JP2013055025A - Multi-division electromagnetic coil for air bubble micronization boiling - Google Patents

Multi-division electromagnetic coil for air bubble micronization boiling Download PDF

Info

Publication number
JP2013055025A
JP2013055025A JP2011205256A JP2011205256A JP2013055025A JP 2013055025 A JP2013055025 A JP 2013055025A JP 2011205256 A JP2011205256 A JP 2011205256A JP 2011205256 A JP2011205256 A JP 2011205256A JP 2013055025 A JP2013055025 A JP 2013055025A
Authority
JP
Japan
Prior art keywords
coil
boiling
magnetic field
innermost
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011205256A
Other languages
Japanese (ja)
Inventor
Takashi Kishioka
俊 岸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011205256A priority Critical patent/JP2013055025A/en
Publication of JP2013055025A publication Critical patent/JP2013055025A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-division electromagnetic coil for air bubble micronization boiling in which distribution of a coil is taken into account to adjust a magnetic field applied across the board so that an applied output is distributed, in order to solve the problem that, although there exists a two-split coil or multi-division coil whose objective is uniform heating, it is required to balance magnetic forces between both poles and adjust a magnetic field applied entirely between gaps, for the purpose of realizing air bubble micronization boiling.SOLUTION: A multi-division electromagnetic coil for air bubble micronization boiling is provided which allows practical air bubble micronization boiling by adjusting magnetic balance between an outermost peripheral coil (Ln) and an innermost peripheral coil (L1), being both poles based on the number of turns and the length of Litz wire, distributing magnetic field by using a plurality of independent coils (L2), (L3), and the like which are inserted between the outermost peripheral coil (Ln) and the innermost peripheral coil (L1), for settling an issue of uneven temperature.

Description

本発明は、電磁調理器に使用する電磁コイルで、そのコイルから形成される磁界が均一且つ磁束密度が分散され温度むらを解消し、沸騰の一種である気泡微細化沸騰を可能とする、気泡微細化沸騰用電磁コイルに関するものである。The present invention is an electromagnetic coil for use in an electromagnetic cooker, in which a magnetic field formed from the coil is uniform, magnetic flux density is dispersed, temperature unevenness is eliminated, and bubble miniaturization boiling, which is a kind of boiling, is enabled. The present invention relates to a miniaturized boiling electromagnetic coil.

従来の電磁調理器用コイルは、密巻コイルが主流で磁束密度がドーナツ状の中心に集中し、渦電流が分散して発生しない為、均一加熱が出来なかった。The conventional coil for an electromagnetic cooker could not be heated uniformly because the densely wound coil is the mainstream, the magnetic flux density is concentrated at the center of the donut, and the eddy current is not dispersed and generated.

その欠点を補う為に、2分割コイルや多分割コイルが考案されたが、ある程度分散加熱の効果は発揮するものの十分な均一加熱とは言えず、本発明のように気泡微細化沸騰を成しうることは出来なかった。In order to compensate for this drawback, a two-divided coil and a multi-divided coil have been devised. However, although the effect of distributed heating is exhibited to some extent, it cannot be said to be sufficient uniform heating, and the bubble micronized boiling is achieved as in the present invention. I couldn't go.

特開2008−117722号公報  JP 2008-117722 A 特開2007−257977号公報  JP 2007-257777 A 特開 平08−069867号公報  JP 08-0669867 A 特開 平08−055678号公報  Japanese Patent Application Laid-Open No. 08-055678 実開 平06−070193号公報  Japanese Utility Model Publication No. 06-070193

江崎 猛 、滝本 等 、近藤正夫著 「東芝レビューVol.59No.11(2004)」  Takeshi Ezaki, Takimoto, etc., Masao Kondo “Toshiba Review Vol.59 No.11 (2004)”

しかしながら、上記特許文献1及び5に於いては、目的が均一加熱のみで気泡微細化沸騰は考慮されていない。気泡微細化沸騰の発現には、より緻密な磁界の分散化が必要で、磁束密度の粗密化を解消し温度むらを無くすことで、気泡微細化沸騰を可能とする気泡微細化沸騰用電磁コイルが、本発明により創案された。However, in Patent Documents 1 and 5, the purpose is only uniform heating, and bubble refinement boiling is not considered. In order to develop bubble refinement boiling, it is necessary to disperse the magnetic field more densely, and by eliminating the unevenness of magnetic flux density and eliminating temperature irregularities, the electromagnetic coil for bubble refinement boiling that enables bubble refinement boiling Was invented by the present invention.

本発明は、以下の(a)(b)を目的とする。
(a) 両極となる最外周コイル(Ln)の磁力と最内周コイル(L1)との磁力を均等化することで磁束密度のバランスを調整して均一加熱を実現し、気泡微細化沸騰を可能にする気泡微細化沸騰用電磁コイルを提供すること、を目的とする。
(b) 個々に設けた分割コイル群が互いの磁界を助長し合い、個々で形成する磁界を抑制し磁界を全体に分散して、均一加熱を実現することで気泡微細化沸騰を可能とする、気泡微細化沸騰用電磁コイルを提供すること、を目的とする。
The present invention aims at the following (a) and (b).
(A) Uniform heating is achieved by adjusting the balance of magnetic flux density by equalizing the magnetic force of the outermost coil (Ln) and the magnetic force of the innermost coil (L1) as both poles. An object of the present invention is to provide an electromagnetic coil for bubbling refined boiling that makes possible.
(B) Individually provided divided coil groups promote each other's magnetic field, suppress the magnetic field formed individually, disperse the magnetic field throughout, and realize uniform heating to enable bubble micronization boiling An object of the present invention is to provide an electromagnetic coil for bubbling refined boiling.

課題を解決する為の手段Means to solve the problem

上記課題を解決する為には、両極となる最外周コイル(Ln)と最内周コイル(L1)との磁力バランスを、ターン数とリッツ線の線長で調整しさらに、最外周コイル(Ln)と最内周コイル(L1)の間に挿入する複数の独立したコイル(L2)、(L3)、等で磁界を分散させ、温度むらを解消し実用的な気泡微細化沸騰を可能とすること、を特徴とする。In order to solve the above problem, the magnetic balance between the outermost coil (Ln) and the innermost coil (L1), which are both poles, is adjusted by the number of turns and the wire length of the litz wire, and the outermost coil (Ln) ) And a plurality of independent coils (L2), (L3), etc. inserted between the innermost coil (L1) and the like to disperse the magnetic field to eliminate temperature unevenness and enable practical bubble micronization boiling. It is characterized by this.

発明の効果Effect of the invention

請求項1に関わる発明は、両極となるコイル(Ln)と(L1)の磁力バランスが、拮抗する最適なターン数とリッツ線の線長の比率を調整し構成された、両極となる最外周コイル(Ln)と、最内周コイル(L1)を持ち磁束密度を分散化すること、を特徴とする。The invention according to claim 1 is the outermost outermost pole that is configured by adjusting the ratio of the optimal number of turns to be antagonized and the line length of the litz wire in which the magnetic balance of the coils (Ln) and (L1) that are bipolar is antagonized. It has a coil (Ln) and an innermost peripheral coil (L1), and distributes the magnetic flux density.

両極となる最外周コイル(Ln)と最内周コイル(L1)で形成される磁界は、磁力が均等化され発生する渦電流は、両極となる最外周コイル(Ln)と最内周コイル(L1)の中心に一番強く発現すること、を特徴とする。The magnetic fields formed by the outermost coil (Ln) and the innermost coil (L1) that are the two poles are the eddy currents generated by equalizing the magnetic force, the outermost coil (Ln) and the innermost coil ( L1) is most strongly expressed at the center.

形成された磁界は、両極となる最外周コイル(Ln)と最内周コイル(L1)との間に挿入され複数の独立したコイル(L2)、(L3)、等の磁界の影響を受け磁界が分散され、それに伴い渦電流が広域に発現すること、を特徴とする。The formed magnetic field is inserted between the outermost peripheral coil (Ln) and the innermost peripheral coil (L1) which are both poles, and is affected by the magnetic fields of a plurality of independent coils (L2), (L3), etc. Is distributed, and eddy currents are developed over a wide area.

請求項2の(1)に係わる発明は、両極となる最外周コイル(Ln)と最内周コイル(L1)のターン数の相違で生ずる磁力の強さの差を、コイルのターン数を調整し均等化すること、を特徴とする。The invention according to claim 2 (1) adjusts the number of turns of the coil by adjusting the difference in the strength of the magnetic force caused by the difference in the number of turns of the outermost coil (Ln) and the innermost coil (L1) which are both poles. And equalizing.

磁束密度即ち磁力の強弱は、コイルのターン数で決定されターン数が多いほど磁束密度は強くなる。The magnetic flux density, that is, the strength of the magnetic force is determined by the number of turns of the coil. The larger the number of turns, the stronger the magnetic flux density.

平板状の空心コイルは、外周に行くに従い、コイルの直径が内周より大きくなり、両極となる最外周コイル(Ln)と最内周コイル(L1)のターン数に差を付けないと、外径寸法が大きくなる最外周コイル(Ln)の磁力が強まり、最内周コイル(L1)との磁束密度がアンバランスに陥る。A flat air-core coil has a coil diameter larger than the inner circumference as it goes to the outer circumference, and the outermost coil (Ln) and the innermost circumference coil (L1), which are both poles, have no difference in the number of turns. The magnetic force of the outermost peripheral coil (Ln) whose diameter is increased increases, and the magnetic flux density with the innermost peripheral coil (L1) falls into an imbalance.

両極となる最外周コイル(Ln)と最内周コイル(L1)との磁束密度の均等化は、コイルのターン数に差を持たせることで可能となる。It is possible to equalize the magnetic flux density between the outermost coil (Ln) and the innermost coil (L1), which are both poles, by providing a difference in the number of turns of the coil.

最も均等化に適したターン数の比率は、(Ln)<(L1)で両極となる最外周コイル(Ln)に対し最内周コイル(L1)は、約1.5倍〜約2倍のターン数で巻くことである。The ratio of the number of turns most suitable for equalization is about 1.5 times to about 2 times of the innermost coil (L1) with respect to the outermost coil (Ln) which is bipolar with (Ln) <(L1). It is winding with the number of turns.

請求項2の(2)に係わる発明は、両極となる最外周コイル(Ln)と最内周コイル(L1)のリッツ線の長さの相違から生ずる磁力の強弱を、リッツ線の長さを調整し均等化すること、を特徴とする。In the invention according to (2) of the second aspect, the strength of the magnetic force resulting from the difference in the length of the Litz wire between the outermost coil (Ln) and the innermost coil (L1), which are both poles, is reduced. It is characterized by adjusting and equalizing.

本来磁力の強弱は、コイルのターン数で決まるが、リッツ線の長さの相違でも大きく差が出る。Originally, the strength of the magnetic force is determined by the number of turns of the coil, but there is a large difference even if the length of the litz wire is different.

両極となる最外周コイル(Ln)は、ターン数で最内周コイル(L1)より少ないが、反面リッツ線の線長が長くそれに伴い磁力は強くなる。The outermost outermost coil (Ln) serving as both poles is smaller in number of turns than the innermost innermost coil (L1), but on the other hand, the length of the litz wire is longer and the magnetic force becomes stronger.

ターン数の調整と同様、リッツ線の長さも調整しなければ両極となる最外周コイル(Ln)と最内周コイル(L1)との磁力の均等化は望めない。Similar to the adjustment of the number of turns, it is not possible to equalize the magnetic force between the outermost coil (Ln) and the innermost coil (L1) which are both poles unless the length of the litz wire is adjusted.

最も均等化に適したリッツ線の長さの比率は、(Ln)>(L1)で両極となる最内周コイル(L1)に対し、最外周コイル(Ln)は、約2倍〜約2.5倍のリッツ線の長さを必要とする。The ratio of the length of the litz wire most suitable for equalization is about twice to about 2 for the outermost coil (Ln) with respect to the innermost coil (L1) that is bipolar with (Ln)> (L1). Require 5 times longer litz wire length.

請求項3に係わる発明は、両極となる最外周コイル(Ln)と最内周コイル(L1)との間に挿入する、複数の独立したコイル(L2)、(L3)、等を一定のギャップ、約10mm以上〜約20mm以内の範囲内に収めることで、全体にかかる磁界を分散させることが出来ること、を特徴とする。In the invention according to claim 3, a plurality of independent coils (L2), (L3), etc., inserted between the outermost peripheral coil (Ln) and the innermost peripheral coil (L1), which are both poles, have a constant gap. The magnetic field applied to the whole can be dispersed by being within the range of about 10 mm to about 20 mm.

密巻コイルの磁界分布図  Magnetic field distribution diagram of closely wound coils 気泡微細化沸騰用電磁コイルの磁界分布図  Magnetic field distribution diagram of electromagnetic coil for bubble miniaturization boiling (Ln)と(L1)との磁力バランスが不均衡な状態の磁界分布図  Magnetic field distribution diagram in a state where the magnetic force balance between (Ln) and (L1) is unbalanced (Ln)と(L1)との磁力バランスが均衡な状態の磁界分布図  Magnetic field distribution diagram in a state where the magnetic force balance between (Ln) and (L1) is balanced 挿入コイルのギャップが、規定範囲の寸法より狭まった状態の磁界分布図  Magnetic field distribution diagram with insertion coil gap narrower than specified range 挿入コイルのギャップが、規定範囲の寸法より広まった状態の磁界分布図  Magnetic field distribution diagram with insertion coil gap wider than specified range 波紋状に渦電流が発現した状態を示す平面図  Plan view showing a state in which eddy currents appear in ripples 気泡微細化沸騰用多分割電磁コイルの実施形態図  Embodiment diagram of multi-divided electromagnetic coil for bubble miniaturization boiling

図1は、通常タイプの密巻コイル1の磁界a及び磁力線bを表わすもので、磁束密度cが中心dに集中し渦電流fが、中心dの位置に於いて最も流れ易くなる。しかし中心dから内外に離れるeほど渦電流fは弱くなり温度分布にむらが出来、気泡微細化沸騰は見込めない。FIG. 1 shows a magnetic field a and a line of magnetic force b of a normal type closely wound coil 1. The magnetic flux density c is concentrated at the center d, and the eddy current f is most likely to flow at the position of the center d. However, the eddy current f becomes weaker as e moves away from the center d inward and outward, the temperature distribution becomes uneven, and the bubble micronization boiling cannot be expected.

気泡微細化沸騰を実用的に可能にする電磁コイルは、電磁コイル表面全体に渦電流fが発現し、均一加熱を可能とし温度むらを解消しなければ達成出来ない。An electromagnetic coil that enables bubble boil-down boiling practically cannot be achieved unless eddy current f appears on the entire surface of the electromagnetic coil, uniform heating is possible, and temperature unevenness is eliminated.

図2は、気泡微細化沸騰用多分割電磁コイル3の磁界形成を示すものである。FIG. 2 shows the magnetic field formation of the multi-divided electromagnetic coil 3 for bubble miniaturization boiling.

両極となる最内周コイル(L1)から、最外周コイル(Ln)に向け一定のギャップ2を設け、独立したコイル(L2)及び(L3)が挿入されている。A constant gap 2 is provided from the innermost peripheral coil (L1) serving as both poles to the outermost peripheral coil (Ln), and independent coils (L2) and (L3) are inserted.

両極となる最外周コイル(Ln)と最内周コイル(L1)は、一定の比率でターン数とコイル長が構成されている。The outermost outermost coil (Ln) and the innermost innermost coil (L1) which are both poles are configured with the number of turns and the coil length at a constant ratio.

挿入するコイル(L2)及び(L3)、等は外周に向かうほどターン数を減らす方向で巻かれるが、挿入するコイル(L2)及び(L3)、等は同数巻きでも良い。The inserted coils (L2) and (L3), etc. are wound in a direction that reduces the number of turns toward the outer periphery, but the inserted coils (L2), (L3), etc. may have the same number of turns.

問題視するポイントは、コイルとインバータのマッチングに於いてL値の制約を受ける為、挿入するコイル(L2)及び(L3)、等の挿入数で調整することになる。The problem point is adjusted by the number of inserted coils (L2) and (L3) and the like because the L value is restricted in the matching of the coil and the inverter.

それとは別に挿入するコイル(L2)及び(L3)、等は、独立した磁界hの形成で両極間にかかる本来の磁界aを分散させる為に寄与する。Separately inserted coils (L2) and (L3), etc. contribute to disperse the original magnetic field a between the two poles by forming an independent magnetic field h.

両極となる最外周コイル(Ln)と最内周コイル(L1)との磁力の均等化がなされれば、ドーナツ型の気泡微細化沸騰用多分割電磁コイル3の中心dに向かって磁力線bと磁界aが形成される。If the magnetic force is equalized between the outermost coil (Ln) and the innermost coil (L1) which are both poles, the magnetic field line b and the magnetic field line b toward the center d of the multi-divided electromagnetic coil 3 for doughnut-shaped bubble miniaturization boiling. A magnetic field a is formed.

形成された磁力線bの中心d、即ちドーナツ状の気泡微細化沸騰用多分割電磁コイル3の中心dに磁束密度cが集中し、中心d付近に一番強い渦電流がfが発生する。The magnetic flux density c concentrates at the center d of the magnetic field lines b formed, that is, the center d of the multi-divided electromagnetic coil 3 for doughnut-shaped bubble miniaturization boiling, and the strongest eddy current f is generated near the center d.

図3は、気泡微細化沸騰用多分割電磁コイル3に於ける、両極となる最外周コイル(Ln)と最内周コイル(L1)との磁力のバランスが、不均衡の場合の磁力線bの分布を示したものである。FIG. 3 shows the line of magnetic force b in the case where the balance of the magnetic force between the outermost coil (Ln) and the innermost coil (L1), which are both poles, in the multi-divided electromagnetic coil 3 for bubble miniaturization boiling is unbalanced. The distribution is shown.

両極となる最外周コイル(Ln)の磁力が最内周コイル(L1)より弱い場合は、各々の独立したコイル(L1)から(Ln)で発現する独自の磁界hは、強い磁界aに吸収され弱い磁界gは、全体の磁界aに寄与することが出来難くなるか寄与しなくなり、渦電流fが発生し難くなるか発生しなくなる。When the magnetic force of the outermost coil (Ln) that is the two poles is weaker than that of the innermost coil (L1), the unique magnetic field h that appears in each independent coil (L1) to (Ln) is absorbed by the strong magnetic field a. Thus, the weak magnetic field g becomes difficult or no longer contributes to the entire magnetic field a, and the eddy current f becomes less likely or not generated.

この図3の場合は、(Ln)の磁力が弱いg為、(L3)と(L1)との間で強い磁界aが発現し、(Ln)の磁力を無視し全体にかかる合成した磁力線bは、(L3)と(L1)の間で発生することになる。In the case of FIG. 3, since the magnetic force of (Ln) is weak g, a strong magnetic field a appears between (L3) and (L1), and the combined magnetic field line b applied to the whole ignoring the magnetic force of (Ln). Will occur between (L3) and (L1).

反対に最内周コイル(L1)の磁力が弱い場合は、(L1)に発生する磁束密度cも弱まり、渦電流fも流れ難くなり温度むらを生ずる。On the contrary, when the magnetic force of the innermost coil (L1) is weak, the magnetic flux density c generated in (L1) is also weakened, and the eddy current f is difficult to flow, resulting in temperature unevenness.

図4は、両極となる最外周コイル(Ln)と最内周コイル(L1)の磁力バランスが均衡し、また挿入した独立するコイル(L2)、(L3)が、指定されたギャップ2の範囲で構成されている為、各々のコイル(Ln)から(L1)の独自の磁界hが全体に及ぼす磁界aに影響を与え、しかもコイル間のギャップ2の間には磁界aが無く、全体の磁界aの一部は磁界が弱いiが発現し、磁力の強弱が抑えられ均一の磁束密度cを形成することになり、気泡微細化沸騰用多分割電磁コイル3の表面全体に渦電流fを発現させることが出来る。FIG. 4 shows that the balance of magnetic force between the outermost coil (Ln) and the innermost coil (L1) which are both poles is balanced, and the inserted independent coils (L2) and (L3) are within the specified gap 2 range. Therefore, each coil (Ln) to (L1) has an influence on the magnetic field a exerted on the whole, and there is no magnetic field a between the gaps 2 between the coils. In part of the magnetic field a, a weak magnetic field i appears, and the strength of the magnetic force is suppressed to form a uniform magnetic flux density c. The eddy current f is applied to the entire surface of the multi-divided electromagnetic coil 3 for bubbling micronization boiling. It can be expressed.

気泡微細化沸騰用多分割電磁コイル3の表面に渦電流fを均一に発現さすことは、インバータからの印加出力を分散して気泡微細化沸騰用多分割電磁コイル3に加えることが出来る為、気泡微細化沸騰が可能となる。Uniform expression of the eddy current f on the surface of the multi-divided electromagnetic coil 3 for boiled micronized boiling allows the applied output from the inverter to be dispersed and applied to the multi-divided magnetized coil 3 for boiled micronized boiling. Bubble boiling can be achieved.

図5は、両極となる最外周コイル(Ln)から最内周コイル(L1)のギャップ2が、規定の範囲内の寸法より狭められた場合で、磁力線bは全体を一つの磁界aとして捉える為、渦電流fは密巻コイル1と同様、磁界aの中心dのみに集中し内外に離れるeほど渦電流fが弱まり気泡微細化沸騰は起こらない。FIG. 5 shows the case where the gap 2 between the outermost coil (Ln) and the innermost coil (L1), which are both poles, is narrower than the size within a specified range, and the lines of magnetic force b are regarded as a single magnetic field a. Therefore, the eddy current f is concentrated only at the center d of the magnetic field a and e away from the inside and outside as in the case of the densely wound coil 1, and the eddy current f becomes weaker and bubble micronization boiling does not occur.

図6は、両極となる最外周コイル(Ln)から最内周コイル(L1)のギャップ2が、規定の範囲以上に寸法を広げた場合で、各々のコイル(Ln)から(L1)に発現する独自の磁界hが強まり、渦電流fも各々のコイル上で波紋状に流れ、気泡微細化沸騰も波紋状に発現し実用的ではなくなる。FIG. 6 shows the case where the gap 2 between the outermost coil (Ln) and the innermost coil (L1), which is both poles, is expanded beyond the specified range, and is expressed from each coil (Ln) to (L1). The unique magnetic field h becomes stronger, the eddy current f also flows in a ripple shape on each coil, and bubble miniaturization boiling also appears in a ripple shape, making it impractical.

図7は、波紋状に流れる渦電流fを表わしたもので、渦電流fの上に水を張った鍋をのせると、サブクール沸騰現象が渦電流fにそって発現し、波紋状の気泡微細化沸騰が出現する。FIG. 7 shows an eddy current f flowing in a ripple shape. When a pan filled with water is placed on the eddy current f, a subcooled boiling phenomenon appears along the eddy current f, and a ripple-like bubble is generated. Micronized boiling appears.

図8は、両極となる最外周コイル(Ln)から最内周コイル(L1)のターン数の比率が(Ln)<(L1)4、リッツ線の線長比率が(Ln)>(L1)5に設定され、またギャップ2も規定の範囲で構成された気泡微細化沸騰用多分割電磁コイル3である。FIG. 8 shows that the ratio of the number of turns from the outermost coil (Ln) to the innermost coil (L1), which is both poles, is (Ln) <(L1) 4, and the line length ratio of the litz wire is (Ln)> (L1). The multi-divided electromagnetic coil 3 for bubbling refinement boiling is set to 5 and the gap 2 is also configured within a specified range.

外観は既存の多分割コイルと変わらなく見えるが、気泡微細化沸騰用多分割電磁コイル3は、コイルのターン数及びリッツ線の線長、さらにはギャップの幅に於いて、磁界の分散を目的にする一定の条件があり、その3条件を満たさない限り実用的な気泡微細化沸騰は見込めない。The appearance looks the same as the existing multi-segment coil, but the multi-segment electromagnetic coil 3 for boiled micronized boiling aims to disperse the magnetic field by the number of turns of the coil, the length of the litz wire, and the width of the gap. There is a certain condition, and practical bubble refinement boiling cannot be expected unless these three conditions are satisfied.

1 密巻コイル
2 ギャップ
3 気泡微細化沸騰用多分割電磁コイル
4 (Ln)<(L1)〔約1.5倍〜約2倍〕
5 (Ln)>(L1)〔約2倍〜約2.5倍〕
a 磁界
b 磁力線
c 磁束密度
d 中心
e 内外に離れる
f 渦電流
g 磁力が弱い(若しくは全体の磁力線の影響に関与しない磁界)
h 独自の磁界
i 磁界が弱い
DESCRIPTION OF SYMBOLS 1 Closely wound coil 2 Gap 3 Multi-divided electromagnetic coil 4 for bubble refinement | miniaturization boiling (Ln) <(L1) [about 1.5 times-about 2 times]
5 (Ln)> (L1) [about 2 times to about 2.5 times]
a magnetic field b magnetic field line c magnetic flux density d center e f away from inside and outside eddy current g magnetic force is weak (or magnetic field not related to the influence of the whole magnetic field line)
h Original magnetic field i Magnetic field is weak

Claims (3)

磁束密度を分散させる工夫を施した、多分割電磁コイルで、鍋底の温度むらを無くしサブクール沸騰現象を発現させることで、気泡微細化沸騰を可能としたこと、を特徴とする電磁調理器向け気泡微細化沸騰用多分割電磁コイル。A multi-divided electromagnetic coil designed to disperse the magnetic flux density, which eliminates temperature irregularities at the bottom of the pan and allows the subcooled boiling phenomenon to be achieved, enabling bubbles to be used for micro-bubbles. Multi-division electromagnetic coil for miniaturized boiling. 下記(1)(2)の特徴を備えること、を特徴とする請求項1記載の気泡微細化沸騰用多分割電磁コイル。
(1) 両極となる最外周コイル(Ln)と最内周コイル(L1)は、ターン数に於いては(Ln)<(L1)とし、その比率は(L1)が(Ln)のターン数に対し、約1.5倍〜約2倍の範囲内に入るターン数からなる。
(2) 両極となる最外周コイル(Ln)と最内周コイル(L1)は、リッツ線の線長を(Ln)>(L1)とし、その比率は(Ln)が(L1)の線長に対し、約2倍〜約2.5倍の範囲内に入る線長からなる。
The multi-divided electromagnetic coil for boiled micronized boiling according to claim 1, comprising the following features (1) and (2).
(1) The outermost coil (Ln) and the innermost coil (L1), which are both poles, have (Ln) <(L1) in the number of turns, and the ratio is the number of turns in which (L1) is (Ln). On the other hand, it consists of the number of turns that falls within the range of about 1.5 times to about 2 times.
(2) The outermost coil (Ln) and the innermost coil (L1), which are both poles, have a Litz wire length (Ln)> (L1), and the ratio is (Ln) (L1). On the other hand, the line length is in the range of about 2 to 2.5 times.
両極となる最外周コイル(Ln)と最内周コイル(L1)との間に挿入する複数のコイルは、ある一定のギャップを設けて独立したコイル(L2)、(L3)、等として構成され、そのギャップは線径の大小如何に関わらず、10mm以上20mm以内の範囲とし、最内周コイル(L2)、(L3)、等をかいして最外周コイル(Ln)に至る1本のリッツ線で巻いたこと、を特徴とする請求項1記載の気泡微細化沸騰用多分割電磁コイル。A plurality of coils inserted between the outermost coil (Ln) and the innermost coil (L1) which are both poles are configured as independent coils (L2), (L3), etc. with a certain gap. The gap is in the range of 10 mm or more and 20 mm or less regardless of the wire diameter, and one litz that reaches the outermost coil (Ln) through the innermost coil (L2), (L3), etc. The multi-divided electromagnetic coil for bubbling refined boiling according to claim 1, wherein the coil is wound with a wire.
JP2011205256A 2011-09-01 2011-09-01 Multi-division electromagnetic coil for air bubble micronization boiling Withdrawn JP2013055025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205256A JP2013055025A (en) 2011-09-01 2011-09-01 Multi-division electromagnetic coil for air bubble micronization boiling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205256A JP2013055025A (en) 2011-09-01 2011-09-01 Multi-division electromagnetic coil for air bubble micronization boiling

Publications (1)

Publication Number Publication Date
JP2013055025A true JP2013055025A (en) 2013-03-21

Family

ID=48131820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205256A Withdrawn JP2013055025A (en) 2011-09-01 2011-09-01 Multi-division electromagnetic coil for air bubble micronization boiling

Country Status (1)

Country Link
JP (1) JP2013055025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212360A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker
JP2022031419A (en) * 2018-05-31 2022-02-18 パナソニックIpマネジメント株式会社 Cooker
JP2022132502A (en) * 2018-05-31 2022-09-08 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212360A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker
JP2022031419A (en) * 2018-05-31 2022-02-18 パナソニックIpマネジメント株式会社 Cooker
JP2022132502A (en) * 2018-05-31 2022-09-08 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker
JP7300591B2 (en) 2018-05-31 2023-06-30 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker
JP7336642B2 (en) 2018-05-31 2023-09-01 パナソニックIpマネジメント株式会社 heating cooker

Similar Documents

Publication Publication Date Title
CA2467989C (en) Controllable transformer
JP2013055025A (en) Multi-division electromagnetic coil for air bubble micronization boiling
TW201209860A (en) Adjustable flat transformer with symmetrical leakage inductance
US20160148747A1 (en) Transformer
JPH05217761A (en) Magnetic core with gap and inductance element
CN105070455B (en) Non-moment solenoidal magnetic field coil with radial openings
KR101838115B1 (en) Magnetic component
TW201320125A (en) Magnet component
CN207116165U (en) A kind of three-phase embedding PFC inductance
JP2007185002A (en) Permanent magnet generator
CN110113857B (en) Combined four-six-pole magnetic field magnet with chromaticity correction performance
KR101701940B1 (en) Three phase transformer which can function as inductor
TW201506968A (en) Magnetic field adjustable type magnetic unit
CN110415938A (en) A kind of magnet controlled reactor core structure and design method
KR101500495B1 (en) Apparatus for improving electric power efficiency by using magnetic energy
Rim et al. Magnetic field focusing
KR20140004377A (en) Control system of magnetic reluctance and self-inductance using partial flux saturation phenomenon of core
CN213070881U (en) Multi-winding magnetic integrated single-phase transformer
US11581121B1 (en) Common mode choke
JP2005197016A (en) Electromagnetic induction heating cooker
JP6862314B2 (en) rice cooker
CN102496450B (en) A kind of strong magnetic anneal technique of microcrystalline iron core and its special equipment
CN206549049U (en) A kind of electromagnetic damping device
CN206819853U (en) A kind of single-phase intelligent voltage stabilized transformer
CN204884827U (en) A low noise dry -type transformer for electric power field

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104