557A1 (en) * 2018-09-18 2020-03-26 荒川化学工業株式会社 Powdered paper strengthener, paper strengthening solution, and paper
JPWO2020059557A1 (en) * 2018-09-18 2021-03-18 荒川化学工業株式会社 Powdered paper strength agent, paper strength agent solution, paper
US11795620B2 (en) 2018-09-18 2023-10-24 Arakawa Chemical Industries, Ltd. Powdery paper-strengthening agent, paper-strengthening agent solution, and paper
JP2020147875A (en) * 2019-03-15 2020-09-17 荒川化学工業株式会社 Powder type paper-strengthening agent, manufacturing method of powder type paper-strengthening agent, paper-strengthening agent solution and paper
WO2020189171A1 (en) * 2019-03-15 2020-09-24 荒川化学工業株式会社 Powdery paper strengthening agent, method for producing powdery paper strengthening agent, paper strengthening agent solution and paper
CN113302215A (en) * 2019-03-15 2021-08-24 荒川化学工业株式会社 Powdery paper strength agent, method for producing powdery paper strength agent, paper strength agent solution, and paper
WO2021024703A1 (en) * 2019-08-02 2021-02-11 荒川化学工業株式会社 Powdery paper-strengthening agent, paper-strengthening-agent solution, and paper
JPWO2021024703A1 (en) * 2019-08-02 2021-02-11
CN114026287A (en) * 2019-08-02 2022-02-08 荒川化学工业株式会社 Powdery paper strength agent, paper strength agent solution, and paper

Also Published As

Publication number Publication date
JP5864972B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5366301B2 (en) Powdered ionic water-soluble polymer and use thereof
JP6152108B2 (en) Polymer flocculant, method for producing the same, and sludge dewatering method using the same
JPH07258305A (en) Production of lowly viscous water-soluble polymer dispersion, and flocculant, retentive, thickener, additive, dehydrator and soil conditioner comprising same
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP5864972B2 (en) Powdered ionic water-soluble polymer and method of using the same
JP2012254430A (en) Flocculant, and sludge dehydration method using the same
CN104245763A (en) New cationic polymers
JP2011226042A (en) Water soluble polymer dispersion, paper-strengthening agent, paper making freeness improver and paper making yield improver
WO2002100944A1 (en) Amphoteric water-soluble polymer dispersion and use thereof
JP4126931B2 (en) Polymer flocculant and sludge dewatering method
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
US9321869B2 (en) Cationic polymers
JP2007023146A (en) Ionic fine particle and application of the same
JP6486006B2 (en) Polymer flocculant and sludge dewatering method using the same
JP2001149703A (en) Amphoteric polymeric flocculant for pulp or paper manufacturing industry sludge and dehydrating method for pulp or paper manufacturing industry sludge
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP2006182816A (en) Crosslinked water-soluble polymer dispersion liquid and paper making method using the same
JP4213320B2 (en) Recovering valuable materials in papermaking white water
JP2020012204A (en) Papermaking yield improver
JP4109145B2 (en) Polymer flocculant and method for producing the same
JP4058621B2 (en) Composition, polymer flocculant, and method of dewatering sludge
JP4175194B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
JP2013023520A (en) Method for producing cationic or amphoteric polymer, dehydrating agent for sludge, and retention aid agent for papermaking
JP5311360B2 (en) Method for producing water-soluble polymer
JP3766564B2 (en) Sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R150 Certificate of patent or registration of utility model

Ref document number: 5864972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees