JP2013059705A - Method and apparatus for clarifying raw water containing iron, manganese and ammoniacal nitrogen - Google Patents

Method and apparatus for clarifying raw water containing iron, manganese and ammoniacal nitrogen Download PDF

Info

Publication number
JP2013059705A
JP2013059705A JP2011197994A JP2011197994A JP2013059705A JP 2013059705 A JP2013059705 A JP 2013059705A JP 2011197994 A JP2011197994 A JP 2011197994A JP 2011197994 A JP2011197994 A JP 2011197994A JP 2013059705 A JP2013059705 A JP 2013059705A
Authority
JP
Japan
Prior art keywords
manganese
iron
water
treated water
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011197994A
Other languages
Japanese (ja)
Other versions
JP5781871B2 (en
Inventor
Sumio Miyoshi
純男 三吉
Atsushi Ogawa
篤史 小河
Yuji Kano
裕士 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KAISUI KK
Okumura Corp
Nihon Kaisui Co Ltd
Original Assignee
NIHON KAISUI KK
Okumura Corp
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KAISUI KK, Okumura Corp, Nihon Kaisui Co Ltd filed Critical NIHON KAISUI KK
Priority to JP2011197994A priority Critical patent/JP5781871B2/en
Publication of JP2013059705A publication Critical patent/JP2013059705A/en
Application granted granted Critical
Publication of JP5781871B2 publication Critical patent/JP5781871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for clarifying raw water containing iron, manganese and ammoniacal nitrogen such as ground water, in which by oxidizing and filtering dissolved iron and manganese by a filter medium having attached microorganisms without using chemicals, the iron and manganese are removed while slightly leaving a part thereof and the ammoniacal nitrogen valuable as a fertilizer is left in treated water to obtain agricultural water allowing the saving of the fertilizer for an agricultural land.SOLUTION: In the clarifying method, the iron removal and manganese removal of the raw water containing at least iron, manganese and ammoniacal nitrogen are performed by a biological filtering method. In the clarifying method, oxygen is dissolved in the raw water so that the dissolved oxygen concentration of the obtained treated water is 4 mg/L or more, iron removal, manganese removal and nitrification are controlled so that at least the ammoniacal nitrogen remains in the treated water and then filtration is performed by contact with microorganisms, thereby the treated water containing the ammoniacal nitrogen is obtained.

Description

本発明は地下水等の鉄、マンガン、アンモニア性窒素を含有する原水の浄化方法に関し、特に、薬品を用いず、前記原水に溶解した鉄・マンガンを生物ろ過によって、極一部を残して除去するとともに、肥料として価値のあるアンモニア性窒素を処理水中に多く残留せしめ、農地の肥料の節約が可能な農業用水を得るための浄化方法、および浄化装置に関する。   The present invention relates to a method for purifying raw water containing iron, manganese, and ammonia nitrogen such as groundwater, and in particular, removes iron / manganese dissolved in the raw water by biological filtration without using chemicals, leaving only a part. In addition, the present invention relates to a purification method and a purification device for obtaining agricultural water in which a large amount of ammonia nitrogen, which is valuable as a fertilizer, remains in treated water and can save fertilizer in farmland.

地下水には、鉄、マンガン、アンモニア性窒素等が溶解している場合が多くあり、これらを含有する地下水を農業用水として利用する場合、余分な鉄、マンガンを除去する浄化が行われている。
アンモニア性窒素を含む地下水から鉄・マンガンを除去して農業用水に使用する場合、従来は塩素系の酸化剤を注入し、アンモニア性窒素を完全に除去した後に、鉄を酸化、マンガンを酸化させて除去している。鉄、マンガン処理は酸化剤を添加し、触媒を充填した接触ろ過法で除去することが行われていた。マンガンの酸化はゆっくりと進行するため、二酸化マンガンをコーティングした触媒を用いて、自己酸化せしめている。
元々、飲料水用の浄水技術として用いられている方法であり、飲料水は水道法により給水栓で残留塩素を維持することが定められていることからアンモニア性窒素が残ると残留塩素濃度を維持できなくなるため、アンモニア性窒素の存在は思わしくなく、完全に処理されることが望まれた。したがって、上記のような化学的な酸化方式が使われるようになった。
In many cases, iron, manganese, ammonia nitrogen, and the like are dissolved in groundwater, and when groundwater containing these is used as agricultural water, purification is performed to remove excess iron and manganese.
When removing iron and manganese from groundwater containing ammonia nitrogen and using them for agricultural water, conventionally, a chlorine-based oxidant is injected and ammonia nitrogen is completely removed, then iron is oxidized and manganese is oxidized. Have been removed. In the iron and manganese treatment, an oxidant is added and removed by a catalytic filtration method filled with a catalyst. Since the oxidation of manganese proceeds slowly, it is self-oxidized using a catalyst coated with manganese dioxide.
Originally used as a water purification technology for drinking water, drinking water maintains the residual chlorine concentration when ammonia nitrogen remains because the water supply law stipulates that residual chlorine be maintained at the faucet. The presence of ammoniacal nitrogen was unlikely because it could not be done, and it was desired that it be completely treated. Therefore, the chemical oxidation method as described above has come to be used.

この化学的な処理法の場合、一番先にアンモニア性窒素を反応させてしまうため、アンモニア性窒素をブレークポイント塩素注入法で完全に除去した後でなければ、鉄、マンガンの処理ができない。また、鉄、マンガンを除去するために過剰に酸化剤を加えると、酸化剤が処理水に残留することがあり、最終的に残った酸化剤が農作物に悪影響を及ぼすため余剰の酸化剤を除去することが必要となる。また、アンモニア性窒素を塩素系の酸化剤で除去するには多量の酸化剤が必要であった。   In the case of this chemical treatment method, ammonia nitrogen is reacted first, so iron and manganese can be treated only after ammonia nitrogen is completely removed by the breakpoint chlorine injection method. Also, if an excessive amount of oxidizing agent is added to remove iron and manganese, the oxidizing agent may remain in the treated water, and the remaining remaining oxidizing agent will adversely affect the crops. It is necessary to do. In addition, a large amount of oxidant is required to remove ammoniacal nitrogen with a chlorine-based oxidant.

また、アンモニア性窒素に影響されずマンガンを酸化させる方法として酸化剤に過マンガン酸カリウムを用いる方法があるが、薬品代が塩素よりも高く製造コストの上昇を招く。さらに、上記の理由によりアンモニア性窒素は別途処理が望まれる。アンモニア性窒素を塩素で除去する場合には余分に添加された塩素によりトリハロメタンが生成される。   In addition, as a method for oxidizing manganese without being influenced by ammoniacal nitrogen, there is a method using potassium permanganate as an oxidizing agent, but the cost of chemicals is higher than that of chlorine, leading to an increase in manufacturing cost. Further, for the above reasons, ammoniacal nitrogen is desired to be treated separately. When the ammonia nitrogen is removed with chlorine, trihalomethane is produced by the extra chlorine added.

従来、生物ろ過と称して水道施設では曝気濾過池方式の処理方法(特許文献1)、落差を利用して酸素供給量を調整した処理方法(特許文献2)、被処理水に酸素含有ガスを供給した方法(特許文献3)等の例がある。前記曝気濾過池式の生物処理装置は、曝気装置付きの生物ろ過装置と砂ろ過設備を有し、飲料水用途でアンモニア性窒素、有機物の処理目的で導入されている。生物ろ過法は精度が悪く、維持管理が面倒という指摘もなされているが、実際は全自動で処理がなされるばかりか、通常の地下水レベルであれば3日に1回の洗浄でよく、非常に安価な処理方式である。しかし、かさ高い施設が必要で、自然流下方式で水が流されるためRC構造になることが多く、水量が小さい農場などでは過剰な設備と成り得る。曝気により、また落差を利用したり、酸素含有ガスを供給して酸素供給量を調整した場合も全ての微生物に酸素が行き届く環境が構築されるため、アンモニア性窒素はほとんど硝化され、アンモニア性窒素を残留させ、鉄とマンガンを除去するといったシステムの構築はできない。   Conventionally, in a water supply facility called biological filtration (Patent Document 1), a processing method (Patent Document 2) in which an oxygen supply amount is adjusted using a drop (Patent Document 2), oxygen-containing gas is added to water to be treated. Examples include the supplied method (Patent Document 3). The aeration filtration pond type biological treatment device has a biological filtration device with an aeration device and sand filtration equipment, and is introduced for the purpose of treating ammonia nitrogen and organic matter in drinking water applications. It has been pointed out that the biological filtration method is inaccurate and maintenance is troublesome, but in reality it is not only fully automated, but it can be washed once every 3 days at normal groundwater levels. It is an inexpensive processing method. However, a bulky facility is required, and water is flowed by a natural flow method, so an RC structure is often used, and it can be an excessive facility in a farm with a small amount of water. Even when aeration is used or when a head is used, or when the oxygen supply amount is adjusted by supplying an oxygen-containing gas, an environment is established in which oxygen reaches all microorganisms. It is not possible to build a system that removes iron and manganese.

農業用水としては飲料水と違いアンモニア性窒素は栄養塩の一つであるため、完全に除去する必要はなく、残留塩素も必要ない。鉄とマンガンも必須元素であるため完全に除去する必要もなく、配管内にスケールが付かない程度に残留して構わない。
このように、薬品を使わなくても、アンモニア性窒素を残留させ、鉄・マンガンをある程度除去し、しかもろ材を充填したままで逆洗再生できる、運転管理の容易な浄水方法は未だ開発されていない。
Agricultural water, unlike drinking water, is one of the nutrient salts, so it does not need to be completely removed and does not require residual chlorine. Since iron and manganese are also essential elements, they do not need to be completely removed and may remain to the extent that no scale is attached to the piping.
Thus, a water purification method with easy operation management has been developed that allows ammonia nitrogen to remain, remove iron and manganese to some extent, and backwash and regenerate while filling the filter medium without using chemicals. Absent.

特開2003−290784号公報JP 2003-290784 A 特開2005−288417号公報JP 2005-288417 A 特開2010−89046号公報JP 2010-89046 A

本発明は、地下水等の鉄、マンガン、アンモニア性窒素を含有する原水から、薬品を用いず、溶解した鉄・マンガンを微生物が付着したろ材により酸化し、ろ過することで極一部を残して除去するとともに、肥料として価値のあるアンモニア性窒素を処理水中に残留せしめ、農地の肥料の節約が可能な農業用水を得るための浄化方法および浄化装置を提供することを目的とする。   In the present invention, from raw water containing iron, manganese and ammonia nitrogen such as groundwater, without using chemicals, the dissolved iron / manganese is oxidized by a filter medium to which microorganisms adhere, and a very small part is left by filtration. An object of the present invention is to provide a purification method and a purification apparatus for removing agricultural nitrogen that is valuable as a fertilizer and remaining in treated water to obtain agricultural water that can save fertilizer in farmland.

本発明者らは鋭意検討を行った結果、鉄、マンガン、アンモニア性窒素を含有する原水に溶解した鉄・マンガンを生物ろ過によって、除去する際に、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させて、高速で微生物と接触ろ過させることにより、少なくともアンモニア性窒素が処理水中に残留するように、除鉄、除マンガン、アンモニア性窒素の硝化(nitrification)を制御することができ、アンモニア性窒素を処理水中に多く残留せしめ、農地の肥料の節約が可能な農業用水を得ることができることを見出し本発明に至った。   As a result of intensive studies, the present inventors have found that when the iron / manganese dissolved in raw water containing iron, manganese and ammoniacal nitrogen is removed by biological filtration, the dissolved oxygen concentration of the treated water obtained is 4 mg / Nitrogen removal of iron, manganese removal, and ammonia nitrogen so that at least ammonia nitrogen remains in the treated water by dissolving oxygen in the raw water so that it becomes L or higher and contact filtering with microorganisms at high speed. ) Can be controlled, and a large amount of ammoniacal nitrogen remains in the treated water, and it has been found that agricultural water capable of saving fertilizer in farmland can be obtained, and the present invention has been achieved.

即ち、本発明は以下の通りである。
(1) 少なくとも鉄、マンガン、およびアンモニア性窒素を含有する原水の、生物ろ過法により除鉄、除マンガンを行う浄化方法であって、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させて、少なくともアンモニア性窒素が処理水中に残留するように、除鉄、除マンガン、硝化を制御して微生物と接触させてろ過することにより、アンモニア性窒素を含有する処理水を得ることを特徴とする浄化方法。
(2)前記処理水の、鉄、マンガン濃度が合算で0.2〜0.5mg/L、アンモニア性窒素濃度が0.5mg/L〜5mg/Lであることを特徴とする前記(1)記載の浄化方法。
(3)前記酸素を溶解させた原水の溶存酸素濃度が9mg/L以上であることを特徴とする前記(1)または(2)に記載の浄化方法。
(4)得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させる酸素溶解工程と、微生物を付着させた粒径が1mm〜4mmである多孔質ろ材を充填した生物ろ過塔に、酸素を溶解させた原水を空塔速度3hr-1〜10.5hr-1で通水して、ろ材に付着した微生物による除鉄、除マンガン、硝化を制御してアンモニア性窒素を含有する処理水を得る工程とを少なくとも有することを特徴とする前記(1)〜(3)のいずれかに記載の浄化方法。
(5)前記(1)〜(4)のいずれかに記載の浄化方法に用いる浄化装置であって、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させるための酸素溶解装置と、微生物を付着させた粒径が1mm〜4mmである多孔質ろ材を充填した生物ろ過塔であって、アンモニア性窒素が処理水中に残留するように、ろ材に付着した微生物による除鉄、除マンガン、硝化を制御する生物ろ過塔とを少なくとも有することを特徴とする浄化装置。
(6)前記浄化装置が処理水の貯留槽を有し、該貯留槽が、少なくとも遮光するための設備、UV照射装置、曝気装置、循環装置のいずれか有することを特徴とする前記(5)記載の処理装置。
That is, the present invention is as follows.
(1) A purification method for removing iron and manganese by raw filtration of raw water containing at least iron, manganese, and ammonia nitrogen, and the dissolved oxygen concentration of the obtained treated water is 4 mg / L or more In this way, oxygen is dissolved in the raw water so that at least ammonia nitrogen remains in the treated water, and it is controlled by removing iron, removing manganese, and nitrifying to come into contact with microorganisms and contain ammonia nitrogen. A purification method characterized by obtaining treated water.
(2) The above-mentioned treated water has a combined iron and manganese concentration of 0.2 to 0.5 mg / L and an ammoniacal nitrogen concentration of 0.5 mg / L to 5 mg / L (1) The purification method described.
(3) The purification method according to (1) or (2), wherein the dissolved oxygen concentration of the raw water in which the oxygen is dissolved is 9 mg / L or more.
(4) An oxygen dissolving step for dissolving oxygen in the raw water and a porous filter medium having a particle size of 1 mm to 4 mm to which microorganisms were attached were filled so that the dissolved oxygen concentration of the treated water obtained was 4 mg / L or more. The raw water in which oxygen is dissolved is passed through the biological filtration tower at a superficial velocity of 3 hr -1 to 10.5 hr -1 to control the removal of iron, manganese and nitrification by microorganisms adhering to the filter medium, and ammonia nitrogen. The purification method according to any one of the above (1) to (3), further comprising a step of obtaining treated water containing.
(5) A purification device used in the purification method according to any one of (1) to (4), wherein oxygen is dissolved in the raw water so that the dissolved oxygen concentration of the treated water obtained is 4 mg / L or more. And a biological filtration tower packed with a porous filter medium having a particle diameter of 1 mm to 4 mm to which microorganisms are attached, and the microorganisms attached to the filter medium so that ammonia nitrogen remains in the treated water And a biological filtration tower for controlling nitrification.
(6) The purification device has a treated water storage tank, and the storage tank has at least one of a facility for shielding light, a UV irradiation device, an aeration device, and a circulation device. The processing apparatus as described.

本発明によると、地下水等の鉄、マンガン、アンモニア性窒素を含有する原水から、薬品を用いず、溶解した鉄・マンガンを極一部を残して除去するとともに、肥料として価値のあるアンモニア性窒素を処理水中に多く残留せしめ、農地の肥料の節約が可能な農業用水を得ることができる。
また、本発明の浄化方法によると、ろ材を充填したままで逆洗による再生もでき、運転管理が容易である。
According to the present invention, from raw water containing iron, manganese, and ammonia nitrogen such as groundwater, without using chemicals, dissolved iron and manganese are removed leaving a very small portion, and ammonia nitrogen that is valuable as a fertilizer A large amount of water remains in the treated water, and agricultural water that can save fertilizer in farmland can be obtained.
Further, according to the purification method of the present invention, regeneration by backwashing can be performed while the filter medium is filled, and operation management is easy.

本発明の浄化装置の一例の概略図である。It is the schematic of an example of the purification apparatus of this invention. 実施例1で用いた浄化装置の概略図である。1 is a schematic view of a purification device used in Example 1. FIG. 実施例1において空塔速度6hr-1で通水を行った際のアンモニア性窒素の処理状況を示すグラフである。2 is a graph showing the treatment status of ammonia nitrogen when water is passed at a superficial velocity of 6 hr −1 in Example 1. FIG.

本発明は、少なくとも鉄、マンガン、およびアンモニア性窒素を含有する原水の、生物接触ろ過法により除鉄、除マンガンを行う浄化方法であって、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させて、少なくともアンモニア性窒素が処理水中に残留するように除鉄、除マンガン、硝化を制御して微生物と接触させてろ過することによりアンモニア性窒素を含有する処理水を得る浄化方法であり、前記処理水の、鉄、マンガン濃度が合算で0.2〜0.5mg/L、アンモニア性窒素濃度が0.5mg/L〜5mg/Lであることが好ましい。また、前記得られる処理水の溶存酸素濃度を4mg/L以上とするには、酸素を溶解させた原水の溶存酸素濃度を9mg/L以上とすることが好ましい。   The present invention relates to a purification method for removing iron and manganese by a biological contact filtration method of raw water containing at least iron, manganese, and ammonia nitrogen, and the dissolved oxygen concentration of the obtained treated water is 4 mg / L or more Oxygen is dissolved in the raw water so that at least ammonia nitrogen remains in the treated water, and it is controlled by removing iron, removing manganese, and nitrifying to contact with microorganisms and containing ammonia nitrogen. It is a purification method for obtaining treated water, and it is preferable that the concentration of iron and manganese in the treated water is 0.2 to 0.5 mg / L in total and the concentration of ammoniacal nitrogen is 0.5 mg / L to 5 mg / L. . Moreover, in order to make the dissolved oxygen concentration of the obtained treated water 4 mg / L or more, it is preferable that the dissolved oxygen concentration of the raw water in which oxygen is dissolved is 9 mg / L or more.

従来の生物ろ過法においては、曝気等を行い溶存酸素を補給して酸素の飽和状態でろ過を行うが、微生物により、鉄、マンガンが除去されると同時に、アンモニア性窒素が硝化され、得られる処理水中にはアンモニア性窒素がほとんど含有されなかった。
本発明においては、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させて、ろ過する際に、除鉄、除マンガン、硝化を制御し、アンモニア性窒素が完全に硝化される前に処理水として得ることにより、処理水中にアンモニア性窒素が多く残存する処理液を得ることができる。アンモニア性窒素は肥料となるので、この処理水を農業用水として用いることにより、肥料の節約が可能となる。
In the conventional biological filtration method, aeration is performed to replenish dissolved oxygen and filtration is performed in a saturated state of oxygen. At the same time as iron and manganese are removed by microorganisms, ammonia nitrogen is nitrified and obtained. The treated water contained almost no ammoniacal nitrogen.
In the present invention, when oxygen is dissolved in raw water and filtered so that the dissolved oxygen concentration of the obtained treated water is 4 mg / L or more, iron removal, manganese removal and nitrification are controlled, and ammonia nitrogen is added. By obtaining it as treated water before it is completely nitrified, it is possible to obtain a treated liquid in which much ammonia nitrogen remains in the treated water. Since ammonia nitrogen becomes fertilizer, fertilizer can be saved by using this treated water as agricultural water.

生物ろ過処理を終えた処理水(以下単に処理水という)中の溶存酸素濃度は、4mg/L以上であり、好ましくは5mg/L以上である、処理水の溶存酸素濃度が4mg/Lを下回ると、鉄の除去性能が悪化する。生物処理ではろ材全体に微生物が付着し、大部分の鉄やマンガンの除去、一部のアンモニア性窒素の硝化とは別に微生物が生存するための呼吸に必要な酸素があり、4mg/L以下になると微生物反応が低下する。処理水中の溶存酸素濃度の上限としては9mg/L程度であり、酸素が使用されていない場合は、経済性を考慮して原水の溶存酸素濃度を下げてもよい。   The dissolved oxygen concentration in the treated water (hereinafter simply referred to as treated water) after the biological filtration treatment is 4 mg / L or more, preferably 5 mg / L or more. The dissolved oxygen concentration in the treated water is less than 4 mg / L. And the iron removal performance deteriorates. In biological treatment, microorganisms adhere to the entire filter medium, and there is oxygen necessary for breathing for microorganisms to survive apart from removal of most of iron and manganese and nitrification of some ammonia nitrogen, and below 4 mg / L As a result, the microbial reaction decreases. The upper limit of the dissolved oxygen concentration in the treated water is about 9 mg / L. When oxygen is not used, the dissolved oxygen concentration of the raw water may be lowered in consideration of economy.

本発明において原水の溶存酸素濃度は、十分な微生物反応が行われるよう処理水の溶存酸素濃度を4mg/L以上にするために、9mg/L以上とすることが好ましい。より好ましくは、9〜11mg/Lである。
処理水の溶存酸素濃度が少なすぎると、鉄及びマンガンが除去されにくくなり、鉄が0.3mg/L以上、マンガンが0.2mg/L以上残留し、鉄、マンガン濃度が合計で0.5mg/L以上になりやすい。
処理水の溶存酸素濃度を4mg/L以上にするために原水に溶解させる酸素の量は、原水中のアンモニア性窒素や鉄、マンガンの濃度に左右される。鉄濃度が1〜2mg/Lで、アンモニア性窒素濃度が2mg/L程度ある場合は8mg/L以上、鉄濃度が2〜4mg/L、アンモニア性窒素濃度が同じ2mg/L程度である場合は9mg/L以上とすることが好ましい。
また、鉄濃度が4mg/L〜15mg/Lである場合は、ろ過塔を2塔に、鉄濃度が15〜30mg/Lである場合は、ろ過塔を3塔に分けて、すべてに酸素供給装置を設けることが好ましい。鉄濃度が30mg/L以上である場合は、原水槽に散気装置と粗ろ材を投入して、曝気処理できる工程を設けて、生物ろ過工程前に、鉄分の一部を酸化鉄のコロイドとしてろ過処理し、除去することができる。この際に、凝集剤を併用することでより確実に除去することができる。
In the present invention, the dissolved oxygen concentration of the raw water is preferably 9 mg / L or more so that the dissolved oxygen concentration of the treated water is 4 mg / L or more so that a sufficient microbial reaction is performed. More preferably, it is 9-11 mg / L.
If the dissolved oxygen concentration in the treated water is too low, iron and manganese are difficult to remove, iron remains 0.3 mg / L or more, manganese remains 0.2 mg / L or more, and the total concentration of iron and manganese is 0.5 mg. / L or more.
The amount of oxygen dissolved in the raw water in order to make the dissolved oxygen concentration of the treated water 4 mg / L or more depends on the concentrations of ammoniacal nitrogen, iron and manganese in the raw water. When the iron concentration is 1-2 mg / L and the ammoniacal nitrogen concentration is about 2 mg / L, 8 mg / L or more, when the iron concentration is 2-4 mg / L, and the ammoniacal nitrogen concentration is about 2 mg / L, It is preferable to be 9 mg / L or more.
In addition, when the iron concentration is 4 mg / L to 15 mg / L, the filtration tower is divided into two towers, and when the iron concentration is 15 to 30 mg / L, the filtration tower is divided into three towers to supply oxygen to all. An apparatus is preferably provided. When the iron concentration is 30 mg / L or more, a diffuser and a coarse filter medium are introduced into the raw water tank, and a process for aeration treatment is provided. Before the biological filtration process, a part of iron is used as a colloid of iron oxide. It can be filtered and removed. At this time, it can be more reliably removed by using a coagulant together.

原水としては地下水等が挙げられ、通常水温は17℃程度である。1気圧、17℃の蒸留水の飽和溶存酸素濃度は9.37mg/Lであるので、原水の溶存酸素濃度を9mg/L以上とするには、酸素を、加圧溶解することが好ましい。酸素の溶解法を加圧溶解とすることにより、17℃の水温でゲージ圧0.12MPaで溶解させると、15mg/L程度まで溶解させることができる。   Examples of the raw water include groundwater, and the normal water temperature is about 17 ° C. Since the saturated dissolved oxygen concentration of distilled water at 1 atm and 17 ° C. is 9.37 mg / L, it is preferable to dissolve oxygen under pressure in order to make the dissolved oxygen concentration of raw water 9 mg / L or more. By making the oxygen dissolution method pressure dissolution, when dissolved at a water temperature of 17 ° C. and a gauge pressure of 0.12 MPa, it can be dissolved up to about 15 mg / L.

得られる処理水中の鉄、マンガン濃度は合算で0.2〜0.5mg/Lが好ましい。鉄、マンガンも農業用水として用いる場合は、作物の成長に有用であるが、配管にスケールとならないようなレベルまで処理されることが好ましい。前記濃度が0.2mg/L未満であると、比較的透明で着色は少ないが、土壌の鉄不足が懸念され、0.5mg/Lを超えると処理水の着色が顕著になり、作物に給水するノズルへのスケールの付着が多くなる。
また、アンモニア性窒素の濃度は0.5mg/L〜5mg/Lであることが好ましく、0.5〜3.0mg/Lであることがより好ましい。0.5mg/L未満であると、栄養塩の不足が起こりえるため、肥料の量が多く必要になり、5mg/Lを超えると、栄養分が豊富であるため、プランクトン、微生物、バクテリア等が発生し、処理水中の酸素を消費して、溶存酸素が少ない水となりやすい。また、土壌が酸性土化しやすく好ましくない。10mg/Lを超えると根が枯れる恐れがある。
The total concentration of iron and manganese in the treated water is preferably 0.2 to 0.5 mg / L. When iron and manganese are also used as agricultural water, they are useful for growing crops, but it is preferable to treat them to such a level that they do not become scales in the piping. If the concentration is less than 0.2 mg / L, it is relatively transparent and has little coloration. However, there is a concern about the lack of iron in the soil. More scale adheres to the nozzles
The concentration of ammoniacal nitrogen is preferably 0.5 mg / L to 5 mg / L, more preferably 0.5 to 3.0 mg / L. If it is less than 0.5 mg / L, there may be a shortage of nutrients, so a large amount of fertilizer is required. If it exceeds 5 mg / L, nutrients are abundant and plankton, microorganisms, bacteria, etc. are generated. However, oxygen in the treated water is consumed, and it tends to be water with little dissolved oxygen. In addition, the soil tends to become acidic soil, which is not preferable. If it exceeds 10 mg / L, the roots may die.

本発明による処理水中の鉄、マンガン、アンモニア性窒素のレベルは、再利用水で目標値となっているFe+Mnで0.5mg/Lや、車の洗浄水として目標値となっているFe+Mnで0.3mg/Lなどが挙げられる。ちなみに、水道水レベルは鉄で0.3mg/L以下、マンガン0.05mg/L以下、アンモニア性窒素は基準はないものの塩素消毒の観点から0.05〜0.3mg/L程度が好ましい。   The levels of iron, manganese and ammoniacal nitrogen in the treated water according to the present invention are 0.5 mg / L for Fe + Mn, which is a target value for recycled water, and 0 for Fe + Mn, which is a target value for car wash water. .3 mg / L and the like. Incidentally, the tap water level is preferably 0.3 mg / L or less for iron, 0.05 mg / L or less for manganese, and 0.05 to 0.3 mg / L from the viewpoint of chlorine disinfection, although ammonia nitrogen is not standard.

上記の処理水を得るために、本発明の浄化方法は、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させる酸素溶解工程と、微生物を付着させた粒径が1mm〜4mmである多孔質ろ材を充填した生物ろ過塔に、酸素を溶解させた原水を空塔速度3hr-1〜10.5hr-1で通水して、ろ材に付着した微生物による除鉄、除マンガン、硝化を制御してアンモニア性窒素を含有する処理水を得る工程とを有することが好ましい。 In order to obtain the above-mentioned treated water, the purification method of the present invention comprises an oxygen dissolving step for dissolving oxygen in the raw water so that the dissolved oxygen concentration of the obtained treated water is 4 mg / L or more, and particles to which microorganisms are attached. The raw water in which oxygen is dissolved is passed through a biological filtration tower packed with a porous filter medium having a diameter of 1 mm to 4 mm at a superficial velocity of 3 hr -1 to 10.5 hr -1 to remove microorganisms adhering to the filter medium. And a step of controlling the iron, manganese removal, and nitrification to obtain treated water containing ammoniacal nitrogen.

上記原水の水質としては、ろ過塔が1塔の場合は、鉄0.5〜4mg/L、マンガン0.2〜1.0mg/L、アンモニア性窒素0.8〜7.0mg/Lのものを用いることが好ましい。アンモニア性窒素の濃度は、マンガンの濃度と同じ位か、高いことが好ましい。農業地では肥料が地下水に浸透し、地下水のアンモニア性窒素の濃度は通常は高めとなる。
原水に含有される鉄分が30mg/L以上と多い場合は、原水に酸素を溶解させる前に、原水を曝気処理する工程を設けることができる。
前段で曝気を十分に行うと、不溶性の酸化鉄がコロイド粒子となって生成する。本発明では後段の生物ろ過塔によりある程度コロイド粒子を除去できる。従来困難であったコロイド粒子のろ過は、粒径が1mm〜4mmの多孔質ろ材表面に付着する鉄酸化菌、マンガン酸化菌、硝化菌の微生物膜により捕捉できる。コロイドは粒径だけで考えると0.3mmの細砂であっても除去できないが、微生物膜によるろ過効果により、処理が容易になっている。なお、ここでいう粒径とは有効径のことである(以降「粒径」と記述する)。有効径とは、ふるいにより分別を行い、累積重量通過率として表したときに、その10%のときの粒径をいう。
原水曝気処理工程で不溶化した鉄以外の鉄、マンガンは、溶解した酸素の補助により、生物ろ過塔で酸化され、配管にスケールとならないような前記のレベルまで処理される。
As the quality of the raw water, when the number of filtration towers is one, iron 0.5-4 mg / L, manganese 0.2-1.0 mg / L, ammoniacal nitrogen 0.8-7.0 mg / L Is preferably used. The ammonia nitrogen concentration is preferably as high as or higher than the manganese concentration. In agricultural land, fertilizers penetrate groundwater, and the concentration of ammoniacal nitrogen in groundwater is usually higher.
When the amount of iron contained in the raw water is as high as 30 mg / L or more, a step of aeration treatment of the raw water can be provided before oxygen is dissolved in the raw water.
If sufficient aeration is performed in the previous stage, insoluble iron oxide is formed as colloidal particles. In the present invention, the colloidal particles can be removed to some extent by the subsequent biological filtration tower. Filtration of colloidal particles, which has been difficult in the past, can be captured by microbial membranes of iron-oxidizing bacteria, manganese-oxidizing bacteria, and nitrifying bacteria that adhere to the surface of a porous filter medium having a particle size of 1 mm to 4 mm. The colloid cannot be removed even with fine sand of 0.3 mm considering only the particle size, but the treatment is easy due to the filtration effect by the microbial membrane. Here, the particle diameter is an effective diameter (hereinafter referred to as “particle diameter”). The effective diameter refers to the particle diameter at 10% when fractionated by sieving and expressed as cumulative weight passage rate.
Iron and manganese other than iron insolubilized in the raw water aeration process step are oxidized in the biological filtration tower with the aid of dissolved oxygen and are processed to the above-mentioned level so as not to become scale in the piping.

アンモニア性窒素が完全に硝化される前に処理水を得るための除鉄、除マンガン、硝化の制御方法としては、この生物ろ過塔に充填するろ材の粒径、層高、原水を通水するときの速度、洗浄頻度、溶存酸素量等が挙げられる。鉄、マンガン、あるいはアンモニア性窒素の処理に関与する微生物は、その酸化を司る微生物の特性により、生物ろ過塔の中ではある程度の棲み分けが存在する。鉄は鉄酸化菌により除去されるが、非常に成長しやすく増えやすい。マンガン酸化菌は非常に成長しにくく、さらには独立栄養細菌でないため、他の菌との共生または、微量の有機物を必要とする。アンモニア性窒素を硝酸性窒素に処理する硝化菌もマンガン酸化菌ほどではないが、成長が遅い。ただし、独立栄養細菌であるので、有機物が必要なく単独で成長することができる。このため、原水がろ過塔の上部から流入することにより、上部より鉄酸化菌、次いで硝化菌、マンガン菌の順に成長する。硝化菌は鉄酸化菌と一部混在し、下層のマンガン酸化菌とも混在することが多い。通常は原水はアンモニア性窒素濃度がマンガン濃度よりも高いことが多く、しかもマンガンの酸化速度はアンモニアの硝化速度よりも速くすることができるため、硝化菌が先に処理を始めても、アンモニア性窒素を処理水に残留させることが可能となる。   The control method of iron removal, manganese removal, and nitrification to obtain treated water before ammonia nitrogen is completely nitrified is to pass the particle size, bed height, and raw water of the filter medium packed in this biological filtration tower. Speed, washing frequency, dissolved oxygen amount, and the like. Microorganisms involved in the treatment of iron, manganese, or ammonia nitrogen have a certain degree of segregation in the biological filtration tower due to the characteristics of the microorganisms responsible for oxidation. Iron is removed by iron-oxidizing bacteria, but it is very easy to grow and easy to increase. Manganese-oxidizing bacteria are very difficult to grow and are not autotrophic bacteria, and therefore require symbiosis with other bacteria or a small amount of organic matter. Nitrifying bacteria that treat ammonium nitrogen to nitrate nitrogen are not as fast as manganese-oxidizing bacteria, but they grow slowly. However, since it is an autotrophic bacterium, it can grow alone without the need for organic matter. For this reason, when raw | natural water flows in from the upper part of a filtration tower, it grows in order of iron-oxidizing bacteria, then nitrifying bacteria, and manganese bacteria from the upper part. Nitrifying bacteria are partly mixed with iron-oxidizing bacteria, and often mixed with lower-layer manganese oxidizing bacteria. Normally, raw water often has higher ammonia nitrogen concentration than manganese concentration, and the oxidation rate of manganese can be faster than the nitrification rate of ammonia. Can be left in the treated water.

生物ろ過塔に充填されている多孔質ろ材は粒径が1mm〜4mmが好ましく、より好ましくは粒径2〜3mmであり、通常生物ろ過塔に用いられているものよりも大きなろ材が好ましく、不溶化したコロイド状の鉄もろ材に付着している微生物による生物膜に吸着し、除去することが可能である。また、通常の急速ろ過塔よりも3hr-1〜10.5hr-1という速いろ過速度で処理を行うことが好ましい。
粒径が1mm未満の小さな粒径のろ材を用いた場合は、ろ過速度を早くできず、同じ処理水量とすると、ろ過塔の断面積が大きくなる。また、ろ材の比表面積が大きくなるため、付着する微生物量が多くなり、全て処理されて、アンモニア性窒素を処理水中に残留させることができない場合が生じる。層高を薄くすることで制御することも考えられるが、層高を薄くすると、滞留時間が短いため原水に濃度変動があると対応できない可能性がある。
粒径が4mmを超える場合は、ろ材の比表面積が小さくなり、除去量が望めないため、鉄+マンガンで含有量を0.5mg/Lを求める場合、ろ材の層高を高くすること、あるいはろ過塔を2〜3塔くらい並設することが必要になる。
また、多孔質ろ材は、かさ比重で0.9〜1.1程度のものが好ましい。1.1よりも大きくなると、孔がないものになってしまい、生物が付着しにくく、かつ比表面積も小さくなる。
The porous filter medium packed in the biological filtration tower preferably has a particle diameter of 1 mm to 4 mm, more preferably a particle diameter of 2 to 3 mm, and a filter medium larger than that usually used in the biological filtration tower is preferred and insolubilized. It is possible to adsorb and remove the colloidal iron adsorbed on the biofilm by microorganisms adhering to the filter medium. Further, it is preferable to perform the treatment at a high filtration rate of 3hr -1 ~10.5hr -1 than the normal rapid filtration tower.
When a filter medium having a small particle diameter of less than 1 mm is used, the filtration rate cannot be increased. If the same amount of treated water is used, the cross-sectional area of the filtration tower increases. Moreover, since the specific surface area of a filter medium becomes large, the amount of attached microorganisms increases, and it may be processed completely, and ammonia nitrogen cannot remain in treated water. Although it is conceivable to control by making the bed height thin, if the bed height is made thin, the residence time is short, so there is a possibility that it cannot be handled if there is a concentration variation in the raw water.
When the particle diameter exceeds 4 mm, the specific surface area of the filter medium becomes small and the removal amount cannot be expected. Therefore, when the content is determined to be 0.5 mg / L with iron + manganese, the layer height of the filter medium is increased, or It is necessary to install about 2-3 filtration towers side by side.
The porous filter medium preferably has a bulk specific gravity of about 0.9 to 1.1. When it becomes larger than 1.1, it will become a thing without a hole, a living organism will not adhere easily and a specific surface area will also become small.

また、ろ材の層高はろ過塔の径にもよるが、0.6m〜2.2mが好ましく、1.2m〜2mがより好ましく、さらには1.6m〜2mが特に好ましい。
層高は2.2mを超えて厚くすると滞留時間が長くなり処理精度が高まる。ただし、酸素が行き届かなくなるため、層高の厚さは溶存酸素濃度を考慮して設定する必要がある。また、圧力損失が大きくなりやすく、装置も背が高くなって不経済である。
原水の状態によりろ材の層高を高くする必要がある場合は、ろ過塔を複数に分け、1塔のろ材の層高は2.2m未満とすることが好ましい。
ろ材の層高が0.6m未満になると鉄、マンガンの処理が不安定になる。
Moreover, although the bed height of a filter medium is based also on the diameter of a filtration tower, 0.6m-2.2m are preferable, 1.2m-2m are more preferable, Furthermore, 1.6m-2m are especially preferable.
When the layer height exceeds 2.2 m, the residence time becomes longer and the processing accuracy increases. However, since the oxygen becomes inaccessible, the layer height needs to be set in consideration of the dissolved oxygen concentration. In addition, pressure loss tends to increase, and the apparatus is tall and uneconomical.
When it is necessary to increase the height of the filter medium depending on the state of the raw water, it is preferable to divide the filtration tower into a plurality of sections and to make the height of the filter medium of one tower less than 2.2 m.
When the layer height of the filter medium is less than 0.6 m, the treatment of iron and manganese becomes unstable.

ろ過速度は酸素が行き届いている状態でアンモニア性窒素を残留させるのに重要であり、ろ過空塔速度3hr-1〜10.5hr-1が好ましい。
ろ過空塔速度が3hr-1未満であると、微生物と接触している時間が長くなり、除鉄、除マンガン、アンモニア性窒素の硝化が進み、得られる処理水のアンモニア性窒素の濃度が低くなる。また、処理水の溶存酸素濃度を4mg/L以上とすることが困難となる。また、同じ処理水量すると、前記に示すようにろ過塔の断面積が大きくなり、不経済である。
ろ過空塔速度が10.5hr-1を超えるとマンガンの除去率が悪くなる、また同じろ材を満たした空間で多くの水を処理することになり、その分、析出する金属塩の量も多くなり、圧力損失の上昇度合いが増えて、逆洗頻度が早くなる。洗浄頻度は2日〜3日に1回程度がマンガン酸化に対して良好であるので、原水の鉄濃度が2〜3mg/L程度であるならろ過空塔速度は6〜7hr-1程度が好ましい。
最終的には酸素溶解量にて調整することも可能である。
The filtration rate is important for allowing ammonia nitrogen to remain in a state in which oxygen is well maintained, and a filtration superficial velocity of 3 hr -1 to 10.5 hr -1 is preferred.
When the filtration superficial velocity is less than 3 hr −1 , the time of contact with microorganisms becomes longer, nitrification of iron removal, manganese removal, and ammonia nitrogen proceeds, and the concentration of ammonia nitrogen in the resulting treated water is low. Become. Moreover, it becomes difficult to make the dissolved oxygen concentration of treated water into 4 mg / L or more. Moreover, if the same amount of treated water is used, the cross-sectional area of the filtration tower increases as described above, which is uneconomical.
If the filtration superficial velocity exceeds 10.5 hr −1 , the removal rate of manganese will deteriorate, and more water will be treated in the space filled with the same filter medium, and the amount of metal salt that precipitates will be larger accordingly. Thus, the degree of increase in pressure loss increases, and the frequency of backwashing is increased. Since the washing frequency is good for manganese oxidation about once every 2 to 3 days, if the iron concentration of raw water is about 2 to 3 mg / L, the filtration superficial velocity is preferably about 6 to 7 hr −1. .
Finally, it is possible to adjust the amount of dissolved oxygen.

前記多孔質ろ材としては、粒径のばらつきの幅が小さく揃っていて、砂よりも軽くて、多孔質であればよく、たとえばゼオライト、アンスラサイト、ザクロ石、軽石、活性炭など色々なものが利用できる。ろ過塔に上部から通水する際は、水に沈むものが好ましい。
鉄、マンガンを酸化する微生物としては、基本的には原水中に含まれる微生物が、生物ろ過塔に充填した多孔質ろ材に付着し増殖することで除去性能を発揮するが、増殖するまでに2、3カ月を要することもあるため、その期間を短縮するため、既設で除鉄、除マンガンのために用いられている鉄バクテリア、マンガン酸化菌、硝化菌を含むものであれば特に制限されるものではなく、公知のものを用いることができる。例えば、Gallionella、Thiobacillus、Leptothrix、Caldimonas、Hyphomicrobium、Nitrosomonas、Nitosospira、Nitrobacter、Nitrospira,Geobacter,Geothrix属等が挙げられる。
少なくとも鉄、マンガン、およびアンモニア性窒素を含有する原水としては、地下水、河川の水等が挙げられる。また、原水には鉛、ヒ素、カドミウム等が含有される場合があるが、本発明の浄化方法によると、これらも除去される。
As the porous filter medium, it is sufficient that the width of the particle size variation is small, lighter than sand, and porous, and various materials such as zeolite, anthracite, garnet, pumice, activated carbon are used. it can. When water is passed through the filtration tower from above, it is preferable to sink in water.
As microorganisms that oxidize iron and manganese, basically, microorganisms contained in raw water adhere to the porous filter medium packed in the biological filtration tower and proliferate, but the removal performance is exhibited. Since it may take 3 months, it is particularly limited if it contains iron bacteria, manganese oxidizing bacteria, and nitrifying bacteria that are already used for removing iron and manganese in order to shorten the period. Not a thing but a well-known thing can be used. Examples include Gallionella, Thiobacillus, Leptothrix, Caldimonas, Hyphomicrobium, Nitrosomonas, Nitosospira, Nitrobacter, Nitrospira, Geobacter, Geothrix and the like.
Examples of the raw water containing at least iron, manganese, and ammonia nitrogen include groundwater and river water. The raw water may contain lead, arsenic, cadmium, etc., but these are also removed by the purification method of the present invention.

本発明にかかる生物ろ過塔はろ過性能は良好であるが、酸化鉄・二酸化マンガンの汚泥の発生により、目詰まりを生じ、圧力損失が大きくなると逆洗浄が必要となる。一般的な地下水では例えば、鉄が2mg/L、マンガンが0.5mg/L、アンモニア性窒素が3mg/Lの場合、この生物ろ過塔の洗浄は3日に1回程度の洗浄が必要である。化学処理における砂ろ過装置では1日2回の洗浄が必要となるが生物ろ過では微生物膜の効果により洗浄も少なくていい。   Although the biological filtration tower according to the present invention has good filtration performance, clogging occurs due to the generation of iron oxide / manganese dioxide sludge, and backwashing is required when the pressure loss increases. In general groundwater, for example, when iron is 2 mg / L, manganese is 0.5 mg / L, and ammoniacal nitrogen is 3 mg / L, this biological filtration tower needs to be cleaned about once every three days. . In the sand filtration apparatus for chemical treatment, washing twice a day is necessary, but in the biofiltration, washing is less due to the effect of the microbial membrane.

洗浄は通常の水を使った逆洗を基本とするだけで良く、高圧水洗浄など複雑な操作は必要ない。汚泥の良好な剥離性、濃縮性は本発明では極めて重要で、少ない洗浄水での連続運転を可能にしている。   Cleaning is based on backwashing using ordinary water, and complicated operations such as high-pressure water cleaning are not required. Good exfoliation and concentration of sludge are extremely important in the present invention, and enable continuous operation with a small amount of washing water.

本発明の浄化装置は、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させるための酸素溶解装置と、微生物を付着させた粒径が1mm〜4mmである多孔質ろ材を充填した生物ろ過塔であって、アンモニア性窒素が処理水中に残留するように、ろ材に付着した微生物による除鉄、除マンガン、硝化を制御する生物ろ過塔とを少なくとも有する。   The purification apparatus of the present invention has an oxygen dissolving apparatus for dissolving oxygen in raw water so that the dissolved oxygen concentration of the treated water obtained is 4 mg / L or more, and a particle size of 1 mm to 4 mm on which microorganisms are attached. A biological filtration tower packed with a porous filter medium, and at least a biological filtration tower that controls iron removal, manganese removal, and nitrification by microorganisms attached to the filter medium so that ammoniacal nitrogen remains in the treated water.

原水の鉄濃度が高い場合には、原水に酸素を溶解させる酸素溶解装置の前に、それとは別に原水を曝気するための散気装置を有する原水曝気装置を設けることができる。
前記酸素溶解装置は、酸素を加圧溶解させる装置が好ましく、例えば、空気を加圧するためのコンプレッサーとエジェクターとで構成することができ、該エジェクターを通して原水配管中に酸素を溶解させる酸素加圧溶解装置が挙げられる。また、生物ろ過塔を圧力容器とし、生物ろ過塔にて酸素を加圧溶解させてもよい。
When the iron concentration of the raw water is high, a raw water aeration apparatus having an aeration device for aeration of the raw water can be provided separately from the oxygen dissolving apparatus for dissolving oxygen in the raw water.
The oxygen dissolving device is preferably a device that dissolves oxygen under pressure. For example, the oxygen dissolving device can be composed of a compressor and an ejector for pressurizing air, and oxygen pressure dissolving that dissolves oxygen in the raw water piping through the ejector. Apparatus. Alternatively, a biological filtration tower may be used as a pressure vessel, and oxygen may be dissolved under pressure in the biological filtration tower.

生物ろ過塔はその制御の容易さ、融通性から圧力容器が好ましい。また、処理水を農業用水として用いることを考慮した場合、その規模、地下水質などから、圧力容器が適しており、酸素の溶解法を加圧溶解とすることが好ましい。生物ろ過塔の内の圧力はゲージ圧で0.04MPa〜0.25MPa、さらには0.04MPa〜0.17MPaがより好ましい。
開放型の生物処理塔では塔の下部から散気することで溶存酸素濃度を8mg/L程度まで増加させることができるが、圧力損失を1m程度(0.01MPa)くらいしか装置化できないため、小規模の装置としては汎用性がなく適さない。1mの圧力損失では装置の設置面積が大きくなりすぎる欠点があり、小さな水量ではコンパクトな圧力容器式のものが適している。
そしてろ過塔に原水を3hr-1〜10.5hr-1で通水して、ろ材に付着した微生物により除鉄、除マンガン、硝化を行う。尚、該ろ過塔には溶存酸素濃度を制御するための溶存酸素濃度センサーとコントロールバルブを付設することが好ましい。
The biological filtration tower is preferably a pressure vessel because of its ease of control and flexibility. Moreover, when considering using treated water as agricultural water, a pressure vessel is suitable from the scale, the quality of groundwater, etc., and it is preferable that the oxygen dissolution method is pressure dissolution. The pressure in the biological filtration tower is more preferably 0.04 MPa to 0.25 MPa, more preferably 0.04 MPa to 0.17 MPa in terms of gauge pressure.
In an open biological treatment tower, the dissolved oxygen concentration can be increased to about 8 mg / L by aeration from the bottom of the tower, but the pressure loss can only be reduced to about 1 m (0.01 MPa). It is not suitable as a device of scale because it is not versatile. A pressure loss of 1 m has a drawback that the installation area of the apparatus becomes too large, and a compact pressure vessel type is suitable for a small amount of water.
Then, raw water is passed through the filtration tower at 3 hr −1 to 10.5 hr −1 , and iron removal, manganese removal, and nitrification are performed by microorganisms attached to the filter medium. The filtration tower is preferably provided with a dissolved oxygen concentration sensor and a control valve for controlling the dissolved oxygen concentration.

本発明の浄化方法および浄化装置を図を用いて、説明する。図1は本発明の前段に使用する原水曝気処理装置と原水配管に設けた加圧酸素溶解装置、最終の生物ろ過塔の概略図である。
井戸から揚水ポンプ1で汲み上げられた地下水は飽和溶存酸素に達するように原水槽2に設置された散気装置4に原水ブロワ3から空気を供給され曝気される。溶存酸素が飽和となった地下水は原水ポンプ5で原水配管15を通って、エジェクター弁8により流量調整を行い、コンプレッサー36で空気を加圧して加圧空気配管34を通して原水配管15に導き、エジェクター7によって加圧空気と原水を混合する。原水の鉄濃度が高い場合はここに粗目のろ材を投入し、あらかじめ不溶化した鉄を一部除去した上で、その処理水に空気を加圧溶解することが好ましい。原水と空気が加圧下でミキシングされて処理水の溶存酸素濃度が4mg/L以上となるように酸素が溶解されて生物ろ過塔10に流入する。生物ろ過塔10では微生物を付着させた多孔質ろ材18が好ましくは0.6m以上充填されており、下部にはろ材が処理水集水管20から漏れ出ないように砂利19が集水管20が隠れる高さまで敷き詰められている。生物ろ過塔10に上部から流入した原水はろ材18を通過する間に鉄から順次除去がなされ、一部アンモニア性窒素を硝化して、マンガンを除去する。処理された原水は処理水として集水管20に流入し、下部の処理水管16、流出弁9を経て貯水槽11に貯められ農業用水として使用される。原水においてマンガン濃度が0.5mg/L、アンモニア性窒素濃度が2mg/L程度であれば、マンガンを0.1mg/Lまで下げ、アンモニア性窒素を半分程度残留させることができる。
The purification method and the purification apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a raw water aeration apparatus used in the former stage of the present invention, a pressurized oxygen dissolving apparatus provided in a raw water pipe, and a final biological filtration tower.
The groundwater pumped from the well by the pump 1 is supplied with air from the raw water blower 3 to the aeration device 4 installed in the raw water tank 2 so as to reach saturated dissolved oxygen. The groundwater in which dissolved oxygen is saturated passes through the raw water pipe 15 by the raw water pump 5, adjusts the flow rate by the ejector valve 8, pressurizes the air by the compressor 36, and guides it to the raw water pipe 15 through the pressurized air pipe 34. 7 to mix pressurized air and raw water. When the iron concentration in the raw water is high, it is preferable to add a coarse filter medium here, remove a part of the insolubilized iron in advance, and then pressurize and dissolve the air in the treated water. Raw water and air are mixed under pressure to dissolve oxygen so that the dissolved oxygen concentration of the treated water becomes 4 mg / L or more, and flows into the biological filtration tower 10. In the biological filtration tower 10, a porous filter medium 18 to which microorganisms are attached is preferably filled with 0.6 m or more, and gravel 19 is concealed in the lower part so that the filter medium does not leak from the treated water collection pipe 20. It is spread to the height. The raw water that has flowed into the biological filtration tower 10 from the upper part is sequentially removed from the iron while passing through the filter medium 18, and a part of ammonia nitrogen is nitrified to remove manganese. The treated raw water flows into the water collecting pipe 20 as treated water, is stored in the water storage tank 11 through the lower treated water pipe 16 and the outflow valve 9, and is used as agricultural water. If the manganese concentration in raw water is about 0.5 mg / L and the ammoniacal nitrogen concentration is about 2 mg / L, manganese can be lowered to 0.1 mg / L, leaving about half of the ammoniacal nitrogen.

酸素加圧溶解装置はエジェクター7とコンプレッサー36で構成される。コンプレッサー36にて加圧空気を供給し、エジェクター7での空気と原水を混合し、溶解量は空気の供給圧力、エジェクター7に導かれる原水流量により制御することができる。   The oxygen pressure dissolving apparatus is composed of an ejector 7 and a compressor 36. Pressurized air is supplied by the compressor 36, the air and raw water in the ejector 7 are mixed, and the amount of dissolution can be controlled by the supply pressure of air and the flow rate of raw water introduced to the ejector 7.

生物ろ過塔10は空洗管21を内包しており、生物ろ過塔内の圧力がある程度高くなった場合、空気洗浄と逆流洗浄、捨水を行う。具体的には、ろ過塔内の圧力の増加が最大で0.25MPa程度の時であり、好ましくは圧力の増加が0.04〜0.17MPa程度の時に洗浄を行うことが好ましい。圧力が上がりすぎると、水みちができて、処理性能が悪くなる。生物ろ過塔内圧力が所定の圧力に達した場合、抜水弁8を開き、原水ポンプ5を停止、開放弁22を開き、抜水管32の位置まで水を抜いた後、洗浄ブロワ弁23を開き洗浄ブロワ22を稼動して空気を生物ろ過塔10の底部に設置した空洗管21に送気して、ろ材18を空気により展開してろ材18に付着した汚泥と余分な微生物を剥離させる。剥離した汚泥は逆流洗浄により汚泥貯槽45に送られる。逆流洗浄は排出弁40、洗浄水弁39を開き、洗浄ポンプ37を稼動して、貯水槽11の処理水を洗浄水管38を通して、生物ろ過塔10の底部から処理水を流入し剥離汚泥を上部の排出管33を通して汚泥貯槽45に送る。その後、洗い出しきれなかった汚泥を捨水洗浄により取り除き、良好な水質を確保する。捨水洗浄は通常の浄水工程(揚水ポンプ1→井水配管14→原水槽2→原水ポンプ5→原水配管15→生物ろ過塔10→集水管20)から流出弁9を閉のまま捨水弁12を開き、放流する。生物ろ過塔内が置換される時間、約10分程度で捨水弁12を閉じ、流出弁9を開き貯水槽11に処理水を貯留する。   The biological filtration tower 10 includes an air washing tube 21. When the pressure in the biological filtration tower becomes high to some extent, air washing, back-flow washing, and water removal are performed. Specifically, the cleaning is preferably performed when the pressure increase in the filtration tower is about 0.25 MPa at the maximum, and preferably when the pressure increase is about 0.04 to 0.17 MPa. If the pressure rises too much, water will form and processing performance will deteriorate. When the internal pressure of the biological filtration tower reaches a predetermined pressure, the drain valve 8 is opened, the raw water pump 5 is stopped, the open valve 22 is opened, water is drained to the position of the drain pipe 32, and then the washing blower valve 23 is opened. The opening washing blower 22 is operated and air is sent to an air washing tube 21 installed at the bottom of the biological filtration tower 10, and the filter medium 18 is developed with air to separate sludge and excess microorganisms attached to the filter medium 18. . The separated sludge is sent to the sludge storage tank 45 by backwashing. In the backwashing, the discharge valve 40 and the washing water valve 39 are opened, the washing pump 37 is operated, the treated water in the water storage tank 11 is passed through the washing water pipe 38, and the treated water is introduced from the bottom of the biological filtration tower 10 and the separated sludge is put on To the sludge storage tank 45 through the discharge pipe 33. After that, sludge that could not be washed out is removed by waste water washing to ensure good water quality. Waste water cleaning is a normal water purification process (pumping pump 1 → well water piping 14 → raw water tank 2 → raw water pump 5 → raw water piping 15 → biological filtration tower 10 → collection pipe 20) with the outflow valve 9 closed and a drain valve Open 12 and release. The drainage valve 12 is closed and the outflow valve 9 is opened and the treated water is stored in the water storage tank 11 in about 10 minutes, the time during which the inside of the biological filtration tower is replaced.

汚泥貯槽45に移送された汚泥は移送ポンプ45により天日乾燥床36に汚泥を分配する。天日乾燥床にはろ過材41が充填されており、洗浄汚泥はその上に残り、天日により脱水ケーキ42となる。洗浄汚泥の水分は排水ポンプ44により系外に排出される。   The sludge transferred to the sludge storage tank 45 is distributed to the sun drying floor 36 by the transfer pump 45. The sun-dried bed is filled with a filter medium 41, and the washed sludge remains on it, and becomes a dehydrated cake 42 by the sun. The water of the cleaning sludge is discharged out of the system by the drain pump 44.

図1は1塔方式であるが、水質を調整するためろ材の層高を高くする必要がある場合はろ過塔を2つに分け、2塔にしてもいい。原水の鉄濃度が4mg/L以上の場合は、ろ材の層高を2.2mとしても、鉄の除去が悪くなる、また処理水の溶存酸素濃度が4mg/L以下になり微生物反応が低下する等の不具合が生じることがある。ろ材の層高を高くすると、上述したような不具合が生じる場合があるので、その場合はろ過塔を2つに分け、2塔とすることができる。2塔にする場合は、2塔のろ過塔で処理され得られた処理水の溶存酸素濃度が4mg/Lであれば良いが、1塔目で処理された処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させて、1塔目で処理し、2塔目で処理された処理水の溶存酸素濃度が4mg/Lとなるように、更に1塔目で処理された処理水に酸素を溶解させることが好ましい。   Although FIG. 1 shows a one-column system, when the layer height of the filter medium needs to be increased in order to adjust the water quality, the filter tower may be divided into two to make two towers. When the iron concentration of the raw water is 4 mg / L or more, even if the layer height of the filter medium is set to 2.2 m, the removal of iron is worsened, and the dissolved oxygen concentration of the treated water is 4 mg / L or less and the microbial reaction is lowered. Such a problem may occur. If the layer height of the filter medium is increased, the above-described problems may occur. In this case, the filtration tower can be divided into two towers. In the case of using two towers, the dissolved oxygen concentration of the treated water obtained by treatment with the two filtration towers may be 4 mg / L, but the dissolved oxygen concentration of the treated water treated in the first tower is 4 mg / L. Oxygen is dissolved in the raw water so as to be L or more, treated in the first tower, and further treated in the first tower so that the dissolved oxygen concentration of the treated water treated in the second tower is 4 mg / L. It is preferable to dissolve oxygen in the treated water.

本発明により処理した処理水には作物の成長に有用な栄養素が残っており、また、処理のために塩素を入れないことを特徴としているため、その処理水を貯留した場合、貯留槽に藻や生物が発生しやすくなる。そこで、貯留槽11には、遮光するための設備、浸漬型のUV照明装置、曝気装置、生物ろ過塔10への循環ラインを組み合わせると常時、清澄な水が得られる。
遮光するための設備としては、遮光性のフタを設けたり、貯水槽を遮光性とすることが挙げられる。
UV照射装置は塩素のような薬品を用いないので、農業利用に最適である。しかしながら、1年くらいの頻度でランプの交換が必要なため、維持管理を要する。貯留槽に曝気装置を設け、曝気によって残留する栄養素が不溶化する場合には生物ろ過塔へ循環するラインを設けることが好ましい。栄養素は減少傾向になるが、塩素による消毒を行うよりも農業目的に適している。
In the treated water treated according to the present invention, nutrients useful for the growth of crops remain, and since chlorine is not added for the treatment, when the treated water is stored, algae is stored in the storage tank. And creatures are more likely to occur. Therefore, clear water is always obtained in the storage tank 11 by combining a facility for shielding light, an immersion type UV illumination device, an aeration device, and a circulation line to the biological filtration tower 10.
Examples of the facilities for shielding light include providing a light-shielding lid or making the water storage tank light-shielding.
UV irradiation equipment does not use chemicals such as chlorine, so it is optimal for agricultural use. However, maintenance is required because the lamp needs to be replaced about once a year. It is preferable to provide an aeration apparatus in the storage tank and provide a line that circulates to the biological filtration tower when residual nutrients are insolubilized by aeration. Although nutrients tend to decline, they are more suitable for agricultural purposes than chlorine disinfection.

次に実験例によって、この発明をさらに詳細に説明する。
(実施例1)
長さ200cm、内径3cmのカラムに、1〜3mmの粒径の範囲内であり、有効径2mmの微生物を付着させたゼオライトろ材を70cm充填した。付着させた微生物はGallionella、Leptothrix、Nitrosomonas、Nitrobacter属であった。図2に示すようにろ層表面で散気し、0.12MPaで空気を供給して、原水(17℃)の溶存酸素濃度を9〜11mg/Lとした後、下向流で空塔速度6hr-1にて通水を行った。図2においては逆洗浄装置は省略してあるが、図1に示すようは逆洗浄装置を設け、実施例1では2日に1回、圧力の増加が0.04MPaとなった時に逆洗浄を行った。
このときの原水水質は鉄が2mg/L、マンガン0.5mg/L、アンモニア性窒素2.0mg/Lであり、約1.5ヵ月間の運転の後に、処理水質が安定したときの水質は鉄は0.03mg/L以下となった。マンガンは0.3mg/L、アンモニア性窒素は1.6mg/Lであり、アンモニア性窒素を80%残した処理が可能であった。処理水では溶存酸素濃度は6mg/L以上存在した。アンモニア性窒素の処理状況を図3に示す。
尚、原水及び処理水中の鉄、マンガン濃度は、JIS K0101の60.2、58.2にそれぞれ示されたフレーム原子吸光光度法により、アンモニア性窒素の濃度はJIS K0101の36.2に記されたインドフェノール青吸光光度法により測定した。
また、原水及び処理水中の溶存酸素濃度は、隔膜式センサー(東亜ディーケーケー(株)製、ポータブル溶存酸素計)を用いた測定方法により測定した。
Next, the present invention will be described in more detail with reference to experimental examples.
Example 1
A column having a length of 200 cm and an inner diameter of 3 cm was filled with 70 cm of a zeolite filter medium having a particle diameter of 1 to 3 mm and having microorganisms with an effective diameter of 2 mm attached thereto. The microorganisms attached were Gallionella, Leptothrix, Nitrosomonas and Nitrobacter. As shown in FIG. 2, air is diffused on the surface of the filter layer, air is supplied at 0.12 MPa, and the dissolved oxygen concentration of the raw water (17 ° C.) is set to 9 to 11 mg / L. Water was passed at 6 hr −1 . In FIG. 2, the reverse cleaning device is omitted, but as shown in FIG. 1, a reverse cleaning device is provided. In Example 1, the reverse cleaning is performed once every two days when the pressure increases to 0.04 MPa. went.
The raw water quality at this time is 2 mg / L for iron, 0.5 mg / L for manganese, and 2.0 mg / L for ammoniacal nitrogen, and the water quality when the treated water quality is stable after operation for about 1.5 months is Iron became 0.03 mg / L or less. Manganese was 0.3 mg / L and ammoniacal nitrogen was 1.6 mg / L, and treatment with 80% ammoniacal nitrogen remaining was possible. In the treated water, the dissolved oxygen concentration was 6 mg / L or more. The treatment status of ammonia nitrogen is shown in FIG.
The concentration of iron and manganese in the raw water and treated water was determined by flame atomic absorption spectrophotometry shown in 60.2 and 58.2 of JIS K0101, respectively, and the concentration of ammoniacal nitrogen was described in 36.2 of JIS K0101. It was measured by indophenol blue absorptiometry.
Moreover, the dissolved oxygen concentration in raw | natural water and treated water was measured with the measuring method using the diaphragm type sensor (Toa DK Co., Ltd. product, portable dissolved oxygen meter).

流量を空塔速度10hr-1にすると、鉄は0.1mg/L、マンガンは0.4mg/L、アンモニア性窒素は1.8mg/Lとなった。マンガン、アンモニア性窒素のリーク濃度が若干上昇した。処理水の溶存酸素濃度は7mg/L以上であった。 When the flow rate was set to a superficial velocity of 10 hr −1 , iron was 0.1 mg / L, manganese was 0.4 mg / L, and ammoniacal nitrogen was 1.8 mg / L. The leak concentration of manganese and ammonia nitrogen increased slightly. The dissolved oxygen concentration of the treated water was 7 mg / L or more.

流量を空塔速度3hr-1で行った場合、鉄は0.01mg/L、マンガン0.2mg/L、アンモニア性窒素1.2mg/Lとなった。
処理水の溶存酸素濃度は5mg/L以上であった。
When the flow rate was set at a superficial velocity of 3 hr −1 , iron became 0.01 mg / L, manganese 0.2 mg / L, and ammoniacal nitrogen 1.2 mg / L.
The dissolved oxygen concentration of the treated water was 5 mg / L or more.

(実施例2)
実施例2は実施例1におけるろ材を、2〜4mmの粒径の範囲内であり、有効径3mmのゼオライトろ材に変更した以外は実施例1と同様に通水を行った。
空塔速度6hr-1の条件では、処理水の水質は、鉄は0.3mg/L、マンガンは0.4mg/L、アンモニア性窒素は2.0mg/Lであり、処理水の溶存酸素濃度は7mg/Lであった。空塔速度3hr-1の場合は、処理水の水質は、鉄0.1mg/L、マンガン0.3mg/L、アンモニア性窒素1.5mg/Lであった。処理水の溶存酸素濃度は4mg/Lであった。空塔速度6hr-1の条件では鉄とマンガンの除去率が実施例1よりも若干悪い結果となったが、空塔速度を3hr-1とすることにより処理水中の鉄、マンガンの濃度を下げることができた。若干粒径の大きなろ材を用いる場合は、鉄、マンガンの除去量が悪くなるが、空塔速度を遅くすることにより除去量を多くすることができる。この場合は洗浄は原水にも関連するが、同じような水質であれば4日に1回程度になる。
(Example 2)
In Example 2, water was passed through in the same manner as in Example 1 except that the filter medium in Example 1 was changed to a zeolite filter medium having a particle diameter of 2 to 4 mm and an effective diameter of 3 mm.
Under conditions of a superficial velocity of 6 hr −1 , the quality of the treated water is 0.3 mg / L for iron, 0.4 mg / L for manganese, and 2.0 mg / L for ammoniacal nitrogen, and the dissolved oxygen concentration in the treated water Was 7 mg / L. When the superficial velocity was 3 hr −1 , the water quality of the treated water was iron 0.1 mg / L, manganese 0.3 mg / L, and ammoniacal nitrogen 1.5 mg / L. The dissolved oxygen concentration of the treated water was 4 mg / L. In terms of superficial velocity 6hr -1 but the removal rate of the iron and manganese became slightly worse than Example 1, lowering the iron in the treated water, the concentration of manganese by the superficial velocity and 3 hr -1 I was able to. When a filter medium having a slightly larger particle size is used, the removal amount of iron and manganese is deteriorated, but the removal amount can be increased by reducing the superficial velocity. In this case, the washing is related to the raw water, but if the water quality is the same, it is about once every four days.

(実施例3)
実施例2の有効径3mmのろ材を用いて、空塔速度10hr-1の条件で、鉄が0.3mg/L、マンガン0.4mg/L、アンモニア性窒素0.5mg/Lの原水の処理を行った以外は実施例2と同様にして通水を行った。得られた処理水の水質は、鉄は0.1mg/L、マンガン0.3mg/L、アンモニア性窒素は0.3mg/Lであった。また、処理水の溶存酸素濃度は7mg/L以上であった。
(Example 3)
Treatment of raw water containing 0.3 mg / L iron, 0.4 mg / L manganese, and 0.5 mg / L ammonia nitrogen under the conditions of a superficial velocity of 10 hr −1 using the filter medium having an effective diameter of 3 mm of Example 2. Water was passed in the same manner as in Example 2 except that. The quality of the obtained treated water was 0.1 mg / L for iron, 0.3 mg / L for manganese, and 0.3 mg / L for ammoniacal nitrogen. Moreover, the dissolved oxygen concentration of treated water was 7 mg / L or more.

(実施例4)
実施例1におけるろ材を、0.6〜2mmの粒径の範囲内であり、有効径1.2mmのゼオライトろ材に変更し、逆洗浄を1日1回行った以外は実施例1と同様にして通水を行った。空塔速度8hr-1の条件では、鉄は0.1mg/Lとなり、マンガンは0.4mg/L、アンモニア性窒素は1.5mg/Lであった。また、処理水の溶存酸素濃度は4mg/Lであった。
Example 4
The filter medium in Example 1 is in the range of 0.6 to 2 mm in particle size, changed to a zeolite filter medium with an effective diameter of 1.2 mm, and the same as in Example 1 except that backwashing was performed once a day. The water was passed through. Under the conditions of a superficial velocity of 8 hr −1 , iron was 0.1 mg / L, manganese was 0.4 mg / L, and ammoniacal nitrogen was 1.5 mg / L. Moreover, the dissolved oxygen concentration of treated water was 4 mg / L.

(比較例1)
実施例1において、原水(17℃)の溶存酸素濃度を6〜7mg/Lとした以外は実施例1と同様に空塔速度6hr-1の条件で通水を行った。処理水の溶存酸素濃度は2〜3mg/L以下となり、処理水の鉄濃度0.5mg/L、マンガン0.4mg/L、アンモニア性窒素1.8mg/Lとなった。
鉄の処理性が悪くなり、マンガンはほとんど処理ができなくなった。アンモニア性窒素の処理も悪化した。
(Comparative Example 1)
In Example 1, water was passed under the conditions of a superficial velocity of 6 hr −1 in the same manner as in Example 1 except that the dissolved oxygen concentration of the raw water (17 ° C.) was 6 to 7 mg / L. The dissolved oxygen concentration of treated water became 2-3 mg / L or less, and the iron concentration of treated water became 0.5 mg / L, manganese 0.4 mg / L, and ammoniacal nitrogen 1.8 mg / L.
The processability of iron deteriorated and manganese could not be processed. Ammonia nitrogen treatment also deteriorated.

(実施例5)
塔径1.6m、ろ材充填高さ2m、充填ろ材1〜3mmの粒径の範囲内であり、有効径2mmの実施例1と同様な微生物を付着させたゼオライトろ材を用いた図1に示した生物ろ過装置を用いて、原水に0.12MPaで空気を供給して、原水(17℃)の溶存酸素濃度を9〜11mg/Lとして、空塔速度6.25hr-1で原水の浄化を行った。逆洗浄は、逆洗頻度3日に1回、圧力の増加が0.12MPaとなった時に行った。浄化運転時の処理水の溶存酸素濃度4mg/L以上で運転を行った。
原水水質は鉄2.5mg/L、マンガン0.4mg/L、アンモニア性窒素3.8mg/Lであり、処理水の水質は、鉄は0.03mg/L、マンガン0.2mg/L、アンモニア3.8mg/Lであった。
(Example 5)
As shown in FIG. 1 using a zeolite filter medium having a column diameter of 1.6 m, a filter medium packing height of 2 m, and a particle diameter of 1 to 3 mm of the packed filter medium, and having an effective diameter of 2 mm, to which microorganisms similar to Example 1 are attached. Using the biological filtration device, air was supplied to the raw water at 0.12 MPa, the dissolved oxygen concentration of the raw water (17 ° C.) was set to 9 to 11 mg / L, and the raw water was purified at a superficial velocity of 6.25 hr −1. went. Backwashing was performed once every three days of backwashing when the pressure increase was 0.12 MPa. The operation was performed at a dissolved oxygen concentration of 4 mg / L or more in the treated water during the purification operation.
The raw water quality is iron 2.5 mg / L, manganese 0.4 mg / L, ammoniacal nitrogen 3.8 mg / L, and the treated water quality is iron 0.03 mg / L, manganese 0.2 mg / L, ammonia It was 3.8 mg / L.

(比較例2)
実施例5において、原水の溶存酸素濃度を6〜7mg/Lとして運転を行った以外は実施例5と同様に原水の浄化を行った。浄化運転時の処理水の溶存酸素濃度は4mg/L未満で運転を行った。
処理水の水質は、鉄は0.5mg/L、マンガン0.3mg/L、アンモニア性窒素3.8mg/Lであった。
(Comparative Example 2)
In Example 5, the raw water was purified in the same manner as in Example 5 except that the operation was performed at a dissolved oxygen concentration of the raw water of 6 to 7 mg / L. Operation was performed at a dissolved oxygen concentration of treated water during the purification operation of less than 4 mg / L.
The water quality of the treated water was 0.5 mg / L for iron, 0.3 mg / L for manganese, and 3.8 mg / L for ammoniacal nitrogen.

Claims (6)

少なくとも鉄、マンガン、およびアンモニア性窒素を含有する原水の、生物ろ過法により除鉄、除マンガンを行う浄化方法であって、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させて、少なくともアンモニア性窒素が処理水中に残留するように、除鉄、除マンガン、硝化を制御して微生物と接触させてろ過することにより、アンモニア性窒素を含有する処理水を得ることを特徴とする浄化方法。   A purification method in which at least iron, manganese, and ammonia nitrogen contain raw iron and remove manganese by biological filtration, and the raw water is adjusted so that the dissolved oxygen concentration of the treated water is 4 mg / L or more. The treated water containing ammonia nitrogen is filtered by contacting iron with microorganisms by controlling iron removal, manganese removal and nitrification so that at least ammonia nitrogen remains in the treated water. The purification method characterized by obtaining. 前記処理水の、鉄、マンガン濃度が合算で0.2〜0.5mg/L、アンモニア性窒素濃度が0.5mg/L〜5mg/Lであることを特徴とする請求項1記載の浄化方法。   The purification method according to claim 1, wherein the concentration of iron and manganese in the treated water is 0.2 to 0.5 mg / L in total, and the concentration of ammoniacal nitrogen is 0.5 mg / L to 5 mg / L. . 前記酸素を溶解させた原水の溶存酸素濃度が9mg/L以上であることを特徴とする請求項1または2に記載の浄化方法。   The purification method according to claim 1 or 2, wherein a dissolved oxygen concentration of the raw water in which the oxygen is dissolved is 9 mg / L or more. 得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させる酸素溶解工程と、微生物を付着させた粒径が1mm〜4mmである多孔質ろ材を充填した生物ろ過塔に、酸素を溶解させた原水を空塔速度3hr-1〜10.5hr-1で通水して、ろ材に付着した微生物による除鉄、除マンガン、硝化を制御してアンモニア性窒素を含有する処理水を得る工程とを少なくとも有することを特徴とする請求項1〜3のいずれかに記載の浄化方法。 A biological filtration tower packed with an oxygen dissolving step in which oxygen is dissolved in raw water so that the dissolved oxygen concentration of the obtained treated water is 4 mg / L or more, and a porous filter medium having a particle size of 1 mm to 4 mm to which microorganisms are attached. In addition, oxygen-dissolved raw water is passed at a superficial velocity of 3 hr -1 to 10.5 hr -1 to control iron removal, manganese removal, and nitrification by microorganisms adhering to the filter medium, and contain ammonia nitrogen. The purification method according to claim 1, further comprising a step of obtaining treated water. 請求項1〜4のいずれかに記載の浄化方法に用いる浄化装置であって、得られる処理水の溶存酸素濃度が4mg/L以上となるように原水に酸素を溶解させるための酸素溶解装置と、微生物を付着させた粒径が1mm〜4mmである多孔質ろ材を充填した生物ろ過塔であって、アンモニア性窒素が処理水中に残留するように、ろ材に付着した微生物による除鉄、除マンガン、硝化を制御する生物ろ過塔とを少なくとも有することを特徴とする浄化装置。   A purification device for use in the purification method according to any one of claims 1 to 4, wherein an oxygen dissolving device for dissolving oxygen in the raw water so that the dissolved oxygen concentration of the treated water obtained is 4 mg / L or more; , A biological filtration tower packed with a porous filter medium having a particle size of 1 mm to 4 mm to which microorganisms are attached, and iron removal and manganese removal by microorganisms attached to the filter medium so that ammonia nitrogen remains in the treated water And a biological filtration tower for controlling nitrification. 前記浄化装置が処理水の貯留槽を有し、該貯留槽が、少なくとも遮光するための設備、UV照射装置、曝気装置、循環装置のいずれか有することを特徴とする請求項5記載の処理装置。   6. The processing apparatus according to claim 5, wherein the purification device has a treated water storage tank, and the storage tank has at least one of a facility for shielding light, a UV irradiation device, an aeration device, and a circulation device. .
JP2011197994A 2011-09-12 2011-09-12 Purification method and apparatus for raw water containing iron, manganese and ammonia nitrogen Active JP5781871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197994A JP5781871B2 (en) 2011-09-12 2011-09-12 Purification method and apparatus for raw water containing iron, manganese and ammonia nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197994A JP5781871B2 (en) 2011-09-12 2011-09-12 Purification method and apparatus for raw water containing iron, manganese and ammonia nitrogen

Publications (2)

Publication Number Publication Date
JP2013059705A true JP2013059705A (en) 2013-04-04
JP5781871B2 JP5781871B2 (en) 2015-09-24

Family

ID=48184899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197994A Active JP5781871B2 (en) 2011-09-12 2011-09-12 Purification method and apparatus for raw water containing iron, manganese and ammonia nitrogen

Country Status (1)

Country Link
JP (1) JP5781871B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
CN105036332A (en) * 2015-07-10 2015-11-11 南京大学 Alternating internal-recycle biological filter sewage treatment device and method using same
WO2020080035A1 (en) * 2018-10-19 2020-04-23 国立大学法人九州大学 Method for removing manganese
CN111606487A (en) * 2020-05-27 2020-09-01 长沙矿冶研究院有限责任公司 Method for continuously treating and recycling manganese and ammonia nitrogen resources from electrolytic manganese wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165989A (en) * 1996-12-05 1998-06-23 Nkk Corp Water treatment device
JP2005118664A (en) * 2003-10-16 2005-05-12 Fuso Kensetsu Kogyo Kk Method and apparatus for purifying ground water
JP2005288416A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Biofiltration device
JP2006122838A (en) * 2004-10-29 2006-05-18 Kobelco Eco-Solutions Co Ltd Method and apparatus for purifying water
JP2011104496A (en) * 2009-11-16 2011-06-02 Nissin Electric Co Ltd Biological contact filtration device and groundwater purification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165989A (en) * 1996-12-05 1998-06-23 Nkk Corp Water treatment device
JP2005118664A (en) * 2003-10-16 2005-05-12 Fuso Kensetsu Kogyo Kk Method and apparatus for purifying ground water
JP2005288416A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Biofiltration device
JP2006122838A (en) * 2004-10-29 2006-05-18 Kobelco Eco-Solutions Co Ltd Method and apparatus for purifying water
JP2011104496A (en) * 2009-11-16 2011-06-02 Nissin Electric Co Ltd Biological contact filtration device and groundwater purification system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
CN105036332A (en) * 2015-07-10 2015-11-11 南京大学 Alternating internal-recycle biological filter sewage treatment device and method using same
WO2020080035A1 (en) * 2018-10-19 2020-04-23 国立大学法人九州大学 Method for removing manganese
JP2020062628A (en) * 2018-10-19 2020-04-23 国立大学法人九州大学 Method of manganese removal
JP7176686B2 (en) 2018-10-19 2022-11-22 国立大学法人九州大学 Manganese removal method
CN111606487A (en) * 2020-05-27 2020-09-01 长沙矿冶研究院有限责任公司 Method for continuously treating and recycling manganese and ammonia nitrogen resources from electrolytic manganese wastewater

Also Published As

Publication number Publication date
JP5781871B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Tekerlekopoulou et al. Ammonia, iron and manganese removal from potable water using trickling filters
US8021551B2 (en) Eco-treatment system
JP3302227B2 (en) Wastewater treatment device and wastewater treatment method
US5863433A (en) Reciprocating subsurface-flow constructed wetlands for improving wastewater treatment
JP3056361B2 (en) Wastewater treatment device and wastewater treatment method
TW311130B (en)
WO2013132481A1 (en) Aquaculture system
CN101973666B (en) Method for synchronously removing heavy metal and nitrate from drinking water and device thereof
CN103979732B (en) The film biological treating equipment of methane and sulfur-bearing nitrogenous effluent associated treatment and method thereof
JP5781871B2 (en) Purification method and apparatus for raw water containing iron, manganese and ammonia nitrogen
CN104528931A (en) Biological aerated filter using barley straws as substrate and application thereof
Chen et al. Pilot-scale study on preserving eutrophic landscape pond water with a combined recycling purification system
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
Liu et al. Embedding constructed wetland in sequencing batch reactor for enhancing nutrients removal: a comparative evaluation
JP7369412B1 (en) aquaponics system
JP2008200637A (en) Water treatment plant, water treatment facility, and water treating method
JP2011104496A (en) Biological contact filtration device and groundwater purification system
CN109315339B (en) Batch-type industrial recirculating aquaculture method
KR100853452B1 (en) Apparatus for treatment bank filtered water including iron and manganese
JP4838872B2 (en) Water treatment apparatus and water treatment method
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
JP2013154335A (en) Granular gel carrier activating activated sludge or the like, method for manufacturing the same, and wastewater treating method
KR200394153Y1 (en) The Device to Treat Lakes using the Power-driven Floating Island of Contacting Oxidation with the Coconut Activated Carbon
JP6461408B1 (en) Water treatment method and water treatment apparatus
CN112830633A (en) Method for synergistically purifying conventional and novel pollutants in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150716

R150 Certificate of patent or registration of utility model

Ref document number: 5781871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250