JP2013058670A - Led drive circuit - Google Patents

Led drive circuit Download PDF

Info

Publication number
JP2013058670A
JP2013058670A JP2011196961A JP2011196961A JP2013058670A JP 2013058670 A JP2013058670 A JP 2013058670A JP 2011196961 A JP2011196961 A JP 2011196961A JP 2011196961 A JP2011196961 A JP 2011196961A JP 2013058670 A JP2013058670 A JP 2013058670A
Authority
JP
Japan
Prior art keywords
circuit
voltage
led
full
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011196961A
Other languages
Japanese (ja)
Other versions
JP6077204B2 (en
Inventor
Takashi Akiyama
貴 秋山
Rintaro Takahashi
鈴太郎 高橋
Yoshiaki Sakai
圭亮 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2011196961A priority Critical patent/JP6077204B2/en
Priority to CN 201220457025 priority patent/CN203206512U/en
Publication of JP2013058670A publication Critical patent/JP2013058670A/en
Application granted granted Critical
Publication of JP6077204B2 publication Critical patent/JP6077204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B20/42

Abstract

PROBLEM TO BE SOLVED: To make a motion break or flicker inconspicuous by eliminating or shortening a non-lighting period even after applying a voltage to an LED row by a low voltage phase of a full-wave rectification waveform.SOLUTION: A voltage detection circuit 110 measures a voltage of a full-wave rectification waveform and brings a switch 130 into conduction only while the voltage of the full-wave rectification waveform is low. The switch 130 is connected in series to a light-emitting circuit 120, which flows an electric current into the light-emitting circuit 120 only while the switch 130 is being brought into conduction. In the light-emitting circuit 120, an LED row 123 and a current limit circuit 124 are connected in series and a capacitor 125 is connected in parallel to the series circuit. Even while the switch 130 is being brought into non-conduction after the voltage of the full-wave rectification waveform becomes higher, the capacitor 125 is discharged to illuminate the LED row 123.

Description

本発明は、光源として複数のLEDを直列接続したLED列を備えるLED駆動回路に関し、さらに詳しくは、このLED列に含まれるLEDの個数を減らし全波整流波形の低電圧位相でこのLED列を点灯させながら高電圧位相ではこのLED列に高電圧を印加しないLED駆動回路に関する。   The present invention relates to an LED drive circuit including an LED array in which a plurality of LEDs are connected in series as a light source. More specifically, the number of LEDs included in the LED array is reduced, and the LED array is formed at a low voltage phase of a full-wave rectified waveform. The present invention relates to an LED drive circuit that does not apply a high voltage to this LED row in a high voltage phase while being lit.

商用電源を全波整流して得られる全波整流波形または全波整流波形に近い電圧波形でLED(発光ダイオードともいう)を点灯させる駆動回路が知られている(以下LED駆動回路と呼ぶ)。このLEDに直接的に全波整流波形を印加するには、LEDが高い電圧に耐えられるよう多数のLEDを直列接続しなければならない(以下複数のLEDを直列接続したものをLED列と呼ぶ)。例えば商用電源の実効値が100VならLED列の直列段数を40段程度にすることが多い。   There is known a drive circuit that turns on an LED (also referred to as a light emitting diode) with a full-wave rectified waveform obtained by full-wave rectification of a commercial power supply or a voltage waveform close to the full-wave rectified waveform (hereinafter referred to as an LED drive circuit). In order to apply a full-wave rectified waveform directly to this LED, a large number of LEDs must be connected in series so that the LED can withstand a high voltage (hereinafter, a plurality of LEDs connected in series is referred to as an LED array). . For example, if the effective value of the commercial power supply is 100 V, the number of LED rows in series is often about 40.

ところが小型の照明装置の場合、多数のLEDを直列接続させられない場合がある。LED列の直列段数を減らすためLED列と直列に電圧降下量の大きい電流制限素子を加える手法もあるが、この場合、電流制限素子による電力損失が大きくなってしまうので好ましくない。そこで少ない直列段数で効率的にLED列を駆動するため、全波整流波形の低電圧位相のみLED列に電流を流し、高電圧位相ではLED列に電流を流さないようにしたLED駆動回路が知られている(例えば特許文献1)。   However, in the case of a small lighting device, there are cases where a large number of LEDs cannot be connected in series. There is a method of adding a current limiting element having a large voltage drop amount in series with the LED string in order to reduce the number of LED strings in series, but in this case, power loss due to the current limiting element becomes large, which is not preferable. Therefore, in order to efficiently drive the LED string with a small number of series stages, an LED drive circuit is known in which current is passed through the LED string only during the low voltage phase of the full-wave rectified waveform, and current is not passed through the LED string during the high voltage phase. (For example, Patent Document 1).

特許文献1の図1に示される交流用LED点灯回路(LED駆動回路)では、LED1(LED列)を整流ダイオード2と半導体スイッチ4を介して交流電源3に接続している。LED1は、交流半波(全波整流波形の一周期分)において半導体スイッチ4により決まる任意の電流以下の間だけLED1に電流が流れ、1つの交流半波で2回点灯する。   In the AC LED lighting circuit (LED drive circuit) shown in FIG. 1 of Patent Document 1, LED 1 (LED array) is connected to an AC power source 3 via a rectifier diode 2 and a semiconductor switch 4. The LED 1 has a current flowing through the LED 1 only during an AC half-wave (one cycle of the full-wave rectification waveform) equal to or less than an arbitrary current determined by the semiconductor switch 4, and is lit twice in one AC half-wave.

特許文献1の図1に示された回路の動作を説明する。最初、全波整流波形の電圧が低いうちはLED1が点灯している。全波整流波形の電圧が上昇し、半導体スイッチ4を流れる電流が所定の値に達すると、サイリスタ構成となっているトランジスタ9,10が導通状態となり半導体スイッチ4がカットオフする。さらに全波整流波形の電圧が上昇してもLED1は、抵抗8で決まる微小電流しか流れないのでほとんど点灯しない。その後、全波整流波形の電圧が下降しはじめトランジスタ9のエミッタ電圧が下がると、トランジスタ9,10は電流が流れなくなり非導通状態になる。このとき半導体スイッチ4が導通するので、再びLED1が点灯する。   The operation of the circuit shown in FIG. 1 of Patent Document 1 will be described. Initially, the LED 1 is lit while the voltage of the full-wave rectified waveform is low. When the voltage of the full-wave rectified waveform rises and the current flowing through the semiconductor switch 4 reaches a predetermined value, the transistors 9 and 10 having a thyristor configuration become conductive and the semiconductor switch 4 is cut off. Further, even if the voltage of the full-wave rectified waveform rises, the LED 1 hardly illuminates because only a minute current determined by the resistor 8 flows. Thereafter, when the voltage of the full-wave rectified waveform starts to decrease and the emitter voltage of the transistor 9 decreases, the transistors 9 and 10 become non-conductive because no current flows. At this time, since the semiconductor switch 4 is turned on, the LED 1 is turned on again.

特開平8−148721号公報 (図1)JP-A-8-148721 (FIG. 1)

しかしながら特許文献1で示されるような低電圧位相でLED列を点灯させるLED駆動回路は、逆にいうと全波整流波形の電圧が高い期間ではLED列は非点灯状態にある。この非点灯期間が長くなればなるほど高速で移動する物体がとびとびに見えるモーションブレークやフリッカが目立つようになる。   However, the LED driving circuit for lighting the LED string at a low voltage phase as shown in Patent Document 1 is in a non-lighting state when the voltage of the full-wave rectified waveform is high. As the non-lighting period becomes longer, motion breaks and flickers in which an object moving at high speed appears to be noticeable become more conspicuous.

そこで本発明は、上記課題に鑑みて為されたものであり、光源として複数のLEDを直
列接続したLED列を備え、このLED列に含まれるLEDの個数を減らし全波整流波形の電圧の低電圧位相でこのLED列を点灯させながら高電圧位相ではこのLED列に高電圧を印加しないLED駆動回路において、非点灯期間を無くすか若しくは短くしてモーションブレークやフリッカを目立たなくすることを目的とする。
Therefore, the present invention has been made in view of the above problems, and includes an LED array in which a plurality of LEDs are connected in series as a light source, and the number of LEDs included in the LED array is reduced to reduce the voltage of the full-wave rectified waveform. In an LED drive circuit that does not apply a high voltage to the LED string in the high voltage phase while lighting the LED string in the voltage phase, the purpose is to eliminate or shorten the non-lighting period to make the motion break and flicker inconspicuous. To do.

本発明のLED駆動回路は、光源として複数のLEDを直列接続したLED列を備え、全波整流波形が低電圧位相にあるとき前記LED列に前記全波整流波形の電圧を印加するLED駆動回路において、
前記全波整流波形の電圧を計測する電圧検出回路と、
前記全波整流波形が低電圧位相にあるとき前記電圧検出回路により導通するよう制御されるスイッチと、
前記スイッチと直列接続する発光回路とを備え、
前記発光回路が前記LED列とコンデンサを有し、前記LED列と前記コンデンサが並列接続し、
前記スイッチと前記発光回路からなる直列回路に前記全波整流波形の電圧を印加する
ことを特徴とする。
An LED drive circuit according to the present invention includes an LED array in which a plurality of LEDs are connected in series as a light source, and applies the voltage of the full-wave rectified waveform to the LED array when the full-wave rectified waveform is in a low voltage phase. In
A voltage detection circuit for measuring the voltage of the full-wave rectified waveform;
A switch controlled to conduct by the voltage detection circuit when the full-wave rectified waveform is in a low voltage phase;
A light emitting circuit connected in series with the switch,
The light emitting circuit includes the LED string and a capacitor, and the LED string and the capacitor are connected in parallel.
The voltage of the full wave rectified waveform is applied to a series circuit including the switch and the light emitting circuit.

(作用)
電圧検出回路は全波整流波形の電圧を計測し、全波整流波形の電圧が低い期間だけスイッチを導通させる。スイッチは発光回路と直列接続しているので、スイッチの導通時に電流が発光回路に流入する。発光回路の内部ではLED列と電流制限回路が直列接続し、この直列回路と並列にコンデンサが接続している。この結果、全波整流波形の電圧が低くスイッチが導通している期間では発光回路に電流が流入しLED列が点灯する。同時にコンデンサを充電する。全波整流波形の電圧が高くなりスイッチが非導通となる期間では、発光回路への電流の流入がなくなる一方でコンデンサが放電しLED列を点灯させる。このようにして、これまで非点灯期間であった全波整流波形の高電圧位相でもLEDが点灯し、非点灯期間が無くなるか又は短縮する。
(Function)
The voltage detection circuit measures the voltage of the full-wave rectified waveform and conducts the switch only during the period when the voltage of the full-wave rectified waveform is low. Since the switch is connected in series with the light emitting circuit, a current flows into the light emitting circuit when the switch is turned on. Inside the light emitting circuit, an LED array and a current limiting circuit are connected in series, and a capacitor is connected in parallel with the series circuit. As a result, during the period when the voltage of the full-wave rectified waveform is low and the switch is on, current flows into the light emitting circuit and the LED string is lit. At the same time, charge the capacitor. During the period when the voltage of the full-wave rectified waveform is high and the switch is non-conductive, the current does not flow into the light emitting circuit, but the capacitor is discharged and the LED string is lit. In this manner, the LED is lit even in the high voltage phase of the full-wave rectified waveform that has been in the non-lighting period so far, and the non-lighting period is eliminated or shortened.

前記発光回路の電流入力端子に逆流防止用のダイオードを備えると良い。   It is preferable to provide a diode for preventing backflow at the current input terminal of the light emitting circuit.

前記コンデンサへの放電時定数を充電時定数より長くしても良い。   The discharge time constant for the capacitor may be longer than the charge time constant.

前記コンデンサの一端に抵抗或いは定電流素子とダイオードからなる並列回路が接続しても良い。   A parallel circuit including a resistor or a constant current element and a diode may be connected to one end of the capacitor.

前記LED列を複数に分割し、この複数に分割したLED列の接続部にバイパス回路を設け、該バイパス回路が前記LED列に流れる電流に応じてバイパス電流を制御しても良い。   The LED row may be divided into a plurality, and a bypass circuit may be provided at a connection portion of the plurality of divided LED rows, and the bypass circuit may control the bypass current according to the current flowing through the LED row.

以上のように本発明のLED駆動回路は、光源として複数のLEDを直列接続したLED列を備え、このLED列に全波整流波形の低電圧位相だけ電圧を印加しても、非点灯期間を無くすか若しくは短くしてモーションブレークやフリッカを目立たなくできる。   As described above, the LED drive circuit of the present invention includes an LED string in which a plurality of LEDs are connected in series as a light source, and even if a voltage corresponding to a low voltage phase of a full-wave rectified waveform is applied to the LED string, a non-lighting period is obtained. It can be lost or shortened to make motion breaks and flicker less noticeable.

本発明の第1実施形態のLED駆動回路を示すブロック図。The block diagram which shows the LED drive circuit of 1st Embodiment of this invention. 図1に示すLED駆動回路の回路図。The circuit diagram of the LED drive circuit shown in FIG. 図1に示すLED駆動回路の動作を説明するための波形図。The wave form diagram for demonstrating operation | movement of the LED drive circuit shown in FIG. 本発明の第2実施形態のLED駆動回路を示すブロック図。The block diagram which shows the LED drive circuit of 2nd Embodiment of this invention. 図4に示すLED駆動回路に含まれる発光回路の回路図。FIG. 5 is a circuit diagram of a light emitting circuit included in the LED drive circuit shown in FIG. 4. 図4に示すLED駆動回路の動作を説明するための波形図。FIG. 5 is a waveform diagram for explaining the operation of the LED drive circuit shown in FIG. 4. 本発明の第3実施形態のLED駆動回路を示すブロック図。The block diagram which shows the LED drive circuit of 3rd Embodiment of this invention. 図7に示すLED駆動回路に含まれる発光回路の回路図。FIG. 8 is a circuit diagram of a light emitting circuit included in the LED drive circuit shown in FIG. 7. 図7に示すLED駆動回路の動作を説明するための波形図。The wave form diagram for demonstrating operation | movement of the LED drive circuit shown in FIG.

以下、添付図1〜9を参照しながら本発明の好適な実施形態について詳細に説明する。なお図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また説明のため波形等の部分的な縮尺は適宜変更している。さらに特許請求の範囲に記載した発明特定事項との関係をカッコ内に記載している。
(第1実施形態)
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted. For the sake of explanation, the partial scales of waveforms and the like are changed as appropriate. Furthermore, the relationship with the invention specific matter described in the claims is described in parentheses.
(First embodiment)

図1〜3により本発明の第1実施形態におけるLED駆動回路100を説明する。図1はLED駆動回路100を示すブロック図であり、(a)はスイッチ130が導通状態、(b)はスイッチ130が非導通状態にある場合を示している。LED駆動回路100には、全波整流電圧源105、電圧検出回路110、発光回路120、スイッチ130がある。   The LED driving circuit 100 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing the LED drive circuit 100, where (a) shows a case where the switch 130 is in a conductive state and (b) shows a case where the switch 130 is in a non-conductive state. The LED drive circuit 100 includes a full-wave rectified voltage source 105, a voltage detection circuit 110, a light emitting circuit 120, and a switch 130.

全波整流電圧源105は、電圧検出回路110の+側端子111と発光回路120の電流入力端子121に接続し全波整流波形の電圧を印加する。電圧検出回路110は、全波整流波形の電圧を計測し、制御出力端子113を介して全波整流波形の電圧が低い期間にスイッチ130を導通させ(a)、全波整流波形の電圧が高い期間にスイッチ130を非導通にする(b)。発光回路120とスイッチ130は直列接続しており、本図の例では発光回路120の電流出力端子122がスイッチ130の上端と接続している。電圧検出回路110の−側端子112並びにスイッチ130の下端は全波整流電圧源105の下端(電流が戻る端子)と接続している。   The full-wave rectified voltage source 105 is connected to the + side terminal 111 of the voltage detection circuit 110 and the current input terminal 121 of the light emitting circuit 120 and applies a voltage having a full-wave rectified waveform. The voltage detection circuit 110 measures the voltage of the full-wave rectified waveform, makes the switch 130 conductive during the period when the voltage of the full-wave rectified waveform is low via the control output terminal 113 (a), and the voltage of the full-wave rectified waveform is high. The switch 130 is turned off during the period (b). The light emitting circuit 120 and the switch 130 are connected in series. In the example of this figure, the current output terminal 122 of the light emitting circuit 120 is connected to the upper end of the switch 130. The negative side terminal 112 of the voltage detection circuit 110 and the lower end of the switch 130 are connected to the lower end of the full-wave rectified voltage source 105 (terminal to which current returns).

発光回路120は、複数のLED123aが直列接続したLED列123と電流制限回路124とコンデンサ125を備え、電流入力端子121から電流出力端子122に向かってLED列123と電流制限回路124が直列接続し、この直列回路と並列にコンデンサ125が接続している。   The light emitting circuit 120 includes an LED string 123 in which a plurality of LEDs 123a are connected in series, a current limiting circuit 124, and a capacitor 125. The LED string 123 and the current limiting circuit 124 are connected in series from the current input terminal 121 to the current output terminal 122. A capacitor 125 is connected in parallel with the series circuit.

(a)に示すようにスイッチ130が導通していると、全波整流波形の電圧がLED列123の閾値よりも高くなっていれば、電流IがLED列123、電流制限回路124及びスイッチ130を流れる。このときコンデンサ125は充電され、その両端間電圧はLED列123と電流制限回路124からなる直列回路に印加される電圧と等しくなる。なお全波整流波形の電圧がLED列123の閾値よりも低い場合、LED列123に電流Iは流れない。   As shown in (a), when the switch 130 is conductive, if the voltage of the full-wave rectified waveform is higher than the threshold value of the LED string 123, the current I is the LED string 123, the current limiting circuit 124, and the switch 130. Flowing. At this time, the capacitor 125 is charged, and the voltage between both ends thereof becomes equal to the voltage applied to the series circuit composed of the LED string 123 and the current limiting circuit 124. When the voltage of the full-wave rectified waveform is lower than the threshold value of the LED string 123, the current I does not flow through the LED string 123.

(b)に示すようにスイッチ130が非導通であると、電流入力端子121から電流が流入できなくなる。このときコンデンサ125が放電を開始し、コンデンサ125の両端間電圧がLED列123の閾値になるまでLED列123には電流Iが流れる。なおスイッチ130が非導通であるときLED列123と電流制限回路124からなる直列回路に印加する電圧は、全波整流波形の高電圧位相の電圧ではなくコンデンサ125の両端間電圧である。   As shown in (b), when the switch 130 is non-conductive, current cannot flow from the current input terminal 121. At this time, the capacitor 125 starts discharging, and the current I flows through the LED string 123 until the voltage across the capacitor 125 reaches the threshold value of the LED string 123. When the switch 130 is non-conductive, the voltage applied to the series circuit composed of the LED string 123 and the current limiting circuit 124 is not the high-voltage phase voltage of the full-wave rectified waveform but the voltage across the capacitor 125.

次に図2により図1のLED駆動回路100をさらに具体的に説明する。図2は図1に示したLED駆動回路100の回路図である。全波整流電圧源105(図1参照)はブリッジ整流回路105aと商用電源105bからなる。商用電源105bはブリッジ整流回
路105aの交流入力端子に接続している。ブリッジ整流回路105aは、4個のダイオード105cからなり、端子A及び端子Bがそれぞれ全波整流の電流出力端子及び電流入力端子である。
Next, the LED drive circuit 100 of FIG. 1 will be described in more detail with reference to FIG. FIG. 2 is a circuit diagram of the LED driving circuit 100 shown in FIG. The full-wave rectified voltage source 105 (see FIG. 1) includes a bridge rectifier circuit 105a and a commercial power source 105b. The commercial power source 105b is connected to the AC input terminal of the bridge rectifier circuit 105a. The bridge rectifier circuit 105a includes four diodes 105c, and a terminal A and a terminal B are a current output terminal and a current input terminal for full-wave rectification, respectively.

電圧検出回路110において+側端子111は、抵抗110aの上端と抵抗110cの上端の接続部であり、端子Aと接続し、さらに発光回路120の電流入力端子121とも接続している。−側端子112は、抵抗110bの下端とトランジスタ110dのエミッタの接続部であり、端子B及びトランジスタ130a(図1のスイッチ130に相当する)のエミッタと接続している。また電圧検出回路110の内部では抵抗110aと抵抗110bの接続部にトランジスタ110dのベースが接続している。さらに抵抗110cとトランジスタ110dのコレクタとの接続部(図1の制御出力端子113に相当する)がトランジスタ130aのベースに接続している。   In the voltage detection circuit 110, the + side terminal 111 is a connection portion between the upper end of the resistor 110a and the upper end of the resistor 110c, and is connected to the terminal A and further connected to the current input terminal 121 of the light emitting circuit 120. The negative side terminal 112 is a connection portion between the lower end of the resistor 110b and the emitter of the transistor 110d, and is connected to the terminal B and the emitter of the transistor 130a (corresponding to the switch 130 in FIG. 1). Further, in the voltage detection circuit 110, the base of the transistor 110d is connected to the connection portion of the resistors 110a and 110b. Further, a connection portion (corresponding to the control output terminal 113 in FIG. 1) between the resistor 110c and the collector of the transistor 110d is connected to the base of the transistor 130a.

発光回路120の電流入力端子121は端子Aと接続し、電流出力端子122はトランジスタ130aのコレクタと接続している。また発光回路120内には、コンデンサ125、複数のLED123aが直列接続したLED列123及び抵抗124aがあり、電流入力端子121から電流出力端子122に向かってLED列123と抵抗124aが直列接続している。またLED列123と抵抗124aからなる直列回路と並列にコンデンサ125が接続している。なお抵抗124aは図1の電流制限回路124に相当しており、電流制限回路124としては抵抗124a以外に定電流回路や定電流ダイオードであっても良い。   The current input terminal 121 of the light emitting circuit 120 is connected to the terminal A, and the current output terminal 122 is connected to the collector of the transistor 130a. The light emitting circuit 120 includes a capacitor 125, an LED string 123 in which a plurality of LEDs 123a are connected in series, and a resistor 124a. The LED string 123 and the resistor 124a are connected in series from the current input terminal 121 to the current output terminal 122. Yes. A capacitor 125 is connected in parallel with a series circuit composed of the LED string 123 and the resistor 124a. The resistor 124a corresponds to the current limiting circuit 124 of FIG. 1, and the current limiting circuit 124 may be a constant current circuit or a constant current diode in addition to the resistor 124a.

次に図3を用いて図1、図2に示したLED駆動回路100の動作を説明する。図3は図1、図2のLED駆動回路100において、(a)が全波整流波形、(b)がLED列123を流れる電流Iの波形を示す波形図である。なお(a)及び(b)は時間軸が一致している。全波整流波形は端子Bを基準にしている(以下同様)。また図1、図2への指示なしに部品及び端子の番号を参照する。   Next, the operation of the LED drive circuit 100 shown in FIGS. 1 and 2 will be described with reference to FIG. 3A and 3B are waveform diagrams showing the waveform of the current I flowing through the LED array 123 in FIG. 1A and FIG. Note that (a) and (b) have the same time axis. The full-wave rectified waveform is based on the terminal B (the same applies hereinafter). Further, the numbers of parts and terminals are referred to without referring to FIG. 1 and FIG.

(a)は全波整流波形の一周期を示している。なお後述するように端子Aの電圧はコンデンサ125により全波整流波形の電圧の低い期間で全波整流波形から変形したものとなる。そこでタイミング等の説明のため(a)では理想的な全波整流波形を示している。(b)では一周期を、全波整流波形の電圧がLED列123の閾値より小さい期間t1、全波整流波形の電圧がLED列123の閾値を越えスイッチ130が非導通になるまでの期間t2、スイッチ130が非導通の期間t3、スイッチ130が再び導通してから全波整流波形の電圧がLED列123の閾値まで下降する期間t4、全波整流波形の電圧がLED列123の閾値以下の期間t5、に区分した。   (A) has shown one period of the full wave rectification waveform. As will be described later, the voltage at the terminal A is transformed from the full-wave rectified waveform by the capacitor 125 during a period when the voltage of the full-wave rectified waveform is low. Therefore, an ideal full-wave rectified waveform is shown in FIG. In (b), one period is a period t1 in which the voltage of the full-wave rectified waveform is smaller than the threshold value of the LED string 123, and a period t2 until the voltage of the full-wave rectified waveform exceeds the threshold value of the LED string 123 and the switch 130 becomes non-conductive. The period 130 when the switch 130 is non-conductive, the period t4 when the voltage of the full-wave rectified waveform drops to the threshold value of the LED string 123 after the switch 130 is turned on again, and the voltage of the full-wave rectified waveform is less than the threshold value of the LED string 123. The period was divided into t5.

期間t1においてトランジスタ130aは導通状態ではあるが、全波整流波形の電圧がLED列123の閾値に達しないためLED列123には電流Iがほとんど流れない。なお後述するようにコンデンサ125の放電による電流Iが存在することがあるので、期間t1では僅かな電流Iがあるように図示している。   In the period t1, the transistor 130a is in a conductive state, but the current I hardly flows through the LED string 123 because the voltage of the full-wave rectified waveform does not reach the threshold value of the LED string 123. Note that, as will be described later, there may be a current I due to the discharge of the capacitor 125, so that the current I is shown to be small in the period t1.

期間t2では全波整流波形の電圧がLED列123の閾値を超えているので、全波整流波形の電圧の上昇ととともに電流Iが増加する。なお電流Iは電流制限用の抵抗124aで制限される。また期間t2ではコンデンサ125が充電される。   Since the voltage of the full-wave rectified waveform exceeds the threshold value of the LED array 123 in the period t2, the current I increases as the voltage of the full-wave rectified waveform increases. The current I is limited by a current limiting resistor 124a. In the period t2, the capacitor 125 is charged.

時刻t6では抵抗110aと抵抗110bの接続部の電圧が0.6Vになりトランジスタ110dが導通状態になる。この結果トランジスタ130aが非導通状態になり、発光回路120の電流入力端子121から電流が流入できなくなる。このときコンデンサ125が放電を開始し、期間t3においてコンデンサ125の両端間電圧がLED列123の
閾値と等しくなるまで電流Iが流れる。図中では期間t3の半分程度で電流Iが流れなくなっている。
At time t6, the voltage at the connection portion between the resistor 110a and the resistor 110b becomes 0.6V, and the transistor 110d is turned on. As a result, the transistor 130a is turned off, and current cannot flow from the current input terminal 121 of the light emitting circuit 120. At this time, the capacitor 125 starts discharging, and the current I flows until the voltage across the capacitor 125 becomes equal to the threshold value of the LED string 123 in the period t3. In the figure, the current I stops flowing in about half of the period t3.

時刻t7では抵抗110aと抵抗110bの接続部の電圧が0.6Vを下回り、トランジスタ110dが非導通状態になり、トランジスタ130aが導通状態になる。この結果、発光回路120に再び電流Iが流れ始める。期間t4では全波整流波形の電圧がLED列123の閾値電圧よりはるかに高いので、時刻t7から急激に電流Iが上昇したのち、全波整流波形の電圧の降下とともに電流Iも減少する。なお期間t4では電流Iについてコンデンサ125の放電を無視できる。   At time t7, the voltage at the connection portion between the resistor 110a and the resistor 110b is less than 0.6 V, the transistor 110d is turned off, and the transistor 130a is turned on. As a result, the current I starts to flow again through the light emitting circuit 120. In the period t4, the voltage of the full-wave rectified waveform is much higher than the threshold voltage of the LED string 123. Therefore, after the current I suddenly increases from time t7, the current I also decreases as the voltage of the full-wave rectified waveform decreases. Note that the discharge of the capacitor 125 with respect to the current I can be ignored in the period t4.

期間t5の最初のタイミングで全波整流波形の電圧がLED列123の閾値近傍になると、LED列123に流れる電流Iが減少する。期間t5では全波整流波形の電圧の低下よりコンデンサ125の電圧低下の方が遅くなる。この結果、期間t5ではLED列123を通じて電流Iが僅かに流れる。なお期間t5では電圧検出回路110も放電経路になるので期間t3より時定数が小さくなる。電圧検出回路110による放電経路をなくしたい場合は電流入力端子121に逆流防止用のダイオードを挿入すればよい。このようにすると期間t5から期間t1にかけて全波整流波形の電圧がLED列123の閾値以下になってもLED列123が非点灯となる期間を無くすか若しくは短くできる。   When the voltage of the full-wave rectified waveform becomes near the threshold value of the LED string 123 at the first timing of the period t5, the current I flowing through the LED string 123 decreases. In the period t5, the voltage drop of the capacitor 125 becomes slower than the voltage drop of the full-wave rectified waveform. As a result, the current I slightly flows through the LED string 123 in the period t5. Note that since the voltage detection circuit 110 also serves as a discharge path in the period t5, the time constant is smaller than that in the period t3. When it is desired to eliminate the discharge path by the voltage detection circuit 110, a backflow prevention diode may be inserted into the current input terminal 121. In this way, even when the voltage of the full-wave rectified waveform falls below the threshold value of the LED string 123 from the period t5 to the period t1, the period during which the LED string 123 is not lit can be eliminated or shortened.

発光回路120において、例えばLED列123の段数と期間t2,t4を決め、次に期間t2,t4の平均電流を例えば60mA、期間t3における平均電流を20mAというように設定すると、コンデンサ125と抵抗124aの値が決まる。前述のように商用電源105bの実効値が100Vのとき、多くの照明装置ではLED列の直列段数を40段程度にしていたのに対し、本実施形態のように全波整流波形の低電圧位相に主な発光期間がある場合はLED列123の直列段数を10〜20程度にできる。
(第2実施形態)
In the light emitting circuit 120, for example, the number of stages of the LED string 123 and the periods t2 and t4 are determined, and then the average current in the periods t2 and t4 is set to 60 mA, for example, and the average current in the period t3 is set to 20 mA. The value of is determined. As described above, when the effective value of the commercial power supply 105b is 100V, in many lighting devices, the number of series of LED strings is about 40, whereas the low voltage phase of the full-wave rectified waveform as in this embodiment. When there is a main light emission period, the number of LED rows 123 in series can be made about 10 to 20.
(Second Embodiment)

第1実施形態におけるLED駆動回路100では、トランジスタ130aが非導通になるとコンデンサ125が急速に放電するため、全波整流波形の高電圧位相(期間t3)の半分程度だけ点灯していた(図3参照)。モーションブレークやフリッカは点灯期間が長いと目立ちにくくなることがある。そこで図4〜6により本発明の第2実施形態として放電時間をコントロールできるLED駆動回路400を示す。   In the LED drive circuit 100 according to the first embodiment, when the transistor 130a is turned off, the capacitor 125 is rapidly discharged, so that only about half of the high voltage phase (period t3) of the full-wave rectified waveform is lit (FIG. 3). reference). Motion breaks and flicker may become less noticeable if the lighting period is long. 4 to 6 show an LED drive circuit 400 capable of controlling the discharge time as a second embodiment of the present invention.

図4はLED駆動回路400を示すブロック図である。なお図4では図1に比べスイッチ130が非導通である場合のみを示し簡略化している。LED駆動回路400には、図1のLED駆動回路100と同様に全波整流電圧源105、電圧検出回路110、発光回路420、スイッチ130がある。なお全波整流電圧源105、電圧検出回路110及びスイッチ130は、本実施形態と図1で示したものが同じなので説明は省略する。   FIG. 4 is a block diagram showing the LED drive circuit 400. In FIG. 4, only the case where the switch 130 is non-conductive is shown and simplified as compared with FIG. The LED drive circuit 400 includes a full-wave rectified voltage source 105, a voltage detection circuit 110, a light emitting circuit 420, and a switch 130 as in the LED drive circuit 100 of FIG. The full-wave rectified voltage source 105, the voltage detection circuit 110, and the switch 130 are the same as those shown in FIG.

発光回路420は、複数のLED423aが直列接続したLED列423と電流制限回路424とコンデンサ425に加え、ダイオード426と抵抗427を備えている。図1の発光回路120と同様に電流入力端子421から電流出力端子422に向かってLED列423と電流制限回路424が直列接続している。この一方で、本実施形態ではダイオード426と抵抗427からなる並列回路がコンデンサ425と接続し、ダイオード426と抵抗427とコンデンサ425からなる並直列回路が、LED列423と電流制限回路424からなる直列回路と並列接続している。   The light emitting circuit 420 includes a diode 426 and a resistor 427 in addition to an LED array 423 in which a plurality of LEDs 423a are connected in series, a current limiting circuit 424, and a capacitor 425. Similar to the light emitting circuit 120 in FIG. 1, the LED array 423 and the current limiting circuit 424 are connected in series from the current input terminal 421 toward the current output terminal 422. On the other hand, in this embodiment, a parallel circuit composed of a diode 426 and a resistor 427 is connected to a capacitor 425, and a parallel series circuit composed of a diode 426, a resistor 427 and a capacitor 425 is a series composed of an LED array 423 and a current limiting circuit 424. Connected in parallel with the circuit.

スイッチ130が導通していると、電流IがLED列423、電流制限回路424及びスイッチ130を流れる。このときコンデンサ425はダイオード426を介して急速に充電され、その両端間電圧はLED列423と電流制限回路424からなる直列回路に印
加される電圧と略等しくなる。なお全波整流波形の電圧はLED列423の閾値よりも高くなっているものとする。全波整流波形の電圧がLED列423の閾値よりも低い場合、LED列423に電流Iは流れない。
When the switch 130 is conductive, the current I flows through the LED string 423, the current limiting circuit 424, and the switch 130. At this time, the capacitor 425 is rapidly charged via the diode 426, and the voltage between both ends thereof becomes substantially equal to the voltage applied to the series circuit composed of the LED string 423 and the current limiting circuit 424. It is assumed that the voltage of the full-wave rectified waveform is higher than the threshold value of the LED array 423. When the voltage of the full-wave rectified waveform is lower than the threshold value of the LED string 423, the current I does not flow through the LED string 423.

スイッチ130が非導通であると、電流入力端子421から電流Iが流入できなくなる。このときコンデンサ425が放電を開始する。図1と異なり、本実施形態では電流Iはコンデンサ425の左側の端子から抵抗427を経由してLED列423、電流制限回路424を流れるので、電流Iの値が小さくなる一方で時定数が長くなる。放電はコンデンサ425の両端間電圧がLED列423の閾値になるまで続く。なお抵抗427は、電流Iを制限するものなので、定電流回路や定電流ダイオードであっても良い。   When the switch 130 is non-conductive, the current I cannot flow from the current input terminal 421. At this time, the capacitor 425 starts discharging. Unlike FIG. 1, in this embodiment, the current I flows from the terminal on the left side of the capacitor 425 through the resistor 427 through the LED array 423 and the current limiting circuit 424. Therefore, the value of the current I is reduced while the time constant is increased. Become. The discharge continues until the voltage across the capacitor 425 reaches the threshold value of the LED string 423. Since the resistor 427 limits the current I, it may be a constant current circuit or a constant current diode.

次に図5により図4のLED駆動回路400をさらに具体的に説明する。図5は図4に示したLED駆動回路400に含まれる発光回路420の回路図である。なお本実施形態では、図1、2で示した第1実施形態の全波整流電圧源105(ブリッジ整流回路105a及び商用電源105b)、電圧検出回路110、スイッチ130(トランジスタ130a)は同じものなので、LED駆動回路400のうち発光回路420のみ示し、他の部分の説明は省略する。なお図5は、図4で示した発光回路420に対し電流制限回路424が具体的に抵抗424aになっているだけである。抵抗424aは定電流回路若しくは定電流ダイオードであっても良い。   Next, the LED drive circuit 400 of FIG. 4 will be described more specifically with reference to FIG. FIG. 5 is a circuit diagram of the light emitting circuit 420 included in the LED driving circuit 400 shown in FIG. In this embodiment, the full-wave rectified voltage source 105 (bridge rectifier circuit 105a and commercial power supply 105b), voltage detection circuit 110, and switch 130 (transistor 130a) of the first embodiment shown in FIGS. In the LED driving circuit 400, only the light emitting circuit 420 is shown, and description of other parts is omitted. In FIG. 5, the current limiting circuit 424 is merely a resistor 424 a specifically with respect to the light emitting circuit 420 shown in FIG. 4. The resistor 424a may be a constant current circuit or a constant current diode.

次に図6によりLED駆動回路400の動作をさらに詳しく説明する。図6は図5に示す発光回路420を含む図4のLED駆動回路400の動作を説明するための波形図であり、(a)が全波整流波形、(b)がLED列423を流れる電流Iの波形を示す波形図である。なお(a)及び(b)は時間軸が一致しており、(a)の全波整流波形の電圧は端子B(図1参照)を基準にしている。また図4、図5への指示なしに部品及び端子の番号を参照する。   Next, the operation of the LED drive circuit 400 will be described in more detail with reference to FIG. 6 is a waveform diagram for explaining the operation of the LED drive circuit 400 of FIG. 4 including the light emitting circuit 420 shown in FIG. 5, where (a) is a full-wave rectified waveform, and (b) is a current flowing through the LED array 423. 2 is a waveform diagram showing a waveform of I. FIG. Note that (a) and (b) have the same time axis, and the voltage of the full-wave rectified waveform in (a) is based on the terminal B (see FIG. 1). Further, the numbers of parts and terminals are referred to without referring to FIG. 4 and FIG.

(a)は全波整流波形の一周期を示している。なお後述するように端子Aの電圧はコンデンサ425により低電圧側で変形されるので、説明のため(a)では理想的な全波整流波形を示している。(b)では一周期を、全波整流波形の電圧がLED列423の閾値より小さい期間t1、全波整流波形の電圧がLED列423の閾値を越えスイッチ130が非導通になるまでの期間t2、スイッチ130が非導通の期間t3、スイッチ130が再び導通してから全波整流波形の電圧がLED列423の閾値まで下降する期間t4、全波整流波形の電圧がLED列423の閾値以下の期間t5、に区分した。   (A) has shown one period of the full wave rectification waveform. As will be described later, since the voltage at the terminal A is deformed on the low voltage side by the capacitor 425, an ideal full-wave rectified waveform is shown in FIG. In (b), one period is a period t1 in which the voltage of the full-wave rectified waveform is smaller than the threshold value of the LED string 423, and a period t2 until the voltage of the full-wave rectified waveform exceeds the threshold value of the LED string 423 and the switch 130 becomes non-conductive. The period 130 when the switch 130 is non-conductive, the period t4 when the voltage of the full-wave rectified waveform drops to the threshold value of the LED string 423 after the switch 130 is turned on again, and the voltage of the full-wave rectified waveform is less than the threshold value of the LED string 423. The period was divided into t5.

期間t1においてスイッチ130は導通状態である。しかし全波整流波形の電圧がLED列423の閾値に達していないため電流入力端子421から電流は流入せず、反対にコンデンサ425の放電が遅いため電流入力端子421から電流検出を経由してコンデンサ425が放電し続けている。また図3(b)の期間t1に比べると本図の期間t1では放電が遅い分電流Iが僅かに多い。   In the period t1, the switch 130 is in a conductive state. However, since the voltage of the full-wave rectified waveform does not reach the threshold value of the LED array 423, no current flows from the current input terminal 421. On the contrary, since the capacitor 425 is discharged slowly, the capacitor is detected from the current input terminal 421 via current detection. 425 continues to discharge. Further, compared with the period t1 in FIG. 3B, the current I is slightly larger in the period t1 in this figure because the discharge is slow.

期間t2では全波整流波形の電圧がLED列423の閾値を超えているので、全波整流波形の電圧の上昇ととともに電流Iが増加する。なお動作は図3(b)の期間t2と略等しい。この間、電流Iは電流制限用の抵抗424aで制限され、コンデンサ435が充電される。   Since the voltage of the full-wave rectified waveform exceeds the threshold value of the LED array 423 in the period t2, the current I increases as the voltage of the full-wave rectified waveform increases. Note that the operation is substantially the same as the period t2 in FIG. During this time, the current I is limited by the current limiting resistor 424a, and the capacitor 435 is charged.

時刻t6ではスイッチ130が非導通状態になり、発光回路420の電流入力端子421から電流が流入しなくなる。このときコンデンサ425が放電を開始し、コンデンサ425の両端間電圧がLED列423の閾値と等しくなるまで電流Iが流れる。図3(b)の期間t3と比べると、本図の電流Iは期間t3の前半の部分において図3の電流Iより
小さな値になっているが、ゆっくりと放電するため期間t3の最後まで電流Iが流れ続けている。なおコンデンサ125(図1参照)とコンデンサ425並びに抵抗124a(図1参照)と抵抗424aは同じものを使用している。このようにして本実施形態では全波整流波形の高電圧位相(期間t3)でもLED列423が点灯し続ける。
At time t <b> 6, the switch 130 is turned off, and current does not flow from the current input terminal 421 of the light emitting circuit 420. At this time, the capacitor 425 starts discharging, and the current I flows until the voltage across the capacitor 425 becomes equal to the threshold value of the LED array 423. Compared with the period t3 in FIG. 3B, the current I in this figure is smaller than the current I in FIG. 3 in the first half of the period t3. I continues to flow. The capacitor 125 (see FIG. 1), the capacitor 425, the resistor 124a (see FIG. 1), and the resistor 424a are the same. Thus, in this embodiment, the LED string 423 continues to be lit even in the high voltage phase (period t3) of the full-wave rectified waveform.

時刻t7では全波整流波形の電圧が低下し再びスイッチ130が導通状態になり、発光回路420の電流入力端子421から電流が流れ込み始める。図3(b)の期間t4と同様に、本図の期間t4でも時刻t7から急激に電流Iが上昇したのち、全波整流波形の電圧の降下とともに電流Iも減少する。なお期間t4では電流Iについてコンデンサ425の放電を無視できる。   At time t7, the voltage of the full-wave rectified waveform decreases, the switch 130 is turned on again, and current starts to flow from the current input terminal 421 of the light emitting circuit 420. Similar to the period t4 in FIG. 3B, also in the period t4 in the figure, after the current I suddenly increases from the time t7, the current I also decreases as the voltage of the full-wave rectified waveform decreases. Note that the discharge of the capacitor 425 can be ignored for the current I in the period t4.

期間t5の最初のタイミングで全波整流波形の電圧がLED列423の閾値近傍になるとLED列423に流れる電流Iはコンデンサ435の放電によるものだけになる。この電流Iは、図3(b)の期間t5における電流Iに比べ最初のうちは小さな値になるが、緩やかに減少する。なお期間t5から期間t1にかけて放電を有効利用する場合は、図3(b)の期間t5の説明と同様に逆流防止用のダイオードを挿入すると良い。
(第3実施形態)
When the voltage of the full-wave rectified waveform becomes near the threshold value of the LED string 423 at the first timing of the period t5, the current I flowing through the LED string 423 is only due to the discharge of the capacitor 435. This current I is initially smaller than the current I in the period t5 in FIG. 3B, but gradually decreases. Note that in the case where the discharge is effectively used from the period t5 to the period t1, it is preferable to insert a backflow prevention diode as in the description of the period t5 in FIG.
(Third embodiment)

第1及び第2実施形態では、全波整流波形の高電圧位相(期間t3)におけるLED列123,423の点灯維持を課題としていた。このため全波整流波形の電圧がLED列123,423の閾値電圧より低い期間(期間t1及びt5)におけるLED列123,423の点灯維持については回路上点灯が維持される期間があるという指摘に留まり、逆流防止用ダイオードを挿入すればこの期間t1、t5で点灯維持が改善するということを示唆しているだけだった。また第1及び第2実施形態においてLED列123,423は一本の直列回路であったが、LED列123,423を2分割することで明るくできる場合がある。そこで図7〜9により第3実施形態として逆流防止用ダイオードの挿入並びにLED列の2分割を実施したLED駆動回路700を説明する。   In the first and second embodiments, it is an object to maintain lighting of the LED strings 123 and 423 in the high voltage phase (period t3) of the full-wave rectified waveform. For this reason, it is pointed out that there is a period in which lighting on the circuit is maintained for maintaining the lighting of the LED strings 123 and 423 in a period (periods t1 and t5) in which the voltage of the full-wave rectified waveform is lower than the threshold voltage of the LED strings 123 and 423. It only suggests that if the backflow prevention diode is inserted, the lighting maintenance is improved during this period t1 and t5. In the first and second embodiments, the LED rows 123 and 423 are one series circuit. However, the LED rows 123 and 423 may be brightened by dividing the LED rows 123 and 423 into two. Accordingly, an LED drive circuit 700 in which the backflow prevention diode is inserted and the LED array is divided into two parts will be described as a third embodiment with reference to FIGS.

図7はLED駆動回路700を示すブロック図である。なお図7でも図1に対しスイッチ130が非導通である場合のみを示し簡略化している。LED駆動回路700には、図1、図4のLED駆動回路100,400と同様に、全波整流電圧源105、電圧検出回路110、発光回路720、スイッチ130がある。なお全波整流電圧源105、電圧検出回路110及びスイッチ130は、本実施形態と図1、図4で示したものが同じなので説明は省略する。   FIG. 7 is a block diagram showing the LED driving circuit 700. 7 also shows only the case where the switch 130 is non-conductive with respect to FIG. The LED drive circuit 700 includes a full-wave rectified voltage source 105, a voltage detection circuit 110, a light emitting circuit 720, and a switch 130, as in the LED drive circuits 100 and 400 of FIGS. The full-wave rectified voltage source 105, the voltage detection circuit 110, and the switch 130 are the same as those shown in FIG. 1 and FIG.

発光回路720は、複数のLED723aが直列接続したLED列723と電流制限回路724とコンデンサ725に加え、逆流防止用のダイオード729、複数のLED726aが直列接続したLED列726並びにバイパス回路727を備えている。電流入力端子721と逆流防止用のダイオード729のアノードが接続し、ダイオード729のカソードから電流出力端子722に向かってLED列723、LED列726、並びに電流制限回路724が直列接続している。バイパス回路727は、LED列723とLED列726の接続部から電流が流れ込み、さらに電流制限回路724からも電流が流れ込むよう接続しており、さらにこれらの電流を出力する端子が発光回路720の電流出力端子722に接続している。またコンデンサ725は一端がダイオード729のカソードと接続し、他端が発光回路720の電流出力端子722と接続している。つまりコンデンサ725は、LED列723,726、電流制限回路724及びバイパス回路727からなる回路と並列接続している。   The light emitting circuit 720 includes an LED array 723 in which a plurality of LEDs 723a are connected in series, a current limiting circuit 724, and a capacitor 725, a backflow prevention diode 729, an LED array 726 in which a plurality of LEDs 726a are connected in series, and a bypass circuit 727. Yes. The current input terminal 721 and the anode of the backflow prevention diode 729 are connected, and the LED string 723, the LED string 726, and the current limiting circuit 724 are connected in series from the cathode of the diode 729 toward the current output terminal 722. The bypass circuit 727 is connected so that current flows from the connection part of the LED string 723 and the LED string 726 and current also flows from the current limiting circuit 724, and a terminal for outputting these currents is the current of the light emitting circuit 720. The output terminal 722 is connected. The capacitor 725 has one end connected to the cathode of the diode 729 and the other end connected to the current output terminal 722 of the light emitting circuit 720. That is, the capacitor 725 is connected in parallel with a circuit including the LED strings 723 and 726, the current limiting circuit 724, and the bypass circuit 727.

スイッチ130が導通し、全波整流波形の電圧がLED列723の閾値より高ければ、電流入力端子721から電流出力端子722を経て電流Iが流れる。このとき全波整流波
形の電圧がLED列723の閾値より高く、LED列723の閾値とLED列726の閾値の和よりも小さい場合、電流IはLED列726を通らずバイパス回路727を経由する。バイパス回路727は流入する電流を監視しており、全波整流波形の電圧がLED列723の閾値とLED列726の閾値の和より大きくなり、電流Iが所定の値を越えたら全ての電流IがLED列726を流れるようにする。このときコンデンサ725は充電される。
If the switch 130 is turned on and the voltage of the full-wave rectified waveform is higher than the threshold value of the LED string 723, the current I flows from the current input terminal 721 through the current output terminal 722. At this time, when the voltage of the full-wave rectified waveform is higher than the threshold value of the LED string 723 and smaller than the sum of the threshold value of the LED string 723 and the threshold value of the LED string 726, the current I passes through the bypass circuit 727 without passing through the LED string 726. . The bypass circuit 727 monitors the inflowing current, and when the voltage of the full-wave rectified waveform becomes larger than the sum of the threshold value of the LED string 723 and the threshold value of the LED string 726 and the current I exceeds a predetermined value, all the currents I To flow through the LED string 726. At this time, the capacitor 725 is charged.

全波整流波形の電圧がさらに上昇しスイッチ130が非導通になると、電流入力端子721から電流が流入できなくなり、コンデンサ725が放電を開始する。全波整流波形の電圧が下降し再びスイッチ130が導通すると、全波整流波形の電圧が上昇するときと逆の過程で最高電圧からLED列723の閾値近傍になるまで全波整流波形の電圧とともに電流Iが減少する。さらに全波整流波形の電圧が下降しLED列723の閾値以下になるとコンデンサ725の左側の端子電圧が全波整流波形の電圧より高くなるためダイオード729がカットオフする。その後、コンデンサ725の放電電流はLED列723を通りバイパス回路727に向かう。   When the voltage of the full-wave rectified waveform further increases and the switch 130 becomes non-conductive, current cannot flow from the current input terminal 721, and the capacitor 725 starts discharging. When the voltage of the full-wave rectified waveform decreases and the switch 130 is turned on again, the voltage of the full-wave rectified waveform is increased from the highest voltage to the vicinity of the threshold value of the LED array 723 in the reverse process of when the voltage of the full-wave rectified waveform increases. The current I decreases. Further, when the voltage of the full-wave rectified waveform decreases and becomes less than the threshold value of the LED array 723, the terminal voltage on the left side of the capacitor 725 becomes higher than the voltage of the full-wave rectified waveform, so that the diode 729 is cut off. Thereafter, the discharge current of the capacitor 725 goes to the bypass circuit 727 through the LED array 723.

次に図8により図7のLED駆動回路700をさらに具体的に説明する。図8は図7に示したLED駆動回路700に含まれる発光回路720の回路図である。なお本実施形態では、図1、2で示した第1実施形態の全波整流電圧源105(ブリッジ整流回路105a及び商用電源105b)、電圧検出回路110、スイッチ130(トランジスタ130a)は同じものなので、LED駆動回路700のうち発光回路720のみ示し、他の部分の説明は省略する。図7で示した発光回路720と比べると、図8ではバイパス回路727と電流制限回路724が具体的に記載されている。   Next, the LED drive circuit 700 of FIG. 7 will be described more specifically with reference to FIG. FIG. 8 is a circuit diagram of a light emitting circuit 720 included in the LED driving circuit 700 shown in FIG. In this embodiment, the full-wave rectified voltage source 105 (bridge rectifier circuit 105a and commercial power supply 105b), voltage detection circuit 110, and switch 130 (transistor 130a) of the first embodiment shown in FIGS. In the LED driving circuit 700, only the light emitting circuit 720 is shown, and description of other parts is omitted. Compared with the light emitting circuit 720 shown in FIG. 7, the bypass circuit 727 and the current limiting circuit 724 are specifically shown in FIG.

バイパス回路727において抵抗727aの上端とFET727bのドレインがLED列723とLED列726との接続部に接続している。またトランジスタ727cのエミッタと抵抗727dの下端子が電流出力端子722と接続している。さらにFET727bのソース、トランジスタ727cのベース並びに抵抗727dの上端の接続部は、電流制限回路724に含まれるトランジスタ724cのエミッタ及び抵抗724dの下端と接続している。なおこの接続部が、バイパス電流と電流制限回路724から流入する電流の加算部(図7において白丸中に+印で示していたもの)になる。バイパス回路727の内部では抵抗727aの下端、FET727bのゲート並びにトランジスタ727cのコレクタが接続している。   In the bypass circuit 727, the upper end of the resistor 727 a and the drain of the FET 727 b are connected to the connection portion between the LED string 723 and the LED string 726. The emitter of the transistor 727c and the lower terminal of the resistor 727d are connected to the current output terminal 722. Further, the connection portion of the source of the FET 727b, the base of the transistor 727c, and the upper end of the resistor 727d is connected to the emitter of the transistor 724c included in the current limiting circuit 724 and the lower end of the resistor 724d. Note that this connection portion is an addition portion for the bypass current and the current flowing in from the current limiting circuit 724 (shown by + in white circles in FIG. 7). Inside the bypass circuit 727, the lower end of the resistor 727a, the gate of the FET 727b, and the collector of the transistor 727c are connected.

電流制限回路724において抵抗724aの上端とFET724bのドレインがLED列726のカソードに接続している。また電流制限回路724内には、FET724bのソース、トランジスタ724cのベース並びに抵抗724dの上端の接続部と、抵抗724aの下端、FET724bのゲート並びにトランジスタ724cのコレクタの接続部とがある。   In the current limiting circuit 724, the upper end of the resistor 724a and the drain of the FET 724b are connected to the cathode of the LED string 726. Further, in the current limiting circuit 724, there are a connection portion between the source of the FET 724b, the base of the transistor 724c and the upper end of the resistor 724d, the lower end of the resistor 724a, the gate of the FET 724b and the collector of the transistor 724c.

次に図9によりLED駆動回路700の動作をさらに詳しく説明する。図9は図8に示す発光回路720を含む図7のLED駆動回路700の動作を説明するための波形図であり、(a)が全波整流波形、(b)がLED列723を流れる電流Iの波形を示す波形図である。なお(a)及び(b)は時間軸が一致しており、(a)の全波整流波形は端子B(図1参照)を基準にしている。また図7、図8への指示なしに部品及び端子の番号を参照する。   Next, the operation of the LED drive circuit 700 will be described in more detail with reference to FIG. FIG. 9 is a waveform diagram for explaining the operation of the LED drive circuit 700 of FIG. 7 including the light emitting circuit 720 shown in FIG. 8, where (a) is a full-wave rectified waveform, and (b) is a current flowing through the LED array 723. It is a wave form diagram which shows the waveform of I. FIG. Note that (a) and (b) have the same time axis, and the full-wave rectified waveform in (a) is based on the terminal B (see FIG. 1). Also, reference is made to component and terminal numbers without instruction to FIGS.

(a)は全波整流波形の一周期を示している。なお本実施形態では逆流防止用のダイオード729を備えているため端子Aの電圧波形が全波整流波形となる。(b)では一周期を、全波整流波形の電圧がLED列723の閾値より小さい期間t8、全波整流波形の電
圧がLED列723の閾値を越えスイッチ130が非導通になるまでの期間t9、スイッチ130が非導通の期間t3、スイッチ130が再び導通しその後全波整流波形の電圧がLED列723の閾値まで下降する期間t10、全波整流波形の電圧がLED列723の閾値以下となる期間t11、に区分した。
(A) has shown one period of the full wave rectification waveform. In this embodiment, since the diode 729 for preventing backflow is provided, the voltage waveform at the terminal A becomes a full-wave rectified waveform. In (b), one period is a period t8 in which the voltage of the full-wave rectified waveform is smaller than the threshold value of the LED string 723, and a period t9 until the voltage of the full-wave rectified waveform exceeds the threshold value of the LED string 723 and the switch 130 becomes non-conductive. The period 130 when the switch 130 is non-conducting, the period t10 when the voltage of the switch 130 is turned on again and the voltage of the full-wave rectified waveform falls to the threshold value of the LED string 723, and the voltage of the full-wave rectified waveform becomes less than the threshold value of the LED string 723. The period was divided into t11.

期間t8においてスイッチ130は導通状態である。しかし全波整流波形の電圧がLED列723の閾値に達していないため電流入力端子721から発光回路720に電流は流入しない。なお、逆流防止用ダイオード729によりコンデンサ725の放電電流が電流入力端子721に向かわないこと、LED列723の閾値電圧がLED列123,423の閾値電圧より低いため期間t8が図3、図6で示した期間t1より短いこと、により期間t8の電流Iが図1、図6の期間t1の電流Iより多くなっている。   In the period t8, the switch 130 is in a conductive state. However, since the voltage of the full-wave rectified waveform has not reached the threshold value of the LED array 723, no current flows from the current input terminal 721 to the light emitting circuit 720. Note that the discharge current of the capacitor 725 does not go to the current input terminal 721 due to the backflow prevention diode 729, and the threshold voltage of the LED string 723 is lower than the threshold voltage of the LED strings 123 and 423, so the period t8 is shown in FIGS. Due to being shorter than the shown period t1, the current I in the period t8 is larger than the current I in the period t1 in FIGS.

期間t9では全波整流波形の電圧がLED列723の閾値を超えているので電流Iは全波整流波形の電圧の上昇ととともに増加する。なお電流Iは、期間t9の始めに急激に増加するが途中で平坦になる期間が現われる。これはバイパス回路727が特定の電流領域でトランジスタ727cのベース電圧を0.6Vに保つよう定電流動作するからである。この期間の後半では全波整流波形の電圧がLED列723の閾値とLED列726の閾値の和を越えLED列726にも電流が流れるようになる。このときバイパス電流とLED列726に流れる電流の和(電流I)が一定になる。さらに全波整流波形の電圧が上昇するとトランジスタ727cが飽和しバイパス電流がなくなり、電流Iが再び急上昇する。その後、電流制限回路724により電流Iの上限値が決められる。この間、コンデンサ725が充電される。   In the period t9, the voltage of the full-wave rectified waveform exceeds the threshold value of the LED array 723, so that the current I increases as the voltage of the full-wave rectified waveform increases. Note that the current I increases rapidly at the beginning of the period t9, but a period during which the current I becomes flat appears. This is because the bypass circuit 727 operates at a constant current so as to keep the base voltage of the transistor 727c at 0.6 V in a specific current region. In the latter half of this period, the voltage of the full-wave rectified waveform exceeds the sum of the threshold value of the LED string 723 and the threshold value of the LED string 726, and current flows through the LED string 726. At this time, the sum of the bypass current and the current flowing through the LED array 726 (current I) becomes constant. Further, when the voltage of the full-wave rectified waveform rises, the transistor 727c is saturated, the bypass current disappears, and the current I rapidly rises again. Thereafter, the current limit circuit 724 determines the upper limit value of the current I. During this time, the capacitor 725 is charged.

時刻t6でスイッチ130が非導通状態になると、発光回路720の電流入力端子721から電流が流入しなくなり、コンデンサ725の放電が始まる。時刻t6の直後は電流制限回路724により電流Iが一定になり、その後放電曲線を描く。さらに電流Iは、途中でバイパス回路727が定電流動作するため一定になる期間が現われ、さらに放電が進み放電電流が減少するとコンデンサ725の両端間電圧がLED列723の閾値と等しくなるまで放電曲線を描く。   When the switch 130 is turned off at time t6, no current flows from the current input terminal 721 of the light emitting circuit 720, and the capacitor 725 starts discharging. Immediately after time t6, the current I becomes constant by the current limiting circuit 724, and then a discharge curve is drawn. Further, the current I becomes constant because the bypass circuit 727 operates at a constant value in the middle, and when the discharge progresses and the discharge current decreases, the discharge curve until the voltage across the capacitor 725 becomes equal to the threshold value of the LED array 723. Draw.

時刻t7では全波整流波形の電圧が低下し再びスイッチ130が導通状態になり、発光回路720の電流入力端子721から電流が流れ込み始める。期間t10では時刻t7から急激に電流Iが上昇したのち、期間t9とは逆の過程で電流Iが減少する。なお期間t10では電流Iについてコンデンサ725の放電を無視できる。   At time t7, the voltage of the full-wave rectified waveform decreases, the switch 130 is turned on again, and current starts to flow from the current input terminal 721 of the light emitting circuit 720. In the period t10, the current I rapidly increases from the time t7, and then the current I decreases in the reverse process of the period t9. Note that the discharge of the capacitor 725 can be ignored for the current I in the period t10.

期間t11になり全波整流波形の電圧がLED列723の閾値を下回るようになるとLED列723に流れる電流Iはコンデンサ735の放電によるものだけになる。期間t8と同様の理由で期間t11の電流Iは図3、図6(b)で示した期間t5の電流Iより多くなっている。   When the voltage of the full-wave rectified waveform becomes lower than the threshold value of the LED string 723 in the period t11, the current I flowing through the LED string 723 is only due to the discharge of the capacitor 735. For the same reason as in the period t8, the current I in the period t11 is larger than the current I in the period t5 shown in FIGS. 3 and 6B.

以上のように本実施形態は、全波整流波形の電圧がLED列723の閾値より低い期間における点灯状態を改善している。すなわち本実施形態のLED駆動回路700は、第1及び第2実施形態のLED駆動回路100,400よりも全波整流波形の電圧が低い時刻からLED列(LED列723とLED列726からなるLED列)の一部(LED列723)が点灯し始めるため、LED列が同じ直列段数であれば明るくなる。さらに逆流防止ダイオード729を備えているので期間t8,t11において放電電流が全てLED列723に流れるので明るくなる。   As described above, the present embodiment improves the lighting state during the period in which the voltage of the full-wave rectified waveform is lower than the threshold value of the LED array 723. That is, the LED drive circuit 700 according to the present embodiment has an LED string (an LED string 723 and an LED string 726 LED from the time when the voltage of the full-wave rectified waveform is lower than that of the LED drive circuits 100 and 400 according to the first and second embodiments. Since part of the (column) (LED column 723) starts to light, if the LED column has the same number of series stages, it becomes bright. Further, since the backflow prevention diode 729 is provided, all of the discharge current flows to the LED array 723 in the periods t8 and t11, so that it becomes bright.

本実施形態では電流制限回路724を定電流回路としたが、抵抗や定電流ダイオードであっても良い。またコンデンサ725の低電圧側の端子を電流制限回路724の出力側に
接続しても放電電流を利用できるが、本実施形態のようにバイパス回路727の出力側に接続したほうが放電電圧の下限が低くなるので効率が良い。スイッチ130は電流入力端子721の直前にあっても良い。
In the present embodiment, the current limiting circuit 724 is a constant current circuit, but may be a resistor or a constant current diode. The discharge current can be used even if the low-voltage side terminal of the capacitor 725 is connected to the output side of the current limiting circuit 724. However, the lower limit of the discharge voltage is more connected to the output side of the bypass circuit 727 as in this embodiment. Since it becomes low, efficiency is good. The switch 130 may be located immediately before the current input terminal 721.

100,400,700…LED駆動回路、
105…全波整流電圧源、
105a…ブリッジ整流回路、
105b…商用電源、
105c,426,729…ダイオード、
110…電圧検出回路、
110a,110b,110c,124a,424a,427,727a,727d,724a,724d…抵抗、
110d,130a,727c,724c…トランジスタ、
111…+側端子、
112…−側端子、
113…制御出力端子、
120,420,720…発光回路、
121,421,721…電流入力端子、
122,422,722…スイッチ、
123,423,723,726…LED列、
123a,423a,723a,726a…LED、
124,424,724…電流制限回路、
125,425,725…コンデンサ、
130…スイッチ、
724b,727b…FET、
727…バイパス回路、
t1〜t5,t8〜t11…期間、
t6,t7…時刻。
100, 400, 700 ... LED drive circuit,
105: full-wave rectified voltage source,
105a ... Bridge rectifier circuit,
105b ... commercial power supply,
105c, 426, 729 ... diode,
110: Voltage detection circuit,
110a, 110b, 110c, 124a, 424a, 427, 727a, 727d, 724a, 724d ... resistors,
110d, 130a, 727c, 724c ... transistors,
111 ... + side terminal,
112 ...-side terminal,
113 ... Control output terminal,
120, 420, 720 ... light emitting circuit,
121, 421, 721 ... current input terminals;
122,422,722 ... switch,
123, 423, 723, 726 ... LED row,
123a, 423a, 723a, 726a ... LED,
124, 424, 724 ... current limiting circuit,
125, 425, 725 ... capacitor,
130 ... switch,
724b, 727b ... FET,
727 ... Bypass circuit,
t1 to t5, t8 to t11 ... period,
t6, t7 ... time.

Claims (5)

光源として複数のLEDを直列接続したLED列を備え、全波整流波形が低電圧位相にあるとき前記LED列に前記全波整流波形の電圧を印加するLED駆動回路において、
前記全波整流波形の電圧を計測する電圧検出回路と、
前記全波整流波形が低電圧位相にあるとき前記電圧検出回路により導通するよう制御されるスイッチと、
前記スイッチと直列接続する発光回路とを備え、
前記発光回路が前記LED列とコンデンサを有し、前記LEDと前記コンデンサが並列接続し、
前記スイッチと前記発光回路からなる直列回路に前記全波整流波形の電圧を印加する
ことを特徴とするLED駆動回路。
In an LED drive circuit comprising an LED string in which a plurality of LEDs are connected in series as a light source, and applying a voltage of the full-wave rectified waveform to the LED string when the full-wave rectified waveform is in a low voltage phase,
A voltage detection circuit for measuring the voltage of the full-wave rectified waveform;
A switch controlled to conduct by the voltage detection circuit when the full-wave rectified waveform is in a low voltage phase;
A light emitting circuit connected in series with the switch,
The light emitting circuit has the LED row and a capacitor, and the LED and the capacitor are connected in parallel,
An LED driving circuit, wherein a voltage of the full-wave rectified waveform is applied to a series circuit including the switch and the light emitting circuit.
前記発光回路の電流入力端子に逆流防止用のダイオードを備えることを特徴とする請求項1に記載のLED駆動回路。   The LED driving circuit according to claim 1, further comprising a backflow preventing diode at a current input terminal of the light emitting circuit. 前記コンデンサへの放電時定数を充電時定数より長くしたことを特徴とする請求項1又は2に記載のLED駆動回路。   The LED driving circuit according to claim 1, wherein a discharge time constant to the capacitor is longer than a charge time constant. 前記コンデンサの一端に抵抗或いは定電流素子とダイオードからなる並列回路が接続したことを特徴とする請求項3に記載のLED駆動回路。   4. The LED driving circuit according to claim 3, wherein a parallel circuit including a resistor or a constant current element and a diode is connected to one end of the capacitor. 前記LED列を複数に分割し、この複数に分割したLED列の接続部にバイパス回路を設け、該バイパス回路が前記LED列に流れる電流に応じてバイパス電流を制御することを特徴とする請求項1から4のいずれか一項に記載のLED駆動回路。
The LED array is divided into a plurality of parts, and a bypass circuit is provided at a connection portion of the LED arrays divided into the plurality, and the bypass circuit controls a bypass current according to a current flowing through the LED array. The LED drive circuit according to any one of 1 to 4.
JP2011196961A 2011-09-09 2011-09-09 LED drive circuit Expired - Fee Related JP6077204B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011196961A JP6077204B2 (en) 2011-09-09 2011-09-09 LED drive circuit
CN 201220457025 CN203206512U (en) 2011-09-09 2012-09-07 LED driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196961A JP6077204B2 (en) 2011-09-09 2011-09-09 LED drive circuit

Publications (2)

Publication Number Publication Date
JP2013058670A true JP2013058670A (en) 2013-03-28
JP6077204B2 JP6077204B2 (en) 2017-02-08

Family

ID=48134270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196961A Expired - Fee Related JP6077204B2 (en) 2011-09-09 2011-09-09 LED drive circuit

Country Status (2)

Country Link
JP (1) JP6077204B2 (en)
CN (1) CN203206512U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020122249A1 (en) * 2018-12-13 2021-09-02 シチズン電子株式会社 LED light emitting device
KR102609965B1 (en) * 2023-08-07 2023-12-05 정홍준 LED Lighting with Flicker Elimination Module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906289A (en) * 2014-03-28 2014-07-02 广州瀚富新材料科技有限公司 Circuit capable of solving problem of high-voltage linear driving strobing
KR102538996B1 (en) * 2017-06-20 2023-05-31 애플 인크. Light emitting diode (LED) test device and manufacturing method
CN111295007B (en) * 2020-03-05 2021-11-16 浙江大华技术股份有限公司 Light supplement lamp control driving circuit, method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264285A (en) * 1995-03-27 1996-10-11 Toto Ltd Lighting device
JP2006236934A (en) * 2005-02-28 2006-09-07 Momo Alliance Co Ltd Lighting device
JP2006244848A (en) * 2005-03-03 2006-09-14 Jamco Corp Illumination-purpose light-emitting diode driving circuit
JP2006351473A (en) * 2005-06-20 2006-12-28 Fuchu Tempearl:Kk Circuit for turning on light source and night-light or indicator lamp using circuit for turning on light source
JP2009170341A (en) * 2008-01-18 2009-07-30 Nitto Kogaku Kk Luminaire
WO2011020007A1 (en) * 2009-08-14 2011-02-17 Once Innovations, Inc. Reduction of harmonic distortion for led loads

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264285A (en) * 1995-03-27 1996-10-11 Toto Ltd Lighting device
JP2006236934A (en) * 2005-02-28 2006-09-07 Momo Alliance Co Ltd Lighting device
JP2006244848A (en) * 2005-03-03 2006-09-14 Jamco Corp Illumination-purpose light-emitting diode driving circuit
JP2006351473A (en) * 2005-06-20 2006-12-28 Fuchu Tempearl:Kk Circuit for turning on light source and night-light or indicator lamp using circuit for turning on light source
JP2009170341A (en) * 2008-01-18 2009-07-30 Nitto Kogaku Kk Luminaire
WO2011020007A1 (en) * 2009-08-14 2011-02-17 Once Innovations, Inc. Reduction of harmonic distortion for led loads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020122249A1 (en) * 2018-12-13 2021-09-02 シチズン電子株式会社 LED light emitting device
KR102609965B1 (en) * 2023-08-07 2023-12-05 정홍준 LED Lighting with Flicker Elimination Module

Also Published As

Publication number Publication date
CN203206512U (en) 2013-09-18
JP6077204B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6113885B2 (en) Lighting device to which semiconductor light emitting element is applied
US8344647B2 (en) Converting dimmer switch AC output duty cycle variation into amplitude variation
US20130169175A1 (en) Continuous Step Driver
TWI458387B (en) Illumination driver circuit
US9439258B2 (en) Control circuit of LED lighting apparatus
JP5671016B2 (en) Power interface with LED for TRIAC dimmer
JP6077204B2 (en) LED drive circuit
TW201215224A (en) Open LED control circuit and associated method
JP2010079377A (en) Dc power source device and output voltage smoothing method therefor
JP2013105729A (en) Led lighting device
JP2006278526A (en) Light emitting diode driving device
KR20140107838A (en) Circuit to control led lighting apparatus
CN110621103A (en) Light modulation device
JP2009105016A (en) Led lighting system
JP2010056314A (en) Driving circuit of light-emitting diode, light-emitting device using the same, and lighting device
EP3319401A1 (en) Dimming device
US9504122B2 (en) Fluorescent replacement LED lamps
JP5619558B2 (en) LED drive circuit
JP6174647B2 (en) Low flicker LED lighting equipment
KR101160154B1 (en) Unidirectional lighting emitting diode module device with reduction to harmonics distortion
JP6061365B2 (en) Light emitting device
KR101349516B1 (en) Power device for led lighting
KR20160094020A (en) Circuit and method to control led lighting apparatus
GB2514929A (en) Active self-regulating circuit
TWI569683B (en) A device for driving a high voltage light emitting diode string

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20130603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151116

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees