JP2013058360A - Fuel battery cell, and manufacturing method oh the same - Google Patents

Fuel battery cell, and manufacturing method oh the same Download PDF

Info

Publication number
JP2013058360A
JP2013058360A JP2011195385A JP2011195385A JP2013058360A JP 2013058360 A JP2013058360 A JP 2013058360A JP 2011195385 A JP2011195385 A JP 2011195385A JP 2011195385 A JP2011195385 A JP 2011195385A JP 2013058360 A JP2013058360 A JP 2013058360A
Authority
JP
Japan
Prior art keywords
laminated
plate
fuel
electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011195385A
Other languages
Japanese (ja)
Inventor
Kentaro Ino
健太郎 猪野
Takeshi Shimada
島田武司
Hiroyuki Nagatomo
長友浩之
Toshiki Kida
木田年紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011195385A priority Critical patent/JP2013058360A/en
Publication of JP2013058360A publication Critical patent/JP2013058360A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery cell in which an ion conductive film is constituted in a way that the number of film lamination is in a range of practical use and an air electrode and a fuel electrode have generating efficiency at the same level as conventional one without making them be adjacent to each other, and to provide a manufacturing method of the fuel battery cell.SOLUTION: The fuel battery cell is characterized in that: a first plate material, a laminated electrolyte, a second plate material, and a laminated electrolyte are repeatedly arranged in this order in a zigzag form when seeing one cross section of the fuel battery cell; a fuel electrode connects laminated layer cross sections between the adjoining laminated electrolytes to each other; an air electrode connects laminated layer cross sections between another adjoining laminated electrolytes to each other; the fuel electrode and the air electrode are arranged alternately; the fuel electrodes are mutually connected so as to cover the first plate material or the second plate material; and the air electrodes are mutually connected so as to cover the second plate material or the first plate material.

Description

本発明は、固体酸化物型の燃料電池に用いる燃料電池セル、およびその製造方法に関するものである。   The present invention relates to a fuel cell used for a solid oxide fuel cell and a method for producing the same.

燃料電池は水素を燃料として発電するため、環境負荷が小さく次世代のエネルギーシステムとして注目されてきた。中でも固体酸化物燃料電池(Solid oxide fuel cell、以下SOFCと言う)は発電効率が高く、数多くの研究開発がなされている。   Since fuel cells generate electricity using hydrogen as a fuel, they have attracted attention as a next-generation energy system with a low environmental load. Among them, a solid oxide fuel cell (hereinafter referred to as SOFC) has high power generation efficiency, and many researches and developments have been made.

このSOFCは固体酸化物を電解質に用いており、電解質の役割は酸素イオンを伝導することである。SOFCにおいては固体酸化物の電解質に電極(燃料極と空気極)が形成されたものを燃料電池セルと呼ぶ。燃料電池セルを複数積層させて直列に接続させた構造体をセルスタックと呼ぶ。SOFCの作動原理は空気極側で酸素を還元し、電解質がその酸素イオンを通過させ、燃料極側で水素と酸素を反応させることで発電するものである。   This SOFC uses a solid oxide as an electrolyte, and the role of the electrolyte is to conduct oxygen ions. In SOFC, a solid oxide electrolyte in which electrodes (a fuel electrode and an air electrode) are formed is called a fuel cell. A structure in which a plurality of fuel cells are stacked and connected in series is called a cell stack. The operating principle of SOFC is to generate electricity by reducing oxygen on the air electrode side, allowing the electrolyte to pass the oxygen ions, and reacting hydrogen and oxygen on the fuel electrode side.

電解質に要求されるイオン伝導度はシステムの内部抵抗低減の観点から、1×10−2S/cm以上が目安とされ、SOFCに用いられる固体電解質は500℃以上の高温にならないと上記の特性を満足しないのが現状である。そのためSOFCの動作温度は通常800℃前後で動作させている。この動作温度の高さからSOFCは経時劣化しやすいという問題がある。 The ionic conductivity required for the electrolyte is 1 × 10 −2 S / cm or more as a guideline from the viewpoint of reducing the internal resistance of the system, and the solid electrolyte used for SOFC does not have a high temperature of 500 ° C. or higher. The present condition is not satisfied. Therefore, the operating temperature of SOFC is normally operated at around 800 ° C. Due to the high operating temperature, the SOFC has a problem that it tends to deteriorate with time.

これらの問題を解決するため500℃未満で高いイオン伝導性を示す固体酸化物電解質に関する研究がなされており、その一例が非特許文献1に開示されている。非特許文献1の電解質は、厚さが1〜30nmの0.92ZrO−0.08Y(イットリウム安定化ZrO(以下、YSZと言う))からなるイオン伝導性膜を、厚さが10nmのSrTiO(チタン酸ストロンチウム(以下、STOと言う))からなるイオン非伝導性膜で挟み込んだ構造の積層電解質である。この積層電解質は、イオン伝導性膜とイオン非伝導性膜との界面の酸素イオン伝導が飛躍的に向上すること、100℃付近でのイオン伝導度が1×10−2S/cmと高く、電解質として要求される1×10−2S/cm以上を満足する特性を有することが報告されている。この積層電解質はイオン伝導性膜とイオン非伝導性膜との界面のイオン伝導度が高くなるため、積層するイオン伝導性膜とイオン非伝導性膜の数を増やすと界面の数が増えてイオン伝導量が向上する。 In order to solve these problems, studies on solid oxide electrolytes exhibiting high ionic conductivity at temperatures below 500 ° C. have been conducted, and an example thereof is disclosed in Non-Patent Document 1. The electrolyte of Non-Patent Document 1 has an ion-conductive film made of 0.92ZrO 2 -0.08Y 2 O 3 (yttrium stabilized ZrO 2 (hereinafter referred to as YSZ)) having a thickness of 1 to 30 nm. Is a laminated electrolyte having a structure sandwiched between ionic nonconductive films made of SrTiO 3 (strontium titanate (hereinafter referred to as STO)) having a thickness of 10 nm. This multilayer electrolyte has a dramatic improvement in oxygen ion conduction at the interface between the ion conductive film and the ion nonconductive film, and the ion conductivity near 100 ° C. is as high as 1 × 10 −2 S / cm. It has been reported that it has characteristics satisfying 1 × 10 −2 S / cm or more required as an electrolyte. In this laminated electrolyte, the ionic conductivity at the interface between the ion conductive membrane and the ion nonconductive membrane is increased. Therefore, when the number of the ion conductive membrane and the ion nonconductive membrane to be laminated is increased, the number of interfaces is increased and the ion conductivity is increased. Conductivity is improved.

実際の電解質のイオン伝導度は(イオン伝導率×イオン伝導面積/イオン伝導方向の長さ)で決まる。イオン伝導面積は電解質と電極の接触した面積であり、燃料電池反応の反応場でもあるので、イオン伝導面積が小さいと十分な発電量が得られない。一般的な燃料電池はイオン伝導面積が数mm〜数cmである。 The actual ion conductivity of the electrolyte is determined by (ion conductivity × ion conduction area / length in the ion conduction direction). Since the ion conduction area is an area where the electrolyte and the electrode are in contact with each other and is also a reaction field for the fuel cell reaction, if the ion conduction area is small, sufficient power generation cannot be obtained. A general fuel cell has an ion conduction area of several mm 2 to several cm 2 .

積層電解質は積層した面に沿う方向に高いイオン伝導性を示す。空気極、燃料極はイオン伝導性膜のイオン伝導方向に垂直な面に形成する必要が有る。
非特許文献1では、イオン伝導性膜は膜厚がnmオーダーの薄膜材であるのでイオン伝導面積を大きくするには積層数を増やす必要が有る。
ただし上記の積層電解質で一般的な燃料電池と同等のイオン伝導面積を得るにはイオン伝導性膜とイオン非伝導性膜を数万〜数億層重ねなければならず、実用的な燃料電池セルを形成することは困難であった。
The laminated electrolyte exhibits high ionic conductivity in a direction along the laminated surface. It is necessary to form the air electrode and the fuel electrode on a plane perpendicular to the ion conduction direction of the ion conductive membrane.
In Non-Patent Document 1, since the ion conductive film is a thin film material having a film thickness of the order of nm, it is necessary to increase the number of stacked layers in order to increase the ion conductive area.
However, in order to obtain an ion conduction area equivalent to that of a general fuel cell with the above-mentioned laminated electrolyte, it is necessary to stack several tens of thousands to hundreds of millions of ion conductive membranes and ion non-conductive membranes. It was difficult to form.

特許文献1では、この非常に多層である積層電解質を備えた燃料電池セルを従来技術として挙げ、100nm程度の間隔で直径50〜200nmの穴の開いた多孔体の中に積層した電解質を形成することで実用的な工程で積層構造の電解質を有した燃料電池セルを形成する方法を提案している。しかし、この方法によれば多孔体の中に積層した電解質を隣接させた状態で形成させるため、空気極の内部を通過する空気と燃料極の内部を通過する燃料ガスが混ざってしまい、発電効率が低下する可能性が有る。   In Patent Document 1, a fuel cell including a multilayer electrolyte that is very multi-layered is cited as a conventional technique, and an electrolyte stacked in a porous body having a hole with a diameter of 50 to 200 nm is formed at intervals of about 100 nm. Thus, a method for forming a fuel cell having an electrolyte having a laminated structure in a practical process is proposed. However, according to this method, the electrolyte laminated in the porous body is formed in an adjacent state, so that the air passing through the inside of the air electrode and the fuel gas passing through the inside of the fuel electrode are mixed, resulting in power generation efficiency. May be reduced.

J.Garcia-Barriocanal et-al, Science, 321(2008) 676J. Garcia-Barriocanal et-al, Science, 321 (2008) 676

特開2010-251301号公報JP 2010-251301 A

本発明は上記問題に鑑み、イオン伝導性膜の積層数が実用的な範囲で構成され、空気極と燃料極が隣接せず従来と同程度の発電効率を備えた燃料電池セル、及びその燃料電池セルの製造方法を提供することを目的としている。   In view of the above problems, the present invention provides a fuel battery cell in which the number of ion-conductive membranes stacked is within a practical range, the air electrode and the fuel electrode are not adjacent to each other, and has the same power generation efficiency as the conventional one, and its fuel It aims at providing the manufacturing method of a battery cell.

第1の本発明は、イオン伝導性膜とイオン非伝導性膜が交互に積層された積層電解質と、前記積層電解質の積層断面に燃料極と空気極を備えた燃料電池セルであって、
第1の仮想面に沿って並ぶ複数の第1の板材と、第1の仮想面と平行な第2の仮想面に沿って並ぶ複数の第2の板材を備え、
前記第1の板材と前記第2の板材の間に、前記積層電解質が積層方向を前記第1及び第2の仮想面の垂直方向になるように配置され、
前記燃料電池セルの一断面を見たとき、
前記燃料電池セルは、第1の板材、積層電解質、第2の板材、積層電解質の順に繰り返しつづら折り状に配置され、
前記燃料極が、隣り合う前記積層電解質の積層断面同士を接続し、かつ前記第1の板材又は第2の板材を覆うように形成され、
前記空気極が、別の隣り合う前記積層電解質の積層断面同士を接続し、かつ前記第2の板材又は第1の板材を覆うように形成され、
前記燃料極と空気極が前記第1の仮想面と第2の仮想面の間において交互に配置されることを特徴とする。
The first aspect of the present invention is a fuel cell comprising a laminated electrolyte in which an ion conductive membrane and an ion non-conductive membrane are alternately laminated, and a fuel electrode and an air electrode in a laminated section of the laminated electrolyte,
A plurality of first plate members arranged along the first virtual surface, and a plurality of second plate members arranged along a second virtual surface parallel to the first virtual surface,
Between the first plate member and the second plate member, the laminated electrolyte is disposed so that the lamination direction is perpendicular to the first and second imaginary planes,
When looking at a cross section of the fuel cell,
The fuel cells are arranged in a repeating manner in the order of a first plate material, a laminated electrolyte, a second plate material, and a laminated electrolyte,
The fuel electrode is formed so as to connect the laminated sections of the laminated electrolyte adjacent to each other and cover the first plate member or the second plate member,
The air electrode is formed so as to connect the laminated cross-sections of the adjacent laminated electrolytes adjacent to each other and cover the second plate material or the first plate material,
The fuel electrode and the air electrode are alternately arranged between the first virtual surface and the second virtual surface.

第2の本発明は、第1の本発明に記載の燃料電池セルであって、
前記イオン伝導性膜がイットリウム安定化ZrO膜(YSZ膜)からなり、前記イオン非伝導性膜がSrTiO(STO膜)からなることを特徴とする。
A second aspect of the present invention is the fuel cell according to the first aspect of the present invention,
The ion conductive film is made of an yttrium stabilized ZrO 2 film (YSZ film), and the ion nonconductive film is made of SrTiO 3 (STO film).

第3の本発明は、第1又は第2の本発明の何れかに記載の燃料電池セルであって、
前記第1または第2の板材の一方がシリコン単結晶またはSrTiO単結晶からなることを特徴とする。
A third aspect of the present invention is the fuel cell according to any one of the first and second aspects of the present invention,
One of the first and second plate members is made of silicon single crystal or SrTiO 3 single crystal.

第4の本発明は、第1乃至第3の本発明の何れかに記載の燃料電池セルであって、
前記第1または第2の板材の他方がSiO、SrTiO、ZrOのいずれか一つからなることを特徴とする。
A fourth aspect of the present invention is the fuel cell according to any one of the first to third aspects of the present invention,
The other of the first or second plate material is made of any one of SiO 2 , SrTiO 3 , and ZrO 2 .

第5の本発明は、
第1の薄板の上にイオン伝導性膜とイオン非伝導性膜を交互に積層し、その積層膜の上に第2の薄板を形成する工程と、
前記第1の薄板側から第1の溝を複数平行に形成し、前記第2の薄板側から第2の溝を積層方向に見て前記第1の溝同士の間にそれぞれ複数平行に形成することで複数の積層電解質、複数の第1の板材、複数の第2の板材を形成し、前記第1の板材、積層電解質、第2の板材、積層電解質の順に繰り返しつづら折り状に配置される構成とする工程と、
燃料極として、前記第1の溝の内部において両側の前記積層電解質の面同士を接続し、かつ、前記第1の板材又は第2の板材を覆うように形成する工程と、
空気極として、前記第2の溝の内部において両側の前記積層電解質の面同士を接続し、かつ、前記第2の板材又は第1の板材を覆うように形成する工程と、を有することを特徴とする燃料電池セルの製造方法である。
The fifth aspect of the present invention relates to
Alternately stacking an ion conductive film and an ion non-conductive film on the first thin plate, and forming a second thin plate on the stacked film;
A plurality of first grooves are formed in parallel from the first thin plate side, and a plurality of second grooves are formed in parallel between the first grooves when viewed in the stacking direction from the second thin plate side. In this configuration, a plurality of laminated electrolytes, a plurality of first plate members, and a plurality of second plate members are formed, and the first plate member, the laminated electrolyte, the second plate member, and the laminated electrolyte are repeatedly arranged in a zigzag manner. And a process of
Connecting the surfaces of the laminated electrolyte on both sides inside the first groove and forming the fuel electrode so as to cover the first plate member or the second plate member;
A step of connecting the surfaces of the multilayer electrolytes on both sides inside the second groove and covering the second plate or the first plate as the air electrode. A method for producing a fuel cell.

本発明によれば、イオン伝導性膜の積層数が実用的な範囲で構成され、空気極と燃料極が隣接せず従来よりも簡易な方法で製造でき、従来よりも小型で狭い範囲で設置できるとともに、同程度の発電効率を備えた燃料電池セル、及びその燃料電池セルの製造方法を提供できる。   According to the present invention, the number of stacked ion conductive membranes is configured within a practical range, and the air electrode and the fuel electrode are not adjacent to each other and can be manufactured by a simpler method than before, and can be installed in a smaller and narrower range than before. In addition, it is possible to provide a fuel cell having the same power generation efficiency and a method for manufacturing the fuel cell.

本発明の燃料電池セルを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the fuel battery cell of this invention. 本発明の燃料電池セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the fuel battery cell of this invention. 本発明の燃料電池セルを説明するための模式図である。It is a schematic diagram for demonstrating the fuel battery cell of this invention. 従来の燃料電池セルの模式図である。It is a schematic diagram of the conventional fuel cell.

以下、本発明の一実施形態を図面により説明する。
図1は平板型の燃料電池セルの部分的な断面模式図であり、イオン伝導性膜11とイオン非伝導性膜12を交互に積層した積層電解質C1〜C4と、前記積層電解質C1〜C4の積層断面に燃料極15と空気極16を備える。
図3は燃料電池セルの全体の斜視図である。
なお、図1や図3は模式図であって、説明のために積層電解質同士の間隔の幅や、イオン伝導性膜、イオン非伝導性膜、第1及び第2の板材、燃料極、空気極の厚さを広げて記載している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional schematic diagram of a flat plate type fuel cell. The laminated electrolytes C1 to C4 in which ion conductive membranes 11 and ion nonconductive membranes 12 are alternately laminated and the laminated electrolytes C1 to C4 are shown. A fuel electrode 15 and an air electrode 16 are provided on the cross section.
FIG. 3 is a perspective view of the entire fuel cell.
FIG. 1 and FIG. 3 are schematic diagrams, and for the sake of explanation, the width of the interval between the laminated electrolytes, the ion conductive membrane, the ion non-conductive membrane, the first and second plate materials, the fuel electrode, the air The pole thickness is expanded and described.

積層電解質C1〜C4は板状に形成できる。なお、イオン伝導性膜11とイオン非伝導性膜12は、板状の面に沿う方向に積層される。板状の積層電解質C1〜C4は、後述するように、間隔を介して平行に配置される。
燃料極15は、燃料電池における負電極として機能し、H2,CO,CH4等の燃料ガスが通過可能な導電性セラミックが用いられる。
また空気極16は、燃料電池における正電極として機能し、酸素源となる酸化ガスが通過可能な導電性セラミックが用いられる。
燃料極15、空気極16とも積層電解質C1〜C4のイオン伝導性膜11とイオン非伝導性膜12の端部が露出する積層断面に形成される。
The laminated electrolytes C1 to C4 can be formed in a plate shape. The ion conductive film 11 and the ion nonconductive film 12 are laminated in a direction along the plate-like surface. The plate-shaped multilayer electrolytes C1 to C4 are arranged in parallel with an interval, as will be described later.
The fuel electrode 15 functions as a negative electrode in the fuel cell, and a conductive ceramic capable of passing a fuel gas such as H2, CO, CH4 or the like is used.
The air electrode 16 is made of a conductive ceramic that functions as a positive electrode in the fuel cell and through which an oxidizing gas serving as an oxygen source can pass.
Both the fuel electrode 15 and the air electrode 16 are formed in a laminated cross section in which the end portions of the ion conductive film 11 and the ion nonconductive film 12 of the laminated electrolytes C1 to C4 are exposed.

イオン伝導性膜として、YSZ膜を用いることができる。また、イオン非伝導性膜としてSTO膜を用いることができる。
かかる構成とすることで、500℃未満の低温でも内部抵抗の低い燃料電池セルとすることができる。
YSZ膜の厚みは5nm以上40nm以下が好ましい。YSZ膜が5nm未満の薄さであると電解質のイオン伝導面積が小さくなるため内部抵抗が高くなる。またYSZ膜が40nm超の厚さであると界面の酸素イオン伝導性が損なわれてしまい同様に内部抵抗が高くなる。
STO膜は5nm以上20nm以下の厚みが好ましい。STO膜は5nm未満では十分なイオン伝導度が得られず、20nm超であるとイオンを通さない部分が増えてしまい、内部抵抗が高くなる。
A YSZ film can be used as the ion conductive film. An STO film can be used as the ion non-conductive film.
By setting it as this structure, it can be set as a fuel cell with a low internal resistance at low temperature of less than 500 degreeC.
The thickness of the YSZ film is preferably 5 nm or more and 40 nm or less. When the YSZ film is thinner than 5 nm, the ion conduction area of the electrolyte is reduced, so that the internal resistance is increased. If the YSZ film has a thickness of more than 40 nm, the oxygen ion conductivity at the interface is impaired, and the internal resistance is similarly increased.
The thickness of the STO film is preferably 5 nm or more and 20 nm or less. If the STO film is less than 5 nm, sufficient ion conductivity cannot be obtained, and if it exceeds 20 nm, the portion through which ions do not pass increases and the internal resistance increases.

本実施形態において、燃料電池セルは、第1の仮想面V1に沿って並ぶ複数の第1の板材13a〜13cと、第1の仮想面V1と平行な第2の仮想面V2に沿って並ぶ複数の第2の板材14a,14bを備える。第1及び第2の仮想面は、第1及び第2の板材の位置関係を明確にするためのものであり、本実施形態における構成部材ではない。
第1の板材13a〜13cは、後述するように一体の第1の薄板をそれぞれ分割するか、複数の溝を形成することで、燃料電池セルの断面で見て、図1のように形成される。また、同様に第2の板材も、一体の基板状の板材をそれぞれ分割するか、複数の溝を形成することで、燃料電池セルの断面で見て、図1のように形成される。
第1及び第2の板材は、燃料ガスや酸化ガスの通過を遮断できる材質で形成される。
In the present embodiment, the fuel cells are arranged along a plurality of first plate members 13a to 13c arranged along the first virtual plane V1 and a second virtual plane V2 parallel to the first virtual plane V1. A plurality of second plate members 14a and 14b are provided. The first and second virtual surfaces are for clarifying the positional relationship between the first and second plate members and are not constituent members in the present embodiment.
The first plate members 13a to 13c are formed as shown in FIG. 1 when viewed from the cross section of the fuel cell by dividing the integrated first thin plate or forming a plurality of grooves as will be described later. The Similarly, the second plate member is also formed as shown in FIG. 1 when viewed from the cross section of the fuel cell by dividing the integral substrate plate member or forming a plurality of grooves.
The first and second plate members are formed of a material that can block the passage of fuel gas and oxidizing gas.

燃料電池セルの一断面を見たとき、燃料電池セルは、第1の板材、積層電解質、第2の板材、積層電解質の順に繰り返しつづら折り状に配置される。図1で説明すれば、第1の板材13a、積層電解質C1、第2の板材14a、積層電解質C2とつづら折れ状に配置され、さらに、第1の板材13b、積層電解質C3、第2の板材14b、積層電解質C4、第1の板材13c、・・と、以後は同じようにして繰り返しつづら折れ状に配置される。
積層電解質C1〜C4は、積層方向が平行かつ間隔yを開けた状態で複数配置されている。個々の積層電解質C1〜C4は、イオン伝導性膜11とイオン非伝導性膜12の積層体で形成され、イオン伝導性膜11の面に平行な方向(矢印で示す)にイオンが容易に伝導する性質を有する。
When one cross section of the fuel cell is viewed, the fuel cell is repeatedly arranged in the order of the first plate material, the laminated electrolyte, the second plate material, and the laminated electrolyte. Referring to FIG. 1, the first plate member 13a, the multilayer electrolyte C1, the second plate member 14a, and the multilayer electrolyte C2 are arranged in a folded manner, and further, the first plate member 13b, the multilayer electrolyte C3, and the second plate member. 14b, the laminated electrolyte C4, the first plate member 13c,..., And thereafter are repeatedly arranged in a folded manner in the same manner.
A plurality of multilayer electrolytes C1 to C4 are arranged in a state where the stacking directions are parallel and spaced apart from each other. Each of the laminated electrolytes C1 to C4 is formed by a laminated body of the ion conductive film 11 and the ion nonconductive film 12, and ions are easily conducted in a direction parallel to the surface of the ion conductive film 11 (indicated by an arrow). It has the property to do.

燃料極15が、隣り合う積層電解質の対向した積層断面同士(例えば面S1と面S2,面S5と面S6)を接続する。
空気極16が、別の隣り合う前記積層電解質の対向した積層断面同士(例えば面S3と面S4)を接続する。
燃料極と空気極が、図1の断面図において第1及び第2の仮想面V1,V2に沿って交互に配置される。
図1の実施形態では、積層電解質C1〜C4と第1の板材13a,13b,13c又は第2の板材14a,14b等で囲まれた溝101a、101b、102a、102b、102cが形成され、燃料極15は溝101a、101bの内面に沿うように両側の積層電解質の面同士を接続し、空気極16は溝102a,102b,102cの内面に沿うように両側の積層電解質の面同士を接続する。燃料極15、空気極16は、溝の内部全体を埋めるように形成することもできる。
The fuel electrode 15 connects adjacent stacked cross sections (for example, the surface S1 and the surface S2, the surface S5 and the surface S6) of the adjacent stacked electrolytes.
The air electrode 16 connects the stacked cross sections facing each other (for example, the surface S3 and the surface S4) of the adjacent stacked electrolyte.
The fuel electrode and the air electrode are alternately arranged along the first and second virtual planes V1 and V2 in the cross-sectional view of FIG.
In the embodiment of FIG. 1, grooves 101a, 101b, 102a, 102b, and 102c surrounded by the laminated electrolytes C1 to C4 and the first plate members 13a, 13b, and 13c or the second plate members 14a and 14b are formed, and the fuel The electrode 15 connects the surfaces of the laminated electrolytes on both sides so as to be along the inner surfaces of the grooves 101a, 101b, and the air electrode 16 connects the surfaces of the laminated electrolytes on both sides so as to be along the inner surfaces of the grooves 102a, 102b, 102c. . The fuel electrode 15 and the air electrode 16 can also be formed so as to fill the entire inside of the groove.

燃料極が第1の板材13a,13b,13c又は第2の板材14a,14bを覆うように互いに接続される。また、空気極が前記第2の板材14a,14b又は第1の板材13a,13b,13cを覆うように互いに接続される。つまり、積層電解質C1〜C4の積層方向の一方の端面側(図では下側)で前記燃料極15が電気的に接続されており、他方の端面側(図では上側)で前記空気極16が電気的に接続されている。
第1及び第2の板材は燃料電池セルにおける燃料と空気を遮断する特性を持つ。燃料極15と空気極16はこの第1の板材又は第2の板材を介して近接するので、燃料極15と空気極16の間で燃料ガスと酸化ガスが混合するのを防止できる。
図1では、第1の板材13bは隣り合う積層電界質C2とC3に接するように配置され、その隣りの積層電解質C1又はC4は、図示していない隣り合う積層電解質に接するように、別の第1の板材13aや13cが配置される。同様に、第2の板材14aは隣り合う積層電界質C1とC2に接するように配置され、その隣りの積層電解質C3は別の第2の板材14bが配置される。第2の板材14bはさらに隣の積層電解質C4に接するように配置される。
The fuel electrodes are connected to each other so as to cover the first plate members 13a, 13b, 13c or the second plate members 14a, 14b. The air electrodes are connected to each other so as to cover the second plate members 14a and 14b or the first plate members 13a, 13b and 13c. That is, the fuel electrode 15 is electrically connected on one end face side (lower side in the figure) of the laminated electrolytes C1 to C4, and the air electrode 16 is connected on the other end face side (upper side in the figure). Electrically connected.
The first and second plate members have a characteristic of blocking fuel and air in the fuel cell. Since the fuel electrode 15 and the air electrode 16 are close to each other through the first plate material or the second plate material, it is possible to prevent the fuel gas and the oxidizing gas from being mixed between the fuel electrode 15 and the air electrode 16.
In FIG. 1, the first plate member 13b is disposed so as to be in contact with the adjacent multilayer electrolytes C2 and C3, and the adjacent multilayer electrolyte C1 or C4 is separated from the adjacent multilayer electrolyte (not shown) so as to be in contact with each other. First plate members 13a and 13c are arranged. Similarly, the 2nd board | plate material 14a is arrange | positioned so that the adjacent lamination | stacking electrolysis C1 and C2 may be contact | connected, and another 2nd board | plate material 14b is arrange | positioned at the adjacent lamination | stacking electrolyte C3. The second plate material 14b is further disposed so as to contact the adjacent laminated electrolyte C4.

第1又は第2の板材はシリコン単結晶又はSrTiO単結晶を用いることができる。界面の酸素イオン伝導度を高めるには結晶学的に方位の揃った膜を形成する必要がある。上記単結晶材を板材として用いることで容易に酸素イオン伝導度を高めた積層電解質を得ることが可能となる。さらにシリコンウエハを用いた場合はMEMSでの加工が容易になり、製造上有利である。 As the first or second plate material, a silicon single crystal or a SrTiO 3 single crystal can be used. In order to increase the oxygen ion conductivity at the interface, it is necessary to form a film having a crystallographic orientation. By using the single crystal material as a plate material, it is possible to easily obtain a laminated electrolyte having increased oxygen ion conductivity. Further, when a silicon wafer is used, processing by MEMS becomes easy, which is advantageous in manufacturing.

第1又は第2の板材の他方がSiO、SrTiO、ZrOのいずれか一つを用いることができる。かかる構成とすることで電極材料や燃料ガスとの反応が少なく、信頼性の高い燃料電池セルを得ることができる。また積層電解質を形成する際にSrTiO、ZrOのいずれかの組成で厚いスパッタ膜を形成するだけで燃料極と空気極のガスを遮断できるので製造上有利である。 One of SiO 2 , SrTiO 3 , and ZrO 2 can be used for the other of the first and second plate members. With such a configuration, a highly reliable fuel cell can be obtained with little reaction with the electrode material and the fuel gas. Further, when forming the laminated electrolyte, it is advantageous in manufacturing because the gas of the fuel electrode and the air electrode can be shut off only by forming a thick sputtered film with a composition of either SrTiO 3 or ZrO 2 .

イオン伝導面積が小さいと内部抵抗が大きくなり、発電効率が低下する。
図4に示すようなイオン伝導性膜の平面に垂直な向きにイオンを流す従来の燃料電池セルでは、一方の対向する辺の長さがa、他方の対向する辺の長さがbである場合、膜の全面に電極31、33を形成するため、イオン伝導面積はa×bで算出される。
しかし図3に示す本発明のイオン伝導性膜の面に平行な方向にイオンを流す積層電解質では、イオン伝導面積が、イオン伝導性膜の総厚みz(zは積層電解質のイオン伝導性膜の各厚さz1、z2、z3・・zn(nは正の整数)を足した厚さ)であり、薄膜材料を用いるとイオン伝導性膜の各厚さが極端に薄くなるのでイオン伝導性膜の総厚みも小さくなり、イオン伝導面積が小さくなってしまうが、本発明では複数の積層電解質を、第1及び第2の板材とともにつづら折り状に配置するため、従来と同程度のイオン伝導面積を形成することが容易である。
If the ion conduction area is small, the internal resistance increases and the power generation efficiency decreases.
In the conventional fuel cell in which ions flow in a direction perpendicular to the plane of the ion conductive membrane as shown in FIG. 4, the length of one opposing side is a, and the length of the other opposing side is b. In this case, since the electrodes 31 and 33 are formed on the entire surface of the film, the ion conduction area is calculated by a × b.
However, in the laminated electrolyte in which ions flow in a direction parallel to the surface of the ion conductive membrane of the present invention shown in FIG. 3, the ion conduction area is the total thickness z of the ion conductive membrane (z is the ion conductive membrane of the multilayer electrolyte). Each thickness z1, z2, z3... Zn (where n is a positive integer)), and if a thin film material is used, each thickness of the ion conductive film becomes extremely thin, so that the ion conductive film However, in the present invention, a plurality of laminated electrolytes are arranged in a zigzag manner together with the first and second plate members, so that the ion conduction area of the same level as the conventional one is obtained. It is easy to form.

図1、図3により本実施形態の燃料電池セルにおけるイオン伝導面積を説明する。
イオン伝導面積は、図1の断面図における積層電解質の幅をx、積層電解質同士の間隔の幅をyとし、イオン伝導性膜の総厚みをzとし、図3に示すように、燃料電池セルの積層電解質が並ぶ方向(図1の左右方向)の幅をB、積層電解質の幅方向(図1の紙面垂直方向)の幅をAとしたとき、次に示す3つのパラメーターの積で決定される。
(1)積層電解質の幅方向(図1の紙面垂直方向)の幅(A)
(2)燃料電池セルの一段面での積層電解質の数(B/(x+y))
(3)イオン伝導性膜の総厚み(z)
The ion conduction area in the fuel cell of this embodiment will be described with reference to FIGS.
In the cross-sectional view of FIG. 1, the ion conduction area is x, the width of the interval between the multilayer electrolytes is y, the total thickness of the ion conductive membrane is z, and the fuel cell as shown in FIG. Is determined by the product of the following three parameters, where B is the width in the direction in which the multilayer electrolytes are arranged (left-right direction in FIG. 1) and A is the width in the width direction of the multilayer electrolyte (perpendicular direction in FIG. 1). The
(1) Width (A) in the width direction (perpendicular to the paper surface of FIG. 1) of the multilayer electrolyte
(2) Number of laminated electrolytes on one surface of fuel cell (B / (x + y))
(3) Total thickness of ion conductive membrane (z)

従来の燃料電池セルと比較すると、(2)の項が追加される点で異なる。すなわち、電解質の幅xを狭くし、積層電解質同士の間隔の幅yを狭くすることで積層電解質の数を増やし、イオン伝導面積を増やすことができる。これにより発電力が従来と同等で、積層電解質の積層膜を数10〜10層も設けてzを極端に大きくすることなく実用的な積総数で構成され、空気極と燃料極が隣接しない燃料電池セルを得ることができる。 Compared with the conventional fuel cell, it is different in that the item (2) is added. That is, by reducing the width x of the electrolyte and narrowing the width y between the stacked electrolytes, the number of stacked electrolytes can be increased and the ion conduction area can be increased. As a result, the generated power is the same as the conventional one, and it is composed of several 10 4 to 10 8 laminated electrolyte laminated films with a practical total number without excessively increasing z, and the air electrode and the fuel electrode are adjacent to each other. Can be obtained.

積層電解質同士の間隔yを狭くすることが望ましく、0.1μm以上10μm以下とすることができる。積層電解質同士の間隔が0.1μmより狭くなると燃料ガスの供給が阻害されて発電効率が低下する。また、間隔の幅yが10μmよりも広くなると燃料電池セルのサイズが大型化する。また、積層電解質の配置できる数が減ってイオン伝導面積が少なくなり発電効率が低下する。好ましい間隔の幅yは0.5μm以上5μm以下である。   It is desirable to narrow the interval y between the laminated electrolytes, and it can be 0.1 μm or more and 10 μm or less. When the interval between the laminated electrolytes becomes narrower than 0.1 μm, the supply of the fuel gas is hindered and the power generation efficiency is lowered. In addition, when the interval width y is larger than 10 μm, the size of the fuel cell increases. In addition, the number of laminated electrolytes that can be arranged is reduced, the ion conduction area is reduced, and the power generation efficiency is lowered. A preferred interval width y is not less than 0.5 μm and not more than 5 μm.

積層電解質の幅xは、特に規定はないが、製造上の容易さを考えると1cm以上1m以下であることが好ましい。幅xが1cmよりも小さなセルが必要な場合は大きなセルを加工すれば良いし、1mよりも大きなセルを作るのは製造プロセス上困難である。   The width x of the multilayer electrolyte is not particularly specified, but is preferably 1 cm or more and 1 m or less in view of ease of manufacturing. When a cell having a width x smaller than 1 cm is required, a large cell may be processed, and it is difficult in the manufacturing process to produce a cell larger than 1 m.

製造方法の一実施形態を図2により説明する。
まず、第1の薄板23の上にイオン伝導性膜21とイオン非伝導性膜22を交互に積層し、その積層体Cの上に第2の薄板24を形成する。
第1の薄板23として例えば直径152.4mm、厚さ0.625mmのシリコン単結晶のウエハを用いる。0.0003MPaの酸素雰囲気中、900℃で加熱しながらスパッタで厚さ10nmのSTO膜22と厚さ30nmのYSZ膜21を交互に成膜して積層し、その積層体Cの上に第2の薄板24として厚さ0.5μmのSiO層を形成する(図2a)。
次に、STO膜とYSZ膜の積層体Cを、第1の薄板23と第2の薄板24ごと100mm×100mmの寸法に切り出す。切り出した基板に、90mm×3μmの面積で1μm間隔にレジスト25a、25b、25cを塗布する。(図2b)
本実施形態においては図3に示すように、フォトリソグラフィでさらに外周縁部を幅5mmでレジスト26を塗布している。外周縁部を形成するのは、燃料電池セルとした後も外周縁部を残し、燃料電池セルの機械強度を高めるためである。
An embodiment of the manufacturing method will be described with reference to FIG.
First, the ion conductive film 21 and the ion nonconductive film 22 are alternately stacked on the first thin plate 23, and the second thin plate 24 is formed on the stacked body C.
As the first thin plate 23, for example, a silicon single crystal wafer having a diameter of 152.4 mm and a thickness of 0.625 mm is used. A STO film 22 having a thickness of 10 nm and a YSZ film 21 having a thickness of 30 nm are alternately formed by sputtering while heating at 900 ° C. in an oxygen atmosphere of 0.0003 MPa, and a second layer is formed on the stacked body C. As a thin plate 24, a 0.5 μm thick SiO 2 layer is formed (FIG. 2a).
Next, the laminate C of the STO film and the YSZ film is cut out to a size of 100 mm × 100 mm together with the first thin plate 23 and the second thin plate 24. Resist 25a, 25b, 25c is applied to the cut substrate at an interval of 1 μm with an area of 90 mm × 3 μm. (Fig. 2b)
In the present embodiment, as shown in FIG. 3, the resist 26 is applied with a width of 5 mm at the outer peripheral edge by photolithography. The reason why the outer peripheral edge portion is formed is to leave the outer peripheral edge portion even after the fuel cell is formed and to increase the mechanical strength of the fuel cell.

次に、第1の薄板23側から第1の溝を複数平行に形成する。また、第2の薄板24側から第2の溝を積層方向に見て第1の溝同士の間にそれぞれ複数平行に形成する。これにより積層方向が平行で、かつ間隔を介して並んだ積層電解質C1〜C5、第1の板材23a,23b,23c、第2の板材24a,24b,24cを形成する。
本実施形態においては、まず第2の薄板24側からドライエッチングで第1の薄板23まで深さを持つ第1の溝203a,203bを加工する。(図2c)
その後レジスト25a、25b、25cを除去し、第1の薄板23側に外周縁部を幅5mmでレジスト(図示せず)を塗布し、さらに9cm×3μmの面積で1μm間隔にレジスト27a,27b,27cを塗布する(図2d)。
次にドライエッチングで第1の薄板23側から第2の板材24a、24b、24cまで深さを持つ溝204a、204bを加工し(図2(e))、その後レジスト27a,27b,27cを除去する(図2f)。これにより燃料電池セルは、一段面でみて、第1の板材、積層電解質、第2の板材、積層電解質の順に繰り返しつづら折り状に配置された構造となる。
Next, a plurality of first grooves are formed in parallel from the first thin plate 23 side. Further, a plurality of second grooves are formed in parallel between the first grooves when viewed in the stacking direction from the second thin plate 24 side. As a result, the laminated electrolytes C1 to C5, the first plate members 23a, 23b, and 23c, and the second plate members 24a, 24b, and 24c that are arranged in parallel and spaced apart are formed.
In the present embodiment, first grooves 203a and 203b having a depth from the second thin plate 24 side to the first thin plate 23 are processed by dry etching. (Fig. 2c)
Thereafter, the resists 25a, 25b, and 25c are removed, and a resist (not shown) is applied to the first thin plate 23 with an outer peripheral edge portion having a width of 5 mm, and further, the resists 27a, 27b, 27c is applied (FIG. 2d).
Next, grooves 204a and 204b having depths from the first thin plate 23 side to the second plate members 24a, 24b, and 24c are processed by dry etching (FIG. 2E), and then the resists 27a, 27b, and 27c are removed. (FIG. 2f). As a result, the fuel cell has a structure in which the first plate member, the laminated electrolyte, the second plate member, and the laminated electrolyte are repeatedly arranged in a zigzag manner when viewed from the first stage.

その後、燃料極29を、前記第1の溝204a,204bの内部において両側の積層電解質の面同士を接続し、かつ、第1の板材又は第2の板材を覆うように形成する。また、空気極28を、第2の溝203a,203bの内部において両側の積層電解質の面同士を接続し、かつ、第2の板材又は第1の板材を覆うように形成する。本実施形態においては、空気極28、燃料極29はそれぞれスパッタリングによりPt多孔質電極を形成した(図2g)。
以上により、平板型の燃料電池セルを少ない積層工程で容易に得ることができる。
Thereafter, the fuel electrode 29 is formed so as to connect the surfaces of the laminated electrolytes on both sides inside the first grooves 204a and 204b and cover the first plate member or the second plate member. Further, the air electrode 28 is formed so as to connect the surfaces of the laminated electrolytes on both sides inside the second grooves 203a and 203b and to cover the second plate material or the first plate material. In this embodiment, the air electrode 28 and the fuel electrode 29 each formed a Pt porous electrode by sputtering (FIG. 2g).
As described above, a flat type fuel cell can be easily obtained with a small number of stacking steps.

11,21:イオン伝導性膜、
12,22:イオン非伝導性膜、
13a,13b,13c,23a,23b,23c:第1の板材、
14a,14b,24a,24b,24c:第2の板材、
15,29:燃料極、
16,28:空気極、
23:第1の薄板、
24:第2の薄板、
25a,25b,25c、27a,27b,27c:レジスト
101a,101b、204a,204b:第1の溝、
102a,102b,203a,203b:第2の溝、
C1〜C5:積層電解質
11, 21: ion conductive membrane,
12, 22: ion non-conductive membrane,
13a, 13b, 13c, 23a, 23b, 23c: first plate material,
14a, 14b, 24a, 24b, 24c: second plate material,
15, 29: Fuel electrode,
16, 28: air electrode,
23: first thin plate,
24: Second thin plate,
25a, 25b, 25c, 27a, 27b, 27c: resists 101a, 101b, 204a, 204b: first grooves,
102a, 102b, 203a, 203b: second groove,
C1 to C5: multilayer electrolyte

Claims (5)

イオン伝導性膜とイオン非伝導性膜が交互に積層された積層電解質と、前記積層電解質の積層断面に燃料極と空気極を備えた燃料電池セルであって、
第1の仮想面に沿って並ぶ複数の第1の板材と、第1の仮想面と平行な第2の仮想面に沿って並ぶ複数の第2の板材を備え、
前記第1の板材と前記第2の板材の間に、前記積層電解質が積層方向を前記第1及び第2の仮想面の垂直方向になるように配置され、
前記燃料電池セルの一断面を見たとき、
前記燃料電池セルは、第1の板材、積層電解質、第2の板材、積層電解質の順に繰り返しつづら折り状に配置され、
前記燃料極が、隣り合う前記積層電解質の積層断面同士を接続し、かつ前記第1の板材又は第2の板材を覆うように形成され、
前記空気極が、別の隣り合う前記積層電解質の積層断面同士を接続し、かつ前記第2の板材又は第1の板材を覆うように形成され、
前記燃料極と空気極が前記第1の仮想面と第2の仮想面の間において交互に配置されることを特徴とする燃料電池セル。
A laminated electrolyte in which an ion conductive membrane and an ion non-conductive membrane are alternately laminated, and a fuel cell having a fuel electrode and an air electrode in a laminated section of the laminated electrolyte,
A plurality of first plate members arranged along the first virtual surface, and a plurality of second plate members arranged along a second virtual surface parallel to the first virtual surface,
Between the first plate member and the second plate member, the laminated electrolyte is disposed so that the lamination direction is perpendicular to the first and second imaginary planes,
When looking at a cross section of the fuel cell,
The fuel cells are arranged in a repeating manner in the order of a first plate material, a laminated electrolyte, a second plate material, and a laminated electrolyte,
The fuel electrode is formed so as to connect the laminated sections of the laminated electrolyte adjacent to each other and cover the first plate member or the second plate member,
The air electrode is formed so as to connect the laminated cross-sections of the adjacent laminated electrolytes adjacent to each other and cover the second plate material or the first plate material,
The fuel cell, wherein the fuel electrode and the air electrode are alternately arranged between the first virtual surface and the second virtual surface.
請求項1に記載の燃料電池セルであって、
前記イオン伝導性膜がイットリウム安定化ZrO膜(YSZ膜)からなり、前記イオン非伝導性膜がSrTiO(STO膜)からなることを特徴とする燃料電池セル。
The fuel cell according to claim 1,
The fuel cell, wherein the ion conductive film is made of an yttrium-stabilized ZrO 2 film (YSZ film), and the ion non-conductive film is made of SrTiO 3 (STO film).
請求項1又は請求項2に記載の燃料電池セルであって、
前記第1又は第2の板材の一方がシリコン単結晶又はSrTiO単結晶からなることを特徴とする燃料電池セル。
The fuel battery cell according to claim 1 or 2,
The first or fuel cell in which one of the second plate is characterized in that it consists of a silicon single crystal or SrTiO 3 single crystal.
請求項1乃至請求項3の何れかに記載の燃料電池セルであって、
前記第1又は第2の板材の他方がSiO、SrTiO、ZrOのいずれか一つからなることを特徴とする燃料電池セル。
A fuel battery cell according to any one of claims 1 to 3,
2. The fuel cell according to claim 1, wherein the other of the first and second plate members is made of any one of SiO 2 , SrTiO 3 , and ZrO 2 .
第1の薄板の上にイオン伝導性膜とイオン非伝導性膜を交互に積層し、その積層膜の上に第2の薄板を形成する工程と、
前記第1の薄板側から第1の溝を複数平行に形成し、前記第2の薄板側から第2の溝を積層方向に見て前記第1の溝同士の間にそれぞれ複数平行に形成することで複数の積層電解質、複数の第1の板材、複数の第2の板材を形成し、前記第1の板材、積層電解質、第2の板材、積層電解質の順に繰り返しつづら折り状に配置される構成とする工程と、
燃料極として、前記第1の溝の内部において両側の前記積層電解質の面同士を接続し、かつ、前記第1の板材又は第2の板材を覆うように形成する工程と、
空気極として、前記第2の溝の内部において両側の前記積層電解質の面同士を接続し、かつ、前記第2の板材又は第1の板材を覆うように形成する工程と、を有することを特徴とする燃料電池セルの製造方法。

Alternately stacking an ion conductive film and an ion non-conductive film on the first thin plate, and forming a second thin plate on the stacked film;
A plurality of first grooves are formed in parallel from the first thin plate side, and a plurality of second grooves are formed in parallel between the first grooves when viewed in the stacking direction from the second thin plate side. In this configuration, a plurality of laminated electrolytes, a plurality of first plate members, and a plurality of second plate members are formed, and the first plate member, the laminated electrolyte, the second plate member, and the laminated electrolyte are repeatedly arranged in a zigzag manner. And a process of
Connecting the surfaces of the laminated electrolyte on both sides inside the first groove and forming the fuel electrode so as to cover the first plate member or the second plate member;
A step of connecting the surfaces of the multilayer electrolytes on both sides inside the second groove and covering the second plate or the first plate as the air electrode. A method for producing a fuel cell.

JP2011195385A 2011-09-07 2011-09-07 Fuel battery cell, and manufacturing method oh the same Withdrawn JP2013058360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195385A JP2013058360A (en) 2011-09-07 2011-09-07 Fuel battery cell, and manufacturing method oh the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195385A JP2013058360A (en) 2011-09-07 2011-09-07 Fuel battery cell, and manufacturing method oh the same

Publications (1)

Publication Number Publication Date
JP2013058360A true JP2013058360A (en) 2013-03-28

Family

ID=48134065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195385A Withdrawn JP2013058360A (en) 2011-09-07 2011-09-07 Fuel battery cell, and manufacturing method oh the same

Country Status (1)

Country Link
JP (1) JP2013058360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194502A (en) * 2017-10-12 2020-05-22 富士胶片株式会社 Binder composition for all-solid-state secondary battery, solid electrolyte-containing sheet, all-solid-state secondary battery, and solid electrolyte-containing sheet and method for producing all-solid-state secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194502A (en) * 2017-10-12 2020-05-22 富士胶片株式会社 Binder composition for all-solid-state secondary battery, solid electrolyte-containing sheet, all-solid-state secondary battery, and solid electrolyte-containing sheet and method for producing all-solid-state secondary battery
CN111194502B (en) * 2017-10-12 2023-05-05 富士胶片株式会社 Binder composition for all-solid-state secondary battery, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing both

Similar Documents

Publication Publication Date Title
KR100464607B1 (en) Solid oxide fuel cell stack and method of manufacturing the same
EP1919021B1 (en) Thin plate member for unit cell of solid oxide fuel cell
US6770395B2 (en) Internally manifolded, planar solid oxide fuel cell (SOFC) stack with an inexpensive interconnect
JP4750018B2 (en) Planar fuel cell and method of manufacturing the fuel cell
JP6169930B2 (en) Solid oxide fuel cell
JP2014518434A5 (en)
JP5119275B2 (en) Fuel cell and manufacturing method thereof
US20140205933A1 (en) Fuel cell and a method of manufacturing a fuel cell
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
JP2002319413A (en) Solid electrolyte fuel cell plate and stack
KR101628653B1 (en) Saperator for solid oxide fuel cell and fuel cell having thereof and method for manufacturing the same
WO2009122768A1 (en) Solid electrolyte fuel cell and method for producing the same
JP6039459B2 (en) Solid oxide fuel cell
US7351491B2 (en) Supporting electrodes for solid oxide fuel cells and other electrochemical devices
US9722259B2 (en) Ceramic substrate for electrochemical element, manufacturing method therefore, fuel cell, and fuel cell stack
JP2015064961A (en) Solid oxide type fuel battery cell
JP2013058360A (en) Fuel battery cell, and manufacturing method oh the same
JP6119869B2 (en) Solid oxide fuel cell stack
US20050003262A1 (en) Solid-state fuel cell and related method of manufacture
JP2015069701A (en) Solid oxide fuel cell
JP2005158269A (en) Forming method of solid oxide fuel cell
JP6972307B2 (en) Solid oxide fuel cell
JP5620785B2 (en) Fuel cell
WO2019208187A1 (en) Solid oxide fuel battery cell
US20110027694A1 (en) Solid-oxide fuel cells with concentric laminating electrolytes in a nanoporous membrane

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202