JP2013056364A - Forging die - Google Patents

Forging die Download PDF

Info

Publication number
JP2013056364A
JP2013056364A JP2011197075A JP2011197075A JP2013056364A JP 2013056364 A JP2013056364 A JP 2013056364A JP 2011197075 A JP2011197075 A JP 2011197075A JP 2011197075 A JP2011197075 A JP 2011197075A JP 2013056364 A JP2013056364 A JP 2013056364A
Authority
JP
Japan
Prior art keywords
split
joint
mold
die
split mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011197075A
Other languages
Japanese (ja)
Other versions
JP5503610B2 (en
Inventor
Fujio Sunami
不二夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMANAKA GOOKIN KK
Yamanaka Engineering Co Ltd
Original Assignee
YAMANAKA GOOKIN KK
Yamanaka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMANAKA GOOKIN KK, Yamanaka Engineering Co Ltd filed Critical YAMANAKA GOOKIN KK
Priority to JP2011197075A priority Critical patent/JP5503610B2/en
Publication of JP2013056364A publication Critical patent/JP2013056364A/en
Application granted granted Critical
Publication of JP5503610B2 publication Critical patent/JP5503610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a forging die capable of forging a workpiece so that any burr may not be formed even under a large load from the workpiece during the compression step.SOLUTION: The forging die includes a first split die 21 and a second split die 22 which are split and juxtaposed in the direction of the compression axis L, while a split joining surface 21a of the first split die 21 and a split joining surface 22a of the second split die 22 are orthogonal to the compression axis L in the assembled condition. The gap dimension between the split joining surface 21a of the first split die 21 and the split joining surface 22a of the second split surface 22 in a lightly contact condition before the assembly is increased outwardly in the radial direction N from innermost edges 21b, 22b on a cavity 11 side with a very small opposing angle θ of 5'-50'.

Description

本発明は、鍛造用金型に関する。   The present invention relates to a forging die.

鍛造に於て、金型への負荷が最も大きいのは、圧縮によりワーク(素材)の厚みを薄くする圧縮工程の際であり、その際の大きな負荷によって金型に不具合が発生しやすい。
従来は、キャビティを形成する成形金型(インサート)は、大きな荷重を受けるために、例えば、ケース金型に焼嵌めで組付けて外周側から補強し、さらに、圧縮の際に成形金型の割れ易い箇所を、予め圧縮軸心方向に並設するように2分割して、応力を逃がしていた。
例えば、特許文献1に示されたように、第1分割型(第1インサート)と第2分割型(第2インサート)を、ケース金型に組付けていた。
In forging, the load on the mold is greatest during the compression process in which the thickness of the workpiece (material) is reduced by compression, and the large load at that time tends to cause defects in the mold.
Conventionally, in order to receive a large load, a molding die (insert) that forms a cavity is reinforced from the outer peripheral side by, for example, assembling to a case die by shrink fitting, and further, the molding die is compressed during compression. The part which is easy to break was divided into two so as to be juxtaposed in the compression axis direction in advance to release the stress.
For example, as shown in Patent Document 1, a first split mold (first insert) and a second split mold (second insert) are assembled to a case mold.

特開平11−221645号公報JP-A-11-221645

しかし、第1分割型と第2分割型とをケース金型に組付ける力(予圧)が大きいと、第1分割型と第2分割型の接合面が部分的にお互いに食い込んでしまい、塑性変形を招き、成形に因る変形に追従しなくなり(応力を逃がすことができず)金型が損傷するといった問題があった。
鍛造用金型は、現実には、その容積(外径寸法)に制約があり、第1分割型と第2分割型に分割した外周をケース金型にて十分に補強することが許されない場合が多い。そのような場合には、組付ける力(予圧)が弱く、ワークから受ける大きな荷重によって、第1分割型と第2分割型の接合部に於て、キャビティ側の最内端縁に、隙間が生じ、その隙間にワーク(素材)の一部が侵入して成形品にバリ等の成形不良が発生するという問題があった。
However, if the force (preload) for assembling the first split mold and the second split mold to the case mold is large, the joint surfaces of the first split mold and the second split mold partially bite into each other, and plasticity There has been a problem in that the metal mold is damaged due to the deformation, which cannot follow the deformation caused by the molding (stress cannot be released).
The forging die is actually limited in its volume (outer diameter), and it is not allowed to sufficiently reinforce the outer periphery divided into the first divided die and the second divided die with the case die. There are many. In such a case, the assembling force (preload) is weak, and due to the large load received from the workpiece, there is a gap at the innermost edge on the cavity side at the joint between the first split mold and the second split mold. As a result, a part of the workpiece (material) enters the gap, and there is a problem that molding defects such as burrs occur in the molded product.

そこで、本発明は、鍛造用金型の容積(外径寸法)の大きさの制約下に於て、分割型と分割型の接合面の間に、キャビティ側から圧縮工程中の素材が入り込むような隙間(間隙)が発生することを、簡素な構造をもって、防止することを目的とする。また、接合面に局部的に接触面圧が過大となって、塑性変形(食い込み)が発生することを、簡素な構造をもって、防止することを他の目的とする。   Therefore, in the present invention, under the restriction of the volume (outside diameter dimension) of the forging die, the material in the compression process enters from the cavity side between the joining surfaces of the split die and the split die. An object of the present invention is to prevent the occurrence of a large gap (gap) with a simple structure. Another object of the present invention is to prevent, with a simple structure, the occurrence of plastic deformation (biting) due to excessive contact surface pressure locally on the joint surface.

上記目的を達成するために、本発明の鍛造用金型は、分割されて圧縮軸心方向に並設された第1分割型と第2分割型を備え、組付け状態で、上記第1分割型の分割接合面及び上記第2分割型の分割接合面が上記圧縮軸心に直交状である鍛造用金型に於て、組付け前の軽接触状態で、上記第1分割型の上記分割接合面と上記第2分割型の上記分割接合面との間隙寸法が、キャビティ側の最内端縁からラジアル外方側へ向かって、5′〜50′の微小対面角度をもって増加するように構成したものである。
また、上記軽接触状態で、上記第1分割型の上記分割接合面と上記第2分割型の上記分割接合面の内、一方を上記圧縮軸心に直交する直交平面に形成し、他方を勾配面状に形成したものである。
また、上記組付け状態において、上記第1分割型の上記分割接合面と上記第2分割型の上記分割接合面との接触面圧が、均一になるように構成したものである。
または、上記組付け状態において、上記第1分割型の上記分割接合面と上記第2分割型の上記分割接合面との接触面圧が、上記ラジアル外方側から上記キャビティ側へ向かうにつれて次第に大きくなるように構成したものである。
In order to achieve the above object, a forging die according to the present invention includes a first split mold and a second split mold that are divided and arranged in parallel in the compression axis direction, and the first split is in an assembled state. In the forging die in which the split joint surface of the mold and the split joint surface of the second split die are orthogonal to the compression axis, the split of the first split die is performed in a light contact state before assembly. The gap dimension between the joint surface and the split joint surface of the second split mold is configured to increase from the innermost edge on the cavity side toward the radial outer side with a minute facing angle of 5 'to 50'. It is a thing.
Further, in the light contact state, one of the first split type split joint surface and the second split type split joint surface is formed on an orthogonal plane orthogonal to the compression axis, and the other is a gradient. It is formed in a planar shape.
Further, in the assembled state, the contact surface pressure between the divided joint surface of the first divided type and the divided joint surface of the second divided type is configured to be uniform.
Alternatively, in the assembled state, the contact surface pressure between the divided joint surface of the first split type and the split joint surface of the second split type gradually increases as it goes from the radial outer side toward the cavity side. It is comprised so that it may become.

本発明によれば、圧縮工程の際に、第1分割型と第2分割型の間に隙間を発生させず、ワーク(の一部)が第1分割型と第2分割型の間に侵入するのを防止できる。また、第1分割型と第2分割型とが接合面に於てお互いに食い込んで塑性変形することを防止できる。さらに、鍛造品に、バリ等が発生することを防止できる。また、第1分割型と第2分割型の接合部の損傷や磨耗を防止し金型寿命を延ばすことができる。   According to the present invention, during the compression process, no gap is generated between the first split mold and the second split mold, and the workpiece (part) enters between the first split mold and the second split mold. Can be prevented. Further, it is possible to prevent the first split mold and the second split mold from biting into each other at the joint surface and plastically deforming. Furthermore, it is possible to prevent burrs and the like from occurring in the forged product. Further, damage and wear of the joint portion between the first split mold and the second split mold can be prevented, and the mold life can be extended.

本発明の実施の一形態の組付け状態を示す簡略正面断面図である。It is a simplified front sectional view showing the assembled state of an embodiment of the present invention. 実施の一形態の組付け前状態を示す簡略正面断面図である。It is a simplified front sectional view showing a state before assembly of an embodiment. 組付け前の状態の要部拡大断面図である。It is a principal part expanded sectional view of the state before an assembly | attachment. 組付け前の軽接触状態の要部拡大断面図である。It is a principal part expanded sectional view of the light contact state before an assembly | attachment. 組付け状態の要部拡大断面図である。It is a principal part expanded sectional view of an assembly state. 成形状態での接触面圧を説明するための要部拡大断面図である。It is a principal part expanded sectional view for demonstrating the contact surface pressure in a shaping | molding state. 他の実施形態の組付け状態の要部拡大断面図である。It is a principal part expanded sectional view of the assembly | attachment state of other embodiment. 他の実施形態の成形状態での接触面圧を説明するための要部拡大断面図である。It is a principal part expanded sectional view for demonstrating the contact surface pressure in the shaping | molding state of other embodiment. 別の実施の形態の組付け前の軽接触状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the light contact state before the assembly | attachment of another embodiment. 金型の組付け状態の他例を示す簡略正面断面図である。It is a simplified front sectional view showing another example of the assembled state of the mold. 従来例を示し、組付け前の状態の要部断面図である。It is a principal part sectional drawing of the state before an assembly | attachment and showing a prior art example. 従来例を示し、組付け状態の要部断面図である。It is a principal part sectional drawing of an assembly state, showing a conventional example. 従来例を示し、成形中にワークから受ける力を説明した要部断面図である。It is principal part sectional drawing which showed the prior art example and demonstrated the force received from a workpiece | work during shaping | molding. 従来例を示し、成形状態の接触面圧を説明すると共に従来の問題点を示す要部断面図である。It is a principal part sectional drawing which shows a prior art example, and explains the contact surface pressure of a shaping | molding state while showing the conventional problem.

以下、図示の実施形態に基づき本発明を詳説する。
図1の実施の形態に於て、鍛造用金型は、ケース金型(補強金型)2に焼嵌め等にて内嵌締め付け状に組付けられた状態(組付け状態)で、ワーク(素材)Wが内装されるキャビティ11を形成する円筒状の成形金型(インサート金型)20を備えている。また、成形金型20は、スペーサ金型3に下方から支持され、パンチ31から付与される圧縮軸心L方向の押圧力(下方への押圧力)を受けるように配設される。
図2に示すように、成形金型20は、組付け前状態で、パンチ(ポンチ)31が往復移動する圧縮軸心L方向に、円筒状の第1分割型(上インサート型又は上ニブとも呼ぶ)21と円筒状の第2分割型(下インサート型又は下ニブとも呼ぶ)22とに、分割される。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
In the embodiment shown in FIG. 1, the forging die is assembled into a case die (reinforcing die) 2 so as to be fitted in an inner fitting tightening shape by shrinkage fitting or the like (assembled state). Material) A cylindrical molding die (insert die) 20 that forms a cavity 11 in which W is housed is provided. The molding die 20 is supported by the spacer die 3 from below and is disposed so as to receive a pressing force (downward pressing force) in the direction of the compression axis L applied from the punch 31.
As shown in FIG. 2, the molding die 20 has a cylindrical first divided die (both the upper insert die and the upper nib) in the compression axis L direction in which the punch (punch) 31 reciprocates in the state before assembly. 2) and a cylindrical second divided mold (also referred to as a lower insert mold or a lower nib) 22.

図1及び図2に於て、第1分割型21は、組付け状態でキャビティ11の一部を形成する内周面21cと、組付け状態で第2分割型22と接合する分割接合面21a(以下、第1接合面21aと呼ぶ場合もある)と、を有し、円筒状に形成されている。
第2分割型22は、組付け状態でキャビティ11の一部を形成する内周面22c及び底面22fと、組付け状態で第1分割型21と接合する分割接合面22a(以下、第2接合面22aと呼ぶ場合もある)と、パンチ31と対向状に配設され圧縮軸心L方向に往復移動可能なダイピン(ノックアウトピン)32が挿入される貫孔22dと、を有し、円筒状に形成されている。
このように、分割されて圧縮軸心L方向に第1分割型21と第2分割型22を備えていると共に、組付け状態で、分割接合面21aと分割接合面22aは、圧縮軸心Lに直交状である。
1 and 2, the first split mold 21 includes an inner peripheral surface 21c that forms a part of the cavity 11 in the assembled state, and a split joint surface 21a that joins the second split mold 22 in the assembled state. (Hereinafter also referred to as the first joint surface 21a), and is formed in a cylindrical shape.
The second split mold 22 includes an inner peripheral surface 22c and a bottom face 22f that form a part of the cavity 11 in the assembled state, and a split joint surface 22a that joins the first split mold 21 in the assembled state (hereinafter referred to as a second bond). And a through hole 22d into which a die pin (knockout pin) 32 that is disposed so as to face the punch 31 and can reciprocate in the direction of the compression axis L is inserted, and has a cylindrical shape. Is formed.
As described above, the first split mold 21 and the second split mold 22 are provided in the direction of the compression axis L, and the split joint surface 21a and the split joint surface 22a are in the assembled state. Is orthogonal.

図3に示すように、第1分割型21と第2分割型22を圧縮軸心Lを共通軸心として配設して、第1接合面(第1分割型21の下面)21aと第2接合面(第2分割型22の上面)22aを対面状に配設した組付け前の(準備)状態において、第1接合面21aは、圧縮軸心Lに直交する直交平面(以下、軸心直交平面と呼ぶ場合がある)に形成され、第2接合面22aは、キャビティ11側の最内端縁22bから所定寸法Sだけ離れた所定位置Qまで軸心直交平面外方側(ラジアル外方側)Nに向かって下傾する勾配(テーパ)面状に形成されている。
即ち、第2接合面22aは円錐面を成している。また、第2接合面22aは、軸心直交平面に対して、5′〜50′の微小勾配角度αをもって形成されている。なお、このような微小勾配角度αを10′〜20′とすることは、さらに望ましい。
As shown in FIG. 3, the first split mold 21 and the second split mold 22 are arranged with the compression axis L as the common axis, and the first joining surface (the lower surface of the first split mold 21) 21a and the second In the (prepared) state before assembly in which the joint surface (the upper surface of the second split mold 22) 22a is disposed in a face-to-face manner, the first joint surface 21a is an orthogonal plane (hereinafter referred to as an axial center) The second joining surface 22a is formed on the outer side of the axial center plane (radially outward) to a predetermined position Q separated from the innermost edge 22b on the cavity 11 side by a predetermined dimension S. Side) It is formed in a gradient (taper) surface shape that inclines downward toward N.
That is, the second joint surface 22a forms a conical surface. Further, the second joining surface 22a is formed with a minute gradient angle α of 5 ′ to 50 ′ with respect to the axial center orthogonal plane. In addition, it is further desirable that such a small gradient angle α be 10 ′ to 20 ′.

また、第2分割型22は、所定位置Qから、軸心直交平面外方側(ラジアル外方側)Nに向かって下傾する逃がし勾配面22eを有している。
逃がし勾配面22eは、軸心直交平面に対して、微小勾配角度αよりも大きな角度の逃がし角度βをもって傾斜している。逃がし角度βは具体的には、1°〜60°である。
即ち、第2分割型22の上面は、組付け前状態で、第2接合面22aと逃がし勾配面22eを連続状に有する折れ曲がりテーパ面(傾斜面)状であり、第2分割型22の上部は側面視円錐台状である。
Further, the second split mold 22 has an escape slope surface 22e that slopes downward from the predetermined position Q toward the axial center orthogonal plane outward side (radial outward side) N.
The relief gradient surface 22e is inclined with an escape angle β that is larger than the minute gradient angle α with respect to the axial center orthogonal plane. Specifically, the relief angle β is 1 ° to 60 °.
That is, the upper surface of the second split mold 22 is a bent taper surface (inclined surface) having a second joint surface 22a and a relief slope surface 22e in a continuous state before assembly. Is frustoconical in side view.

図4に示すように、第1接合面21aの最内端縁21bと、第2接合面22aの最内端縁22bが当接した、組付け前の軽接触状態(圧縮軸心L方向の押圧力が付与されていない非押圧状態)において、第1接合面21aは軸心直交平面に形成され、第2接合面22aは勾配面状に形成されている。
そして、この軽接触状態において、第1接合面21aと第2接合面22aの間隙寸法が、最内端縁21b,22bからラジアル外方側(軸心直交平面外方側)Nへ向かって、5′〜50′の微小対面角度θをもって増加するように形成されている。なお、10′〜20′の微小対面角度θをもって増加するように形成されるのが好ましい。ところで、前述したところの微小勾配角度αが、微小対面角度θに相当する(相等しい)。また、第1接合面21aと第2接合面22aの間は、軽接触状態の正面断面視で、開口嘴状に形成されているとも言える。
4, the innermost edge 21b of the first joint surface 21a and the innermost edge 22b of the second joint surface 22a are in contact with each other before assembly (in the direction of the compression axis L). In a non-pressed state in which no pressing force is applied), the first joint surface 21a is formed in a plane orthogonal to the axial center, and the second joint surface 22a is formed in a gradient surface shape.
In this light contact state, the gap dimension between the first joint surface 21a and the second joint surface 22a is directed from the innermost edge 21b, 22b to the radially outward side (axial center orthogonal plane outward side) N. It is formed so as to increase with a minute facing angle θ of 5 ′ to 50 ′. In addition, it is preferable to form so that it may increase with the minute facing angle (theta) of 10'-20 '. Incidentally, the minute gradient angle α described above corresponds to the minute facing angle θ (equal to each other). In addition, it can be said that the space between the first joint surface 21a and the second joint surface 22a is formed in the shape of an opening in a light cross-sectional front view.

また、図5に示すように、組付け状態では、第2接合面22aと第1接合面21aとが相互に押圧して、応力のバランスが保たれる(平衡となる)まで弾性変形し、第1接合面21aと第2接合面22aがキャビティ11側からラジアル外方側Nへ向かって下方傾斜状の極微小傾斜面にて面接触状に接合するように構成している。なお、図示省略するが、第1接合面21aが第2接合面22aに押圧されてキャビティ11側からラジアル外方側Nへ向かって下方傾斜状となる場合もある。いずれにせよ、第1接合面21aと第2接合面22aが外方下傾斜状の極微小傾斜面にて面接触状に接合するように構成している。(微小対面角度θを設定している。)
この極微小傾斜面の極微小傾斜角度α´が、1′〜40′となるように構成(微小対面角度θを設定)するのが望ましい。より好ましくは、極微小傾斜角度α´が2′〜15′となるように構成する。
さらに、組付け状態で、第1接合面21aと第2接合面22aとの接触面圧Pが均一になるように構成している。
なお、本発明に於て、組付け状態で、この極微小傾斜面の極微小傾斜角度α´が、極めて小さいため、第1接合面21aと第2接合面22aが組付け状態で、圧縮軸心Lに直交状と呼ぶ場合もある。
Further, as shown in FIG. 5, in the assembled state, the second joint surface 22a and the first joint surface 21a are pressed against each other and elastically deformed until the stress balance is maintained (equilibrium). The first bonding surface 21a and the second bonding surface 22a are configured to be bonded in a surface contact manner with a very small inclined surface inclined downward from the cavity 11 side toward the radially outer side N. Although not shown, the first joint surface 21a may be pressed downward by the second joint surface 22a and may be inclined downward from the cavity 11 side toward the radial outer side N. In any case, the first bonding surface 21a and the second bonding surface 22a are configured to be bonded in a surface contact manner with an extremely small inclined surface that is inclined outward and downward. (The minute facing angle θ is set.)
It is desirable that the extremely small inclined angle α ′ of the extremely small inclined surface is set to 1 ′ to 40 ′ (the minute facing angle θ is set). More preferably, the extremely small inclination angle α ′ is 2 ′ to 15 ′.
Further, in the assembled state, the contact surface pressure P between the first joint surface 21a and the second joint surface 22a is configured to be uniform.
In the present invention, since the extremely small inclination angle α ′ of the extremely small inclined surface is extremely small in the assembled state, the first joint surface 21a and the second joint surface 22a are in the assembled state, and the compression shaft It may be called orthogonal to the center L.

言い換えると、図5に於て、第2接合面22aを、二点鎖線で示す組付け前の勾配面状から、組立(組付け)状態で直交平面状(傾斜角度が小さくなった極微小傾斜面状)に変形(弾性変形)するように設けている。さらに言い換えると、図4に於て、第2分割型22は、最内端縁22bから所定位置Qまでの範囲に、一点鎖線で示す軸心直交基準平面Eq(成形金型20の軸心直交分割基準平面)よりも、接合相手の分割型側(上方)へ突出する横断面三角形状(直角三角形状)の小凸部29を有している。   In other words, in FIG. 5, the second joint surface 22a is changed from an inclined plane shape before assembly shown by a two-dot chain line to an orthogonal plane shape in an assembled (assembled) state (very small inclination with a reduced inclination angle). It is provided so as to be deformed (elastically deformed) into a planar shape. In other words, in FIG. 4, the second split mold 22 has an axial center orthogonal reference plane Eq indicated by an alternate long and short dash line in the range from the innermost edge 22 b to the predetermined position Q (the axis orthogonal to the mold 20 It has a small convex portion 29 having a triangular cross section (right triangle shape) that protrudes toward the split mold side (upward) of the joining partner rather than the split reference plane.

さらに具体的に説明すれば、図2から図1のように、あるいは、図4から図5のように、ケース金型2に第1・第2分割型21,22を挿入して締付けるが、一般に焼嵌め等を適用するのが望ましい。図4(図2)から図5(図1)のように、ケース金型2に焼嵌め等にて締付ける際に、第1分割型21は僅かに上方凸状(山型)に弾性変形して接合するので、第1分割型21の下面(分割接合面)21aは、ラジアル外方へ下傾状勾配面の分割接合面22aと、平行状態に近づきつつ圧接し、図5に示す如く、均一(均等)な接触面圧Pを描くことになる。なお、上述したように、第1分割型21が僅かに上方凸状(山型)に弾性変形する理由は、(第2分割型22の下面はスペーサ金型3にて下方への変形を阻止されているのに対して、)第1分割型21の上面は(他部材が存在せず)フリー状態であるためである。
本発明にあっては、焼嵌め等の締付けの際に、第1分割型21が上方凸状(山型)に弾性変形して、その下面もそのように上方凸状に弾性変形する現象を巧妙に活用し、予め、図3と図4にて説明した微小勾配角度αの勾配面状に、第2分割型22の分割接合面22aを形成して、図5に示すように、組付け状態に於て、接触面圧Pを均一(均等)になるようにしたものといえる。
More specifically, as shown in FIG. 2 to FIG. 1 or as shown in FIG. 4 to FIG. 5, the first and second split molds 21 and 22 are inserted into the case mold 2 and tightened. In general, it is desirable to apply shrink fitting. As shown in FIG. 4 (FIG. 2) to FIG. 5 (FIG. 1), when the case mold 2 is tightened by shrink fitting or the like, the first split mold 21 is slightly elastically deformed into an upward convex shape (mountain shape). Therefore, the lower surface (divided joint surface) 21a of the first split mold 21 is in pressure contact with the split joint surface 22a of the inclined surface inclined downward in the radial direction while approaching a parallel state, as shown in FIG. A uniform (uniform) contact surface pressure P is drawn. Note that, as described above, the reason why the first split mold 21 is elastically deformed slightly upward convexly (mountain shape) is that the lower surface of the second split mold 22 is prevented from being deformed downward by the spacer mold 3. This is because the upper surface of the first split mold 21 is free (no other members are present).
In the present invention, during tightening such as shrink fitting, the first split mold 21 is elastically deformed into an upward convex shape (mountain shape), and the lower surface thereof is also elastically deformed into an upward convex shape. Utilizing cleverness, the split joint surface 22a of the second split mold 22 is formed in advance on the slope surface with the small slope angle α described in FIGS. 3 and 4 and assembled as shown in FIG. It can be said that the contact surface pressure P is made uniform (equal) in the state.

ここで、図11〜図14は従来例を示しており、図11に示すように、第1分割型91の分割接合面91a(第1接合面91a)を軸心直交平面とし、第2分割型92の分割接合面92a(第2接合面92a)を、軸心直交平面としたものである。
図12に示すように、組付け状態で、第1接合面91aと第2接合面92aの接触面圧P´は、最内端縁91b,92bに接近するにつれて次第に接触面圧が小さくなる(不均一である)。このように最内端縁91b,92b及びその近傍の接触面圧P´が小さい状態で、ワークWを鍛造する圧縮加工の際に、図13に示すような、ワークWからの押圧力Fを第1分割型91及び第2分割型92が受けると、押圧力Fは底面95側が大きいため、矢印Mのようにおじぎ変形を起こし、第2接合面92aは、ラジアル内方側(最内端縁92b)が図13,図14の下方へ微小寸法だけ移動し、ラジアル外方側が同図の上方へ移動しようとするため、ラジアル外方側の第1接合面91aに対する接触面圧がさらに増大して、図12に示す接触面圧P´から、図14に示す接触面圧P´´のように変化する。即ち、ラジアル内方側とラジアル外方側の接触面圧の差が大きくなり、しかも、最内端縁92bの接触面圧が零又は零に近づき、ワーク(素材)Wの一部が、図14の如く、侵入して、いわゆるバリを発生する。さらに、最内端縁91b,92b及びその近傍に、磨耗や損傷が発生し、金型の寿命を早めてしまうといった問題がある。また、所定位置Q´近傍(第1・第2接合面91a,92aの最外端縁近傍)では、接触面圧が過剰に大きくなり、圧潰や、分割型同士が互いに食い込むような塑性変形が発生し、金型の寿命を早めてしまうといった問題がある。このような図11〜図14にて述べた従来の問題点を、本発明は、簡素な構成によって見事に解決したものであって、図5の組付け状態に於て、接触面圧Pを均等(均一)になるように、5′〜50′の微小対面角度θをもってラジアル外方向に増加させ(図4参照)たことで達成し、従来の図12の組付け状態と比較すると、最内端縁21b,22b近傍の接触面圧を増加させ、同時に、所定位置Qでは接触面圧を減少させている。
本発明にあっても、従来例で述べた図13と全く同様の現象が生じて、矢印M方向におじぎ変形を生じる。そのため図5〜図6に示す如く、鍛造工程(圧縮加工)の成形状態では、接触面圧分布が変化する。即ち、ラジアル内方側の面圧は減少し、ラジアル外方側の面圧は増加する。しかし、従来例の図12から図14への変化に比べると、図6で明らかな如く、ラジアル内方側(最内端縁21b,22b)にも圧縮面圧が残り、それによって、図14に示したような間隙(隙間)Cを生じつつワーク(素材)Wの一部が侵入してバリを発生することを防止でき、さらに、ラジアル外方側(所定位置Qの近傍)の面圧は、従来の図14よりも十分に小さくなって、接合面21a,22aに圧潰(塑性変形)を生ずることを防止できる。
11 to 14 show conventional examples. As shown in FIG. 11, the split joint surface 91a (first joint surface 91a) of the first split mold 91 is an axially orthogonal plane, and the second split is shown. The split joining surface 92a (second joining surface 92a) of the mold 92 is an axially orthogonal plane.
As shown in FIG. 12, in the assembled state, the contact surface pressure P ′ between the first joint surface 91a and the second joint surface 92a gradually decreases as the innermost edge 91b, 92b approaches. Non-uniform). As shown in FIG. 13, the pressing force F from the workpiece W is applied during the compression process for forging the workpiece W with the innermost edges 91b and 92b and the contact surface pressure P 'in the vicinity thereof being small. When the first split mold 91 and the second split mold 92 are received, since the pressing force F is large on the bottom surface 95 side, bowing deformation occurs as indicated by the arrow M, and the second joint surface 92a is formed on the radially inner side (innermost end). Since the edge 92b) moves by a small dimension downward in FIGS. 13 and 14, and the radially outer side tends to move upward in the figure, the contact surface pressure against the first joint surface 91a on the radially outer side further increases. Then, the contact surface pressure P ′ shown in FIG. 12 changes to a contact surface pressure P ″ shown in FIG. That is, the difference in the contact surface pressure between the radially inner side and the radially outer side becomes large, and the contact surface pressure of the innermost edge 92b approaches zero or closes to zero. As shown in FIG. 14, it enters and generates a so-called burr. Furthermore, there is a problem that wear and damage occur in the innermost edges 91b and 92b and in the vicinity thereof, thereby prolonging the life of the mold. Further, in the vicinity of the predetermined position Q ′ (in the vicinity of the outermost edge of the first and second joining surfaces 91a and 92a), the contact surface pressure becomes excessively large, and crushing or plastic deformation such that the split molds bite each other occurs. There is a problem that it occurs and shortens the life of the mold. The conventional problems described with reference to FIGS. 11 to 14 are excellently solved by a simple structure, and the contact surface pressure P is set in the assembled state of FIG. This is achieved by increasing the outer surface in the radial direction with a small facing angle θ of 5 ′ to 50 ′ so as to be uniform (see FIG. 4). Compared with the conventional assembled state of FIG. The contact surface pressure in the vicinity of the inner edges 21b and 22b is increased, and at the same time, the contact surface pressure is decreased at the predetermined position Q.
Even in the present invention, the same phenomenon as in FIG. 13 described in the conventional example occurs, and bow deformation occurs in the arrow M direction. Therefore, as shown in FIGS. 5 to 6, the contact surface pressure distribution changes in the molding state of the forging process (compression process). That is, the surface pressure on the radially inner side decreases and the surface pressure on the radially outer side increases. However, as compared with the change of the conventional example from FIG. 12 to FIG. 14, the compression surface pressure remains on the radially inner side (innermost edges 21b, 22b) as is apparent from FIG. It is possible to prevent a part of the workpiece (material) W from entering and generating burrs while generating the gap (gap) C as shown in FIG. 5, and the surface pressure on the radially outward side (near the predetermined position Q). Is sufficiently smaller than the conventional FIG. 14 and can prevent crushing (plastic deformation) on the joint surfaces 21a and 22a.

また、他の実施の形態は、図7に示すように、組付け状態において、第1接合面21aと第2接合面22aとの接触面圧Pが、ラジアル外方側Nからキャビティ11側へ向かうにつれて次第に大きくなるように構成している。
そして、図8に示すように、ワークWを鍛造する圧縮加工の際に、第1接合面21aと第2接合面22aとの接触面圧Pが、均一になるように構成している。
従来例の図14と比べると、図8で明らかな如く、ラジアル内方側(最内端縁21b,22b)にも圧縮面圧が残り、それによって、図14に示したような間隙(隙間)Cを生じつつワーク(素材)Wの一部が侵入してバリを発生することを防止でき、さらに、ラジアル外方側(所定位置Qの近傍)の面圧は、従来の図14よりも十分に小さくなって、接合面21a,22aに圧潰(塑性変形)を生ずることを防止できる。
In another embodiment, as shown in FIG. 7, in the assembled state, the contact surface pressure P between the first joint surface 21a and the second joint surface 22a is changed from the radial outer side N to the cavity 11 side. It is configured to gradually increase as it goes.
As shown in FIG. 8, the contact surface pressure P between the first joint surface 21a and the second joint surface 22a is made uniform during the compression process for forging the workpiece W.
Compared with FIG. 14 of the conventional example, as is apparent from FIG. 8, the compression surface pressure also remains on the radially inner side (innermost edges 21b, 22b), thereby causing a gap (gap) as shown in FIG. ) It is possible to prevent a part of the workpiece (material) W from entering and generating burrs while generating C, and the surface pressure on the radially outer side (near the predetermined position Q) is higher than that of the conventional FIG. It is possible to prevent the joint surfaces 21a and 22a from being crushed (plastic deformation) by being sufficiently small.

次に、別の実施の形態は、図9に示すように、組付け前の軽接触状態で、第1接合面21aを勾配面状に設け、第2接合面22aを軸心直交平面に形成し、第1接合面21aと第2接合面22aとの間隙寸法が、最内端縁21b,22bから軸心直交平面外方側(ラジアル外方向)Nへ向かって、微小対面角度θをもって増加するように形成している。
また、軽接触状態で、第1接合面21aと、第2接合面22aの両方を、勾配面状に形成して、組付け前の軽接触状態で、上記間隙寸法が、最内端縁21b,22bから軸心直交平面外方側Nへ向かって、微小対面角度θをもって増加するように形成するも好ましい(図示省略)。
Next, as shown in FIG. 9, in another embodiment, in a light contact state before assembly, the first joint surface 21a is provided in a gradient surface shape, and the second joint surface 22a is formed in a plane orthogonal to the axis. Then, the gap dimension between the first joint surface 21a and the second joint surface 22a increases from the innermost edge 21b, 22b toward the axial center orthogonal plane outward side (radial outward direction) N with a minute facing angle θ. It is formed to do.
Further, in the light contact state, both the first joint surface 21a and the second joint surface 22a are formed in a sloped surface, and in the light contact state before assembly, the above-mentioned gap dimension is the innermost edge 21b. , 22b toward the outer side N of the plane orthogonal to the axial center, it is also preferable to increase it with a small facing angle θ (not shown).

なお、本発明は、設計変更可能であって、成形金型20(第1分割型21と第2分割型22)のラジアル外方側Nを保持(補強)する構造は、図1に示したように、ケース金型2に組付ける場合に限らず、図10に示すように、成形金型20とケース金型2の間に、第1分割型21が組付けられる円筒状の第1補強型51と、第2分割型22が組付けられる円筒状に第2補強型52を設けて補強したものでも良い。即ち、第1分割型21と第2分割型22が組付けられる金型(部材)の構造(形状)は自由である。
また、第2分割型22に逃がし勾配面22eを設けず、第1分割型21に逃がし勾配面を形成しても良い。また、逃がし勾配面22eを、第1分割型21と第2分割型22の両方に設けても良い。また、圧縮軸心Lを鉛直状(上下方向)として方向を説明したが、水平状や傾斜状とするも自由である。また、微小対面角度θ(微小勾配角度α)を10′〜20′とするのがさらに好ましい。なお、本発明に於て、均一とは、最大面圧と最小面圧の差が20%以内と定義する。
The present invention can be modified in design, and the structure for holding (reinforcing) the radially outer side N of the molding die 20 (the first split die 21 and the second split die 22) is shown in FIG. Thus, not only when assembled to the case mold 2, but as shown in FIG. 10, a cylindrical first reinforcement in which the first split mold 21 is assembled between the molding mold 20 and the case mold 2. A cylinder 51 to which the mold 51 and the second divided mold 22 are assembled may be reinforced by providing the second reinforcing mold 52. That is, the structure (shape) of the mold (member) to which the first split mold 21 and the second split mold 22 are assembled is free.
Further, the escape gradient surface 22e may not be provided in the second split mold 22, and the escape gradient surface may be formed in the first split mold 21. Further, the escape slope surface 22e may be provided on both the first split mold 21 and the second split mold 22. Moreover, although the direction was demonstrated by making the compression axis L into the vertical shape (up-down direction), it is also free to make it horizontal or inclined. Further, it is more preferable that the minute facing angle θ (minute gradient angle α) is 10 ′ to 20 ′. In the present invention, uniform is defined as the difference between the maximum surface pressure and the minimum surface pressure being within 20%.

以上のように、本発明の鍛造用金型は、分割されて圧縮軸心L方向に並設された第1分割型21と第2分割型22を備え、組付け状態で、第1分割型21の分割接合面21a及び第2分割型22の分割接合面22aが圧縮軸心Lに直交状である鍛造用金型に於て、組付け前の軽接触状態で、第1分割型21の分割接合面21aと第2分割型22の分割接合面22aとの間隙寸法が、キャビティ11側の最内端縁21b,22bからラジアル外方側Nへ向かって、5′〜50′の微小対面角度θをもって増加するように構成したので、圧縮工程の際に、第1分割型21と第2分割型22の間に間隙C(図14参照)を発生させず、ワークWの一部が第1分割型21と第2分割型22の間に侵入するのを防止できる。また、第1分割型21と第2分割型22とがお互いに食い込んで塑性変形するような強い力で無理に組付ける必要がなくなり成形に因る変形に分割型を追従させることができる。キャビティを適正な形状に維持でき、バリの発生等加工不良を軽減して所定形状に加工できる。また、第1分割型21と第2分割型22の接合部の損傷や磨耗を防止し金型寿命を延ばすことができる。   As described above, the forging die of the present invention includes the first split die 21 and the second split die 22 that are divided and arranged in parallel in the direction of the compression axis L, and the first split die in the assembled state. In the forging die in which the divided joining surface 21a of 21 and the divided joining surface 22a of the second divided die 22 are orthogonal to the compression axis L, the first divided die 21 is in a light contact state before assembly. The gap size between the divided bonding surface 21a and the divided bonding surface 22a of the second divided mold 22 is a minute face of 5 'to 50' from the innermost edge 21b, 22b on the cavity 11 side toward the radially outer side N. Since it is configured to increase with the angle θ, a gap C (see FIG. 14) is not generated between the first split mold 21 and the second split mold 22 during the compression process, and a part of the work W is partially Intrusion between the first split mold 21 and the second split mold 22 can be prevented. Further, it is not necessary to forcibly assemble the first split mold 21 and the second split mold 22 with a strong force that bites each other and plastically deforms, and the split mold can follow the deformation caused by molding. The cavity can be maintained in an appropriate shape, and processing defects such as generation of burrs can be reduced and processed into a predetermined shape. Further, damage and wear of the joint portion between the first split mold 21 and the second split mold 22 can be prevented, and the mold life can be extended.

また、軽接触状態で、第1分割型21の分割接合面21aと第2分割型22の分割接合面22aの内、一方を圧縮軸心Lに直交する直交平面に形成し、他方を勾配面状に形成したので、製作が容易である。   Further, in a light contact state, one of the split joint surface 21a of the first split mold 21 and the split joint surface 22a of the second split mold 22 is formed on an orthogonal plane orthogonal to the compression axis L, and the other is a gradient surface. Since it is formed in a shape, it is easy to manufacture.

また、組付け状態において、第1分割型21の分割接合面21aと第2分割型22の分割接合面22aとの接触面圧Pが、均一になるように構成したので、成形によって第1分割型21の分割接合面21aと第2分割型22の分割接合面22aとの間に間隙Cが生じるのをより確実に防止でき、適正で品質の良い鍛造品を得ることができる。また、金型寿命を延ばすことができる。   Further, in the assembled state, the contact surface pressure P between the divided joint surface 21a of the first split mold 21 and the split joint surface 22a of the second split mold 22 is configured to be uniform. It is possible to more reliably prevent the gap C from being generated between the divided joining surface 21a of the mold 21 and the divided joining surface 22a of the second divided mold 22, and an appropriate and high quality forged product can be obtained. Moreover, the mold life can be extended.

また、組付け状態において、第1分割型21の分割接合面21aと第2分割型22の分割接合面22aとの接触面圧Pが、ラジアル外方側Nからキャビティ11側へ向かうにつれて次第に大きくなるように構成したので、成形によって第1分割型21の分割接合面21aと第2分割型22の分割接合面22aとの間に間隙Cが生じるのをより確実に防止でき、適正で品質の良い鍛造品を得ることができる。また、金型寿命を延ばすことができる。   Further, in the assembled state, the contact surface pressure P between the split joint surface 21a of the first split mold 21 and the split joint surface 22a of the second split mold 22 gradually increases as it goes from the radial outer side N toward the cavity 11 side. Therefore, it is possible to more reliably prevent the formation of a gap C between the split joint surface 21a of the first split mold 21 and the split joint surface 22a of the second split mold 22 by molding. A good forged product can be obtained. Moreover, the mold life can be extended.

11 キャビティ
21 第1分割型
21a 分割接合面
21b 最内端縁
22 第2分割型
22a 分割接合面
22b 最内端縁
L 圧縮軸心
N ラジアル外方側
P 接触面圧
θ 微小対面角度
11 cavity
21 First division type
21a Split joint surface
21b Innermost edge
22 Second division type
22a Split joint surface
22b Innermost edge L Compression axis N Radial outer side P Contact surface pressure θ Minute facing angle

Claims (4)

分割されて圧縮軸心(L)方向に並設された第1分割型(21)と第2分割型(22)を備え、組付け状態で、上記第1分割型(21)の分割接合面(21a)及び上記第2分割型(22)の分割接合面(22a)が上記圧縮軸心(L)に直交状である鍛造用金型に於て、
組付け前の軽接触状態で、上記第1分割型(21)の上記分割接合面(21a)と上記第2分割型(22)の上記分割接合面(22a)との間隙寸法が、キャビティ(11)側の最内端縁(21b)(22b)からラジアル外方側(N)へ向かって、5′〜50′の微小対面角度(θ)をもって増加するように構成したことを特徴とする鍛造用金型。
The first split mold (21) and the second split mold (22) which are divided and arranged in parallel in the direction of the compression axis (L) are provided, and in the assembled state, the split joint surface of the first split mold (21) (21a) and the forging die in which the split joint surface (22a) of the second split die (22) is orthogonal to the compression axis (L),
In a light contact state before assembly, the gap dimension between the split joint surface (21a) of the first split mold (21) and the split joint surface (22a) of the second split mold (22) is a cavity ( 11) It is configured so as to increase from the innermost edge (21b) (22b) on the side toward the radially outer side (N) with a minute facing angle (θ) of 5 ′ to 50 ′. Die for forging.
上記軽接触状態で、上記第1分割型(21)の上記分割接合面(21a)と上記第2分割型(22)の上記分割接合面(22a)の内、一方を上記圧縮軸心(L)に直交する直交平面に形成し、他方を勾配面状に形成した請求項1記載の鍛造用金型。   In the light contact state, one of the split joint surface (21a) of the first split mold (21) and the split joint face (22a) of the second split mold (22) is connected to the compression axis (L 2. The forging die according to claim 1, wherein the forging die is formed in an orthogonal plane orthogonal to), and the other is formed in a gradient plane shape. 上記組付け状態において、上記第1分割型(21)の上記分割接合面(21a)と上記第2分割型(22)の上記分割接合面(22a)との接触面圧(P)が、均一になるように構成した請求項1又は2記載の鍛造用金型。   In the assembled state, the contact surface pressure (P) between the divided joint surface (21a) of the first split mold (21) and the split joint surface (22a) of the second split mold (22) is uniform. The die for forging according to claim 1 or 2 constituted so that it may become. 上記組付け状態において、上記第1分割型(21)の上記分割接合面(21a)と上記第2分割型(22)の上記分割接合面(22a)との接触面圧(P)が、上記ラジアル外方側(N)から上記キャビティ(11)側へ向かうにつれて次第に大きくなるように構成した請求項1又は2記載の鍛造用金型。   In the assembled state, the contact surface pressure (P) between the divided joint surface (21a) of the first split mold (21) and the split joint surface (22a) of the second split mold (22) is The forging die according to claim 1 or 2, wherein the forging die is configured to gradually increase from the radial outer side (N) toward the cavity (11).
JP2011197075A 2011-09-09 2011-09-09 Forging die Active JP5503610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197075A JP5503610B2 (en) 2011-09-09 2011-09-09 Forging die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197075A JP5503610B2 (en) 2011-09-09 2011-09-09 Forging die

Publications (2)

Publication Number Publication Date
JP2013056364A true JP2013056364A (en) 2013-03-28
JP5503610B2 JP5503610B2 (en) 2014-05-28

Family

ID=48132717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197075A Active JP5503610B2 (en) 2011-09-09 2011-09-09 Forging die

Country Status (1)

Country Link
JP (1) JP5503610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168090B2 (en) * 2014-08-28 2017-07-26 トヨタ自動車株式会社 Mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157929A (en) * 1997-08-26 1999-03-02 Akamatsu Forsys Kk Forging and heading tool
JP2001096334A (en) * 1999-09-27 2001-04-10 Honda Motor Co Ltd Die apparatus for sizing and processing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157929A (en) * 1997-08-26 1999-03-02 Akamatsu Forsys Kk Forging and heading tool
JP2001096334A (en) * 1999-09-27 2001-04-10 Honda Motor Co Ltd Die apparatus for sizing and processing

Also Published As

Publication number Publication date
JP5503610B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5400929B2 (en) Vibration isolator
US7063310B2 (en) Vibration isolator assembly having altered stress characteristics and method of altering stress characteristics of same
EP3124295B1 (en) Vehicular arm component manufacturing method and vehicular arm component
JP2007509760A5 (en)
JP2016538496A (en) Method for producing a carrier body with a damper mass for changing vibration for brake lining of a disc brake
KR20120021831A (en) Burring device for manufacturing cylindrical flange of suspension arm
JP5503610B2 (en) Forging die
KR20120048649A (en) Method for manufacturing piston rod
CN203796708U (en) Bolt and bolt connection component
US20180318910A1 (en) Method for manufacturing tubular member
JP2011241905A (en) Stud bolt and method of manufacturing the same
JP2016101605A (en) Die, joining tool and die production method
JPWO2015190580A1 (en) Bearing device and bearing device manufacturing method
JP2016199093A (en) Rubber bush with pin and assembling/disassembling method of the same
JP2008130429A (en) Battery can and its manufacturing method
JP2019105344A (en) Fastening structure
CN204747223U (en) A mould, crimping tool and clincher tool for cold forming joint instrument
CN102834198B (en) Metal parts syndeton and device
JP2004351436A (en) Forming method and forming die
US11052446B2 (en) Method for joining members, and joint body
JP2013202638A (en) Hollow piston for disk brake and molding die
JP6169765B1 (en) Forging method and forging die set
JP6805988B2 (en) Resin molded body
JP5582769B2 (en) Manufacturing method of annular parts
CN201950151U (en) Module core capable of accelerating oil extraction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250