JP2013054968A - Lithium ion battery and method of manufacturing the same - Google Patents

Lithium ion battery and method of manufacturing the same Download PDF

Info

Publication number
JP2013054968A
JP2013054968A JP2011193289A JP2011193289A JP2013054968A JP 2013054968 A JP2013054968 A JP 2013054968A JP 2011193289 A JP2011193289 A JP 2011193289A JP 2011193289 A JP2011193289 A JP 2011193289A JP 2013054968 A JP2013054968 A JP 2013054968A
Authority
JP
Japan
Prior art keywords
positive electrode
flame retardant
current collector
active material
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011193289A
Other languages
Japanese (ja)
Other versions
JP2013054968A5 (en
JP5926908B2 (en
Inventor
Tomonobu Tsujikawa
知伸 辻川
Masayasu Arakawa
正泰 荒川
Yoshiki Miyamoto
佳樹 宮本
Koji Hayashi
晃司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, NTT Facilities Inc filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2011193289A priority Critical patent/JP5926908B2/en
Priority to PCT/JP2012/072561 priority patent/WO2013035721A1/en
Publication of JP2013054968A publication Critical patent/JP2013054968A/en
Publication of JP2013054968A5 publication Critical patent/JP2013054968A5/ja
Application granted granted Critical
Publication of JP5926908B2 publication Critical patent/JP5926908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery having excellent high-rate discharge characteristics and high safety.SOLUTION: On at least one of a surface or a rear face of a positive electrode current collector, a cathode active material mixture layer containing a solid flame-resistant agent is coated to form a coating layer, and the coating layer is dried under a dry condition, in which deposit precipitates toward the positive electrode current collector while keeping the coating layer in a posture positioned above the current collector. The dry condition includes the drying temperature and drying time determined so that the flame-resistant agent deposited within the drying time precipitates.

Description

本発明は、集電体に難燃化剤を含む活物質合剤層が形成された電極板を備えるリチウムイオン電池及びその製造方法に関するものである。   The present invention relates to a lithium ion battery including an electrode plate in which an active material mixture layer containing a flame retardant is formed on a current collector, and a method for manufacturing the same.

リチウムイオン電池は、エネルギー密度が高く、また非水電解液として揮発性の有機溶媒が用いられる。そのため、リチウムイオン電池が高温環境に置かれた場合や過充電・過放電または内部短絡が起こった場合等の異常発熱時に、非水電解液の気化による電池内圧の上昇によって電池が破裂・膨張したり、また非水電解液や正極活物質の燃焼によって電池が発火・発煙する等の問題がある。これらの問題を解消するため、従来のリチウムイオン電池では、種々の方法により、電池の安全性向上が図られている。特許文献1(特開平5−151971号、段落[0012])には、ペースト状の正極合剤に難燃化剤を添加したスラリーを調製し、これを芯材の両面に薄層状に塗布して形成したシートを乾燥して正極板を構成する技術が開示されている。特許文献2(特開2009−16106号)には、粉末状の難燃化剤がほぼ均等に分散したスラリーを集電体に塗着して、乾燥し、その後圧延することにより、難燃化剤を正極合剤層中に分散させる発明が開示されている。   Lithium ion batteries have a high energy density, and volatile organic solvents are used as non-aqueous electrolytes. Therefore, when the lithium ion battery is placed in a high temperature environment, or when it overheats, overdischarges, or when an internal short circuit occurs, the battery bursts and expands due to the increase in the internal pressure of the battery due to the vaporization of the nonaqueous electrolyte. In addition, there is a problem that the battery ignites and emits smoke due to combustion of the non-aqueous electrolyte and the positive electrode active material. In order to solve these problems, in the conventional lithium ion battery, the safety of the battery is improved by various methods. In Patent Document 1 (Japanese Patent Laid-Open No. 5-151971, paragraph [0012]), a slurry is prepared by adding a flame retardant to a paste-like positive electrode mixture, and this is applied in a thin layer on both surfaces of a core material. A technique for forming a positive electrode plate by drying a sheet formed in this manner is disclosed. In Patent Document 2 (Japanese Patent Laid-Open No. 2009-16106), a slurry in which a powdery flame retardant is dispersed almost uniformly is applied to a current collector, dried, and then rolled to make the flame retardant. An invention in which an agent is dispersed in a positive electrode mixture layer is disclosed.

特開平5−151971号公報JP-A-5-151971 特開2009−16106号公報JP 2009-16106 A

特許文献1及び2に示された従来のリチウムイオン電池では、正極質合剤層中に難燃化剤が存在するため、異常発熱時における電池の破裂や発火等を抑制することができる。しかしながら、難燃化剤の存在により、正極合剤層中のイオン透過性が阻害されたり、活物質間の電気抵抗が大きくなるため、高率放電特性等の電池性能が低下する問題がある。   In the conventional lithium ion batteries disclosed in Patent Documents 1 and 2, since a flame retardant is present in the positive electrode material mixture layer, battery rupture, ignition, and the like during abnormal heat generation can be suppressed. However, the presence of the flame retardant inhibits ion permeability in the positive electrode mixture layer and increases the electric resistance between the active materials, so that there is a problem that battery performance such as high rate discharge characteristics is deteriorated.

本発明の目的は、活物質合剤層中に難燃化剤が存在していても、高率放電特性が良好なリチウムイオン電池を提供することにある。   An object of the present invention is to provide a lithium ion battery having good high rate discharge characteristics even when a flame retardant is present in an active material mixture layer.

本発明の他の目的は、従来よりも電池の難燃性を高めることができるリチウムイオン電池を提供することにある。   Another object of the present invention is to provide a lithium ion battery that can increase the flame retardance of the battery as compared with the prior art.

本発明の目的は、高率放電特性が良好で、しかも従来よりも難燃性が高いリチウムイオン電池を簡単に製造できる製造方法を提供することにある。   An object of the present invention is to provide a production method that can easily produce a lithium ion battery having good high rate discharge characteristics and higher flame retardance than conventional ones.

本発明が改良の対象とするリチウムイオン電池は、正極集電体の表面および裏面の少なくとも一方の面上に、固体の難燃化剤を含む正極活物質合剤層が形成された正極板を備える。正極集電体は、通常アルミニウム箔で構成されている。リチウムイオン電池は可燃性の非水電解液が使用される。スピネル構造のマンガン酸リチウムのような正極活物質は充電状態においては高温において酸素を放出しながら分解することが知られている。放出された酸素は電解液の燃焼を加速する。難燃化剤は燃焼過程で生成したラジカルを補足し、連鎖反応を終止すると機能を有すると推測される。その結果、燃焼過程で生成したラジカルの連鎖反応が抑制されるため、リチウムイオン電池の難燃化を達成することができる。   The lithium ion battery to be improved by the present invention includes a positive electrode plate in which a positive electrode active material mixture layer containing a solid flame retardant is formed on at least one of the front and back surfaces of a positive electrode current collector. Prepare. The positive electrode current collector is usually composed of an aluminum foil. Lithium ion batteries use a flammable non-aqueous electrolyte. It is known that a positive electrode active material such as spinel lithium manganate decomposes while releasing oxygen at a high temperature in a charged state. The released oxygen accelerates the combustion of the electrolyte. It is presumed that the flame retardant supplements radicals generated in the combustion process and has a function when the chain reaction is terminated. As a result, since the chain reaction of radicals generated in the combustion process is suppressed, it is possible to achieve flame retardancy of the lithium ion battery.

特に本発明のリチウムイオン電池では、正極活物質合剤層の表面に近い領域中の難燃化剤の存在比よりも正極集電体側に近い領域中の難燃化剤の存在比の方が大きくなるように、正極板が構成されている。このような構造では、正極活物質合剤層の表面側に存在する難燃化剤が少ないため、リチウムイオンが正極活物質合剤層の表面から正極活物質合剤層内に入り易くなる。そのため、本発明のリチウムイオン電池によれば、電池の難燃化を達成しながら電池特性(高率放電、低率放電、寿命、充電等の電池性能)を向上させることができる。また本発明の構造では、正極活物質合剤層中の正極集電体側に難燃化剤が多く存在するため、異常発熱時に燃焼過程で生成したラジカルは、正極集電体付近で難燃化剤にトラップされ易くなる。正極集電体として用いられるアルミニウムは、異常発熱時に燃焼し易く、また燃焼熱が大きいため、高温になり易く、正極活物質合剤層内の正極集電体付近では最も燃焼し易くなる。そのため、本発明のように正極集電体付近でラジカルがトラップされ易い構造にすると、正極活物質合剤層内の燃焼し易い部分で燃焼が抑制されやすく、電池の難燃性を従来よりも高めることができる。   In particular, in the lithium ion battery of the present invention, the abundance ratio of the flame retardant in the region near the positive electrode current collector side is more than the abundance ratio of the flame retardant in the region near the surface of the positive electrode active material mixture layer. The positive electrode plate is configured to be large. In such a structure, since the flame retardant present on the surface side of the positive electrode active material mixture layer is small, lithium ions easily enter the positive electrode active material mixture layer from the surface of the positive electrode active material mixture layer. Therefore, according to the lithium ion battery of the present invention, battery characteristics (battery performance such as high rate discharge, low rate discharge, life, and charging) can be improved while achieving flame retardancy of the battery. In addition, in the structure of the present invention, since there are many flame retardants on the positive electrode current collector side in the positive electrode active material mixture layer, radicals generated in the combustion process during abnormal heat generation become flame retardant near the positive electrode current collector. It becomes easy to be trapped in the agent. Aluminum used as the positive electrode current collector is easily combusted during abnormal heat generation, and has a large heat of combustion. Therefore, the temperature tends to be high, and is most easily combusted in the vicinity of the positive electrode current collector in the positive electrode active material mixture layer. For this reason, when the structure in which the radicals are easily trapped in the vicinity of the positive electrode current collector as in the present invention, combustion is easily suppressed at the portion where the positive electrode active material mixture layer easily burns, and the flame retardancy of the battery is made higher than before. Can be increased.

本発明のリチウムイオン電池は、正極集電体に近づくに従って難燃化剤の存在比が大きくなる構造になっている。このように、正極活物質合剤層中の難燃化剤が正極集電体側に一方的に偏って存在しない構造にすると、正極活物質合剤層中の集電体付近で活物質間の電気抵抗が大きくなるのを防ぐことができるため、高率放電特性等の電池特性の低下を抑制することができる。   The lithium ion battery of the present invention has a structure in which the abundance ratio of the flame retardant increases as it approaches the positive electrode current collector. Thus, when the flame retardant in the positive electrode active material mixture layer is unilaterally biased to the positive electrode current collector side, the active material mixture layer in the vicinity of the current collector in the positive electrode active material mixture layer Since it is possible to prevent an increase in electrical resistance, it is possible to suppress deterioration of battery characteristics such as high rate discharge characteristics.

本発明では、融点が90℃以上の難燃化剤を用いるのが好ましい。なお、融点が90℃未満の難燃化剤は、リチウムイオン電池が正常に使用されている場合(異常発熱が起こっていない場合)でも全部または一部が液状になり易い。そのため、正極活物質合剤層中に安定して存在することができないので、電池特性(高率放電、低率放電、寿命、充電等の電池性能)の低下を引き起こすおそれがある。   In the present invention, it is preferable to use a flame retardant having a melting point of 90 ° C. or higher. In addition, the flame retardant having a melting point of less than 90 ° C. is liable to be entirely or partially liquid even when the lithium ion battery is normally used (when no abnormal heat generation occurs). Therefore, since it cannot exist stably in a positive electrode active material mixture layer, there exists a possibility of causing the fall of battery characteristics (battery performance, such as high rate discharge, low rate discharge, lifetime, charge).

このような融点を有する難燃化剤としては、一般式(NPR23または(NPR24で表される環状ホスファゼン化合物を用いることができる。一般式中のRは、フッ素や塩素等のハロゲン元素または一価の置換基を示している。一価の置換基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、および、フェニルチオ基等のアリールチオ基を挙げることができる。 As the flame retardant having such a melting point, a cyclic phosphazene compound represented by the general formula (NPR 2 ) 3 or (NPR 2 ) 4 can be used. R in the general formula represents a halogen element such as fluorine or chlorine or a monovalent substituent. As monovalent substituents, alkoxy groups such as methoxy group and ethoxy group, aryloxy groups such as phenoxy group and methylphenoxy group, alkyl groups such as methyl group and ethyl group, aryl groups such as phenyl group and tolyl group, Examples thereof include an amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group and an ethylthio group, and an arylthio group such as a phenylthio group.

また、本発明のリチウムイオン電池で用いる正極板を製造する方法(リチウムイオン電池用電極板の製造方法)では、まず難燃化剤として溶媒に溶解し且つ溶媒に溶解した状態で溶媒が揮発すると析出物が析出し、常温で固体となるものを用意する。この難燃化剤を正極活物質、導電剤、結着剤とともに溶媒に混合したスラリーを正極集電体に塗布して塗布層を形成する。そして、塗布層が正極集電体の上方に位置する姿勢を保持して、析出物が集電体に向かって沈降する乾燥条件下で塗布層を乾燥する。乾燥後に圧延してもよいのは勿論である。   Further, in the method for producing a positive electrode plate used in the lithium ion battery of the present invention (method for producing an electrode plate for a lithium ion battery), when the solvent volatilizes in a state where it is first dissolved in the solvent and dissolved in the solvent. Prepare a solid that precipitates and becomes solid at room temperature. A slurry obtained by mixing this flame retardant with a positive electrode active material, a conductive agent, and a binder in a solvent is applied to the positive electrode current collector to form a coating layer. And a coating layer is dried on the dry conditions which hold | maintain the attitude | position in which an application layer is located above a positive electrode electrical power collector, and a deposit settles toward an electrical power collector. Of course, it may be rolled after drying.

特許文献2に示された従来のリチウムイオン電池の製造方法では、難燃化剤の沈降を積極的に利用することを考えていないために、難燃化剤が沈降する前に乾燥が完了しているものと考えられる。そのため正極活物質合剤層中には、ほぼ均等に難燃化剤が存在しているものと考えられる。本発明の方法によれば、析出した難燃化剤を沈降により集電体側に集めるように乾燥条件を定めるため、正極活物質合剤層中の難燃化剤の存在比が正極活物質合剤層の表面に近い領域中の存在比よりも正極集電体側に近い領域中の存在比の方が大きな正極板を簡単に製造することができる。   In the conventional method of manufacturing a lithium ion battery shown in Patent Document 2, since the active use of the precipitation of the flame retardant is not considered, drying is completed before the flame retardant settles. It is thought that. Therefore, it is considered that the flame retardant is present almost uniformly in the positive electrode active material mixture layer. According to the method of the present invention, since the drying conditions are determined so that the precipitated flame retardant is collected on the current collector side by sedimentation, the abundance ratio of the flame retardant in the positive electrode active material mixture layer is A positive electrode plate having a larger abundance ratio in a region closer to the positive electrode current collector than a presence ratio in a region near the surface of the agent layer can be easily produced.

正極集電体側に難燃化剤の層を構成する方法として、正極集電体上に正極活物質合剤とは別に難燃化剤を予め塗布し、その後、正極活物質合剤層を形成する方法も原理的には考えられる。しかしながら、この方法は製造方法が複雑であり、制御が難しいという課題が存在する。また、正極集電体に近づくに従って難燃化剤の存在比が大きくなる構造を形成する事に特別の工夫を要する。そこで、本発明の製造方法を用いることにより、1回の塗布工程で本発明の正極板を製造することができる。   As a method of forming a flame retardant layer on the positive electrode current collector side, a flame retardant is applied on the positive electrode current collector separately from the positive electrode active material mixture, and then a positive electrode active material mixture layer is formed. In principle, this method is also conceivable. However, this method has a problem that the manufacturing method is complicated and control is difficult. Further, special measures are required to form a structure in which the abundance ratio of the flame retardant increases as it approaches the positive electrode current collector. Then, the positive electrode plate of this invention can be manufactured by one application | coating process by using the manufacturing method of this invention.

乾燥時に塗布層内で対流が発生し難い。その上で、析出物が沈降するように塗布層を乾燥すれば、正極活物質合剤層中の集電体側に難燃化剤が偏在する正極板を確実に得ることができる。   Convection is unlikely to occur in the coating layer during drying. Then, if the coating layer is dried so that the precipitates settle, a positive electrode plate in which the flame retardant is unevenly distributed on the current collector side in the positive electrode active material mixture layer can be obtained with certainty.

難燃化剤が析出しながら沈降する乾燥条件は、適宜に定めることができる。例えば、比較的低い温度で比較的長い時間をかけて乾燥させることが考えられる。   The drying conditions in which the flame retardant settles while precipitating can be determined as appropriate. For example, drying at a relatively low temperature for a relatively long time can be considered.

また、乾燥温度を段階的に変化させることもできる。例えば、乾燥の初期において低温で長時間かけて乾燥させ、乾燥速度が低下した時点で温度を上昇させることで乾燥を速め、生産性を上げることも考えられる。このようにすると析出した難燃化剤を沈降させながら、乾燥完了までの時間を短縮することができる。   In addition, the drying temperature can be changed stepwise. For example, it is conceivable that drying is performed at a low temperature for a long time in the initial stage of drying, and the temperature is increased when the drying speed is lowered to speed up drying and increase productivity. In this way, it is possible to shorten the time until the drying is completed while precipitating the deposited flame retardant.

また、逆に、初期に比較的、高い温度で乾燥させ、乾燥速度が低下した時点で温度を下げる方法もある。この場合には前二者よりも効果は低下するものの、ある程度の効果は得られるとともに乾燥完了までの時間を短縮することができる。   Conversely, there is a method of drying at a relatively high temperature in the initial stage and lowering the temperature when the drying speed is lowered. In this case, although the effect is lower than the former two, a certain degree of effect can be obtained and the time to completion of drying can be shortened.

乾燥炉の設定温度が高く、急速に乾燥させた場合には正極活物質合剤層内に温度分布が生じる可能性がある。正極活物質合剤層内の温度分布が大きい場合には対流が発生する。対流は析出物の沈降を妨げると考えられる。そのため、設定温度を低くして、ゆっくり乾燥させた場合には難燃化剤が沈降し正極集電体側に難燃化剤が偏在する電極板を確実に得ることができる。一方、マイクロ波乾燥のように正極活物質合剤層内部から乾燥させた場合には均一な乾燥となり、対流が起こり難い可能性がある。そのため、上述のような乾燥温度および乾燥時間を定めることなく、本発明のような正極集電体側に難燃化剤が偏って存在するリチウムイオン電池用電極板を製造することができると推測される。   When the preset temperature of the drying furnace is high and drying is performed rapidly, temperature distribution may occur in the positive electrode active material mixture layer. Convection occurs when the temperature distribution in the positive electrode active material mixture layer is large. Convection is thought to impede sedimentation of precipitates. Therefore, when the set temperature is lowered and dried slowly, an electrode plate in which the flame retardant settles and the flame retardant is unevenly distributed on the positive electrode current collector side can be obtained with certainty. On the other hand, when drying from the inside of the positive electrode active material mixture layer as in microwave drying, the drying becomes uniform and convection may not easily occur. Therefore, it is presumed that an electrode plate for a lithium ion battery in which a flame retardant is present on the positive electrode current collector side as in the present invention can be produced without determining the drying temperature and the drying time as described above. The

(A)は本発明のリチウムイオン電池として用いるラミネート電池の内部を透視した状態で示した概略図であり、(B)は(A)のIB−IB線断面図である。(A) is the schematic shown in the state which saw through the inside of the laminated battery used as a lithium ion battery of this invention, (B) is the IB-IB sectional view taken on the line of (A). 本発明の実施の形態であるリチウム電池(ラミネート電池)の正極板の内部における、正極集電体からの距離(任意単位)とリンの濃度(任意単位)との関係を示すグラフである。It is a graph which shows the relationship between the distance (arbitrary unit) from a positive electrode electrical power collector, and the density | concentration (arbitrary unit) of phosphorus in the inside of the positive electrode plate of the lithium battery (laminate battery) which is embodiment of this invention. 本発明の比較例であるリチウムイオン電池(ラミネート電池)の正極板の内部における、正極集電体からの距離(任意単位)とリン濃度(任意単位)との関係を示すグラフである。It is a graph which shows the relationship between the distance (arbitrary unit) from a positive electrode electrical power collector, and phosphorus concentration (arbitrary unit) in the inside of the positive electrode plate of the lithium ion battery (laminated battery) which is a comparative example of this invention.

以下、本発明の実施の形態について詳細に説明する。図1(A)は、本発明のリチウムイオン電池の実施の形態であるラミネート電池の内部を透視状態で示した概略図であり、図1(B)は図1(A)のIB−IBの断面図である。このリチウムイオン二次電池(ラミネート電池1)は、正極リード端子3aを備える正極板3と、負極リード端子5aを備える負極板5と、正極板3と負極板5との間に配置されたセパレータ7と、リチウム塩を有機溶媒に溶解させた非水電解液9とを備える。正極板3、負極板5およびセパレータ7は、積層されて積層体からなる極板群11を構成する。極板群11は、正極リード端子3aおよび負極リード端子5aが外部に接続可能な状態でケース13内に収納されている。ケース13内は、非水電解液9が充填された状態で真空になっている。本例では、このようなリチウムイオン二次電池(ラミネート電池1)を、以下のように作製した。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1A is a schematic view showing the inside of a laminate battery as an embodiment of the lithium ion battery of the present invention in a transparent state, and FIG. 1B is a diagram of IB-IB in FIG. It is sectional drawing. The lithium ion secondary battery (laminated battery 1) includes a positive electrode plate 3 having a positive electrode lead terminal 3a, a negative electrode plate 5 having a negative electrode lead terminal 5a, and a separator disposed between the positive electrode plate 3 and the negative electrode plate 5. 7 and a non-aqueous electrolyte 9 in which a lithium salt is dissolved in an organic solvent. The positive electrode plate 3, the negative electrode plate 5, and the separator 7 are laminated to constitute an electrode plate group 11 made of a laminate. The electrode plate group 11 is housed in the case 13 with the positive electrode lead terminal 3a and the negative electrode lead terminal 5a being connectable to the outside. The inside of the case 13 is evacuated with the nonaqueous electrolyte 9 filled. In this example, such a lithium ion secondary battery (laminated battery 1) was produced as follows.

[非水電解液]
ケース13内には、非水電解液9が注液されている。非水電解液9には、エチレンカーボネートとジメチルカーボネートとの体積比1:1の混合溶媒中にリチウム塩として4フッ化ホウ酸リチウムを1.5モル/リットルで溶解したものが用いられている。
[Non-aqueous electrolyte]
A non-aqueous electrolyte 9 is injected into the case 13. As the nonaqueous electrolytic solution 9, a solution obtained by dissolving lithium tetrafluoroborate as a lithium salt in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 at 1.5 mol / liter is used. .

[正極板の作製]
正極板3は、正極集電体としてアルミニウム箔を用いる。アルミニウム箔の厚さは、本例では、20μmに設定されている。アルミニウム箔の表面および/または裏面に、正極活物質としてリチウム遷移金属複酸化物を含む正極活物質合剤を塗布する。リチウム遷移金属複酸化物として、本例では、スピネル結晶構造を有するマンガン酸リチウム粉末が用いられている。正極活物質合剤には、正極活物質以外に、導電材として炭素粉末、バインダ(結着剤)としてポリフッ化ビニリデン(以下、PVDFといる。)および難燃化剤として粉末状(固体)のホスファゼン化合物が配合されている。マンガン酸リチウム粉末、炭素粉末、PVDFおよび難燃化剤粉末の配合割合は、本例では、85:5:5:5(重量%)に設定されている。すなわち、正極活物質合剤に対する難燃化剤の配合割合は、5重量%に設定されている。アルミニウム箔に正極活物質合剤を塗布するときには、分散溶媒のN−メチル−2−ピロリドン(以下、NMPという。)で粘度調整されスラリーを調製する。なお、難燃化剤は、このスラリー中に分散している。このスラリーをアルミニウム箔からなる正極集電体に塗布して塗布層を形成する。そして塗布層が集電体の上方に位置する姿勢を保持して塗布層を乾燥する。本発明では、乾燥条件(乾燥温度及び乾燥時間、乾燥方法等)を後述する実施例のように、塗着層中で析出した難燃化剤が正極集電体側に沈降するように定める。乾燥後、プレス加工を施して、正極シートを作製した。このような正極シートを10cm×20cmに切り取り、アルミニウム箔の集電タブを溶接して正極板3を作製した。
[Production of positive electrode plate]
The positive electrode plate 3 uses an aluminum foil as a positive electrode current collector. The thickness of the aluminum foil is set to 20 μm in this example. A positive electrode active material mixture containing a lithium transition metal double oxide as a positive electrode active material is applied to the front and / or back surface of the aluminum foil. In this example, lithium manganate powder having a spinel crystal structure is used as the lithium transition metal double oxide. In addition to the positive electrode active material, the positive electrode active material mixture includes carbon powder as a conductive material, polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder (hereinafter referred to as PVDF), and powder (solid) as a flame retardant. A phosphazene compound is blended. In this example, the blending ratio of the lithium manganate powder, carbon powder, PVDF, and flame retardant powder is set to 85: 5: 5: 5 (% by weight). That is, the blending ratio of the flame retardant to the positive electrode active material mixture is set to 5% by weight. When a positive electrode active material mixture is applied to an aluminum foil, the viscosity is adjusted with a dispersion solvent N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to prepare a slurry. The flame retardant is dispersed in this slurry. This slurry is applied to a positive electrode current collector made of an aluminum foil to form a coating layer. Then, the coating layer is dried while maintaining the posture in which the coating layer is positioned above the current collector. In the present invention, the drying conditions (drying temperature, drying time, drying method, etc.) are determined so that the flame retardant deposited in the coating layer settles on the positive electrode current collector side as in the examples described later. After drying, press working was performed to produce a positive electrode sheet. Such a positive electrode sheet was cut into 10 cm × 20 cm, and a current collecting tab of aluminum foil was welded to prepare a positive electrode plate 3.

[難燃化剤(ホスファゼン化合物)]
正極板の作製に用いる難燃化剤はホスファゼン化合物であり、NMP溶媒に溶解し且つNMP溶媒に溶解した状態でNMP溶媒が揮発すると析出する。このようなホスファゼン化合物としては、一般式(NPR23または(NPR24で表される環状化合物を用いることができる。本実施の形態では、株式会社ブリヂストン製のホスライトAE(登録商標)を用いた。この環状ホスファゼン化合物は、一般式中のRがフェノキシであり、常温で固体であり、融点は約110℃である。
[Flame retardant (phosphazene compound)]
The flame retardant used in the production of the positive electrode plate is a phosphazene compound, which precipitates when the NMP solvent volatilizes in a state dissolved in the NMP solvent and dissolved in the NMP solvent. As such a phosphazene compound, a cyclic compound represented by the general formula (NPR 2 ) 3 or (NPR 2 ) 4 can be used. In the present embodiment, Phoslite AE (registered trademark) manufactured by Bridgestone Corporation was used. In this cyclic phosphazene compound, R in the general formula is phenoxy, is solid at room temperature, and has a melting point of about 110 ° C.

[負極板の作製]
負極板5は、負極集電体として銅箔を用いる。銅箔の厚さは、本例では、10μmに設定されている。銅箔の表面および裏面には、負極活物質としてリチウムイオンを吸蔵、放出可能な非晶質炭素粉末や黒鉛粉末等の炭素材料を含む負極活物質合剤が塗布されている。負極活物質合剤には、負極活物質以外に、バインダとしてPVDFが配合されている。本例の負極活物質合剤には難燃化剤は配合されていないが、難燃化剤を配合する場合は、正極活物質合剤に配合したものと同じホスファゼン化合物を用いることができる。炭素材料およびPVDFの配合割合は、本例では、90:10(重量%)に設定されている。このように設定された炭素材料とPVDFとをNMP溶媒に分散させて粘度調整しながらスラリーを調製する。このスラリーを、銅箔の負極集電体に塗布して、正極板を作成する場合と同様に乾燥する。乾燥した後、プレス加工を施して、負極シートを作製した。この負極シートを10cm×20cmに切り取り、切り取ったシートにニッケル箔の集電タブを溶接して負極板5を作製した。
[Production of negative electrode plate]
The negative electrode plate 5 uses a copper foil as a negative electrode current collector. The thickness of the copper foil is set to 10 μm in this example. A negative electrode active material mixture containing a carbon material such as amorphous carbon powder or graphite powder capable of occluding and releasing lithium ions as a negative electrode active material is applied to the front and back surfaces of the copper foil. In addition to the negative electrode active material, PVDF is blended in the negative electrode active material mixture as a binder. Although the flame retardant is not blended in the negative electrode active material mixture of this example, when the flame retardant is blended, the same phosphazene compound as that blended in the positive electrode active material mixture can be used. In this example, the blending ratio of the carbon material and PVDF is set to 90:10 (% by weight). A slurry is prepared while adjusting the viscosity by dispersing the carbon material and PVDF thus set in an NMP solvent. This slurry is applied to a copper foil negative electrode current collector and dried in the same manner as in the case of preparing a positive electrode plate. After drying, press working was performed to prepare a negative electrode sheet. The negative electrode sheet was cut to 10 cm × 20 cm, and a nickel foil current collecting tab was welded to the cut sheet to prepare the negative electrode plate 5.

[積層体の作成]
このように作製した正極板3と負極板5との間に、ポリエチレンからなるセパレータシート(セパレータ7)を挟んで、正極板3、負極板5およびセパレータ7を積層して電池容量が8Ahになるように極板群1を作製した。
[Create laminate]
The positive electrode plate 3, the negative electrode plate 5, and the separator 7 are laminated with the separator sheet (separator 7) made of polyethylene sandwiched between the positive electrode plate 3 and the negative electrode plate 5 thus manufactured, and the battery capacity becomes 8 Ah. Thus, an electrode plate group 1 was produced.

[電池の組立]
熱融着フィルム(アルミラミネートフィルム)からなる一端が開口した外装材(後にケース13となる)の中に、作製した極板群11を挿入し、さらに調製した非水電解液9を外装材中に注入した。その後、外装材中を真空にして、すばやく外装材の開口部をヒートシールして、平板状のリチウムイオン電池(ラミネート電池1)を作製した。
[Battery assembly]
The prepared electrode plate group 11 is inserted into an outer packaging material (which will later become a case 13) made of a heat-sealing film (aluminum laminate film), and the prepared non-aqueous electrolyte 9 is placed in the outer packaging material. Injected into. Then, the inside of the exterior material was evacuated, and the opening of the exterior material was quickly heat-sealed to produce a flat lithium ion battery (laminated battery 1).

次に、本実施の形態であるリチウムイオン電池(ラミネート電池1)の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン電池(ラミネート電池)についても併せて説明する。   Next, examples of the lithium ion battery (laminated battery 1) according to the present embodiment will be described. A comparative lithium ion battery (laminated battery) produced for comparison will also be described.

[実施例1]
本実施例では、正極板の製造過程において、乾燥時間内で難燃化剤が沈降しながら析出するように乾燥条件を定める。
[Example 1]
In the present embodiment, the drying conditions are determined so that the flame retardant precipitates during the drying time during the production process of the positive electrode plate.

具体的には、乾燥温度を100℃、乾燥時間を260秒とする乾燥条件の下で、正極集電体の表面に前述の環状ホスファゼン化合物を含む正極活物質合剤を塗布して形成された塗布層を乾燥して、リチウムイオン二次電池1の正極板3を作製した。   Specifically, it was formed by applying a positive electrode active material mixture containing the aforementioned cyclic phosphazene compound to the surface of the positive electrode current collector under the drying conditions of a drying temperature of 100 ° C. and a drying time of 260 seconds. The coating layer was dried, and the positive electrode plate 3 of the lithium ion secondary battery 1 was produced.

実施例1では、乾燥温度(100℃)は、環状ホスファゼン化合物の融点(110℃)よりも低い温度とした。また、乾燥時間(260秒)は、恒率乾燥および減率乾燥をそれぞれ一定温度(100℃)で完了させることができる長さとした。この乾燥時間は、この乾燥条件は、塗着層を早期に乾燥させるのではなく、難燃化剤を確実に沈降しながら析出させることを可能にする。   In Example 1, the drying temperature (100 ° C.) was lower than the melting point (110 ° C.) of the cyclic phosphazene compound. Further, the drying time (260 seconds) was set to a length capable of completing constant rate drying and decreasing rate drying at a constant temperature (100 ° C.). This drying time makes it possible to deposit the flame retardant while allowing the flame retardant to settle, rather than drying the coating layer early.

なお後述する比較例のように、120℃で100秒の乾燥条件で、乾燥を行うと、沈降の前に乾燥が起こる、あるいは対流のため沈降が妨げられるため難燃化剤は合剤内にほぼ均等に分散する。   As in the comparative example described later, when drying is performed at 120 ° C. for 100 seconds, drying occurs before settling, or settling is prevented due to convection, so the flame retardant is contained in the mixture. Disperse almost evenly.

[実施例2]
本実施例では、正極板の製造過程において、初期の乾燥条件として、比較的低い温度で加熱し、溶媒の蒸発速度が低下した時点、すなわち減率乾燥過程に至った段階で温度を上昇させた。このような乾燥条件を採用すると、析出した難燃化剤を沈降させて、しかも乾燥完了までの時間を短縮することができる。
[Example 2]
In this example, in the process of manufacturing the positive electrode plate, heating was performed at a relatively low temperature as an initial drying condition, and the temperature was increased at the time when the evaporation rate of the solvent was lowered, that is, at the stage where the reduction drying process was reached. . When such drying conditions are employed, the deposited flame retardant can be allowed to settle, and the time until completion of drying can be shortened.

具体的には、正極板3の製造過程において、初期の乾燥炉設定温度を100℃に設定した。乾燥開始から100秒後に乾燥速度が低下した。その時点で、乾燥炉の設定温度を120℃に上昇させた。50秒後に乾燥が終了した。   Specifically, in the process of manufacturing the positive electrode plate 3, the initial drying furnace set temperature was set to 100 ° C. The drying rate decreased after 100 seconds from the start of drying. At that time, the preset temperature of the drying furnace was raised to 120 ° C. Drying was completed after 50 seconds.

[実施例3]
本実施例では、正極板の製造過程において、初期の乾燥条件として、比較的高い温度で加熱している。乾燥速度が低下した時点において乾燥温度を低下させた。
[Example 3]
In this example, heating is performed at a relatively high temperature as an initial drying condition in the manufacturing process of the positive electrode plate. The drying temperature was lowered when the drying rate decreased.

そこで実施例3では、具体的に、正極板の製造過程において、初期の乾燥炉設定温度を120℃に設定した。乾燥開始から50秒後に乾燥速度が低下した。その時点で、乾燥炉の設定温度を100℃に低下させた。130秒後に乾燥が終了した。   Therefore, in Example 3, specifically, the initial drying furnace set temperature was set to 120 ° C. in the manufacturing process of the positive electrode plate. The drying speed decreased 50 seconds after the start of drying. At that time, the preset temperature of the drying furnace was lowered to 100 ° C. Drying was completed after 130 seconds.

[比較例1]
本比較例では、難燃化剤(環状ホスファゼン化合物)を含まない正極活物質合剤を用いて、上述の特許文献2で実質的に採用された乾燥条件の下で、正極集電体の表面に正極活物質合剤を塗布して形成された塗布層を乾燥して、リチウムイオン二次電池の正極板を作製した。具体的には、予熱温度を120℃、予熱時間を50秒、乾燥温度を120℃、乾燥時間を100秒とする乾燥条件を定めた。
[Comparative Example 1]
In this comparative example, the surface of the positive electrode current collector under the drying conditions substantially employed in Patent Document 2 described above using a positive electrode active material mixture that does not contain a flame retardant (cyclic phosphazene compound). The coating layer formed by applying the positive electrode active material mixture to was dried to prepare a positive electrode plate of a lithium ion secondary battery. Specifically, drying conditions were set such that the preheating temperature was 120 ° C., the preheating time was 50 seconds, the drying temperature was 120 ° C., and the drying time was 100 seconds.

[比較例2]
比較例1と同様の乾燥条件の下で、正極集電体の表面に難燃化剤(環状ホスファゼン化合物)を含む正極活物質合剤を塗布して形成された塗布層を乾燥して正極板を形成し、リチウムイオン二次電池を作製した。
[Comparative Example 2]
Under the same drying conditions as in Comparative Example 1, the coating layer formed by applying a positive electrode active material mixture containing a flame retardant (cyclic phosphazene compound) to the surface of the positive electrode current collector was dried to produce a positive electrode plate To form a lithium ion secondary battery.

[比較例3]
比較例2に対して、予熱温度および予熱時間を変えた以外は、比較例2と同様の乾燥条件下で、正極集電体の表面に難燃化剤(環状ホスファゼン化合物)を含む正極活物質合剤を塗布して形成された塗布層を乾燥して、リチウムイオン二次電池の正極板を作製した。具体的には、乾燥条件として、予熱温度を100℃、予熱時間を70秒、乾燥温度を120℃、乾燥時間を100秒とする乾燥条件と定めた。
[Comparative Example 3]
A positive electrode active material containing a flame retardant (cyclic phosphazene compound) on the surface of the positive electrode current collector under the same drying conditions as in Comparative Example 2 except that the preheating temperature and the preheating time were changed with respect to Comparative Example 2. The coating layer formed by applying the mixture was dried to produce a positive electrode plate of a lithium ion secondary battery. Specifically, the drying conditions were set to a preheating temperature of 100 ° C., a preheating time of 70 seconds, a drying temperature of 120 ° C., and a drying time of 100 seconds.

(正極板の内部観察)
実施例及び比較例として作製した正極板の内部を観察した。正極板内部の観察は、島津製作所製の電子線マイクロアナライザ(EPMA−1600)を用いて、正極板内部における難燃化剤の分布度を測定した(図2および図3)。図2及び図3は、実施例1および比較例2の正極板内部における、正極集電体からの距離(任意単位)とリン濃度(任意単位)との関係を示すグラフである。このグラフから、正極板内部の正極集電体側から電体正極活物質合剤層の表面側に向かって変化するリン濃度を測定して、リンを含む環状ホスファゼン化合物(難燃化剤)の正極活物質合剤層内の分布度を確認した。なお、比較例3については、正極板内部における難燃化剤の分布度を示すグラフは特に示していないが、比較例3の正極板の内部は、比較例2の正極板の内部と同様の構造となることが確認された。また実施例2〜4についても、正極板内部における難燃化剤の分布度を示すグラフは特に示していないが、実施例2〜4の正極板の内部は、実施例1の正極板の内部と同様の構造となることが確認された。
(Internal observation of positive electrode plate)
The inside of the positive electrode plate produced as an Example and a comparative example was observed. The inside of the positive electrode plate was observed using an electron beam microanalyzer (EPMA-1600) manufactured by Shimadzu Corporation to measure the distribution of the flame retardant inside the positive electrode plate (FIGS. 2 and 3). 2 and 3 are graphs showing the relationship between the distance from the positive electrode current collector (arbitrary unit) and the phosphorus concentration (arbitrary unit) inside the positive electrode plates of Example 1 and Comparative Example 2. FIG. From this graph, the phosphorus concentration that changes from the positive electrode current collector side inside the positive electrode plate toward the surface side of the positive electrode active material mixture layer is measured, and the positive electrode of the cyclic phosphazene compound (flame retardant) containing phosphorus The degree of distribution in the active material mixture layer was confirmed. In addition, about the comparative example 3, although the graph which shows the distribution degree of the flame retardant in the inside of a positive electrode plate is not shown in particular, the inside of the positive electrode plate of the comparative example 3 is the same as the inside of the positive electrode plate of the comparative example 2. The structure was confirmed. Also, for Examples 2 to 4, the graph showing the distribution of the flame retardant inside the positive electrode plate is not particularly shown, but the inside of the positive electrode plate of Examples 2 to 4 is the inside of the positive electrode plate of Example 1. It was confirmed that the structure was the same.

(電池特性の評価/高率放電試験)
実施例及び比較例として作製した正極板をリチウムイオン二次電池(ラミネート電池1)に用いた場合の電池特性を評価した。電池特性の評価は、高率放電試験により行った。高率放電試験では、まず、25℃の環境下で、4.2〜3.0Vの電圧範囲で、1.6Aの電流による充放電サイクルを2回繰り返し、さらに4.1Vまで電池の充電を行った。充電した後、電流1.6A(0.2CA),8A(1CA), 16A(2CA)、24A(3CA)で各率放電を測定した。終止電圧は3.0Vとした。1.6A(0.2CA)放電時の容量に対する24A(3CA)放電時の相対容量(%)を表1に示す。
(Evaluation of battery characteristics / High rate discharge test)
The battery characteristics were evaluated when the positive electrode plates produced as examples and comparative examples were used for lithium ion secondary batteries (laminated battery 1). The battery characteristics were evaluated by a high rate discharge test. In the high-rate discharge test, first, a charge / discharge cycle with a current of 1.6 A is repeated twice in a voltage range of 4.2 to 3.0 V under an environment of 25 ° C., and the battery is further charged to 4.1 V. went. After charging, each rate discharge was measured at currents of 1.6 A (0.2 CA), 8 A (1 CA), 16 A (2 CA), and 24 A (3 CA). The final voltage was 3.0V. Table 1 shows the relative capacity (%) at 24 A (3 CA) discharge with respect to the capacity at 1.6 A (0.2 CA) discharge.

(難燃性の評価/釘刺し試験)
実施例及び比較例として作製した正極板をリチウムイオン二次電池に用いた場合の電池について、釘刺し試験を行った。釘刺し試験では、まず、上記の高率放電試験と同じ条件で充放電サイクルを繰り返して4.2Vまで電池の充電を行った。その後、同じ25℃の温度条件下で、軸部の直径が5mmのセラミック製の釘を、速度1.6mm/sで電池の側面の中心に垂直に突き刺し、温度と電圧をモニターした。最高到達温度を表1に示す。
(Evaluation of flame retardancy / nail penetration test)
A nail penetration test was conducted on the batteries when the positive electrode plates produced as examples and comparative examples were used for lithium ion secondary batteries. In the nail penetration test, first, the battery was charged to 4.2 V by repeating the charge / discharge cycle under the same conditions as in the high-rate discharge test. Thereafter, under the same temperature condition of 25 ° C., a ceramic nail having a shaft diameter of 5 mm was pierced perpendicularly to the center of the side surface of the battery at a speed of 1.6 mm / s, and the temperature and voltage were monitored. Table 1 shows the maximum temperature reached.

(総合評価)
高率放電試験および釘刺し試験の結果、0.2CA容量に対する3CA放電の相対容量(%)が高く、釘刺し時の最高到達温度(℃)が低く抑制されている場合は○とし、いずれか一方でも満足しない場合は×とした。

Figure 2013054968
(Comprehensive evaluation)
As a result of high-rate discharge test and nail penetration test, if the relative capacity (%) of 3CA discharge to 0.2CA capacity is high and the maximum temperature (° C) at the time of nail penetration is suppressed to a low level, ○ When it was not satisfied on the other hand, it was set as x.
Figure 2013054968

表1及び図3に示すように、正極板の内部を観察した結果、高い温度で乾燥した比較例2及び比較例3で、難燃化剤(環状ホスファゼン化合物)が正極活物質合剤層中の正極集電体側および表面側に関係なくほぼ均一に正極活物質合剤層中に分散して存在していることが確認された。これに対して、表1及び図2に示すように、乾燥工程の全部または一部で低い温度で乾燥した実施例1〜3では、難燃化剤(環状ホスファゼン化合物)が正極活物質合剤層中の表面側には殆ど存在せず、正極集電体側に偏って存在(偏在)していることが分かった。さらに、実施例1〜4では、正極活物質合剤層中の難燃化剤(環状ホスファゼン化合物)が、正極活物質合剤層の表面側から集電体側に近づくに従って分布度が大きくなっていくことが分かった(図2参照)。   As shown in Table 1 and FIG. 3, as a result of observing the inside of the positive electrode plate, the flame retardant (cyclic phosphazene compound) is in the positive electrode active material mixture layer in Comparative Example 2 and Comparative Example 3 dried at a high temperature. It was confirmed that they were dispersed almost uniformly in the positive electrode active material mixture layer regardless of the positive electrode current collector side and the surface side. On the other hand, as shown in Table 1 and FIG. 2, in Examples 1 to 3 dried at a low temperature in all or part of the drying step, the flame retardant (cyclic phosphazene compound) is a positive electrode active material mixture. It was found that there was almost no presence on the surface side in the layer, and there was an uneven distribution on the positive electrode current collector side. Furthermore, in Examples 1 to 4, the degree of distribution increases as the flame retardant (cyclic phosphazene compound) in the positive electrode active material mixture layer approaches the current collector side from the surface side of the positive electrode active material mixture layer. (See Fig. 2).

これらの結果から、乾燥工程の全部または一部で低い温度で乾燥を行うことにより、集電体側に近い領域中の難燃化剤の存在比が正極活物質合剤層の表面に近い領域中の難燃化剤の存在比よりも大きく、しかも難燃化剤の存在比が、集電体に近づくに従って大きくなっていく正極板を形成できることが分かった。なお、予熱温度および予熱時間が異なる比較例2および比較例3では、いずれも難燃化剤(環状ホスファゼン化合物)が正極活物質合剤層中の正極集電体側に偏って存在する正極板は得られなかったことから、乾燥前の予熱条件は本発明の構成を得るための条件にはならいことも分かった。   From these results, by performing drying at a low temperature in all or part of the drying process, the abundance ratio of the flame retardant in the region near the current collector side is in the region near the surface of the positive electrode active material mixture layer. It has been found that a positive electrode plate can be formed which is larger than the existing ratio of the flame retardant and the increasing ratio of the flame retardant becomes closer to the current collector. In Comparative Example 2 and Comparative Example 3 in which the preheating temperature and the preheating time are different from each other, the positive electrode plate in which the flame retardant (cyclic phosphazene compound) is biased to the positive electrode current collector side in the positive electrode active material mixture layer is Since it was not obtained, it turned out that the preheating conditions before drying do not follow the conditions for obtaining the structure of this invention.

また、高率放電試験および釘刺し試験の結果、正極活物質合剤層に難燃化剤が含まれていない比較例1では、高率放電容量は維持されるものの、釘刺し試験において強制的に内部短絡させたところ最高到達温度が著しく高い温度となった。また、発煙が観察された。比較例2および3では、正極活物質合剤層に難燃化剤(環状ホスファゼン化合物)が含まれているため最高到達温度は低く抑えられた。また、発煙・発火は観察されなかった。しかしながら、難燃化剤(環状ホスファゼン化合物)が正極活物質合剤層中にほぼ均一に分散されているため、高率放電容量が低い結果となった。これに対して、難燃化剤(環状ホスファゼン化合物)が正極活物質合剤層中の正極集電体側に偏って存在(偏在)する正極板を備える実施例1〜3は、高率放電容量が良好であり、釘刺し時の最高到達温度が低い温度に止まった。また、発煙・発火は認められなかった。これらの結果から、難燃化剤(環状ホスファゼン化合物)が正極活物質合剤層中の正極集電体側に偏在する正極板を用いることにより、高率放電特性を低下させることなく、リチウムイオン電池の安全性を向上できることが分かった。   Further, as a result of the high rate discharge test and the nail penetration test, in Comparative Example 1 in which the positive electrode active material mixture layer does not contain a flame retardant, the high rate discharge capacity is maintained, but in the nail penetration test When the internal short circuit was performed, the maximum temperature reached was extremely high. In addition, fuming was observed. In Comparative Examples 2 and 3, since the flame retardant (cyclic phosphazene compound) was included in the positive electrode active material mixture layer, the maximum temperature reached was kept low. In addition, no smoke or ignition was observed. However, since the flame retardant (cyclic phosphazene compound) is almost uniformly dispersed in the positive electrode active material mixture layer, the high rate discharge capacity is low. On the other hand, Examples 1-3 provided with the positive electrode plate in which a flame retardant (cyclic phosphazene compound) exists in the positive electrode collector side in the positive electrode active material mixture layer (is unevenly distributed) have a high rate discharge capacity. Was good, and the maximum temperature reached when nailing was low. In addition, no smoke or ignition was observed. From these results, it is possible to use a positive electrode plate in which the flame retardant (cyclic phosphazene compound) is unevenly distributed on the positive electrode current collector side in the positive electrode active material mixture layer, so that the lithium ion battery does not deteriorate high rate discharge characteristics. It was found that the safety of can be improved.

以上、本発明の実施の形態および実施例について具体的に説明したが、本発明は、これらの実施の形態および実施例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and examples, and modifications based on the technical idea of the present invention are possible. Of course.

本発明によれば、正極活物質合剤層中の難燃化剤の存在比が、正極活物質合剤層の表面に近い領域中で小さいため、リチウムイオンが正極活物質合剤層の表面から正極活物質合剤層内に入り易くすることができる。また、正極活物質合剤層の表面側に近い領域中よりも正極集電体側に近い領域中に難燃化剤が多く存在するため、異常発熱時に燃焼過程で生成したラジカルが、正極集電体付近で難燃化剤にトラップされ易くなる。そのため、本発明によれば、高率放電特性が良好で、しかも従来よりも難燃性が高いリチウムイオン電池が得られる。   According to the present invention, since the abundance ratio of the flame retardant in the positive electrode active material mixture layer is small in the region close to the surface of the positive electrode active material mixture layer, lithium ions are present on the surface of the positive electrode active material mixture layer. Can easily enter the positive electrode active material mixture layer. In addition, since there are more flame retardants in the region closer to the positive electrode current collector than in the region closer to the surface side of the positive electrode active material mixture layer, radicals generated in the combustion process during abnormal heat generation are It becomes easy to be trapped by the flame retardant near the body. Therefore, according to the present invention, a lithium ion battery having good high rate discharge characteristics and higher flame retardancy than the conventional one can be obtained.

1 リチウムイオン二次電池
3 正極板
5 負極板
7 セパレータ
9 非水電解液
11 極板群
13 ケース
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 3 Positive electrode plate 5 Negative electrode plate 7 Separator 9 Nonaqueous electrolyte 11 Electrode plate group 13 Case

Claims (5)

過充電または過放電によって電池が異常発熱した際に正極集電体の表面および裏面の少なくとも一方の面上に、固体の難燃化剤を含む正極活物質合剤層が形成された正極板を備えるリチウムイオン電池であって、
前記正極活物質合剤層の表面に近い領域中の難燃化剤の存在比よりも前記正極集電体側に近い領域中の難燃化剤の存在比の方が大きいことを特徴とするリチウムイオン電池。
A positive electrode plate in which a positive electrode active material mixture layer containing a solid flame retardant is formed on at least one of the front and back surfaces of the positive electrode current collector when the battery abnormally generates heat due to overcharge or overdischarge. A lithium ion battery comprising:
Lithium, wherein the abundance ratio of the flame retardant in the region near the positive electrode current collector side is larger than the abundance ratio of the flame retardant in the region near the surface of the positive electrode active material mixture layer Ion battery.
前記難燃化剤の存在比は、前記正極集電体に近づくに従って大きくなっていることを特徴とする請求項1に記載のリチウムイオン電池。   2. The lithium ion battery according to claim 1, wherein an abundance ratio of the flame retardant increases as it approaches the positive electrode current collector. 前記難燃化剤の融点が90℃以上である請求項1または2に記載のリチウムイオン電池。   The lithium ion battery according to claim 1, wherein the flame retardant has a melting point of 90 ° C. or higher. 前記難燃化剤が、環状ホスファゼン化合物である請求項3に記載のリチウムイオン電池。   The lithium ion battery according to claim 3, wherein the flame retardant is a cyclic phosphazene compound. 正極集電体の表面および裏面の少なくとも一方の面上に難燃化剤を含む正極活物質合剤層が形成されたリチウムイオン電池用電極板の製造方法であって、
溶媒に溶解し且つ前記溶媒に溶解した状態で前記溶媒が揮発すると析出物として析出する固体の難燃化剤を用意し、
前記難燃化剤を正極活物質、導電剤、およびバインダとともに前記溶媒に混合したスラリーを前記正極集電体に塗布して塗布層を形成し、
前記塗布層が前記正極集電体の上方に位置する姿勢を保持して、前記析出物が前記正極集電体に向かって沈降する乾燥条件下で、前記塗布層を乾燥することを特徴とするリチウムイオン電池用電極板の製造方法。
A method for producing an electrode plate for a lithium ion battery in which a positive electrode active material mixture layer containing a flame retardant is formed on at least one of the front and back surfaces of a positive electrode current collector,
Prepare a solid flame retardant that precipitates as a precipitate when the solvent volatilizes in a state dissolved in the solvent and dissolved in the solvent,
Applying a slurry in which the flame retardant is mixed with the solvent together with a positive electrode active material, a conductive agent, and a binder to the positive electrode current collector to form a coating layer,
The coating layer is dried under a drying condition in which the coating layer is maintained in a position above the positive electrode current collector and the precipitate is settled toward the positive electrode current collector. Manufacturing method of electrode plate for lithium ion battery.
JP2011193289A 2011-09-05 2011-09-05 Lithium ion battery Expired - Fee Related JP5926908B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011193289A JP5926908B2 (en) 2011-09-05 2011-09-05 Lithium ion battery
PCT/JP2012/072561 WO2013035721A1 (en) 2011-09-05 2012-09-05 Lithium ion battery and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193289A JP5926908B2 (en) 2011-09-05 2011-09-05 Lithium ion battery

Publications (3)

Publication Number Publication Date
JP2013054968A true JP2013054968A (en) 2013-03-21
JP2013054968A5 JP2013054968A5 (en) 2014-08-28
JP5926908B2 JP5926908B2 (en) 2016-05-25

Family

ID=47832166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193289A Expired - Fee Related JP5926908B2 (en) 2011-09-05 2011-09-05 Lithium ion battery

Country Status (2)

Country Link
JP (1) JP5926908B2 (en)
WO (1) WO2013035721A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181093A (en) * 2013-09-30 2015-10-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN111129467A (en) * 2019-12-30 2020-05-08 国联汽车动力电池研究院有限责任公司 Positive electrode slurry and preparation method thereof
WO2023120622A1 (en) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 Secondary battery positive electrode, production method therefor, and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117981101A (en) * 2021-09-29 2024-05-03 松下知识产权经营株式会社 Electrode for secondary battery and secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272643A (en) * 2002-03-20 2003-09-26 Bridgestone Corp Lithium primary battery
JP2009016106A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Lithium ion secondary battery
JP2011159484A (en) * 2010-02-01 2011-08-18 Hitachi Ltd Lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820662B2 (en) * 2010-09-06 2015-11-24 株式会社Nttファシリティーズ Lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272643A (en) * 2002-03-20 2003-09-26 Bridgestone Corp Lithium primary battery
JP2009016106A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Lithium ion secondary battery
JP2011159484A (en) * 2010-02-01 2011-08-18 Hitachi Ltd Lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181093A (en) * 2013-09-30 2015-10-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN111129467A (en) * 2019-12-30 2020-05-08 国联汽车动力电池研究院有限责任公司 Positive electrode slurry and preparation method thereof
CN111129467B (en) * 2019-12-30 2021-10-15 国联汽车动力电池研究院有限责任公司 Positive electrode slurry and preparation method thereof
WO2023120622A1 (en) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 Secondary battery positive electrode, production method therefor, and secondary battery

Also Published As

Publication number Publication date
WO2013035721A1 (en) 2013-03-14
JP5926908B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
KR102268441B1 (en) Electrolyte formulations
JP5656521B2 (en) Non-aqueous electrolyte battery
US9847528B2 (en) Predoping material, electric storage device including the material, and method of producing the device
WO2006038614A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP5926908B2 (en) Lithium ion battery
KR102411732B1 (en) Additive, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
JP2012059404A5 (en)
JP2017027925A (en) Fire-retardant electrolytic solution for lithium secondary battery and lithium secondary battery including the same
KR20170052493A (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
JP2013054968A5 (en)
WO2019088097A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US20190051937A1 (en) Composition for gel polymer electrolyte and gel polymer electrolyte
JP2016045987A (en) Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery
KR20200020169A (en) Electrolyte for lithium secondary battery
KR20200020234A (en) Electrolyte for lithium secondary battery
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
KR20160049894A (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
KR102559718B1 (en) Electrolyte for fast charging of lithium secondary battery for fast charging lithium secondary battery, lithium secondary battery including same, and method for manufacturing lithium secondary battery
JP6061144B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5896374B2 (en) Non-aqueous electrolyte battery
WO2023018449A1 (en) Dry gel polymer electrolytes
JP4818603B2 (en) Battery separator and non-aqueous electrolyte battery including the same
KR102337900B1 (en) Lithium cobalt oxide positive electrode active material and secondary battery using the same
KR20190099884A (en) Binder composition for lithium secondary battery and lithium secondary battery including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5926908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees