JP2013054329A - Method of calculating expected degree of progress for supporting efficient learning, and method of configuring learning support system - Google Patents
Method of calculating expected degree of progress for supporting efficient learning, and method of configuring learning support system Download PDFInfo
- Publication number
- JP2013054329A JP2013054329A JP2011206608A JP2011206608A JP2013054329A JP 2013054329 A JP2013054329 A JP 2013054329A JP 2011206608 A JP2011206608 A JP 2011206608A JP 2011206608 A JP2011206608 A JP 2011206608A JP 2013054329 A JP2013054329 A JP 2013054329A
- Authority
- JP
- Japan
- Prior art keywords
- learning
- unit
- support system
- progress
- improvement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000013461 design Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000010187 selection method Methods 0.000 claims 2
- 238000012545 processing Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は効率的に学習を進めるための向上度計算方法に関し、特に効率的な学習を支援するシステムに関する。The present invention relates to an improvement degree calculation method for efficiently performing learning, and more particularly to a system that supports efficient learning.
通常、e−learningシステムを構築する際、教授者の経験に沿ってモジュールを配置し、学習コースを作り上げる。e−learningシステムに対する評価は、システムを用いた学習後の試験結果やアンケート調査を用いて行うことが一般的である。学習効率をより向上させるシステムを構築するためには、従来は、学習進行時の評価ポイント等において小テスト等を実施し、直前からの向上度を計測して次なる学習経路を動的に選択するシステムであった。すなわち、これまでに提案された手法では、システム使用後もしくは使用中に学習者のデータ分析を行うため、まず、教授者が経験的に学習システムを構築し、利用者の需要に適合するようシステムを修正もしくは随時、学習状況に応じた学習経路を選択できるようなシステム修正に関する方法であった。
そこで、初回のe−learningシステム等の学習支援システム構築以前に上級・中級・初級別学習者の学習推移動向を推測し、1ステップ学習後の期待向上度を+α、ステップ間の相関係数をrとした「期待遷移」を提案する。そして、期待遷移を用いた学習支援システムの設計方法も提案する。Usually, when constructing an e-learning system, modules are arranged in accordance with the experience of the professor to create a learning course. The evaluation for the e-learning system is generally performed by using a test result or a questionnaire survey after learning using the system. In order to build a system that further improves learning efficiency, traditionally, a small test or the like is performed at the evaluation points at the time of learning progress, and the next learning route is dynamically selected by measuring the degree of improvement from immediately before It was a system to do. In other words, in the methods proposed so far, in order to analyze the learner's data after or during use of the system, first the professor empirically builds a learning system and adapts it to the user's demand. Or a system modification method that can select a learning route according to the learning situation at any time.
Therefore, before building a learning support system such as the first e-learning system, the learning transition trend of learners by advanced, intermediate, and elementary level is estimated, and the expected improvement after one step learning is + α, and the correlation coefficient between steps is We propose an “expected transition” with r. We also propose a learning support system design method using expected transitions.
上記αの事前設定を行うことで、規定αとrを基に学習支援システムのモジュール等の配置を決定することで、学習効率を意図的に事前に設計できるようにしたシステムの構築方法である。
e−learningシステム等の学習支援システムを構築する以前に、上級・中級・初級の各学習者が各ステップを学習後に期待される期待向上度αを設定することができる。すなわち、システム利用後もしくはシステム利用中でなければ評価できなかった学習向上度を、事前に算出可能とする。Prior to constructing a learning support system such as an e-learning system, the advanced, intermediate, and beginner learners can set the expected improvement α that is expected after learning each step. That is, it is possible to calculate in advance the degree of learning improvement that cannot be evaluated unless the system is used or the system is being used.
従来は、教授者の経験則により学習支援システムを構築していたが、上記設定したαを用いることで、到達レベルが事前規定可能な学習支援システムを構築可能とする。Conventionally, a learning support system has been constructed based on the empirical rules of the professor, but by using the α set as described above, it is possible to construct a learning support system in which the achievement level can be specified in advance.
各ステップ学習時に、上記事前規定したαと、実際の学習者の向上度α’の差分から、学習乖離状態を把握することで、学習者の都合による学習状態の遅延を早期発見し、理想的な学習効率に沿った学習の逐次把握と指導を可能とする。At each step learning, the learning divergence state is grasped from the difference between the above-defined α and the actual learner's improvement α ′ so that the learning state delay due to the convenience of the learner can be detected at an early stage. Sequential grasp and instruction of learning according to effective learning efficiency.
学習ステップXiとXi+1間には相関関係ri、−1≦ri≦1があり、XiからXi+1へ到達した際には+αiなる学習向上度が見込めるとすると、Xiに属するある学生の標準化学習値y(i)(ただし、
しており、y(i)は標準正規分布に従う。)が1ステップ進行後のXi+1において標準化学習値y(i+1)に変化する時、y(i+1)は下記(数1)を用いて事前に導出できる。
Y (i) follows a standard normal distribution. ) Changes to the standardized learning value y (i + 1) at X i + 1 after one step has progressed, y (i + 1) can be derived in advance using the following (Equation 1).
(数1)より、学習前の標準化学習値y(i)を用いて1ステップ学習後の標準化学習値y(i+1)を予測する場合、標準正規乱数zの95%信頼区間が[−1.96,1.96]であることから、y(i+1)の上限値と下限値は、それぞれ(数2)および(数3)になる。
上級・中級・初級において、1ステップ終了時に十分な学習効果を得るためには、ri≧0.4とするのが望ましく、特にri≧0.8である場合は安定的な学習効果が得られる。また、十分大きなriがステップ間に見込めない場合、初級においては、十分大きなαiを提供する方が効果的である。なお、αiは(数4)を用いて導出する。
実際の学習におけるある学習者の学習向上度αi’について、上記設定済学習向上度αiとの差βiが(数5)の条件を満たす上級学習者の場合、次なる学習ステップには(数6)なる学習経路を適宜選択する。なお、適宜とは、複数のステップ学習において1回以上の一定回数を超えて(数5)なるβiを観察した場合を言う。
上記上級学習者に対して、期待向上度αi+1を小さく設定する場合、詳細学習もしくは高度学習を提供することになる。このため、学習者の意思確認として、詳細学習等を選択するかのメッセージを表示し、また、応援メッセージを表示して学習指導を行うことができる。For the advanced learner, when the expected improvement degree α i + 1 is set small, detailed learning or advanced learning is provided. For this reason, as a learner's intention confirmation, the message of selecting detailed learning etc. can be displayed, and also a cheering message can be displayed and learning guidance can be performed.
実際の学習向上度においてαi’≦0である初級学習者の場合、XiからXi+1へのステップ学習のやり直しとする。ただし、一定回数以上のやり直しを避けるか、もしくは該当ステップ
る。
The
上記初級学習者には、ステップ学習のやり直しや繰り返しに関するメッセージおよび、応援メッセージを表示して学習指導を行う。The beginner learner is provided with a learning instruction by displaying a message regarding redoing or repeating step learning and a support message.
βiが(数8)を満たす場合は、学習が順調に推移していると見なす。
上記順調な学習者には、学習が順調であることへの応援メッセージを表示して学習指導を行う。For the smooth learners, a learning message is displayed by displaying a support message indicating that learning is smooth.
本手法により、学習ステップ間の向上率αおよびステップ間相関rを事前に規定することで、効率的に学習可能となる学習支援システムの設計ができる。With this method, it is possible to design a learning support system that enables efficient learning by preliminarily defining the improvement rate α between learning steps and the correlation r between steps.
学習者の上級、中級、初級レベルに応じた学習向上度およびステップ間相関の目安があるため、各レベルに応じて安定的に学習推移が可能となる個人的学習経路の選択システムを搭載できる。Since there is an indication of the degree of learning improvement and the correlation between steps according to the learner's advanced, intermediate and beginner levels, it is possible to mount a personal learning path selection system that enables stable learning transitions according to each level.
各ステップ学習における学習向上度に応じて応援メッセージを表示することで、学習ステップ毎に各人の学習状況に合わせた自動的な学習指導が実現できる。By displaying a support message according to the degree of learning improvement in each step learning, automatic learning guidance according to the learning situation of each person can be realized for each learning step.
以下、本発明の実施例を図示により説明する。
図1に学習ステップ構成部の実施例を示し、その特徴について述べる。図1は学習支援システム部内部に配置する、m個の学習ステップの構成方法について説明した図である。本学習ステップ構成部は、m個のステップ部(A01〜A05)で構成される。Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of the learning step configuration unit and its features will be described. FIG. 1 is a diagram illustrating a configuration method of m learning steps arranged in the learning support system unit. This learning step configuration unit includes m step units (A01 to A05).
各ステップ部(A01〜A05)には、ステップ間の相関係数rおよび学習向上度αが設定されている。例えば、i番目ステップ部(A03)およびi+1番目ステップ部(A04)間には、相関係数riをi番目ステップ部(A03)に設定し、i番目ステップ部(A03)の学習開始後からi+1番目ステップ部(A04)へ到達した時点で期待される学習の期待向上度αiを事前にi番目ステップ部(A03)に設定する。In each step part (A01 to A05), a correlation coefficient r between steps and a learning improvement degree α are set. For example, between the i-th step portion (A03) and the i + 1-th step portion (A04), the correlation coefficient r i is set to the i-th step portion (A03), and after the learning of the i-th step portion (A03) starts. The expected improvement degree α i of learning expected when reaching the (i + 1) th step unit (A04) is set in the i-th step unit (A03) in advance.
図2に上級用期待向上度構成部の実施例を示し、その特徴について述べる。図2は図4のステップ学習支援部において選択的に利用され、図1の学習ステップ構成部内部に位置するi+1番目ステップ部(A04)のための複数の期待向上度αi+1(j)の構成方法について説明した図である。本上級用期待向上度構成部は、上級用i+1番目ステップ部(B01)、上級用i+2番目ステップ部(B02)で構成される。FIG. 2 shows an embodiment of the advanced expectation improvement component and its features will be described. 2 is used selectively in the step learning support unit of FIG. 4 and is configured of a plurality of expected improvement degrees α i + 1 (j) for the i + 1th step unit (A04) located inside the learning step configuration unit of FIG. It is a figure explaining the method. This advanced expectation improvement component comprises an advanced i + 1 step part (B01) and an advanced i + 2 step part (B02).
上級用i+1番目ステップ部(B01)において設定する期待向上度αi+1(a)およびαi+1(b)は、(数9)により決定する。なお、αi+1(b)は複数準備してよい。
図3に初級用期待向上度構成部の実施例を示し、その特徴について述べる。図3も図2同様、図4のステップ学習支援部において選択的に利用され、図1の学習ステップ構成部内部に位置するi番目ステップ部(A03)のための複数の期待向上度αi(j)の構成方法について説明した図である。本初級用学習向上度構成部は、初級用i番目ステップ部(B03)、初級用i+1番目ステップ部(B04)で構成される。FIG. 3 shows an embodiment of the expected improvement unit for beginners, and its features will be described. 3 is also selectively used in the step learning support unit in FIG. 4 as in FIG. 2, and a plurality of expected improvement degrees α i ( for the i-th step unit (A03) located inside the learning step configuration unit in FIG. It is a figure explaining the structure method of j) . The beginner learning improvement configuration unit includes an i-th step unit for beginners (B03) and an i + 1-th step unit for beginners (B04).
上記初級用i番目ステップ部(B03)において設定する期待向上度αi(a)およびαi(b)は(数10)により決定する。なお、αi(a)およびαi(b)は、それぞれ複数準備してよい。
図4にステップ学習支援部の実施例を示し、その特徴について述べる。図4は学習支援システム部内部に配置するステップ学習の構成の方法について説明した図である。本ステップ学習支援部は、i番目学習部(C01)、終了処理部(C02)、実向上度判定部(C03)、反復回数判定部(C04)、反復メッセージ部(C05)、初級学習選択部(C06)、向上度再設定部(C07)、向上度差分判定部(C08)、上級処理部(C09)、応援メッセージ部(C10)、i+1番目学習選択部(C11)、i+1番目学習部(C12)で構成される。FIG. 4 shows an embodiment of the step learning support unit, and its features will be described. FIG. 4 is a diagram for explaining a method of configuring step learning arranged in the learning support system unit. The step learning support unit includes an i-th learning unit (C01), a termination processing unit (C02), an actual improvement degree determining unit (C03), an iterative number determining unit (C04), an iterative message unit (C05), and an elementary learning selecting unit. (C06), improvement level resetting unit (C07), improvement level difference determination unit (C08), advanced processing unit (C09), support message unit (C10), i + 1th learning selection unit (C11), i + 1th learning unit ( C12).
i番目学習部(C01)は、図1のi番目ステップ部(A03)における学習コンテンツ部分であり、αiは事前に設定済である。The i-th learning unit (C01) is a learning content part in the i-th step unit (A03) in FIG. 1, and α i has been set in advance.
終了処理部(C02)は、i番目学習部(C01)の終了時に出力される学習者の実際の学習向上度αi’の保存を行う。The termination processing unit (C02) stores the learner's actual learning improvement degree α i ′ output when the i-th learning unit (C01) is terminated.
実向上度判定部(C03)は、上記αi’について正負を判定して初級学習者に対する分岐処理を行う。まず、αi’≦0である場合、反復回数判定部(C04)でi番目学習部(C01)の学習回数を判定し、一定回数以下である場合、反復メッセージ部(C05)を出力してi番目学習部(C01)を再度実行して反復学習を行う。The actual improvement determination unit (C03) determines whether α i ′ is positive or negative and performs branch processing for the beginner learner. First, when α i ′ ≦ 0, the iteration number determination unit (C04) determines the learning number of the i-th learning unit (C01), and when the number is less than a certain number, the iteration message unit (C05) is output. The i-th learning unit (C01) is executed again to perform iterative learning.
実向上度判定部(C03)において、αi’>0である場合は向上度差分判定部(C08)へ分岐する。In the actual improvement determination unit (C03), if α i ′> 0, the process branches to the improvement difference determination unit (C08).
反復回数判定部(C04)において、i番目学習部(C01)の反復回数が一定回数以上である場合、初級学習選択部(C06)へ分岐する。すなわち、学習を積み残したまま次なるステップへ学習を進行させないための処置として、反復回数が多い学習者には学習負荷量を低減する措置を行う。まず、一定回数以上の反復を行ったことへの指導メッセージを表示し、新たな負荷量として(数7)で規定され、図3の初級用i番目およびi+1番目ステップ部(B03、B04)
て、向上度再設定部(C07)に進む。In the iteration number determination unit (C04), when the number of iterations of the i-th learning unit (C01) is a predetermined number or more, the process branches to the elementary learning selection unit (C06). That is, as a measure for preventing the learning from proceeding to the next step with learning remaining, a measure for reducing the learning load is performed for a learner with a large number of iterations. First, a guidance message indicating that a certain number of iterations have been performed is displayed, and a new load amount is defined by (Equation 7). The i-th and i + 1-th step units for beginners in FIG. 3 (B03, B04)
Then, the process proceeds to the improvement degree resetting unit (C07).
対応する初級用ステップ部(B03、B04)を選択し、これをi番目学習部(C01)として進む。 Corresponding beginner step units (B03, B04) are selected, and this is advanced as the i-th learning unit (C01).
向上度差分判定部(C08)では、βiの正負を判定する。(数5)を満たす場合は上級処理部(C09)へ分岐し、(数8)を満たす場合は応援メッセージ部(C10)へ分岐する。The improvement degree difference determination unit (C08) determines whether β i is positive or negative. If (Equation 5) is satisfied, the process branches to the advanced processing unit (C09). If (Equation 8) is satisfied, the process branches to the support message part (C10).
上級処理部(C09)では、1回以上の一定回数を超えて(数5)を満たす現象が観察された場合、次のi+1番目学習部(C12)に対する期待向上度αi+1を(数9)で設定したαi(b)から選択し、対応する図2の上級用ステップ部(B01、B02)を抽出して、i+1番目学習部(C12)へ進む。In the advanced processing unit (C09), when a phenomenon satisfying (Equation 5) is observed exceeding a certain number of times of one or more, the expected improvement degree α i + 1 for the next i + 1 learning unit (C12) is expressed by (Equation 9). 2 is selected from the α i (b) set in step (b) , the corresponding advanced step sections (B01, B02) in FIG. 2 are extracted, and the process proceeds to the (i + 1) -th learning section (C12).
応援メッセージ部(C10)では、学習が順調に推移していることに対するメッセージを表示して、i+1番目学習選択部(C11)へ進む。In the support message part (C10), a message indicating that the learning is smoothly progressing is displayed, and the process proceeds to the (i + 1) th learning selection part (C11).
i+1番目学習選択部(C11)では、i+1番目学習部(C12)とその次なるi+2番目学習部の間の相関係数ri+1と、通常設定の学習向上度αi+1を設定し、i+1番目学習部(C12)へ進む。In the (i + 1) th learning selection unit (C11), a correlation coefficient r i + 1 between the i + 1th learning unit (C12) and the next i + 2nd learning unit and a normal learning improvement degree α i + 1 are set, and the i + 1th learning is performed. Proceed to section (C12).
i+1番目学習部(C12)では、既に選択されているαi+1の値に応じて設定されている通常のi+1番目ステップ部(A05)を学習する。The i + 1-th learning unit (C12) learns the normal i + 1-th step unit (A05) set according to the value of α i + 1 already selected.
図5に本発明による学習支援システム部における実施例を示し、その特徴について述べる。
本学習支援システム部は、レベル判定部(101)、1番目ステップ部(102)、2番目ステップ部(103)、m番目ステップ部(104)、到達レベル出力部(105)で構成される。FIG. 5 shows an embodiment of the learning support system unit according to the present invention, and its features will be described.
The learning support system unit includes a level determination unit (101), a first step unit (102), a second step unit (103), an m-th step unit (104), and a reaching level output unit (105).
レベル判定部(101)では、学習開始前の学力判定を行い、初回学習ステップである1番目ステップ部(102)における学習向上度α1を決定する。α1は、学力判定結果より上級、中級、初級に対応し、それぞれ、普通もしくは小さく、普通、普通もしくは大きく設定する。The level determination unit (101) performs academic ability determination before the start of learning, and determines the learning improvement level α1 in the first step unit (102) which is the initial learning step. α 1 corresponds to the upper grade, intermediate grade, and beginner grade from the results of academic achievement determination, and is set to normal or small, normal, normal or large, respectively.
1番目ステップ部(102)では、設定したα1の値に応じたステップ学習を提供する。At first step portion (102), providing a step learning in accordance with the value of alpha 1 was set.
2番目ステップ部(103)では、直前の1番目ステップ部(102)の結果に応じて、学習向上度α2が設定されている。なお、α2の設定は、図4のステップ学習支援部で行われる。このため、2番目ステップ部(103)においても、設定されたα2の値に応じたステップ学習を提供する。In the second step portion (103), in accordance with the first step of the immediately preceding (102) results, the learning degree of improvement alpha 2 is set. Note that α 2 is set by the step learning support unit in FIG. Therefore, also in the second step portion (103), providing a step learning in accordance with the set alpha 2 values.
m番目ステップ部(104)においても、他ステップ部同様、αmの値に応じたステップ学習を提供する。The m-th step unit (104) also provides step learning according to the value of α m as in the other step units.
到達レベル出力部(105)では、到達結果を判定して表示する。The arrival level output unit (105) determines and displays the arrival result.
101 レベル判定部
102 1番目ステップ部
103 2番目ステップ部
104 m番目ステップ部
105 到達レベル出力部
A01 1番目ステップ部
A02 2番目ステップ部
A03 i番目ステップ部
A04 i+1番目ステップ部
A05 m番目ステップ部
B01 上級用i+1番目ステップ部
B02 上級用i+2番目ステップ部
B03 初級用i番目ステップ部
B04 初級用i+1番目ステップ部
C01 i番目学習部
C02 終了処理部
C03 実向上度判定部
C04 反復回数判定部
C05 反復メッセージ部
C06 初級学習選択部
C07 向上度再設定部
C08 向上度差分判定部
C09 上級処理部
C10 応援メッセージ部
C11 i+1番目学習選択部
C12 i+1番目学習部101
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011206608A JP2013054329A (en) | 2011-09-03 | 2011-09-03 | Method of calculating expected degree of progress for supporting efficient learning, and method of configuring learning support system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011206608A JP2013054329A (en) | 2011-09-03 | 2011-09-03 | Method of calculating expected degree of progress for supporting efficient learning, and method of configuring learning support system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013054329A true JP2013054329A (en) | 2013-03-21 |
Family
ID=48131336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011206608A Withdrawn JP2013054329A (en) | 2011-09-03 | 2011-09-03 | Method of calculating expected degree of progress for supporting efficient learning, and method of configuring learning support system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013054329A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160193A (en) * | 2018-03-16 | 2019-09-19 | 株式会社 みずほ銀行 | Learning support system, learning support method and learning support program |
-
2011
- 2011-09-03 JP JP2011206608A patent/JP2013054329A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160193A (en) * | 2018-03-16 | 2019-09-19 | 株式会社 みずほ銀行 | Learning support system, learning support method and learning support program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101178310B1 (en) | Method of managing communication and system for the same | |
CN103559894B (en) | Oral evaluation method and system | |
US10395646B2 (en) | Two-stage training of a spoken dialogue system | |
CN110389969A (en) | The system and method for the learning Content of customization are provided | |
WO2019187341A1 (en) | Index computation device, prediction system, progress prediction evaluation method, and program | |
CN110909880B (en) | Crowdsourcing task prediction method based on deep knowledge tracking | |
US10068298B2 (en) | Weather pattern based electrical demand forecasting for a building | |
US9472003B2 (en) | Generating a tree map | |
CN115630860A (en) | Teaching quality evaluation method, device, equipment and storage medium | |
JP7415293B2 (en) | Evacuation guidance device and evacuation guidance model learning device | |
CN111930905A (en) | Method, apparatus, system and computer-readable storage medium for question and answer training | |
CN102201098A (en) | Auction flighting | |
JP2013054329A (en) | Method of calculating expected degree of progress for supporting efficient learning, and method of configuring learning support system | |
JPH09305218A (en) | Method and device for optimizing preventive maintenance | |
JP2015114855A (en) | Discussion support device and discussion support program | |
JP6290029B2 (en) | Production control support device, production control support method and program | |
JP5325071B2 (en) | Organizational action plan evaluation index determination device and organizational behavior plan training evaluation device | |
CN108932289B (en) | Question answer processing method and system based on information extraction and deep learning | |
CN111475131A (en) | Audio drawing method and device and audio drawing equipment | |
WO2019132145A1 (en) | Evaluation education device for debt management capability, and method therefor | |
JP6395159B2 (en) | Education plan creation support apparatus and education plan creation method | |
KR20220034066A (en) | Method for intelligent scheduling of driving school teaching, apparatus, electronic device, storage medium and computer program | |
JP2018124351A (en) | Education support system and education support method | |
CN108804640B (en) | Data grouping method, device, storage medium and equipment based on maximized IV | |
JPH0724702A (en) | Schedule preparation support device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141104 |