JP2013059824A - Working device, and method for designing structural specification of working machine - Google Patents

Working device, and method for designing structural specification of working machine Download PDF

Info

Publication number
JP2013059824A
JP2013059824A JP2011199153A JP2011199153A JP2013059824A JP 2013059824 A JP2013059824 A JP 2013059824A JP 2011199153 A JP2011199153 A JP 2011199153A JP 2011199153 A JP2011199153 A JP 2011199153A JP 2013059824 A JP2013059824 A JP 2013059824A
Authority
JP
Japan
Prior art keywords
slide shaft
slide
bearing device
cutting
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011199153A
Other languages
Japanese (ja)
Other versions
JP5782942B2 (en
Inventor
Miki Shinagawa
幹 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011199153A priority Critical patent/JP5782942B2/en
Publication of JP2013059824A publication Critical patent/JP2013059824A/en
Application granted granted Critical
Publication of JP5782942B2 publication Critical patent/JP5782942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a design guideline for suppressing regenerative chatter vibrations in a working machine by clarifying the cause of generating the regenerative chatter vibrations.SOLUTION: A working device includes: a slide shaft 50 having a cutting tool 1 on its fore end; a hydrostatic oil bearing device 52 for supporting a part in a vicinity of the fore end of the slide shaft; a driving device 53 connected to a rear end of the slide shaft to drive a slide of the slide shaft; a slide bearing device 58 which is provided between the hydrostatic oil bearing device and the driving device to support the slide shaft in a slidable manner and to simulate the friction of a feed mechanism; a first spring means 63 which is provided between the hydrostatic oil bearing device and the slide bearing device to simulate the displacement in the axial direction of a tool part, and to change the spring constant; a second spring means 64 which is provided between the slide bearing device and the driving device to simulate the displacement in the axial direction of a power transmission part of the driving device and to change the spring constant; a friction force adjusting means 59 capable of adjusting the friction force of the slide shaft by applying the bearing preload P to the slide bearing device; a preload measuring means 62 for measuring the bearing preload by the friction force adjusting means; and a tool displacement measuring means 66 for measuring the displacement in the axial direction of the cutting tool.

Description

本発明は、切削加工機等の加工機械の振動、特に再生びびり振動が発生する原因を明らかにして、加工機械の再生びびり振動安定のための設計指針を提供できる加工装置及び加工機械の構造仕様設計方法に関するものである。   The present invention clarifies the cause of vibration of a processing machine such as a cutting machine, particularly regenerative chatter vibration, and provides a design guideline for stabilizing regenerative chatter vibration of the processing machine and the structural specifications of the processing machine. It relates to the design method.

加工機械を開発する際の主な要求性能としては、加工精度と加工能力が挙げられ、これらは製品の品質及びコストに大きな影響を与える。従って、要求性能を満足する加工機械の構造仕様を定量的に明確にすることは、加工機械の設計・開発を行う上で非常に重要となる。これまで、加工精度に関係する工具とワークの位置決め精度については、様々なモデルが考案され、構造仕様が位置決め精度に及ぼす影響について多くの研究が行われている。   The main required performance when developing a processing machine includes processing accuracy and processing capability, which greatly affect the quality and cost of the product. Therefore, quantitatively defining the structural specifications of the processing machine that satisfies the required performance is very important in designing and developing the processing machine. So far, various models have been devised for the positioning accuracy of tools and workpieces related to machining accuracy, and many studies have been conducted on the influence of structural specifications on positioning accuracy.

他方、構造仕様が加工能力に影響を与える主要因としては再生びびり振動があり、再生びびり振動の発生は製品の品質を大幅に低下させるばかりでなく、工具・加工機械本体に損傷を与える場合もある。従って、加工機械本体が再生びびり振動を抑制できる構造仕様を備えていることは重要である。   On the other hand, regenerative chatter vibration is the main factor that affects the machining performance of the structural specifications, and the occurrence of regenerative chatter vibration not only greatly reduces the quality of the product, but also may damage the tool / working machine body. is there. Therefore, it is important that the processing machine main body has a structural specification capable of suppressing regenerative chatter vibration.

従来、再生びびり振動が発生した場合の対策としては、切削条件・工具・切削油等を変更することが一般的に行われているが、このような対策では試行錯誤を繰り返すことになって安定状態を得るまでに時間を要する場合があり、又、この対策では加工ができなくなる場合もある。   Conventionally, as a countermeasure against regenerative chatter vibration, it has been common to change cutting conditions, tools, cutting oil, etc., but such countermeasures are stable due to repeated trial and error. It may take time to obtain the state, and processing may not be possible with this measure.

従って、これまでは、既存の加工機械の特性を前提として、再生びびり振動を予測し、予測した再生びびり振動を抑制するための研究、或いは、比較的単純なモデルを用いて構造仕様が再生びびり振動に与える影響についての研究等がなされてきた。   Therefore, until now, based on the characteristics of existing processing machines, research on predicting regenerative chatter vibration and suppressing the predicted regenerative chatter vibration, or structural specifications using a relatively simple model Studies on the effects on vibration have been made.

しかし、加工機械を新規に開発する際の再生びびり振動抑制対策としては、単に剛性の最大化に主眼が置かれており、再生びびり振動の発生を定量的に予測して加工機械の設計に活用できるような技術は存在しなかった。   However, as a measure to suppress regenerative chatter vibration when developing a new processing machine, the main focus is simply on maximizing rigidity, and quantitatively predicting the occurrence of regenerative chatter vibration and utilizing it in the design of processing machines. There was no technology that could do it.

スライス装置の振動予測方法として、動的歪み測定においては、工作物の試験加工によるフライス装置の動的歪みを測定し、再生びびり振動予測システムにおいては、試験加工における加工条件及び測定データを入力し、フライス装置の動的コンプライアンスを計算し、フライス装置条件を決定し、実際の加工においては、その加工条件及びフライス装置条件を入力し、加工歪みを計算し、加工歪みの変位により機械加工における再生びびり振動の影響を判定するものがある(特許文献1参照)。   As the vibration prediction method of the slicing device, in dynamic strain measurement, the dynamic strain of the milling device due to test machining of the workpiece is measured, and in the regenerative chatter vibration prediction system, machining conditions and measurement data in the test machining are input. Calculate the dynamic compliance of the milling machine, determine the milling machine conditions, enter the machining conditions and milling machine conditions in the actual machining, calculate the machining distortion, and regenerate in machining by the displacement of the machining distortion There is one that determines the influence of chatter vibration (see Patent Document 1).

又、ワークの表面粗さが小さくなる加工条件を得るための切削試験機であって、主軸台に回転自在に軸支され、ワークまたは工具を保持して回転する主軸と、ワークの面粗度を検出する面粗度検出手段と、切削加工時に前記工具に加わる切削抵抗を検出する切削抵抗検出手段と、切削加工時における前記工具の温度を検出する温度検出手段とを備えたものがある(特許文献2参照)。   Further, it is a cutting test machine for obtaining a machining condition in which the surface roughness of the workpiece is reduced, and is a spindle that is rotatably supported on the headstock and rotates while holding the workpiece or tool, and the surface roughness of the workpiece. There is provided a surface roughness detecting means for detecting the cutting force, a cutting resistance detecting means for detecting a cutting resistance applied to the tool at the time of cutting, and a temperature detecting means for detecting the temperature of the tool at the time of cutting ( Patent Document 2).

特開2006−102927号公報JP 2006-102927 A 特開2006−102864号公報JP 2006-102864 A

しかし、前記特許文献1、2に記載のものは、いずれも、加工精度を高めるための手法に関するものであり、再生びびり振動の発生を定量的に予測することによって、加工機械の設計段階において活用できるような構造仕様を提供できるものではない。   However, the ones described in Patent Documents 1 and 2 are all related to a technique for increasing machining accuracy, and are used in the design stage of a processing machine by quantitatively predicting the occurrence of regenerative chatter vibration. It is not possible to provide a structural specification that can.

本発明は、上記従来の問題に鑑みてなしたもので、再生びびり振動が発生する原因を明らかにして、加工機械の再生びびり振動安定のための設計指針を提供できるようにした加工装置及び加工機械の構造仕様設計方法に関するものである。   The present invention has been made in view of the above-described conventional problems, and has clarified the cause of occurrence of regenerative chatter vibration, and can provide a design guideline for stabilizing regenerative chatter vibration of a processing machine and processing. The present invention relates to a structural specification design method for machines.

本発明は、先端に切削工具を備えたスライド軸と、該スライド軸の先端近傍をスライド可能に支持する油静圧軸受装置と、前記スライド軸の後端に接続して該スライド軸のスライドを駆動する駆動装置と、前記油静圧軸受装置と前記駆動装置との間に備えられ前記スライド軸を滑り移動可能に支持して送り機構の摩擦を模擬する滑り軸受装置と、前記油静圧軸受装置と前記滑り軸受装置との間のスライド軸に備えられ工具部の軸方向変位を模擬してばね定数を変更可能な第1のばね手段と、前記滑り軸受装置と前記駆動装置との間のスライド軸に備えられ駆動装置の動力伝達部の軸方向変位を模擬してばね定数を変更可能な第2のばね手段と、前記滑り軸受装置に軸受予荷重を付与してスライド軸の摩擦力を調節可能な摩擦力調整手段と、該摩擦力調整手段による軸受予荷重を計測する予荷重計測手段と、前記切削工具の軸方向変位を計測する工具変位計測手段と、を備えたことを特徴とする加工装置、に係るものである。   The present invention provides a slide shaft having a cutting tool at the tip, an hydrostatic bearing device that supports the vicinity of the tip of the slide slidably, and a slide shaft connected to the rear end of the slide shaft. A driving device for driving; a sliding bearing device provided between the hydrostatic bearing device and the driving device for slidably supporting the slide shaft to simulate friction of a feed mechanism; and the hydrostatic bearing A first spring means which is provided on a slide shaft between a sliding device and the sliding bearing device and which can change a spring constant by simulating an axial displacement of a tool portion; and between the sliding bearing device and the driving device. Second spring means provided on the slide shaft and capable of changing the spring constant by simulating the axial displacement of the power transmission portion of the drive device, and applying a bearing preload to the slide bearing device to increase the frictional force of the slide shaft Adjustable friction force adjusting means; and A preload measuring means for measuring a bearing preload by frictional force adjusting unit, in which according to the machining apparatus, characterized in that and a tool displacement measuring means for measuring the axial displacement of the cutting tool.

上記加工装置において、前記第1及び第2のばね手段が、厚さが異なる複数の板ばねを交換可能に備えていることは好ましい。   In the processing apparatus, it is preferable that the first and second spring means include a plurality of leaf springs having different thicknesses so as to be replaceable.

又、上記加工装置において、前記摩擦力調整手段が、前記滑り軸受装置に支持したスライド軸に圧下ブロックを介して軸受予荷重を負荷する押付装置であることは好ましい。   In the processing apparatus, it is preferable that the frictional force adjusting means is a pressing device that applies a bearing preload to a slide shaft supported by the slide bearing device via a reduction block.

又、上記加工装置において、前記工具変位計測手段が、切削工具の軸方向変位を計測するレーザ変位計であることは好ましい。   Moreover, in the said processing apparatus, it is preferable that the said tool displacement measuring means is a laser displacement meter which measures the axial direction displacement of a cutting tool.

又、上記加工装置において、前記駆動装置に切削動力計を備えたことは好ましい。   Moreover, in the said processing apparatus, it is preferable that the said drive device was equipped with the cutting dynamometer.

本発明は、前記加工装置を用いた加工機械の構造仕様設計方法であって、前記摩擦力調整手段により前記滑り軸受装置に付与する軸受予荷重を変更することで前記スライド軸の摩擦力を段階的に調節する操作と、前記第1及び第2のばね手段のばねを交換してばね定数を段階的に調節する操作とを組み合わせ、各操作の調節ごとに切削工具による切削を行って再生びびり振動の発生限界を求める作業を、前記切削工具の切削幅を変更して実施し、前記切削工具の切削幅を変更し前記各操作の調節を行うごとのびびり振動の発生限界から夫々のびびり振動安定領域を求め、該びびり振動安定領域に基づいて、前記滑り軸受装置の好適摩擦力と、前記第1及び第2のばね手段の好適ばね定数を求めることを特徴とする加工機械の構造仕様設計方法、に係るものである。   The present invention is a structural specification design method of a processing machine using the processing device, wherein the frictional force of the slide shaft is stepped by changing a bearing preload applied to the sliding bearing device by the frictional force adjusting means. And the operation of adjusting the spring constant stepwise by exchanging the springs of the first and second spring means, and cutting with a cutting tool for each adjustment of each operation to regenerate chatter. The operation for obtaining the vibration generation limit is performed by changing the cutting width of the cutting tool, and the chatter vibration is determined from the generation limit of chatter vibration every time the cutting width of the cutting tool is changed and each operation is adjusted. A structural specification design of a processing machine characterized in that a stable region is obtained, and a suitable frictional force of the sliding bearing device and a suitable spring constant of the first and second spring means are obtained based on the chatter vibration stable region. Method It relates to.

本発明によれば、再生びびり振動が発生する原因を明らかにして、加工機械の再生びびり振動安定のための設計指針を提供できるという優れた効果を奏し得る。   Advantageous Effects of Invention According to the present invention, it is possible to achieve an excellent effect of clarifying the cause of occurrence of regenerative chatter vibration and providing a design guideline for stabilizing regenerative chatter vibration of a processing machine.

本発明の加工装置の一実施例を示す側面図である。It is a side view which shows one Example of the processing apparatus of this invention. 本発明が適用される2次元切削加工機械の例を示したもので、(a)は突切り加工機の側面図、(b)は外周旋削加工機の平面図である。The example of the two-dimensional cutting machine with which this invention is applied is shown, (a) is a side view of a parting-off machine, (b) is a top view of an outer periphery turning machine. 図2の切削加工機械を2自由度の振動系としてモデル化した振動モデルを示す概略図である。It is the schematic which shows the vibration model which modeled the cutting machine of FIG. 2 as a vibration system of 2 degrees of freedom.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は本発明が適用される2次元切削加工機械の例を示したものであり、図2(a)は回転しているワークWを切削工具1で突切り加工する突切り加工機を示し、図2(b)は回転しているワークWの外周を切削工具1で切削する外周旋削加工機を示している。図2(a)、(b)の加工機械では、切削工具1と工具ホルダ2からなる工具部3が、スライドテーブル4に固定されている。該スライドテーブル4は送りネジ5の回転により支持フレーム6に沿って送り移動される送り機構7を構成している。前記送りネジ5は駆動軸8及び該駆動軸8を支持する支持軸受9とカップリング10等からなる動力伝達部11を介してモータ12に接続されている。   FIG. 2 shows an example of a two-dimensional cutting machine to which the present invention is applied, and FIG. 2 (a) shows a parting-off machine for parting off a rotating workpiece W with a cutting tool 1. FIG. FIG. 2B shows an outer peripheral turning machine that cuts the outer periphery of the rotating workpiece W with the cutting tool 1. In the processing machine shown in FIGS. 2A and 2B, a tool portion 3 including a cutting tool 1 and a tool holder 2 is fixed to a slide table 4. The slide table 4 constitutes a feed mechanism 7 that is fed and moved along the support frame 6 by the rotation of the feed screw 5. The feed screw 5 is connected to a motor 12 via a drive shaft 8, a support bearing 9 that supports the drive shaft 8, a coupling 10 and the like.

図2に示すような2次元切削加工を行う加工機械では、切削工具1の刃先の切削点に、切削力として、ワークWの回転を止めようとする方向の主分力F2と切込方向の背分力F1とが発生する。   In a processing machine that performs two-dimensional cutting as shown in FIG. 2, the main component force F <b> 2 in the direction in which the rotation of the workpiece W is stopped and the cutting direction are applied to the cutting point of the cutting edge of the cutting tool 1 as the cutting force. A back force F1 is generated.

図3は、図2の2次元切削加工機械を2自由度の振動系としてモデル化した振動モデルの概略図であり、図3の振動モデルでは、切削加工機械で一般に問題となることが多い再生びびり振動に注目し、再生びびり振動は一般に切取り厚さを変化させる方向(図2では送り方向Aの方向)において発生し易いため、切削工具1による切削方向(送り方向A)の振動のみを考慮した。又、切削力についても、送り方向Aに対向する背分力F1についてのみ考慮し、影響が小さい他の成分については除外した。   FIG. 3 is a schematic diagram of a vibration model in which the two-dimensional cutting machine of FIG. 2 is modeled as a two-degree-of-freedom vibration system. In the vibration model of FIG. Paying attention to chatter vibration, regenerative chatter vibration generally tends to occur in the direction of changing the cutting thickness (in the feed direction A in FIG. 2), so only the vibration in the cutting direction (feed direction A) by the cutting tool 1 is considered. did. In addition, regarding the cutting force, only the back component force F1 facing the feed direction A was considered, and other components having a small influence were excluded.

図3の振動モデルでは、図2において最初に背分力F1を受ける切削工具1及び工具ホルダ2からなる工具部3を第1のマスmと見做すと共に、前記工具部3は軸方向の変位を生じる第1のばね要素Kと看做した。前記第1のマスm及び第1のばね要素Kは工具部の仕様を表わす。 In the vibration model of FIG. 3, the tool portion 3 including the cutting tool 1 and the tool holder 2 that first receives the back component force F1 in FIG. 2 is regarded as a first mass m B, and the tool portion 3 is axially It was regarded as the first spring element K B resulting in displacement. It said first mass m B and the first spring element K B represents the specification of the tool unit.

図2のスライドテーブル4は第2のマスmと見做し、更に、スライドテーブル4を送りネジ5によって送り方向Aへ移動する際に送りネジ5とスライドテーブル4との間に発生する摩擦力fが背分力F1に対して減衰効果を発揮することから、前記送り機構7に対応して、第2のマスmと支持フレームUとからなる摩擦減衰要素Vを設定した。前記第2のマスm、支持フレームU及び摩擦減衰要素Vは送り機構の仕様を表わす。 The slide table 4 in FIG. 2 is regarded as the second mass m S, and furthermore, friction generated between the feed screw 5 and the slide table 4 when the slide table 4 is moved in the feed direction A by the feed screw 5. Since the force f f exerts a damping effect on the back component force F 1, the friction damping element V including the second mass m S and the support frame U is set corresponding to the feed mechanism 7. The second mass m S , the support frame U, and the friction damping element V represent the specifications of the feed mechanism.

更に、図2の駆動軸8、支持軸受9及びカップリング10からなる動力伝達部11は軸方向の変位を生じる第2のばね要素Kと看做し、前記背分力F1が第2のばね要素Kを介して図2のモータ12へ伝達するようにした。前記第2のばね要素Kは動力伝達部の仕様を表わす。 Furthermore, the drive shaft 8 in FIG. 2, the power transmission unit 11 composed of a supporting bearing 9 and the coupling 10 is regarded as the second spring element K S resulting in axial displacement, the back component force F1 of the second It was to transmit to the motor 12 in FIG. 2 through the spring element K S. The second spring element K S represents the specification of the power transmission unit.

図3の振動モデルにおいて、前記摩擦減衰要素Vに対して軸受予荷重Pを付与することにより摩擦力を調節できるようにし、又、第1のばね要素K及び第2のばね要素Kの夫々のばね定数を調節できるようにすることで、図2に示すような種々の加工機械の仕様に対応できるようにした。図3中、C,Cは第1及び第2のばね要素K,Kの構造減衰を表わすが、これは前記摩擦減衰要素Vの減衰に比して非常に小さいため除外することができる。mは支持フレームUの質量、Kは前記支持フレームUのばね定数、Xは送り力を表わす。 In the vibration model of FIG. 3, the frictional force can be adjusted by applying a bearing preload P to the friction damping element V, and the first spring element K B and the second spring element K S can be adjusted. By making each spring constant adjustable, it was possible to meet the specifications of various processing machines as shown in FIG. In FIG. 3, C B and C S represent structural damping of the first and second spring elements K B and K S , which are excluded because they are very small compared to the damping of the friction damping element V. Can do. m N is the mass of the support frame U, K N is the spring constant of the support frame U, and XX is the feed force.

図1は、前記図3の振動モデルに基づいて製作した本発明の加工装置の一実施例を示している。図1において、50は先端に切削工具1を備えたスライド軸であり、該スライド軸50の先端近傍は、油静圧軸受51を備えた油静圧軸受装置52によりスライド可能に支持している。この油静圧軸受装置52の油静圧軸受51は、背分力F1が負荷しても背分力F1方向における摩擦力の変化は非常に小さく、また摩擦力自体の値も非常に小さいので、背分力F1のみを後方の振動系へ伝達することができる。   FIG. 1 shows an embodiment of the processing apparatus of the present invention manufactured based on the vibration model of FIG. In FIG. 1, reference numeral 50 denotes a slide shaft provided with a cutting tool 1 at the tip, and the vicinity of the tip of the slide shaft 50 is slidably supported by a hydrostatic bearing device 52 provided with a hydrostatic bearing 51. . The hydrostatic bearing 51 of the hydrostatic bearing device 52 has a very small change in the friction force in the direction of the back component force F1 even if the back component force F1 is loaded, and the value of the friction force itself is also very small. Only the back component force F1 can be transmitted to the rear vibration system.

前記スライド軸50の後端には、該スライド軸50のスライドを駆動する駆動装置53が接続されている。この駆動装置53は、サーボモータ54の回転力により送り装置55を介してスライド軸50を送り方向Aへ移動できるようにしている。前記サーボモータ54の主軸は大型の複列円錐ころ軸受で支持することにより十分な剛性と軸方向精度が確保され、又、サーボモータ54を採用することで高精度な回転速度を実現している。前記駆動装置には切削動力を計測する切削動力計56を設けている。   A drive device 53 that drives the slide of the slide shaft 50 is connected to the rear end of the slide shaft 50. The drive device 53 is configured to move the slide shaft 50 in the feed direction A via the feed device 55 by the rotational force of the servo motor 54. The main shaft of the servo motor 54 is supported by a large double-row tapered roller bearing to ensure sufficient rigidity and axial accuracy, and the servo motor 54 is used to achieve a high-precision rotational speed. . The driving device is provided with a cutting dynamometer 56 for measuring cutting power.

前記油静圧軸受装置52と前記駆動装置53との間には、支持フレーム57を有して前記スライド軸50をスライド可能に支持することで図2の送り機構7の摩擦(図3の摩擦減衰要素V)を模擬する滑り軸受装置58を設けている。滑り軸受装置58における支持フレーム57とスライド軸50との滑り部分には加工機械の案内部として用いられるフッ素系樹脂(キャプテンインダストリー社製ターカイトB[登録商標])とS45Cの組み合わせ等を用いることができる。前記滑り軸受装置58には、スライド軸50に軸受予荷重Pを付与してスライド軸50の摩擦力を調節できるようにした摩擦力調整手段59を設ける。該摩擦力調整手段59としては、前記滑り軸受装置58に支持したスライド軸50に圧下ブロック60を介して軸受予荷重Pを負荷する押付装置61を用いることができる。前記圧下ブロック60には、前記摩擦力調整手段59によってスライド軸50に付与される軸受予荷重Pを計測する予荷重計測手段62を設けている。予荷重計測手段62としてはロードセル等を用いることができる。   A support frame 57 is provided between the hydrostatic bearing device 52 and the drive device 53 to support the slide shaft 50 so that the slide shaft 50 is slidable (the friction of the feed mechanism 7 in FIG. 3). A sliding bearing device 58 is provided which simulates the damping element V). For the sliding portion between the support frame 57 and the slide shaft 50 in the slide bearing device 58, a combination of fluorine resin (Turkite B [registered trademark] manufactured by Captain Industry Co., Ltd.) used as a guide part of a processing machine and S45C may be used. it can. The sliding bearing device 58 is provided with a friction force adjusting means 59 that applies a bearing preload P to the slide shaft 50 so that the friction force of the slide shaft 50 can be adjusted. As the frictional force adjusting means 59, a pressing device 61 that applies a bearing preload P to the slide shaft 50 supported by the sliding bearing device 58 via the reduction block 60 can be used. The reduction block 60 is provided with preload measuring means 62 for measuring a bearing preload P applied to the slide shaft 50 by the friction force adjusting means 59. As the preload measuring means 62, a load cell or the like can be used.

前記油静圧軸受装置52と前記滑り軸受装置58との間のスライド軸50には、図2の工具部3の軸方向の変位(図3の第1のばね要素K)を模擬するばね定数が調節可能な第1のばね手段63を設ける。又、前記滑り軸受装置58と前記駆動装置53との間のスライド軸50には、図2の動力伝達部11の軸方向の変位(図3の第2のばね要素K)を模擬するばね定数が調節可能な第2のばね手段64を設けている。前記第1及び第2のばね手段63,64は、厚さが異なる複数のフランジ状の板ばね65を交換して装着できるように構成されている。 On the slide shaft 50 between the hydrostatic bearing device 52 and the slide bearing device 58, a spring simulating the axial displacement of the tool portion 3 in FIG. 2 (first spring element K B in FIG. 3). A first spring means 63 whose constant is adjustable is provided. Further, the slide shaft 50 between the sliding bearing device 58 and the driving device 53 has a spring that simulates the axial displacement (second spring element K S in FIG. 3) of the power transmission unit 11 in FIG. A second spring means 64 having an adjustable constant is provided. The first and second spring means 63 and 64 are configured such that a plurality of flange-like plate springs 65 having different thicknesses can be exchanged and mounted.

前記油静圧軸受装置52には、前記切削工具1の軸方向の変位を計測するための工具変位計測手段66を設けている。該工具変位計測手段66は、切削工具1の軸方向の変位を計測するレーザ変位計68を備えた場合を示している。又、必要に応じて切削工具1によるワークWの切削加速度を計測する加速度計67を備えてもよい。   The hydrostatic bearing device 52 is provided with tool displacement measuring means 66 for measuring the axial displacement of the cutting tool 1. The tool displacement measuring means 66 is shown as having a laser displacement meter 68 for measuring the axial displacement of the cutting tool 1. Moreover, you may provide the accelerometer 67 which measures the cutting acceleration of the workpiece | work W by the cutting tool 1 as needed.

次に、図1の実施例の作動を説明する。   Next, the operation of the embodiment of FIG. 1 will be described.

駆動装置53のサーボモータ54により送り装置55を介してスライド軸50を送り方向Aにスライドさせると、スライド軸50の先端に備えた切削工具1は回転するワークWに押付けられてワークWの切削を行う。この時の切削力の背分力F1は、第1のばね手段63、滑り軸受装置58及び第2のばね手段64を介して駆動装置53に伝えられる。   When the slide shaft 50 is slid in the feed direction A by the servo motor 54 of the drive device 53 via the feed device 55, the cutting tool 1 provided at the tip of the slide shaft 50 is pressed against the rotating workpiece W to cut the workpiece W. I do. The back component force F1 of the cutting force at this time is transmitted to the driving device 53 via the first spring means 63, the plain bearing device 58, and the second spring means 64.

ここで、図2の工具部3を模擬した第1のばね手段63は、板ばね65を交換することによりばね定数を調節することができ、又、図2の動力伝達部11を模擬した第2のばね手段64は、板ばね65を交換することによりばね定数を調節することができ、更に、図2の送り機構7を模擬した滑り軸受装置58は、摩擦力調整手段59によってスライド軸50に付与する軸受予荷重Pを変更することによりスライド軸50の摩擦力を調節することができる。   Here, the first spring means 63 simulating the tool part 3 of FIG. 2 can adjust the spring constant by exchanging the leaf spring 65, and the first spring means 63 simulating the power transmission part 11 of FIG. The spring means 64 of No. 2 can adjust the spring constant by exchanging the leaf spring 65, and the sliding bearing device 58 simulating the feed mechanism 7 of FIG. The frictional force of the slide shaft 50 can be adjusted by changing the bearing preload P applied to.

前記スライド軸50に背分力F1を負荷したときにおける背分力F1と第1のばね手段63の変位との関係、及び、背分力F1と第2のばね手段64の変位との関係、滑り軸受装置58において摩擦力調整手段59によりスライド軸50に付与する軸受予荷重Pを調節し滑り速度を変化させたときの摩擦力について、夫々同定を行った。その結果、前記第1のばね手段63は工具部3の軸方向の変位を良好に表わし、第2のばね手段64は動力伝達部11の軸方向の変位を良好に表わし、滑り軸受装置58の摩擦力調整手段59による軸受予荷重Pの調節は送り機構7の摩擦力を良好に表わすことが判明した。   The relationship between the back component force F1 and the displacement of the first spring means 63 when the back component force F1 is applied to the slide shaft 50, and the relationship between the back component force F1 and the displacement of the second spring means 64; In the sliding bearing device 58, the frictional force when the bearing preload P applied to the slide shaft 50 is adjusted by the frictional force adjusting means 59 to change the sliding speed was identified. As a result, the first spring means 63 favorably represents the axial displacement of the tool portion 3, and the second spring means 64 favorably represents the axial displacement of the power transmission portion 11. It has been found that the adjustment of the bearing preload P by the frictional force adjusting means 59 represents the frictional force of the feed mechanism 7 well.

上記したように、第1のばね手段63におけるばね定数を調節する操作と、第2のばね手段64におけるばね定数を調節する操作と、摩擦力調整手段59により滑り軸受装置58の摩擦力を調節する操作を組み合わせ、各操作の調節を行うごとに、再生びびり振動の発生限界を求める試験を行った。更に、前記切削工具1を切削幅が異なるものに交換し、切削幅を変更したときの再生びびり振動の発生限界を求める試験を行った。そして、前記切削工具の切削幅を変更し、更に、第1のばね手段63と、第2のばね手段64と、滑り軸受装置58を調整して実施した試験により得られた夫々の再生びびり振動の発生限界から、夫々における再生びびり振動安定領域を求めた。   As described above, the operation of adjusting the spring constant of the first spring means 63, the operation of adjusting the spring constant of the second spring means 64, and the friction force adjusting means 59 adjust the friction force of the sliding bearing device 58. A test was conducted to determine the limit of occurrence of regenerative chatter vibration each time the operation was combined. Further, the cutting tool 1 was replaced with one having a different cutting width, and a test was performed to determine the generation limit of regenerative chatter vibration when the cutting width was changed. Then, the cutting width of the cutting tool is changed, and further, each regenerative chatter vibration obtained by a test carried out by adjusting the first spring means 63, the second spring means 64, and the slide bearing device 58 is performed. From the generation limit of each, the regenerative chatter vibration stable region in each was obtained.

図3の振動モデルに基づいて製作された図1の加工装置に基づいた再生びびり振動の予測は、実際の加工機械で試験した結果と良く一致しており、従って、前記試験で得られた再生びびり振動安定領域のデータは開発段階での加工機械の再生びびり振動抑制に有効に適用できることが判明した。   The prediction of regenerative chatter vibration based on the processing apparatus of FIG. 1 manufactured based on the vibration model of FIG. 3 is in good agreement with the result of testing with an actual processing machine, and thus the replay obtained in the above test is the same. It has been found that the chatter vibration stability data can be effectively applied to the regenerative chatter vibration suppression of the processing machine in the development stage.

即ち、従来、再生びびり振動抑制の方法としては装置剛性を高めることに主眼が置かれていたが、この指針は必ずしも正しくなく、本発明のように、装置各部の剛性と減衰を最適化することで、より確実な再生びびり振動安定性が得られることが判明した。   In other words, conventionally, as a method for suppressing regenerative chatter vibration, the focus has been on increasing the rigidity of the apparatus, but this guideline is not always correct, and the rigidity and damping of each part of the apparatus should be optimized as in the present invention. Thus, it was found that more reliable chatter vibration stability can be obtained.

従って、前記したように切削工具の切削幅に対応した前記滑り軸受装置58の好適な摩擦力と、前記第1及び第2のばね手段63,64の好適なばね定数の組み合わせによる再生びびり振動安定領域が求められるので、前記受装置58の好適な摩擦力に基づいた送り機構7を設計し、第1のばね手段63の好適なばね定数に基づいて切削工具1及び工具ホルダ2からなる工具部3の剛性強度を設計し、第2のばね手段64の好適なばね定数に基づいて駆動軸8、支持軸受9及びカップリング10からなる動力伝達部11の剛性強度を設計することができる。   Therefore, as described above, the regenerative chatter vibration stabilization by the combination of the suitable frictional force of the sliding bearing device 58 corresponding to the cutting width of the cutting tool and the suitable spring constants of the first and second spring means 63 and 64. Since a region is required, the feed mechanism 7 based on a suitable frictional force of the receiving device 58 is designed, and a tool portion comprising the cutting tool 1 and the tool holder 2 based on a suitable spring constant of the first spring means 63. 3, and the rigidity strength of the power transmission unit 11 including the drive shaft 8, the support bearing 9, and the coupling 10 can be designed based on a suitable spring constant of the second spring means 64.

尚、本発明は上述の実施例にのみ限定されるものではなく、例えば、工具部及び動力伝達部を更に分割して複数のばね手段によって模擬するようにしてもよいこと、本発明の加工装置は種々の加工機械における再生びびり振動安定領域を求めることができること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiments. For example, the tool unit and the power transmission unit may be further divided and simulated by a plurality of spring means, or the processing apparatus of the present invention. Of course, it is possible to obtain a regenerative chatter vibration stable region in various processing machines, and various modifications can be made without departing from the scope of the present invention.

1 切削工具
3 工具部
7 送り機構
11 動力伝達部
50 スライド軸
51 油静圧軸受
52 油静圧軸受装置
53 駆動装置
56 切削動力計
58 滑り軸受装置
59 摩擦力調整手段
60 圧下ブロック
61 押付装置
62 予荷重計測手段
63 第1のばね手段
64 第2のばね手段
65 板ばね
66 工具変位計測手段
68 レーザ変位計
DESCRIPTION OF SYMBOLS 1 Cutting tool 3 Tool part 7 Feed mechanism 11 Power transmission part 50 Slide shaft 51 Oil hydrostatic bearing 52 Oil hydrostatic bearing apparatus 53 Drive apparatus 56 Cutting dynamometer 58 Sliding bearing apparatus 59 Friction force adjustment means 60 Reduction block 61 Pressing apparatus 62 Preload measuring means 63 First spring means 64 Second spring means 65 Leaf spring 66 Tool displacement measuring means 68 Laser displacement meter

Claims (6)

先端に切削工具を備えたスライド軸と、該スライド軸の先端近傍をスライド可能に支持する油静圧軸受装置と、前記スライド軸の後端に接続して該スライド軸のスライドを駆動する駆動装置と、前記油静圧軸受装置と前記駆動装置との間に備えられ前記スライド軸を滑り移動可能に支持して送り機構の摩擦を模擬する滑り軸受装置と、前記油静圧軸受装置と前記滑り軸受装置との間のスライド軸に備えられ工具部の軸方向変位を模擬してばね定数を変更可能な第1のばね手段と、前記滑り軸受装置と前記駆動装置との間のスライド軸に備えられ駆動装置の動力伝達部の軸方向変位を模擬してばね定数を変更可能な第2のばね手段と、前記滑り軸受装置に軸受予荷重を付与してスライド軸の摩擦力を調節可能な摩擦力調整手段と、該摩擦力調整手段による軸受予荷重を計測する予荷重計測手段と、前記切削工具の軸方向変位を計測する工具変位計測手段と、を備えたことを特徴とする加工装置。   A slide shaft having a cutting tool at the tip, an hydrostatic bearing device that supports the vicinity of the tip of the slide slidably, and a drive device that is connected to the rear end of the slide shaft and drives the slide of the slide shaft A sliding bearing device that is provided between the hydrostatic bearing device and the driving device and supports the slide shaft so as to be slidable, and simulates friction of a feed mechanism, and the hydrostatic bearing device and the sliding device A first spring means provided on a slide shaft between the bearing device and capable of changing a spring constant by simulating an axial displacement of the tool portion, and provided on a slide shaft between the slide bearing device and the drive device. Second spring means capable of changing the spring constant by simulating the axial displacement of the power transmission portion of the drive device, and friction capable of adjusting the friction force of the slide shaft by applying a bearing preload to the slide bearing device Force adjusting means and friction force adjusting Processing apparatus for a preload measuring means for measuring a bearing preload by stage, the tool displacement measuring means for measuring the axial displacement of the cutting tool, comprising the. 前記第1及び第2のばね手段は、厚さが異なる複数の板ばねを交換可能に備えていることを特徴とする請求項1に記載の加工装置。   The processing apparatus according to claim 1, wherein the first and second spring means include a plurality of leaf springs having different thicknesses so as to be exchangeable. 前記摩擦力調整手段は、前記滑り軸受装置に支持したスライド軸に圧下ブロックを介して軸受予荷重を負荷する押付装置であることを特徴とする請求項1又は2に記載の加工装置。   The processing apparatus according to claim 1, wherein the frictional force adjusting means is a pressing device that applies a bearing preload to a slide shaft supported by the sliding bearing device via a reduction block. 前記工具変位計測手段は、切削工具の軸方向変位を計測するレーザ変位計であることを特徴とする請求項1〜3のいずれか1つに記載の加工装置。   The processing apparatus according to claim 1, wherein the tool displacement measuring unit is a laser displacement meter that measures an axial displacement of a cutting tool. 前記駆動装置に切削動力計を備えたことを特徴とする請求項1〜4のいずれか1つに記載の加工装置。   The processing apparatus according to claim 1, wherein the driving device includes a cutting dynamometer. 請求項1〜5のいずれか1つに記載の加工装置を用いた加工機械の構造仕様設計方法であって、前記摩擦力調整手段により前記滑り軸受装置に付与する軸受予荷重を変更することで前記スライド軸の摩擦力を段階的に調節する操作と、前記第1及び第2のばね手段のばねを交換してばね定数を段階的に調節する操作とを組み合わせ、各操作の調節ごとに切削工具による切削を行って再生びびり振動の発生限界を求める作業を、前記切削工具の切削幅を変更して実施し、前記切削工具の切削幅を変更し前記各操作の調節を行うごとのびびり振動の発生限界から夫々のびびり振動安定領域を求め、該びびり振動安定領域に基づいて、前記滑り軸受装置の好適摩擦力と、前記第1及び第2のばね手段の好適ばね定数を求めることを特徴とする加工機械の構造仕様設計方法。   A structural specification design method for a processing machine using the processing device according to any one of claims 1 to 5, wherein the frictional force adjusting means changes a bearing preload applied to the sliding bearing device. The operation of adjusting the frictional force of the slide shaft in stages and the operation of adjusting the spring constant in stages by exchanging the springs of the first and second spring means are combined and cutting is performed for each adjustment of each operation. Chatter vibration is performed every time the cutting width of the cutting tool is changed, the cutting width of the cutting tool is changed, and each operation is adjusted. Each chatter vibration stable region is obtained from the generation limit of the chatter, and based on the chatter vibration stable region, a suitable friction force of the sliding bearing device and a suitable spring constant of the first and second spring means are obtained. Processing machine Structure specification design method.
JP2011199153A 2011-09-13 2011-09-13 Structural equipment design method for processing apparatus and processing machine Active JP5782942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011199153A JP5782942B2 (en) 2011-09-13 2011-09-13 Structural equipment design method for processing apparatus and processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011199153A JP5782942B2 (en) 2011-09-13 2011-09-13 Structural equipment design method for processing apparatus and processing machine

Publications (2)

Publication Number Publication Date
JP2013059824A true JP2013059824A (en) 2013-04-04
JP5782942B2 JP5782942B2 (en) 2015-09-24

Family

ID=48184986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011199153A Active JP5782942B2 (en) 2011-09-13 2011-09-13 Structural equipment design method for processing apparatus and processing machine

Country Status (1)

Country Link
JP (1) JP5782942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737431A (en) * 2013-12-26 2014-04-23 齐齐哈尔二机床(集团)有限责任公司 Machine tool cutting force simulation loading device
CN105643367A (en) * 2016-04-01 2016-06-08 北京林业大学 Solid-liquid-gas damping type high-speed-spiral-feeding friction device
CN112809441A (en) * 2021-03-19 2021-05-18 山东大学 Cutter-workpiece friction coefficient measuring device and method capable of being integrated in milling machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265734A (en) * 1990-03-14 1991-11-26 Sumitomo Heavy Ind Ltd Precision vibration control method for table and the like on which precision instruments are installed
JPH068005A (en) * 1992-06-26 1994-01-18 Okuma Mach Works Ltd Main spindle unit
JPH11188566A (en) * 1997-12-22 1999-07-13 Okuma Corp Tool holder and cutting chattering phenomenon eliminating method using its holder
JPH11514940A (en) * 1995-11-02 1999-12-21 レフレクス インストゥルメント アクティエボラーグ Device for detecting the elastic deformation of the tool axis of a machine tool
JP2006102864A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Cutting testing machine
JP2006102927A (en) * 2004-09-30 2006-04-20 Waka Yamamoto Chattering oscillation predicting method in machining and recording medium to record chattering oscillation prediction program
JP2006107073A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Working information sharing system and its method
JP2007044852A (en) * 2005-08-12 2007-02-22 Univ Nagoya Machining device, revolution arithmetic unit of machining device, chattering vibration evaluation device of machining device and chattering vibration evaluation method of machining device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265734A (en) * 1990-03-14 1991-11-26 Sumitomo Heavy Ind Ltd Precision vibration control method for table and the like on which precision instruments are installed
JPH068005A (en) * 1992-06-26 1994-01-18 Okuma Mach Works Ltd Main spindle unit
JPH11514940A (en) * 1995-11-02 1999-12-21 レフレクス インストゥルメント アクティエボラーグ Device for detecting the elastic deformation of the tool axis of a machine tool
JPH11188566A (en) * 1997-12-22 1999-07-13 Okuma Corp Tool holder and cutting chattering phenomenon eliminating method using its holder
JP2006102927A (en) * 2004-09-30 2006-04-20 Waka Yamamoto Chattering oscillation predicting method in machining and recording medium to record chattering oscillation prediction program
JP2006102864A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Cutting testing machine
JP2006107073A (en) * 2004-10-05 2006-04-20 Nagano Prefecture Working information sharing system and its method
JP2007044852A (en) * 2005-08-12 2007-02-22 Univ Nagoya Machining device, revolution arithmetic unit of machining device, chattering vibration evaluation device of machining device and chattering vibration evaluation method of machining device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737431A (en) * 2013-12-26 2014-04-23 齐齐哈尔二机床(集团)有限责任公司 Machine tool cutting force simulation loading device
CN105643367A (en) * 2016-04-01 2016-06-08 北京林业大学 Solid-liquid-gas damping type high-speed-spiral-feeding friction device
CN105643367B (en) * 2016-04-01 2018-06-01 北京林业大学 A kind of rubbing device of solid-liquid-gas shock reducing type high-speed screw feeding
CN112809441A (en) * 2021-03-19 2021-05-18 山东大学 Cutter-workpiece friction coefficient measuring device and method capable of being integrated in milling machine
CN112809441B (en) * 2021-03-19 2022-03-15 山东大学 Cutter-workpiece friction coefficient measuring device and method capable of being integrated in milling machine

Also Published As

Publication number Publication date
JP5782942B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Gagnol et al. Model-based chatter stability prediction for high-speed spindles
Schmitz et al. Closed-form solutions for surface location error in milling
JP5644082B2 (en) Machine tool spindle equipment
Abele et al. Machine tool spindle units
Ozturk et al. Investigation of spindle bearing preload on dynamics and stability limit in milling
Gagnol et al. Stability-based spindle design optimization
Özşahin et al. Identification of bearing dynamics under operational conditions for chatter stability prediction in high speed machining operations
Lee et al. An integrated prediction model including the cutting process for virtual product development of machine tools
KR100786526B1 (en) A static rigidity measurement device of a ultra speed main spindle
JP5782942B2 (en) Structural equipment design method for processing apparatus and processing machine
Denkena et al. Process stabilization with an adaptronic spindle system
CN105935860A (en) Curved surface machining method
Cifuentes et al. Dynamic analysis of runout correction in milling
Lu et al. Dynamic modeling and chatter analysis of a spindle-workpiece-tailstock system for the turning of flexible parts
JP6000453B2 (en) Spindle device of machine tool and machine tool
JP2012187691A (en) Method for selecting tool rotation speed
Das et al. Development of a vibration free machine structure for high-speed micro-milling center
JP2011194532A (en) Cutting tool cutting edge diagnosis device of machine tool
Uhlmann et al. Influences on specific cutting forces and their impact on the stability behaviour of milling processes
Polini et al. The estimation of the diameter error in bar turning: a comparison among three cutting force models
JP7484408B2 (en) Stability limit analysis device for machine tools
RU2012130812A (en) METHOD FOR INCREASING PRODUCTIVITY OF HIGH SPEED MOTOR SPINDLES FOR METAL CUTTING MACHINES
US10160075B2 (en) Main spindle device for machine tool and machine tool
Yang et al. Theoretical analysis of the Influence of workpiece spindle vibration displacement on machining accuracy of gear hobbing machine
Shaik et al. Analytical prediction of chatter stability of end milling process using three-dimensional cutting force model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R151 Written notification of patent or utility model registration

Ref document number: 5782942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250