JP2013057560A - Reaction speed analysis device using nuclear magnetic resonance - Google Patents

Reaction speed analysis device using nuclear magnetic resonance Download PDF

Info

Publication number
JP2013057560A
JP2013057560A JP2011195161A JP2011195161A JP2013057560A JP 2013057560 A JP2013057560 A JP 2013057560A JP 2011195161 A JP2011195161 A JP 2011195161A JP 2011195161 A JP2011195161 A JP 2011195161A JP 2013057560 A JP2013057560 A JP 2013057560A
Authority
JP
Japan
Prior art keywords
sample solution
nmr
temperature
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011195161A
Other languages
Japanese (ja)
Other versions
JP5831872B2 (en
Inventor
Kazuhiko Yamazaki
和彦 山崎
Michiya Okada
道哉 岡田
Takamitsu Takatsuma
孝光 高妻
Yuji Obara
裕二 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ibaraki University NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ibaraki University NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011195161A priority Critical patent/JP5831872B2/en
Publication of JP2013057560A publication Critical patent/JP2013057560A/en
Application granted granted Critical
Publication of JP5831872B2 publication Critical patent/JP5831872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reaction speed analysis device utilizing nuclear magnetic resonance capable of analyzing even resonance speed of a reaction with high temperature variation responsiveness to be induced by variation of temperature by NMR measurement.SOLUTION: A reaction speed analysis device utilizing nuclear magnetic resonance is the device for analyzing speed of a reaction to be induced by variation of temperature by nuclear magnetic resonance measurement, and consists of: 1) an NMR magnet which provides sample solution with a magnetic field; 2) a sample solution circulatory system with: a holding part which is installed in a bore in the NMR magnet, and in which the sample solution receives the magnetic field; annular piping consecutively connected to the holding part, a pump which performs circulatory supply of the sample solution in the piping, a first temperature adjustment part which adjusts temperature of the sample solution outside the NMR magnet, and a second temperature adjustment part which adjusts the temperature of the sample solution in the NMR magnet; 3) a detection/control part with a detection coil which is arranged in the outer peripherals of the holding part to detect an NMR signal of the sample solution, and a spectrometer which receives the NMR signal to be converted into an NMR spectrum or an MRI image picture.

Description

本発明は、温度の変化によって誘起される反応の速度を、NMRスペクトル測定やMRI測定等の核磁気共鳴現象を利用した測定(NMR測定)によって解析するため方法と、それを可能とする温度可変機能を伴った装置に関する。 The present invention relates to a method for analyzing the rate of reaction induced by a change in temperature by measurement (NMR measurement) using nuclear magnetic resonance phenomena such as NMR spectrum measurement and MRI measurement, and a temperature variable that makes it possible. The present invention relates to a device with a function.

温度の変化によって物質の状態や構造が変換することは、水の相転移に代表されるように、非常に広範な物質に備わる性質である。生体を構成するタンパク質も、常温下では固有の立体構造を形成するのに対して、高温下では変性してそれを失う。一部のタンパク質は、加熱によって変性させても、再度冷却すれば巻き戻り、固有の立体構造を取り戻す。 The change in the state and structure of a substance due to a change in temperature is a property of a very wide range of substances, as represented by the phase transition of water. Proteins that make up living organisms form a unique three-dimensional structure at room temperature, but denature and lose at high temperatures. Some proteins may be denatured by heating, but will rewind and regain their inherent conformation when cooled again.

分子の立体構造変化や化学構造の変化を検出する核磁気共鳴を利用したスペクトル測定法(以下、NMRスペクトル測定という。)は、非常に情報量の多い有用な測定法であり、タンパク質の構造変化についても鋭敏に検出することが出来る。赤坂らは、NMRスペクトル測定によってタンパク質の巻き戻り過程を観察し、得られたスペクトル(以下、NMRスペクトル)の変化を解析することにより、タンパク質の構造変化の反応の速度定数を得ることに成功している(非特許文献1、2)。 Spectral measurement using nuclear magnetic resonance (hereinafter referred to as NMR spectrum measurement), which detects changes in the three-dimensional structure and chemical structure of molecules, is a useful measurement method with a large amount of information. Can be detected with high sensitivity. Akasaka et al. Succeeded in obtaining the rate constant of the protein structural change reaction by observing the unwinding process of the protein by NMR spectrum measurement and analyzing the change in the obtained spectrum (hereinafter referred to as NMR spectrum). (Non-Patent Documents 1 and 2).

非特許文献1、2の技術では、NMR磁石の検出部に設置されたタンパク質溶液の入った試料管に対して、高温の空気を吹き付けて変性させた後、低温の空気に切り替えて巻き戻りを誘導し、複数のNMR測定を連続して行う。そして、NMRスペクトル変化を指数関数変化として解析することにより、速度定数を定量している。非特許文献1、2で得られた速度定数は0.03s−1〜0.04s−1程度であった。 In the techniques of Non-Patent Documents 1 and 2, the sample tube containing the protein solution installed in the detection part of the NMR magnet is denatured by blowing high-temperature air, and then switched to low-temperature air for rewinding. Guide and perform multiple NMR measurements in succession. Then, the rate constant is quantified by analyzing the NMR spectrum change as an exponential function change. The rate constant obtained in Non-Patent Documents 1 and 2 was about 0.03 s −1 to 0.04 s −1 .

しかしながら、非特許文献1、2の技術では、さらに1桁速い反応(速度定数0.5s−1程度)の解析は難しいと考えられる。その理由として、吹き付ける空気の切り替え後に、温度が目的の値に到達し安定するまでに10秒程度かかることが挙げられる。これがデッドタイムとなり、この間に、早い反応の振幅は、おおよそ1/170と著しく減衰し、解析が困難となる。 However, with the techniques of Non-Patent Documents 1 and 2, it is considered difficult to analyze a reaction that is an order of magnitude faster (rate constant 0.5 s −1 or so). The reason is that it takes about 10 seconds for the temperature to reach the target value and stabilize after switching the air to be blown. This becomes a dead time, and during this time, the amplitude of the early reaction is significantly attenuated to 1/170, which makes analysis difficult.

タンパク質の変性、巻き戻りの誘導の方法としては、上記の空気の吹き付け以外に、タンパク質が溶解した試料を循環フロー系の中で送液ポンプの力で循環させ、その中に加熱部と冷却部を挿入し、それぞれ、変性と巻き戻りを誘導することが行われている(非特許文献3)。 As a method for inducing protein denaturation and rewinding, in addition to the above-mentioned air blowing, the sample in which the protein is dissolved is circulated in the circulation flow system by the force of the liquid feed pump, and the heating unit and the cooling unit are included therein. Are inserted to induce denaturation and rewinding, respectively (Non-patent Document 3).

非特許文献3の方法では、送液ポンプを常に稼働状態にしているため、加熱部を経て変性したタンパク質試料溶液が冷却部を経て巻き戻り反応を開始し、NMR測定の検出コイルに到達した時点での1つのNMRスペクトルのみの観察に留まっており、速度定数は得られていない。 In the method of Non-Patent Document 3, since the liquid feed pump is always in an operating state, the protein sample solution denatured through the heating unit starts the rewinding reaction through the cooling unit and reaches the detection coil for NMR measurement. Only one NMR spectrum was observed at, and no rate constant was obtained.

また、タンパク質の巻き戻りを誘導するための冷却部がNMR磁石の外に存在するため、検出コイルとの距離があり、巻き戻り反応後に検出コイルに到達するまでの時間が15秒程度となる。したがって、送液ポンプを止めてNMRスペクトル変化を観察できたとしても、速度定数0.5s−1のレベルの反応は解析できない。 Moreover, since the cooling part for inducing protein rewinding exists outside the NMR magnet, there is a distance from the detection coil, and the time to reach the detection coil after the rewinding reaction is about 15 seconds. Therefore, even if the liquid feeding pump is stopped and the NMR spectrum change can be observed, the reaction at the level of the rate constant 0.5 s −1 cannot be analyzed.

特開2007−315826号公報JP 2007-315826 A

赤坂ら「Construction and performanceof a temperature-jump NMR apparatus」Rev. Sci. Instrum.61, 66-68, 1990Akasaka et al. “Construction and performance of a temperature-jump NMR apparatus” Rev. Sci. Instrum. 61, 66-68, 1990 赤坂ら「Temperature-jump NMR study ofprotein folding: Ribonuclease A at low pH」J. Biomol. NMR1, 65-70, 1991Akasaka et al. “Temperature-jump NMR study of protein folding: Ribonuclease A at low pH” J. Biomol. NMR1, 65-70, 1991 Alderら「Structuralstudies of a folding intermediate of bovine pancreatic ribonuclease A bycontinuous recycled flow」Biochemistry 27, 2471-2480,1988Alder et al. “Structural studies of a folding intermediate of bovine pancreatic ribonuclease A by continuous recycled flow” Biochemistry 27, 2471-2480, 1988 北川ら「A new titration system of anovel split-type superconducting magnet NMR spectrometer」Rev. Sci. Instrum. 79, 123109, 2008Kitagawa et al. “A new titration system of anovel split-type superconducting magnet NMR spectrometer” Rev. Sci. Instrum. 79, 123109, 2008

非特許文献1〜3に開示の従来技術では、温度変化に伴うタンパク質の構造変化開始後、NMRスペクトル変化を検出できるまでの間が10秒程度以上となり、速度定数0.5s−1のレベルの反応の解析が非常に困難である。 In the prior art disclosed in Non-Patent Documents 1 to 3, the time until the NMR spectrum change can be detected after the start of the protein structural change accompanying the temperature change is about 10 seconds or more, and the rate constant is 0.5 s −1 . It is very difficult to analyze the reaction.

そこで、本発明は、温度の変化によって誘起される、温度変化応答性が高い反応の反応速度であってもNMR測定を用いて解析することができる核磁気共鳴を利用した反応速度解析装置、より具体的には、試料を含む試料溶液が温度変化開始後に1秒以内にNMR磁石内の保持部に到達し、その後の待ち時間を合わせたデッドタイムを2秒以下に短縮できる構造にすることにより、速度定数0.5s−1の程度の早い反応の速度定数の定量を、NMR測定を用いて行うことができる核磁気共鳴を利用した反応速度解析装置を提供することを目的とする。 Therefore, the present invention provides a reaction rate analyzer using nuclear magnetic resonance, which can be analyzed using NMR measurement even if the reaction rate of the reaction induced by temperature change is high in temperature change responsiveness. Specifically, the sample solution containing the sample reaches the holding part in the NMR magnet within 1 second after the temperature change starts, and the dead time including the waiting time thereafter is shortened to 2 seconds or less. An object of the present invention is to provide a reaction rate analyzer using nuclear magnetic resonance capable of quantifying the rate constant of a fast reaction of about 0.5 s −1 using NMR measurement.

本発明は、上記課題を解決するために、
(1)
温度の変化によって誘起される反応の速度を核磁気共鳴測定によって解析するための装置であって、
1)試料溶液に磁場を与えるNMRスペクトル測定用もしくはMRI測定用のNMR磁石と、2)前記NMR磁石内のボアに設置され試料溶液が前記磁場を受ける保持部、前記保持部に連設する環状の配管、前記配管内で試料溶液を循環送液させるポンプ、前記試料溶液を前記NMR磁石外で温度調節する第一温度調節部、及び前記試料溶液を前記NMR磁石内で温度調節する第二温度調節部を備えた試料溶液循環系と、3)前記保持部外周に配置され試料溶液のNMR信号を検知する検出コイル、及び前記NMR信号を受けNMRスペクトルあるいはMRIイメージ画像に変換する分光計を備えた検出・制御部と、からなることを特徴とする核磁気共鳴を利用した反応速度解析装置の構成とした。
(2)
前記第一温度調節部が試料溶液を加熱する加熱部で、前記第二温度調節部が試料溶液を冷却する冷却部であること、又は、前記第二温度調節部が試料溶液を冷却する冷却部で、前記第二温度調節部が試料溶液を加熱する加熱部であること、を特徴とする(1)に記載の核磁気共鳴を利用した反応速度解析装置の構成とした。
(3)
前記分光計が、前記ポンプの駆動を制御するON/OFF信号を生成し、前記ポンプに送信し、前記ポンプの駆動を制御することを特徴とする(1)又は(2)に記載の核磁気共鳴を利用した反応速度解析装置の構成とした。
(4)
NMRスペクトル測定の場合には、前記保持部、検出コイル及び第二温度調節部で核磁気共鳴のプローブを構成するとともに、前記プローブを前記ボアに着脱可能としたことを特徴とする(1)〜(3)のいずれかに記載の核磁気共鳴を利用した反応速度解析装置の構成とした。
(5)
(1)〜(4)のいずれかに記載の核磁気共鳴を利用した反応速度解析装置において、前記ポンプを作動させ前記第二温度調節部で温度変化させた試料溶液を前記保持部に送液し、前記ポンプを停止させ、所定時間経過毎に前記保持部内の試料溶液のNMR測定をし、さらに、前記ポンプの作動、停止、前記試料溶液のNMR測定のセットを複数回繰り返し、NMR信号として得られた等価のNMRスペクトルあるいはMRIイメージ画像を複数積算して反応速度を解析することを特徴とする核磁気共鳴を利用した反応速度解析装置の構成とした。
(6)
(1)〜(5)のいずれかに記載の核磁気共鳴を利用した反応速度解析装置において、前記第二温度調節部から前記保持部までの試料溶液の送液時間を1秒以内としたことを特徴とする核磁気共鳴を利用した反応速度解析装置の構成とした。
In order to solve the above problems, the present invention
(1)
An apparatus for analyzing the rate of reaction induced by a change in temperature by nuclear magnetic resonance measurement,
1) NMR magnet for NMR spectrum measurement or MRI measurement that gives a magnetic field to the sample solution, and 2) a holding unit that is installed in a bore in the NMR magnet to receive the magnetic field, and a ring that is connected to the holding unit. A pipe for circulating the sample solution in the pipe, a first temperature adjusting unit for adjusting the temperature of the sample solution outside the NMR magnet, and a second temperature for adjusting the temperature of the sample solution in the NMR magnet A sample solution circulation system provided with a control unit; 3) a detection coil arranged on the outer periphery of the holding unit for detecting an NMR signal of the sample solution; and a spectrometer for receiving the NMR signal and converting it into an NMR spectrum or an MRI image image. The reaction rate analyzing apparatus using nuclear magnetic resonance is characterized by comprising a detection / control unit.
(2)
The first temperature control unit is a heating unit that heats the sample solution, and the second temperature control unit is a cooling unit that cools the sample solution, or the second temperature control unit is a cooling unit that cools the sample solution. Thus, the second temperature control unit is a heating unit that heats the sample solution, and the reaction rate analyzer using nuclear magnetic resonance according to (1) is configured.
(3)
The nuclear magnetism according to (1) or (2), wherein the spectrometer generates an ON / OFF signal for controlling the driving of the pump, transmits the signal to the pump, and controls the driving of the pump. It was set as the structure of the reaction rate analyzer using resonance.
(4)
In the case of NMR spectrum measurement, the holding unit, the detection coil, and the second temperature control unit constitute a nuclear magnetic resonance probe, and the probe can be attached to and detached from the bore. It was set as the structure of the reaction rate analyzer using the nuclear magnetic resonance in any one of (3).
(5)
In the reaction rate analysis apparatus using nuclear magnetic resonance according to any one of (1) to (4), the sample solution that has been operated by the pump and changed in temperature by the second temperature adjusting unit is fed to the holding unit. The pump is stopped, and NMR measurement of the sample solution in the holding unit is performed every predetermined time. Further, the pump operation, stop, and NMR measurement of the sample solution are repeated several times to obtain an NMR signal. The reaction rate analysis apparatus using nuclear magnetic resonance is characterized in that a plurality of obtained equivalent NMR spectra or MRI image images are integrated to analyze the reaction rate.
(6)
In the reaction rate analyzer using nuclear magnetic resonance according to any one of (1) to (5), the time for feeding the sample solution from the second temperature control unit to the holding unit is within one second. The reaction rate analyzer using nuclear magnetic resonance is characterized.

本発明は、上記構成であるので、次の効果を有する。NMR磁石内に試料溶液の第二温度調節部(冷却部又は加熱部)を配置しているため、温度変化直後の試料の反応状態を検出することができる。また、NMRスペクトル測定の場合は、保持部、検出コイル及び第二温度調節部で核磁気共鳴のプローブを構成することで、プローブがボアに容易に着脱可能になる。   Since this invention is the said structure, it has the following effect. Since the second temperature adjusting part (cooling part or heating part) of the sample solution is arranged in the NMR magnet, the reaction state of the sample immediately after the temperature change can be detected. In the case of NMR spectrum measurement, the probe can be easily attached to and detached from the bore by forming a nuclear magnetic resonance probe with the holding unit, the detection coil, and the second temperature adjusting unit.

また、温度調節装置から保持部まで、試料溶液の送液時間を1秒以内とすることで、反応定数0.5s−1以上の反応定数の定量が可能になる。さらに、試料溶液を送液する配管が環状であり、ポンプの駆動のON/OFFを制御することで、保持部内で試料溶液のNMR測定をすることを繰り返し行うことができ、NMR信号を積算することが可能となり、シグナル/ノイズ比が向上し、温度変化によって誘起される反応を精度よく検出することができる。 In addition, the reaction constant of 0.5 s −1 or more can be quantified by setting the sample solution feeding time within one second from the temperature control device to the holding unit. Further, the pipe for feeding the sample solution is annular, and by controlling the ON / OFF of the drive of the pump, the NMR measurement of the sample solution can be repeatedly performed in the holding unit, and the NMR signals are integrated. Thus, the signal / noise ratio is improved, and the reaction induced by the temperature change can be accurately detected.

図1は、本発明である核磁気共鳴を利用した速度解析装置の模式図である。FIG. 1 is a schematic diagram of a velocity analysis apparatus using nuclear magnetic resonance according to the present invention. 図2は、本発明である核磁気共鳴を利用した速度解析装置の他の形態の模式図である。FIG. 2 is a schematic diagram of another embodiment of a velocity analyzing apparatus using nuclear magnetic resonance according to the present invention. 図3は、タンパク質の巻き戻り反応に伴うNMRスペクトル変化グラフである。FIG. 3 is an NMR spectrum change graph associated with the protein rewinding reaction. NMRピーク強度(図3で矢印表示した位置)の時間変化を指数関数フィッティングすることにより、0.47s−1の速度定数を得た結果である。This is a result of obtaining a rate constant of 0.47 s −1 by exponential function fitting of the time change of the NMR peak intensity (position indicated by the arrow in FIG. 3).

以下、本発明について、図面を参照しながら詳細に説明する。図1に示すように、本発明である核磁気共鳴を利用した反応速度解析装置1は、NMRスペクトル測定用であって、(1)NMR磁石4と(2)試料溶液循環系2と(3)検出・制御部3とからなる。   Hereinafter, the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the reaction rate analyzer 1 using nuclear magnetic resonance according to the present invention is for NMR spectrum measurement, and includes (1) NMR magnet 4 and (2) sample solution circulation system 2 and (3 ) The detection / control unit 3.

(1)NMR磁石4は、試料溶液に磁場を与える、従来からNMRスペクトル測定に用いられているものを採用することができる。例えば、NMR磁石4は、横置きスプリットタイプで中心部のスプリットギャップにアクセスしやすい比較的大きな空間を生じる超伝導磁石(特許文献1、非特許文献4)を用いることができる。必ずしも横置きでなくてよい。また、医療用MRI測定に用いられているNMR磁石でもよい。   (1) As the NMR magnet 4, a magnetic magnet that has been conventionally used for NMR spectrum measurement that applies a magnetic field to a sample solution can be employed. For example, the NMR magnet 4 may be a superconducting magnet (Patent Document 1, Non-Patent Document 4) that generates a relatively large space that is easy to access the split gap at the center part of the horizontal magnet. It does not have to be horizontal. Alternatively, an NMR magnet used for medical MRI measurement may be used.

(2)試料溶液循環系2は、NMR磁石4内のボアに設置され試料溶液がNMR磁石4から磁場を受ける場所である保持部2eと、保持部2eに連設する環状の配管2aと、配管2a内で試料溶液を循環送液させるポンプ2bと、試料溶液をNMR磁石4外で加熱する加熱部2c(第一温度調節部)と、試料溶液をNMR磁石4内で冷却する冷却部2d(第二温度調節部)からなる。保持部2eはNMRスペクトルを取得する場合には従来のNMRスペクトル測定用の試験管を採用することができる。なお、MRI測定でMRIイメージ画像を取得する場合には、人工心臓など試験管と同等のものを採用することができる。   (2) The sample solution circulation system 2 is installed in a bore in the NMR magnet 4, a holding part 2 e that is a place where the sample solution receives a magnetic field from the NMR magnet 4, an annular pipe 2 a connected to the holding part 2 e, A pump 2b for circulating the sample solution in the pipe 2a, a heating unit 2c (first temperature adjusting unit) for heating the sample solution outside the NMR magnet 4, and a cooling unit 2d for cooling the sample solution in the NMR magnet 4 (Second temperature control unit). The holder 2e can adopt a conventional test tube for NMR spectrum measurement when acquiring an NMR spectrum. In addition, when acquiring an MRI image image by MRI measurement, the thing equivalent to a test tube, such as an artificial heart, is employable.

冷却部2dをNMR磁石4内のボアに設置することにより、検出コイル3aとの距離を短縮でき、デッドタイムの短縮を実現することができる。加熱部2c、冷却部2dは、ヒートポンプなどによる熱交換器などが例示できる。   By installing the cooling unit 2d in the bore in the NMR magnet 4, the distance from the detection coil 3a can be shortened, and the dead time can be shortened. The heating unit 2c and the cooling unit 2d can be exemplified by a heat exchanger such as a heat pump.

具体的には、加熱部2cでは配管2aに熱媒体を直接或いは間接的に接触させて加熱することなどが挙げられる。また、NMR磁石4内の第二温度調節部である冷却部2dでは、配管2aに直接又は間接的に接触させるため、冷媒をNMR磁石4外に設置された冷凍機、冷却器(図示せず)から別途管を介して循環するなどの方法が例示できる。   Specifically, in the heating part 2c, heating is performed by bringing a heat medium into direct or indirect contact with the pipe 2a. Further, in the cooling unit 2d, which is the second temperature adjusting unit in the NMR magnet 4, in order to make direct or indirect contact with the pipe 2a, a refrigerator or a cooler (not shown) installed with the refrigerant outside the NMR magnet 4. For example, a method of circulating through a pipe separately.

ポンプ2bは接点信号等によって、ON/OFFの制御ができることが望ましい。また、送液能力は、例えば内径0.5mmの配管2aに対して10mL/min以上の速度での送液できることが望ましい。   The pump 2b is preferably capable of ON / OFF control by a contact signal or the like. Moreover, as for liquid feeding capability, it is desirable to be able to send liquid at the speed | rate of 10 mL / min or more with respect to the piping 2a of internal diameter 0.5mm, for example.

従って、ポンプ2b、試料溶液循環送液用の配管2aについては、高速液体クロマトグラフィーで用いられるポンプ、ポリエチレンエチレンケトン(PEEK)などの化学的に安定かつ100℃程度の耐熱性がある材質のチューブが望ましい(特許文献1、非特許文献4)。   Therefore, for the pump 2b and the pipe 2a for circulating the sample solution, a tube made of a chemically stable and heat resistant material of about 100 ° C. such as a pump used in high performance liquid chromatography or polyethylene ethylene ketone (PEEK). Is desirable (Patent Document 1, Non-Patent Document 4).

また、配管2aがそのような可撓性素材であれば、容易にプローブ5をボアに出し入れすることができる。なお、図1では、配管2aはNMR磁石4を上下に貫通して配置されているが、保持部2e後の配管2aもNMR磁石4の下側からポンプ2bに接続してもよい。   Further, if the pipe 2a is such a flexible material, the probe 5 can be easily put in and out of the bore. In FIG. 1, the pipe 2 a is arranged so as to penetrate the NMR magnet 4 vertically, but the pipe 2 a after the holding part 2 e may be connected to the pump 2 b from the lower side of the NMR magnet 4.

(3)検出・制御部3は、保持部2eの外周に配置され、試料溶液の核磁気共鳴信号であるNMR信号を検知する検出コイル3aと、分光計3bからなる。分光計3bは、検出コイル3aを通して試料溶液にラジオ波3cを照射し、検出コイル3aを通してNMR信号3dを受ける。NMRスペクトル測定する場合には、NMR信号3dをフーリエ変換することによりNMRスペクトルを得る。MRI測定する場合には、NMR信号3dをMRIイメージ画像に変換する。また、ポンプ2bの駆動を制御するON/OFF信号3eを生成、送信する。   (3) The detection / control unit 3 is arranged on the outer periphery of the holding unit 2e, and includes a detection coil 3a that detects an NMR signal that is a nuclear magnetic resonance signal of the sample solution, and a spectrometer 3b. The spectrometer 3b irradiates the sample solution with the radio wave 3c through the detection coil 3a, and receives the NMR signal 3d through the detection coil 3a. When the NMR spectrum is measured, the NMR spectrum is obtained by Fourier transforming the NMR signal 3d. When performing MRI measurement, the NMR signal 3d is converted into an MRI image. In addition, an ON / OFF signal 3e for controlling the driving of the pump 2b is generated and transmitted.

従って、分光計3bは、ポンプ2bの駆動のON/OFF、ラジオ波3cの照射、NMR信号3dの検出のタイミングを制御し、またこれを繰り返すことにより、反応の速度定数解析のための複数の等価のNMR信号3dの取得と複数のNMRスペクトル(或いはMRIイメージ画像)の積算によるシグナル/ノイズ比向上を実現する。なお、ポンプ2bのON/OFF制御は、分光計と分離してタイマーなどで制御してもよい。 Therefore, the spectrometer 3b controls the timing of ON / OFF of the drive of the pump 2b, the irradiation of the radio wave 3c, and the detection of the NMR signal 3d, and by repeating this, a plurality of the rate constant analysis for the reaction is performed. The signal / noise ratio is improved by obtaining an equivalent NMR signal 3d and integrating a plurality of NMR spectra (or MRI image images). The ON / OFF control of the pump 2b may be controlled by a timer or the like separately from the spectrometer.

そして、NMRスペクトル測定用の核磁気共鳴を利用した反応速度解析装置1において、保持部2eと検出コイル3aと冷却部2dで、核磁気共鳴のプローブ5を構成する。NMR磁石4の内部空間(ボア)にプローブ5は着脱できる。   In the reaction rate analysis apparatus 1 using nuclear magnetic resonance for NMR spectrum measurement, the holding unit 2e, the detection coil 3a, and the cooling unit 2d constitute a nuclear magnetic resonance probe 5. The probe 5 can be attached to and detached from the internal space (bore) of the NMR magnet 4.

以下、図1の試料溶液循環系2の場合における試料溶液の温度制御、送液制御、検出コイル3aにおける検出方法について説明する。   Hereinafter, the sample solution temperature control, liquid feed control, and detection method in the detection coil 3a in the case of the sample solution circulation system 2 in FIG. 1 will be described.

加熱部2cは、例えば、20L以上の水を張った金属製の容器に、市販のサーモスタット付きの投げ込み式ヒーターを入れて、容器内の水を加熱することで、試料溶液を加熱する。冷却部2dは、例えば、NMR磁石4内の検出コイル3a近傍に設置した容器に、NMR磁石4外に設置した市販の冷却水循環装置を用い、低温の水もしくは不凍液をシリコンチューブ等によって循環させる(図示省略)。 The heating unit 2c heats the sample solution by, for example, placing a commercially available throw-in heater with a thermostat in a metal container filled with 20 L or more of water and heating the water in the container. The cooling unit 2d uses, for example, a commercially available cooling water circulation device installed outside the NMR magnet 4 in a container installed in the vicinity of the detection coil 3a in the NMR magnet 4 to circulate low-temperature water or antifreeze using a silicon tube or the like ( (Not shown).

加熱部2cでの試料溶液の温度は、タンパク質の変性温度以上である80℃とし、冷却部2dの温度は保持部2e内において観察を行いたい反応温度(但し、タンパク質の変性温度以下)に従って設定する。例えば、保持部2e内での試料溶液の反応温度を40℃とする場合、内径0.5mmの配管2aで10mL/minの送液速度とすると、冷却部2dの温度設定が26℃であれば、80℃に加温された試料溶液がポンプ2bによって保持部2e送液された時点でちょうど40℃となる。   The temperature of the sample solution in the heating unit 2c is set to 80 ° C. which is higher than the protein denaturation temperature, and the temperature of the cooling unit 2d is set according to the reaction temperature to be observed in the holding unit 2e (however, below the protein denaturation temperature). To do. For example, when the reaction temperature of the sample solution in the holding part 2e is 40 ° C. and the pipe 2a has an inner diameter of 0.5 mm and the liquid feeding speed is 10 mL / min, the temperature setting of the cooling part 2d is 26 ° C. When the sample solution heated to 80 ° C. is sent by the pump 2b to the holding portion 2e, the temperature is exactly 40 ° C.

また、保持部2e内での反応温度を20℃とする場合は、冷却部2dの温度を12℃に設定すると、同様の効果が得られる。保持部2e内の目標温度と設定温度の一致は、ポンプ2bの送液停止平衡時とポンプ2b作動直後の水のシグナル位置の一致により判断する。この際、磁場補正のためのNMRロックを外すことにより、水のシグナル位置は温度変化に対して鋭敏に反応する。 Moreover, when the reaction temperature in the holding part 2e is 20 ° C., the same effect can be obtained by setting the temperature of the cooling part 2d to 12 ° C. The coincidence between the target temperature in the holding unit 2e and the set temperature is determined by the coincidence of the water signal position at the time of liquid feed stop equilibrium of the pump 2b and immediately after the pump 2b is operated. At this time, by removing the NMR lock for magnetic field correction, the signal position of water reacts sensitively to temperature changes.

加熱部2cには、1回のポンプ2bの作動によって移動する試料溶液(例えば0.5mL程度)を超える容量のタンパク質溶液を変性状態で保っておくことが必要である。配管2aを束ねるなどして加熱部2cに入れる場合、内径0.5mmのチューブであれば2m50cmでこの量となる。 In the heating unit 2c, it is necessary to keep in a denatured state a protein solution having a volume exceeding the sample solution (for example, about 0.5 mL) that is moved by one operation of the pump 2b. In the case where the pipe 2a is bundled and put into the heating unit 2c, the amount is 2 m50 cm if the tube has an inner diameter of 0.5 mm.

一方で、加熱部2cの出口から、保持部2eまで含む容量は、1回のポンプ2b作動によって移動する容量以下である必要がある。これにより、試料溶液、例えば変性・巻き戻りの反応過程のタンパク質溶液で保持部2eを満たすことができる。保持部を0.18mLとすると、0.32mL以下、上記のチューブで1m60cm以下となる。 On the other hand, the capacity | capacitance containing from the exit of the heating part 2c to the holding | maintenance part 2e needs to be below the capacity | capacitance which moves by one pump 2b action | operation. Thereby, the holding | maintenance part 2e can be satisfy | filled with the sample solution, for example, the protein solution of the reaction process of denaturation and rewinding. When the holding part is 0.18 mL, it is 0.32 mL or less, and 1 m60 cm or less with the above tube.

また、冷却部2dの中の試料溶液が通過する領域として、上記のチューブで20cm(0.04mL)程度とれば、効率的に冷却できる。冷却部2dの出口から、保持部2eまでの距離は短いほど良いが、上記のチューブで20cm以下(0.04mL)にすることが望ましい。 Moreover, if it is about 20 cm (0.04 mL) with said tube as an area | region through which the sample solution in the cooling part 2d passes, it can cool efficiently. The shorter the distance from the outlet of the cooling unit 2d to the holding unit 2e, the better. However, it is desirable that the distance is 20 cm or less (0.04 mL) with the above tube.

この結果、冷却開始となる冷却部2dの入り口から、保持部2eの中心位置までの流路容量は0.17mL以内となる。送液を10mL/minで行えば、冷却部2dの入り口から保持部2eまで1秒以内で到達する。 As a result, the flow path capacity from the entrance of the cooling unit 2d at which cooling starts to the center position of the holding unit 2e is within 0.17 mL. If liquid feeding is performed at 10 mL / min, it will reach within 1 second from the inlet of the cooling unit 2d to the holding unit 2e.

このようにしてなる核磁気共鳴を利用した反応速度解析装置1は、特許文献1の循環フロー系を改変し、温度の変化によって誘起される反応の速度定数を定量するための装置を構成する。   The reaction rate analyzing apparatus 1 using nuclear magnetic resonance thus configured modifies the circulation flow system of Patent Document 1 and constitutes an apparatus for quantifying the rate constant of the reaction induced by the temperature change.

先ず、ポンプ2bのON/OFFを分光計3bからON/OFF信号3eで制御可能にし、NMR測定中は試料溶液の循環を止めることによって、核磁気共鳴スペクトルの時間変化の解析が可能なシステムとなる。   First, a system capable of analyzing the temporal change of the nuclear magnetic resonance spectrum by enabling the ON / OFF of the pump 2b to be controlled by the ON / OFF signal 3e from the spectrometer 3b and stopping the circulation of the sample solution during the NMR measurement. Become.

次に、冷却部2dをNMR磁石4の中まで組み入れ、試料溶液が保持部2eに到達した時点で直ちに目的の温度に達するように温度を調整することにより、デッドタイムの2秒以下への短縮を実現する。 Next, the cooling unit 2d is incorporated into the NMR magnet 4 and the dead time is reduced to 2 seconds or less by adjusting the temperature so that the sample solution reaches the target temperature immediately when it reaches the holding unit 2e. Is realized.

このシステムにおいて、加熱、冷却、NMR測定を繰り返し、得られた等価の核磁気共鳴スペクトルを積算することによって、シグナル/ノイズ比が向上できる。上記のシステムにより、0.5s−1程度以上精度の高い速度定数の定量が可能となる。 In this system, the signal / noise ratio can be improved by repeating heating, cooling, and NMR measurement and integrating the obtained equivalent nuclear magnetic resonance spectra. With the above system, it is possible to quantify the rate constant with a high accuracy of about 0.5 s −1 or more.

NMRスペクトル測定のための超伝導磁石部は、超伝導コイルを浸す液体ヘリウム槽をNMR磁石4内に保持しており、中心部の狭い空間(ボア)にNMR信号3d検出のためのプローブ5を差し込み、プローブ5中に、検出コイル3aや保持部2eの温度調節のための電熱ヒーターやガスフロー系を設置している(図示省略)。 The superconducting magnet part for NMR spectrum measurement holds a liquid helium bath in which the superconducting coil is immersed in the NMR magnet 4, and a probe 5 for detecting the NMR signal 3d is placed in a narrow space (bore) in the center part. An electric heater and a gas flow system for adjusting the temperature of the detection coil 3a and the holding part 2e are installed in the probe 5 (not shown).

これに加えて、試料溶液循環系2を組み入れ、さらにそのための冷却部2dを組み込むことは、これまでに行われていない。 In addition to this, incorporating the sample solution circulation system 2 and further incorporating the cooling part 2d therefor has not been performed so far.

特に、ほとんどの市販のNMR測定用のプローブ5においては、検出コイル3aの中に外から脱着可能な電熱ヒーターが設置されており、そこにさらに冷却部2dを配置する発想はなかった。   In particular, in most commercially available probes 5 for NMR measurement, an electric heater that can be detached from the outside is installed in the detection coil 3a, and there has been no idea of further disposing a cooling part 2d.

図2の核磁気共鳴を利用した反応速度解析装置11では、NMRスペクトル測定用であって、図1における核磁気共鳴を利用した反応速度解析装置1の加熱部2cと冷却部2dの位置を交換し、第一温度調節部を冷却部2dとし第二温度調節部を加熱部2cとした試料溶液循環系12である。試料溶液、温度調節の方法、測定目的に応じて、核磁気共鳴を利用した反応速度解析装置1と核磁気共鳴を利用した反応速度解析装置11を使い分ける。   The reaction rate analyzer 11 using nuclear magnetic resonance in FIG. 2 is for NMR spectrum measurement, and exchanges the positions of the heating unit 2c and the cooling unit 2d of the reaction rate analyzer 1 using nuclear magnetic resonance in FIG. The sample solution circulation system 12 has the first temperature adjusting unit as the cooling unit 2d and the second temperature adjusting unit as the heating unit 2c. Depending on the sample solution, temperature control method, and measurement purpose, the reaction rate analyzer 1 using nuclear magnetic resonance and the reaction rate analyzer 11 using nuclear magnetic resonance are used properly.

次に、図1に示す核磁気共鳴を利用した反応速度解析装置1を用いて、試料溶液として、ウシ膵臓ribonucleaseA(EC3.1.27.5、Sigma社R5500)を0.3mMの濃度で、20mM重水素化酢酸(pH3.1:pHメータの表示)を含む99.9%重水に溶解したタンパク質溶液を使用して、タンパク質の温度依存的立体構造変化の反応速度定数を解析した結果について説明する。なお、本発明である核磁気共鳴を利用した反応速度解析装置は、タンパク質の立体構造変化の反応を測定することに限らず、NMR測定できる化学反応の反応速度解析に使用できることは勿論である。 Next, using the reaction rate analysis apparatus 1 using nuclear magnetic resonance shown in FIG. 1, bovine pancreatic ribonuclease A (EC 3.1.27.5, Sigma R5500) was used as a sample solution at a concentration of 0.3 mM. Explains the results of analyzing the reaction rate constant of the temperature-dependent conformational change of protein using a protein solution dissolved in 99.9% heavy water containing 20 mM deuterated acetic acid (pH 3.1: indicated by pH meter). To do. It should be noted that the reaction rate analysis apparatus using nuclear magnetic resonance according to the present invention is not limited to measuring a reaction of a three-dimensional structure change of a protein, but can be used for reaction rate analysis of a chemical reaction capable of NMR measurement.

当該試験では、図1の構成の核磁気共鳴を利用した反応速度解析装置1において、配管2aを内径0.5mmPEEKチューブとした。また加熱部2cを80℃、冷却部2dを26℃、別途ガスフローによってNMR磁石4内でプローブ5を構成する検出コイル3a部分を40℃に温度調節した。そして、ポンプ2bを3.5秒間作動させて送液を行い、その停止後、1.2秒間の待ち時間を置き、その後2.0秒おきに7回のNMR測定を行って、NMR信号3dとしてそれぞれ取得した(図3)。 In the test, in the reaction rate analyzer 1 using the nuclear magnetic resonance having the configuration shown in FIG. 1, the pipe 2a was a PEEK tube having an inner diameter of 0.5 mm. Further, the temperature of the heating part 2c was adjusted to 80 ° C., the cooling part 2d was adjusted to 26 ° C., and the temperature of the detection coil 3a portion constituting the probe 5 in the NMR magnet 4 was separately adjusted to 40 ° C. by gas flow. Then, the pump 2b is operated for 3.5 seconds to supply liquid, and after the stop, a waiting time of 1.2 seconds is set, and thereafter, NMR measurement is performed 7 times every 2.0 seconds to obtain an NMR signal 3d. Respectively (FIG. 3).

3.5秒の送液時間において、最初の1秒程度は圧力が上がらず送液がほとんどされない不感時間であるが、その後の2.5秒間は平均で12mL/minの速度で流れ、560μLを移送した。   In the liquid feeding time of 3.5 seconds, the first 1 second or so is a dead time in which the pressure does not increase and the liquid is hardly fed, but the subsequent 2.5 seconds flow at an average speed of 12 mL / min, and 560 μL is flown. Transferred.

実施例1で採用した試料溶液循環系2の冷却部2dの入り口から保持部2eの中心部までの流路容積は165μLで、冷却部2dで冷却が開始されてから検出コイル3aへ送液されるまでの到達時間は約0.8秒であった。そして、ポンプ停止後からNMR測定前の待ち時間である1.2秒を到達時間に加えた2.0秒が、核磁気共鳴を利用した反応速度解析装置1でのデッドタイムとなる。   The flow path volume from the inlet of the cooling part 2d of the sample solution circulation system 2 employed in Example 1 to the central part of the holding part 2e is 165 μL, and after the cooling is started by the cooling part 2d, the liquid is sent to the detection coil 3a. The arrival time until the end was about 0.8 seconds. Then, 2.0 seconds obtained by adding 1.2 seconds, which is a waiting time before the NMR measurement after the pump is stopped, to the arrival time is a dead time in the reaction rate analysis apparatus 1 using nuclear magnetic resonance.

このデットタイムであれば、0.5s−1の速度定数の反応でも、1/3以上の振幅が残存していることになり、反応速度の解析は十分可能である。なお、前記所定時間、ポンプ停止中の測定回数は、反応速度、種類により適宜変更されるのは勿論である。 With this dead time, an amplitude of 1/3 or more remains even in a reaction with a rate constant of 0.5 s −1 , and the analysis of the reaction rate is sufficiently possible. Of course, the number of measurements while the pump is stopped for the predetermined time is appropriately changed depending on the reaction rate and type.

そして、ポンプ2bの作動、停止、試料溶液のNMR測定のセットを複数回繰り返しポンプ2b停止後からの時間の異なる7つの核磁気共鳴スペクトルを複数取得し、時間毎にそれぞれ積算し、シグナル/ノイズ比を高めた。   Then, the pump 2b is turned on and off, and the NMR measurement of the sample solution is repeated a plurality of times. A plurality of seven nuclear magnetic resonance spectra with different times since the stop of the pump 2b are acquired and integrated for each time. Increased the ratio.

図3に、1回に7つの異なる時間でNMR測定して得られるNMRスペクトルについて、448回のセットを取得し、時間ごとに積算したスペクトルを表示した。最初のNMRスペクトルの測定時点を0とし、2秒間隔で合計7つのNMRスペクトルについて、重ねて表示した。   In FIG. 3, a set of 448 times was acquired for the NMR spectrum obtained by performing NMR measurement at seven different times at once, and a spectrum integrated every time was displayed. The measurement time of the first NMR spectrum was set to 0, and a total of 7 NMR spectra were displayed in an overlapping manner at intervals of 2 seconds.

また、図3の囲み部分を右に拡大して表示した。矢印の位置は、図4に表示の指数関数フィッティングに用いたピーク位置を示す。   Further, the encircled portion of FIG. 3 is enlarged and displayed to the right. The position of the arrow indicates the peak position used for the exponential function fitting shown in FIG.

図3から、変性したタンパク質由来のピークが減少する一方、巻き戻ったタンパク質由来のピークが増加することが観察できる。   From FIG. 3, it can be observed that the peak derived from the denatured protein decreases while the peak derived from the unwound protein increases.

ピーク強度の変化を指数関数フィッティングし、ほぼ0.5s−1の反応速度定数(0.47s−1の)を得た(図4)。おそらく、3割程度大きい反応速度定数でも十分解析可能であると考えられる。 The change in peak intensity was exponentially fitted to obtain a reaction rate constant (0.47 s −1 ) of approximately 0.5 s −1 (FIG. 4). Perhaps even a reaction rate constant as large as about 30% can be sufficiently analyzed.

1 核磁気共鳴を利用した反応速度解析装置
2 試料溶液循環系
2a 配管
2b ポンプ
2c 加熱部
2d 冷却部
2e 保持部
3 検出・制御部
3a 検出コイル
3b 分光計
3c ラジオ波
3d NMR信号
3e ON/OFF信号
4 NMR磁石
5 プローブ
11 核磁気共鳴を利用した反応速度解析装置
12 試料溶液循環系
DESCRIPTION OF SYMBOLS 1 Reaction rate analysis apparatus using nuclear magnetic resonance 2 Sample solution circulation system 2a Pipe 2b Pump 2c Heating part 2d Cooling part 2e Holding part 3 Detection and control part 3a Detection coil
3b spectrometer 3c radio wave 3d NMR signal 3e ON / OFF signal 4 NMR magnet 5 probe 11 reaction rate analyzer 12 using nuclear magnetic resonance sample solution circulation system

Claims (6)

温度の変化によって誘起される反応の速度を核磁気共鳴測定によって解析するための装置であって、
1)試料溶液に磁場を与えるNMRスペクトル測定用もしくはMRI測定用のNMR磁石と、
2)前記NMR磁石内のボアに設置され試料溶液が前記磁場を受ける保持部、前記保持部に連設する環状の配管、前記配管内で試料溶液を循環送液させるポンプ、前記試料溶液を前記NMR磁石外で温度調節する第一温度調節部、及び前記試料溶液を前記NMR磁石内で温度調節する第二温度調節部を備えた試料溶液循環系と、
3)前記保持部外周に配置され試料溶液のNMR信号を検知する検出コイル、及び前記NMR信号を受けNMRスペクトルあるいはMRIイメージ画像に変換する分光計を備えた検出・制御部と、
からなることを特徴とする核磁気共鳴を利用した反応速度解析装置。
An apparatus for analyzing the rate of reaction induced by a change in temperature by nuclear magnetic resonance measurement,
1) NMR magnet for NMR spectrum measurement or MRI measurement for applying a magnetic field to the sample solution;
2) A holding unit installed in a bore in the NMR magnet for receiving the magnetic field of the sample solution, an annular pipe connected to the holding unit, a pump for circulating the sample solution in the pipe, and the sample solution A sample solution circulation system comprising a first temperature adjusting unit for adjusting the temperature outside the NMR magnet, and a second temperature adjusting unit for adjusting the temperature of the sample solution inside the NMR magnet;
3) a detection coil that is arranged on the outer periphery of the holding unit and detects a NMR signal of the sample solution; and a detection / control unit that includes the spectrometer that receives the NMR signal and converts it into an NMR spectrum or an MRI image image;
A reaction rate analysis apparatus using nuclear magnetic resonance, characterized by comprising:
前記第一温度調節部が試料溶液を加熱する加熱部で、前記第二温度調節部が試料溶液を冷却する冷却部であること、又は、前記第二温度調節部が試料溶液を冷却する冷却部で、前記第二温度調節部が試料溶液を加熱する加熱部であること、を特徴とする請求項1に記載の核磁気共鳴を利用した反応速度解析装置。 The first temperature control unit is a heating unit that heats the sample solution, and the second temperature control unit is a cooling unit that cools the sample solution, or the second temperature control unit is a cooling unit that cools the sample solution. The reaction rate analysis apparatus using nuclear magnetic resonance according to claim 1, wherein the second temperature control unit is a heating unit that heats the sample solution. 前記分光計が、前記ポンプの駆動を制御するON/OFF信号を生成し、前記ポンプに送信し、前記ポンプの駆動を制御することを特徴とする請求項1又は請求項2に記載の核磁気共鳴を利用した反応速度解析装置。 The nuclear magnetism according to claim 1 or 2, wherein the spectrometer generates an ON / OFF signal for controlling the driving of the pump, transmits the signal to the pump, and controls the driving of the pump. A reaction rate analyzer using resonance. NMRスペクトル測定の場合には、前記保持部、検出コイル及び第二温度調節部で核磁気共鳴のプローブを構成するとともに、前記プローブを前記ボアに着脱可能としたことを特徴とする請求項1〜請求項3のいずれか1項に記載の核磁気共鳴を利用した反応速度解析装置。 In the case of NMR spectrum measurement, the holding unit, the detection coil, and the second temperature adjusting unit constitute a nuclear magnetic resonance probe, and the probe is detachable from the bore. A reaction rate analyzer using the nuclear magnetic resonance according to claim 3. 請求項1〜請求項4のいずれか1項に記載の核磁気共鳴を利用した反応速度解析装置において、前記ポンプを作動させ前記第二温度調節部で温度変化させた試料溶液を前記保持部に送液し、前記ポンプを停止させ、所定時間経過毎に前記保持部内の試料溶液のNMR測定をし、さらに、前記ポンプの作動、停止、前記試料溶液のNMR測定のセットを複数回繰り返し、NMR信号として得られた等価のNMRスペクトルあるいはMRIイメージ画像を複数積算して反応速度を解析することを特徴とする核磁気共鳴を利用した反応速度解析装置。 The reaction rate analyzer using nuclear magnetic resonance according to any one of claims 1 to 4, wherein the sample solution that has been operated by the pump and changed in temperature by the second temperature adjusting unit is supplied to the holding unit. The pump is stopped, the pump is stopped, and the NMR measurement of the sample solution in the holding unit is performed every predetermined time. Further, the set of the operation of the pump, the stop, and the NMR measurement of the sample solution is repeated a plurality of times. A reaction rate analysis apparatus using nuclear magnetic resonance, wherein a reaction rate is analyzed by integrating a plurality of equivalent NMR spectra or MRI image images obtained as signals. 請求項1〜請求項5のいずれか1項に記載の核磁気共鳴を利用した反応速度解析装置において、前記第二温度調節部から前記保持部までの試料溶液の送液時間を1秒以内としたことを特徴とする核磁気共鳴を利用した反応速度解析装置。 The reaction rate analyzer using nuclear magnetic resonance according to any one of claims 1 to 5, wherein the time for feeding the sample solution from the second temperature control unit to the holding unit is within 1 second. A reaction rate analyzer using nuclear magnetic resonance characterized by the above.
JP2011195161A 2011-09-07 2011-09-07 Kinetic analyzer using nuclear magnetic resonance Active JP5831872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195161A JP5831872B2 (en) 2011-09-07 2011-09-07 Kinetic analyzer using nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195161A JP5831872B2 (en) 2011-09-07 2011-09-07 Kinetic analyzer using nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JP2013057560A true JP2013057560A (en) 2013-03-28
JP5831872B2 JP5831872B2 (en) 2015-12-09

Family

ID=48133570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195161A Active JP5831872B2 (en) 2011-09-07 2011-09-07 Kinetic analyzer using nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JP5831872B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534958A (en) * 2001-07-10 2004-11-18 ヴァリアン インコーポレーテッド Apparatus and method utilizing sample transfer to and from NMR flow probe
JP2006046968A (en) * 2004-07-30 2006-02-16 Japan Science & Technology Agency Low-temperature flow high-speed nmr measurement method and low-temperature flow high-speed injection nmr
JP2007315826A (en) * 2006-05-24 2007-12-06 Hitachi Ltd Recycling flow nuclear magnetic resonance measurement apparatus and measuring method therefor
JP2009198356A (en) * 2008-02-22 2009-09-03 Hitachi Ltd Nuclear magnetic resonance measurement apparatus and measuring method using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534958A (en) * 2001-07-10 2004-11-18 ヴァリアン インコーポレーテッド Apparatus and method utilizing sample transfer to and from NMR flow probe
JP2006046968A (en) * 2004-07-30 2006-02-16 Japan Science & Technology Agency Low-temperature flow high-speed nmr measurement method and low-temperature flow high-speed injection nmr
JP2007315826A (en) * 2006-05-24 2007-12-06 Hitachi Ltd Recycling flow nuclear magnetic resonance measurement apparatus and measuring method therefor
JP2009198356A (en) * 2008-02-22 2009-09-03 Hitachi Ltd Nuclear magnetic resonance measurement apparatus and measuring method using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015026823; Marc Adler et al.: '"Structural Studies of a Folding Intermediate of Bovine Pancreatic Ribonuclease A by Continuous Recy' Biochemistry Vol. 27, No. 7, 198804, p. 2471-2480, American Chemical Society *
JPN6015026824; 赤坂 一之: '「NMR法による生体高分子系のゆらぎの解析」' 化学と生物 Vol. 19, No. 11, 1981, p. 727-733 *

Also Published As

Publication number Publication date
JP5831872B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
CN107106039B (en) Magnetic resonance fingerprinting in slices extending along one dimension
US7535224B2 (en) Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging
US20120077707A1 (en) Microwells with mri readable indicia
US8558547B2 (en) System and method for magnetic resonance radio-frequency field mapping
Kiryutin et al. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments
US7449883B2 (en) Method and apparatus for measuring change in magnetic induction of a magnetic material with respect to temperature
Richardson et al. Quantification of hyperpolarisation efficiency in SABRE and SABRE-Relay enhanced NMR spectroscopy
US20160077176A1 (en) Temperature-controlled exchangeable nmr probe cassette and methods thereof
JP2008295884A5 (en)
Fisher et al. NMR probe for the simultaneous acquisition of multiple samples
EP3308184A1 (en) Magnetic resonance fingerprinting dictionary generation using a supplementary magnetic field coil
US11079452B2 (en) Systems and methods for magnetic resonance thermometry using balanced steady state free precession
JP2009530596A (en) MNR spectroscopy with multiple coil probes
US7246939B1 (en) Measurement of thermal diffusivity, thermal conductivity, specific heat, specific absorption rate, thermal power, heat transfer coefficient, heat of reaction and membrane permeability by nuclear magnetic resonance
Aguiar et al. Experimental and numerical examination of eddy (Foucault) currents in rotating micro-coils: Generation of heat and its impact on sample temperature
Granwehr et al. Quantifying the transfer and settling in NMR experiments with sample shuttling
US7402437B2 (en) Method and device for analyzing the intracellular chemical state of living cells by nuclear magnetic resonance
JP5831872B2 (en) Kinetic analyzer using nuclear magnetic resonance
CN109932334A (en) A kind of multi-functional dynamic analysis system of chemical process
US20160282203A1 (en) Calorimeter with stabilized temperature
US7898256B2 (en) Nuclear magnetic resonance measurement apparatus and measuring method using the same
Hayden et al. Restricted diffusion within a single pore
Mirdrikvand et al. Diffusion weighted magnetic resonance imaging for temperature measurements in catalyst supports with an axial gas flow
Lindon et al. Recent advances in high-resolution NMR spectroscopic methods in bioanalytical chemistry
Sigmund et al. Hole-burning diffusion measurements in high magnetic field gradients

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5831872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250