JP2013053949A - Acetylene gas sensor - Google Patents

Acetylene gas sensor Download PDF

Info

Publication number
JP2013053949A
JP2013053949A JP2011192882A JP2011192882A JP2013053949A JP 2013053949 A JP2013053949 A JP 2013053949A JP 2011192882 A JP2011192882 A JP 2011192882A JP 2011192882 A JP2011192882 A JP 2011192882A JP 2013053949 A JP2013053949 A JP 2013053949A
Authority
JP
Japan
Prior art keywords
light
wavelength
acetylene gas
container
wavelength range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011192882A
Other languages
Japanese (ja)
Inventor
Satoshi Ogawa
慧 小川
Katsuji Iwamoto
勝治 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Substation Equipment Technology Corp
Original Assignee
Toshiba Corp
Toshiba Substation Equipment Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Substation Equipment Technology Corp filed Critical Toshiba Corp
Priority to JP2011192882A priority Critical patent/JP2013053949A/en
Publication of JP2013053949A publication Critical patent/JP2013053949A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acetylene gas sensor capable of effectively detecting acetylene gas from an insulating medium used in an electric power apparatus.SOLUTION: An acetylene gas sensor comprises: a light source for emitting light of a first wavelength range including at least a part of wavelength of 1510 nm to 1540 nm and a second wavelength range including a wavelength from the first wavelength range to less than 100 nm; a container which is charged with a fluid and has a space for passing the light; a light branching device for branching the light having passed through the container into first and second light; a first filter to which the light of the first wavelength is made incident and which passes the light of the first wavelength range and shields the light of the second wavelength range; and a second filter to which the light of the second wavelength is made incident and which passes the light of the second wavelength range and shields the light of the first wavelength range.

Description

本発明は,アセチレンガスを検出するアセチレンガスセンサに関する。   The present invention relates to an acetylene gas sensor that detects acetylene gas.

電力用機器(電気機器およびこの電気機器を収納し絶縁媒体を充填する電気機器容器を含む)の異常や劣化を診断できる装置が提案されている(特許文献1,2参照)。
特許文献1記載の装置では,電気機器容器に連通するパイプの外側の開口を透明のガラス管で閉塞し,このガラス管の内部に絶縁媒体中に含まれる分解ガスを色変化により検知する検知管を配置する。検知管の変色を光センサで監視することで,電力用機器の異常や劣化の診断が可能となる。
An apparatus capable of diagnosing abnormality or deterioration of power equipment (including an electrical equipment and an electrical equipment container that houses the electrical equipment and is filled with an insulating medium) has been proposed (see Patent Documents 1 and 2).
In the apparatus described in Patent Document 1, an opening outside a pipe communicating with an electrical equipment container is closed with a transparent glass tube, and a detection tube that detects decomposition gas contained in an insulating medium inside the glass tube by color change. Place. By monitoring the discoloration of the detector tube with an optical sensor, it is possible to diagnose abnormalities and deterioration of power equipment.

特許文献2記載の装置では,光源から発せられた光を,測定対象ガスが入ったガス検知用セルを通過させた後,ビームスプリッタで2つに分ける。2つに分けた一方の光を,検出対象ガスの吸収波長を有する光のみを透過させる干渉フィルタを通し,他方の光を測定対象の吸収波長以外を透過させる干渉フィルタを透過させる。各々の干渉フィルタを透過した光をビームスプリッタによって再び結合し,結合により生じた干渉光を電気信号に変換し,その強弱により検出対象のガス濃度を検出する。   In the apparatus described in Patent Document 2, light emitted from a light source is passed through a gas detection cell containing a gas to be measured and then divided into two by a beam splitter. One light divided into two is passed through an interference filter that transmits only light having the absorption wavelength of the detection target gas, and the other light is transmitted through an interference filter that transmits light other than the absorption wavelength of the measurement target. The light transmitted through each interference filter is recombined by the beam splitter, the interference light generated by the combination is converted into an electric signal, and the concentration of the gas to be detected is detected based on the intensity.

特開2002−373813号公報JP 2002-373813 A 実開平5−55051号公報Japanese Utility Model Publication No. 5-55051

しかし,特許文献1記載の装置においては,アセチレンガスに対する検知管の検出感度が問題となる。アセチレンガスは,特にア−ク放電や部分放電に起因するガスであり,検出量が微量でも,電気機器に異常があると判断される。   However, in the apparatus described in Patent Document 1, the detection sensitivity of the detector tube with respect to acetylene gas becomes a problem. The acetylene gas is a gas caused by arc discharge or partial discharge in particular, and it is determined that there is an abnormality in the electrical equipment even if the detected amount is very small.

特許文献2記載の検出装置においては,光源として半導体レーザーを用いている。しかし,半導体レーザーは波長範囲が狭く,アセチレンガスの検出に適した波長範囲(例えば,信号光と参照光の波長として1320nm〜1550nmの広い範囲)を持った半導体レーザーの作製が難しい。また,ビームスプリッタで分けた2つの光の光路長は干渉を生じるように適切に選ぶ必要があり,光路長が変化した場合には干渉光の明るさに変動を生じ,センサの検出精度を低下させる。   In the detection apparatus described in Patent Document 2, a semiconductor laser is used as a light source. However, the semiconductor laser has a narrow wavelength range, and it is difficult to manufacture a semiconductor laser having a wavelength range suitable for detection of acetylene gas (for example, a wide range of 1320 nm to 1550 nm as the wavelength of signal light and reference light). In addition, the optical path length of the two lights separated by the beam splitter must be selected appropriately so as to cause interference. If the optical path length changes, the brightness of the interference light will fluctuate and the detection accuracy of the sensor will be reduced. Let

本発明は,電力用機器に用いられる絶縁媒体からのアセチレンガスの効率的な検出を図ったアセチレンガスセンサを提供することを目的とする。   An object of this invention is to provide the acetylene gas sensor which aimed at the efficient detection of acetylene gas from the insulation medium used for an apparatus for electric power.

本発明の一態様に係るアセチレンガスセンサは,1510nm〜1540nmの少なくとも一部の波長を含む第1の波長域,およびこの第1の波長域から100nm以内の波長を含む第2の波長域の光を出射する光源と,前記光源から出射される光を伝達する第1の光ファイバと,前記第1の光ファイバで伝達された光を平行光に変換する第1のレンズと,流体が封入され,かつ前記第1のレンズから出射される光が通過する空間を有する容器と,前記空間内を通過した平行光を収束光に変換する第2のレンズと,前記第2のレンズから出射される光を伝達する第2の光ファイバと,前記第2の光ファイバで伝達された光を第1,第2の光に分岐する光分岐器と,前記第1の光が入射され,前記第1の波長域の光を通過し,前記第2の波長域の光を遮断する第1のフィルタと,前記第2の光が入射され,前記第2の波長域の光を通過し,前記第1の波長域の光を遮断する第2のフィルタと,前記第1のフィルタから出射される光を受光する第1の光検出器と,前記第2のフィルタから出射される光を受光する第2の光検出器と,前記第1,第2の光検出器それぞれからの第1,第2の電気信号に基づいて,前記流体中のアセチレンガス量を算出する信号処理器と,を備える。   The acetylene gas sensor according to one embodiment of the present invention emits light in a first wavelength range including at least a part of wavelengths from 1510 nm to 1540 nm, and a second wavelength range including a wavelength within 100 nm from the first wavelength range. A fluid is enclosed; a light source that emits light; a first optical fiber that transmits light emitted from the light source; a first lens that converts light transmitted through the first optical fiber into parallel light; A container having a space through which light emitted from the first lens passes, a second lens for converting parallel light that has passed through the space into convergent light, and light emitted from the second lens A second optical fiber for transmitting the light, an optical branching device for branching the light transmitted by the second optical fiber into first and second light, and the first light being incident, Passes light in the wavelength range, and the second wavelength range A first filter that blocks light; a second filter that receives the second light, passes light in the second wavelength band, and blocks light in the first wavelength band; A first photodetector for receiving light emitted from one filter, a second photodetector for receiving light emitted from the second filter, and the first and second photodetectors. And a signal processor for calculating the amount of acetylene gas in the fluid based on the first and second electric signals from each of them.

本発明によれば,電力用機器に用いられる絶縁媒体からのアセチレンガスの効率的な検出を図ったアセチレンガスセンサを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the acetylene gas sensor which aimed at the efficient detection of acetylene gas from the insulating medium used for an apparatus for electric power can be provided.

第1の実施形態のアセチレンガスセンサを示す概略構成図である。It is a schematic block diagram which shows the acetylene gas sensor of 1st Embodiment. スーパールミネッセンスダイオードの発光スペクトルの一例を示す図である(Dense Light Semiconductor社SLD DL-CS5254Aの仕様表より引用)。It is a figure which shows an example of the emission spectrum of a super luminescence diode (cited from the specification table | surface of Dense Light Semiconductor SLD DL-CS5254A). アセチレンガスの吸収スペクトルを示す図である(http://www.dartmouth.edu/~chem81/labs/C2H2.htmlより引用)。It is a figure which shows the absorption spectrum of acetylene gas (cited from http://www.dartmouth.edu/~chem81/labs/C2H2.html). 第2の実施形態のアセチレンガスセンサを示す概略構成図である。It is a schematic block diagram which shows the acetylene gas sensor of 2nd Embodiment. 第3の実施形態のアセチレンガスセンサを示す概略構成図である。It is a schematic block diagram which shows the acetylene gas sensor of 3rd Embodiment. 第4の実施形態のアセチレンガスセンサを示す概略構成図である。It is a schematic block diagram which shows the acetylene gas sensor of 4th Embodiment.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
図1は第1の実施の形態のアセチレンガスセンサを示す概略構成図である。このアセチレンガスセンサは,スーパールミネッセンスダイオード(SLD)20,光ファイバ21a〜21d,コリメーターレンズ22a,22b,カプラ23,帯域フィルタ24a,24b,アバランシェフォトダイオ−ド(APD)25a,25b,信号処理器26,電気機器容器30を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic configuration diagram showing an acetylene gas sensor according to the first embodiment. The acetylene gas sensor includes a super luminescence diode (SLD) 20, optical fibers 21a to 21d, collimator lenses 22a and 22b, a coupler 23, bandpass filters 24a and 24b, avalanche photodiodes (APD) 25a and 25b, a signal processor. 26, an electrical equipment container 30 is provided.

図2に示すように,スーパールミネッセンスダイオード(SLD)20の発光スペクトルは,1555nm付近をピークとする,波長1500〜1590[nm]の波長範囲である。SLD20は,1513〜1543[nm]の少なくとも一部の波長を含む波長域A1,および波長域A1から間隔Dの,波長域A2の光を少なくとも出射する光源である。波長域A1,A2はそれぞれ,アセチレンによる吸収の検出(アセチレンの検出),アセチレン以外の物質(例えば,絶縁媒体(油)自体,絶縁媒体に起因する物質)による吸収の検出(アセチレン検出の較正(リファレンス))のために設定される。図2では,発光スペクトル内に波長域A1,A2が含まれ,波長域A1,A2,および間隔Dの一例として,1510〜1540[nm],1560〜1580[nm],および20[nm]が示される。   As shown in FIG. 2, the emission spectrum of the super luminescence diode (SLD) 20 has a wavelength range of 1500 to 1590 [nm] with a peak near 1555 nm. The SLD 20 is a light source that emits at least light in the wavelength region A2 having a distance D from the wavelength region A1 and the wavelength region A1 including at least some wavelengths of 1513 to 1543 [nm]. Wavelength regions A1 and A2 are respectively detected for detection of absorption by acetylene (detection of acetylene) and detection of absorption by a substance other than acetylene (for example, insulating medium (oil) itself, substance caused by insulating medium) (calibration of acetylene detection ( Set for reference)). In FIG. 2, wavelength ranges A1 and A2 are included in the emission spectrum, and examples of the wavelength ranges A1 and A2 and the interval D include 1510 to 1540 [nm], 1560 to 1580 [nm], and 20 [nm]. Indicated.

波長域A1は,アセチレンガスの吸収波長域に対応する。図3に示すように,アセチレンガスの吸収スペクトルの範囲は,波数表示で6480〜6610[cm−1]であり,波長表示だと1513〜1543[nm]である。波長域A1は,この吸収波長域「1513〜1543[nm]」の全体を含んでも良いし,その一部のみでも良い。 The wavelength region A1 corresponds to the absorption wavelength region of acetylene gas. As shown in FIG. 3, the range of the absorption spectrum of acetylene gas is 6480 to 6610 [cm −1 ] in wave number display, and 1513 to 1543 [nm] in wavelength display. The wavelength range A1 may include the entire absorption wavelength range “1513 to 1543 [nm]” or only a part thereof.

図3に示すように,このアセチレンガスの吸収波長域には,吸収ピークP1(波長:1520.1[nm],波数:6578.5[cm−1]),P2(波長:1530.3[nm],波数:6534.5[cm−1])が含まれる。このため,波長域A1は,吸収ピークP1,P2の少なくとも何れかを含むことが好ましい。また,感度を確保するために,波長域A1の幅W(波長域A1の上下限λ1,λ2の差(W=λ2−λ1))が,10nm程度以上であることが好ましい(より好ましくは,幅Wが20nm程度以上)。 As shown in FIG. 3, the absorption wavelength region of the acetylene gas includes absorption peaks P1 (wavelength: 1520.1 [nm], wave number: 6578.5 [cm −1 ]), P2 (wavelength: 1530.3 [ nm], wave number: 6534.5 [cm −1 ]). For this reason, it is preferable that the wavelength range A1 includes at least one of the absorption peaks P1 and P2. In order to ensure sensitivity, the width W of the wavelength region A1 (the difference between the upper and lower limits λ1 and λ2 of the wavelength region A1 (W = λ2−λ1)) is preferably about 10 nm or more (more preferably, The width W is about 20 nm or more).

波長域A2は,アセチレンガスの吸収波長域「1513〜1543[nm]」の外に設定される。但し,アセチレン以外の物質による吸収の波長依存性を考慮すると,波長域A2が波長域A1から大きくずれることは好ましくない。このため,波長域A2と,波長域A1の間隔Dが,100nm以内である(波長域A2が,波長域A1から100nm以内の波長を含む)ことが好ましい(より好ましくは,間隔Dが,50nm以内,さらに好ましくは,間隔Dが,20nm以内))。   The wavelength region A2 is set outside the absorption wavelength region “1513 to 1543 [nm]” of the acetylene gas. However, considering the wavelength dependence of absorption by substances other than acetylene, it is not preferable that the wavelength region A2 deviates greatly from the wavelength region A1. For this reason, it is preferable that the interval D between the wavelength region A2 and the wavelength region A1 is within 100 nm (the wavelength region A2 includes a wavelength within 100 nm from the wavelength region A1) (more preferably, the interval D is 50 nm). And more preferably, the distance D is within 20 nm)).

光ファイバ21aは,SLD20より出射された赤外光をコリメーターレンズ22aに伝達する。   The optical fiber 21a transmits the infrared light emitted from the SLD 20 to the collimator lens 22a.

コリメーターレンズ22aは,光ファイバ21aで伝達された赤外光を平行光に変換するレンズである。   The collimator lens 22a is a lens that converts infrared light transmitted through the optical fiber 21a into parallel light.

電気機器容器30は,検査対象の流体が封入され,かつコリメーターレンズ22aから出射される光が通過する空間を有する容器である。この流体は,アセチレンガスを含む気体または液体である。変圧器等の絶縁媒体(例えば,絶縁油)自体を検査対象とできる。また絶縁媒体に溶存する気体成分(アセチレン等)を抽出して検査対象としても良い。   The electrical device container 30 is a container having a space in which a fluid to be inspected is sealed and light emitted from the collimator lens 22a passes. This fluid is a gas or liquid containing acetylene gas. An insulating medium such as a transformer (for example, insulating oil) itself can be an inspection target. Alternatively, a gas component (acetylene or the like) dissolved in the insulating medium may be extracted and used as an inspection target.

電気機器容器30は,互いに対向する側板31a,31bと,これら側板31a,31bそれぞれに配置される,石英ガラス32a,32bと,を有する。石英ガラス32a,32bは,波長域A,A2の光を透過する材料からなる窓として機能する。石英ガラス32a,32bの表面に反射防止コ−トを施して,石英ガラス32a,32b表面からの赤外光の反射を防止することが好ましい。   The electrical device container 30 includes side plates 31a and 31b facing each other and quartz glass 32a and 32b disposed on the side plates 31a and 31b, respectively. The quartz glasses 32a and 32b function as windows made of a material that transmits light in the wavelength ranges A and A2. It is preferable to prevent reflection of infrared light from the surfaces of the quartz glasses 32a and 32b by applying an antireflection coating to the surfaces of the quartz glasses 32a and 32b.

コリメーターレンズ22bは,電気機器容器30の空間内を通過した平行光を収束光に変換して,光ファイバ21bに入射させるレンズである。光ファイバ21bのコアの直径程度まで,赤外光が絞られる。   The collimator lens 22b is a lens that converts parallel light that has passed through the space of the electrical device container 30 into convergent light and makes it incident on the optical fiber 21b. Infrared light is reduced to the diameter of the core of the optical fiber 21b.

光ファイバ21bは,コリメーターレンズ22bから出射される赤外光をカプラ23へと伝達する。   The optical fiber 21 b transmits the infrared light emitted from the collimator lens 22 b to the coupler 23.

カプラ23は,光ファイバ21bで伝達された赤外光を第1,第2の赤外光に分岐する光分岐器である。
光ファイバ21c,21dは,カプラ23で分岐された第1,第2の赤外光をそれぞれ,帯域フィルタ24a,24bに伝達する。
The coupler 23 is an optical branching device that branches the infrared light transmitted through the optical fiber 21b into first and second infrared lights.
The optical fibers 21c and 21d transmit the first and second infrared lights branched by the coupler 23 to the band-pass filters 24a and 24b, respectively.

帯域フィルタ24a,24bはそれぞれ,カプラ23で分岐された第1,第2の赤外光が入射される。帯域フィルタ24aはそれぞれ,波長域A1,A2の光のみを通過する(帯域フィルタ24aは,波長域A1の光を通過し,波長域A2の光を遮断する。帯域フィルタ24bは,波長域A2の光を通過し,波長域A1の光を遮断する)。   The band filters 24a and 24b receive the first and second infrared lights branched by the coupler 23, respectively. Each of the band filters 24a passes only light in the wavelength bands A1 and A2 (the band filter 24a passes light in the wavelength band A1 and blocks light in the wavelength band A2. The band filter 24b is in the wavelength band A2. The light passes through and the light in the wavelength band A1 is blocked).

APD25a,25bはそれぞれ,帯域フィルタ24a,24bから出射される光を受光する光検出器として機能する。   The APDs 25a and 25b function as photodetectors that receive light emitted from the bandpass filters 24a and 24b, respectively.

信号処理器26は,APD25a,25bそれぞれからの第1,第2の電気信号S1,S2に基づいて,電気機器容器30中の流体中のアセチレンガス量を算出する。後述のように,APD25a,25bからの信号強度S1,S2の比(S1/S2)またはその対数(log(S1/S2))と,電気機器容器30中の流体中のアセチレンガス量との関係を表すテーブルTに基づき,電気機器容器30中のアセチレンガス量を算出できる。   The signal processor 26 calculates the amount of acetylene gas in the fluid in the electrical device container 30 based on the first and second electrical signals S1 and S2 from the APDs 25a and 25b, respectively. As will be described later, the relationship between the ratio (S1 / S2) or the logarithm (log (S1 / S2)) of the signal intensities S1 and S2 from the APDs 25a and 25b and the amount of acetylene gas in the fluid in the electrical equipment container 30 The amount of acetylene gas in the electrical equipment container 30 can be calculated based on the table T representing

帯域フィルタ24aがアセチレンガスの吸収波長帯域に対応する波長域A1の光のみを通過することから,APD25aからの信号S1の強度(例えば,APDからの出力電流)は,アセチレンガスの吸収係数α1,アセチレンガスの濃度N1に従い低下する。一般に,信号S1の強度は,α1,N1,Lの関数となる。
α1: アセチレンガスの吸収係数(波長域A1での平均的な吸収係数)
N1: 電気機器容器30の空間内でのアセチレンガスの濃度
L: 電気機器容器30の空間内の光路長
Since the band-pass filter 24a passes only light in the wavelength band A1 corresponding to the absorption wavelength band of acetylene gas, the intensity of the signal S1 from the APD 25a (for example, the output current from the APD) is the absorption coefficient α1, acetylene gas. It decreases according to the concentration N1 of acetylene gas. In general, the intensity of the signal S1 is a function of α1, N1, and L.
α1: Absorption coefficient of acetylene gas (average absorption coefficient in wavelength range A1)
N1: Concentration of acetylene gas in the space of the electrical equipment container 30 L: Optical path length in the space of the electrical equipment container 30

但し,ここでは,アセチレン以外の物質による吸収が考慮されていない。アセチレンガス,およびアセチレン以外の物質による吸収を考慮すると,信号S1の強度は,α1,N1,Lに加えて,αx,Nx,Axの関数となる。
αx: 電気機器容器30の空間内でのアセチレンガス以外の物質の吸収係数(波長域A1での平均的な吸収係数)
Nx: 電気機器容器30の空間内でのアセチレンガス以外の物質の濃度
Ax: 石英ガラス32a,32bの表面の汚れ等による波長域A1での吸収率
However, absorption by substances other than acetylene is not considered here. In consideration of absorption by acetylene gas and substances other than acetylene, the intensity of the signal S1 is a function of αx, Nx, Ax in addition to α1, N1, L.
αx: Absorption coefficient of substances other than acetylene gas in the space of the electrical equipment container 30 (average absorption coefficient in the wavelength region A1)
Nx: Concentration of substances other than acetylene gas in the space of the electrical equipment container 30 Ax: Absorptivity in the wavelength region A1 due to contamination of the surfaces of the quartz glasses 32a and 32b

帯域フィルタ24bがアセチレンガスの吸収波長帯域に対応する波長域A2の光のみを通過することから,APD25bからの信号S2の強度(例えば,APDからの出力電圧)は,αx’,Nx,Ax’の関数となる。
αx’: 電気機器容器30の空間内でのアセチレンガス以外の物質の吸収係数(波長域A2での平均的な吸収係数)
Ax’: 石英ガラス32a,32bの表面の汚れ等による波長域A2での吸収率
Since the band-pass filter 24b passes only light in the wavelength band A2 corresponding to the absorption wavelength band of acetylene gas, the intensity of the signal S2 from the APD 25b (for example, output voltage from the APD) is αx ′, Nx, Ax ′. Is a function of
αx ′: Absorption coefficient of substances other than acetylene gas in the space of the electrical equipment container 30 (average absorption coefficient in the wavelength region A2)
Ax ′: Absorptivity in the wavelength region A2 due to dirt on the surfaces of the quartz glasses 32a and 32b

既述のように,波長域A2はアセチレンガスの吸収波長帯域を外れている。このため,信号S2には,アセチレンガスによる吸収(APD出力の電圧低下)は反映されず,絶縁媒体の汚れ,あるいは石英ガラス32a,32bの表面の汚れ等による吸収が反映される。即ち,信号S2は,経年変化等による通過光量の低下を表す。   As described above, the wavelength region A2 is outside the absorption wavelength region of acetylene gas. For this reason, the signal S2 does not reflect absorption due to acetylene gas (APD output voltage drop), but reflects absorption due to contamination of the insulating medium or contamination of the surfaces of the quartz glasses 32a and 32b. That is, the signal S2 represents a decrease in the amount of passing light due to aging.

信号処理器26は,信号S1,S2間の比ΔSを求める。
ΔS=S1/S2
比ΔSをとることで,アセチレンガス以外の物質による吸収の影響をキャンセルできる。波長域A1,A2の間隔Dが大きくないことから,吸収係数αx,αx’,吸収率Ax,Ax’の相違が小さい(αx〜αx’,Ax〜Ax’)ことによる。
The signal processor 26 obtains a ratio ΔS between the signals S1 and S2.
ΔS = S1 / S2
By taking the ratio ΔS, the influence of absorption by substances other than acetylene gas can be canceled. This is because the difference between the absorption coefficients αx and αx ′ and the absorption rates Ax and Ax ′ is small (αx to αx ′, Ax to Ax ′) because the interval D between the wavelength regions A1 and A2 is not large.

比ΔSの対数「log(S1/S2)」とアセチレンガスの濃度N1には比例関係がある。このため,例えば,電気機器容器30の空間内にアセチレンガスの濃度が判った流体を封入し,APD25a,25bからの信号強度S1,S2を測定することで,信号強度S1,S2の比(S1/S2)またはその対数と電気機器容器30中の流体中のアセチレンガス量との関係を表すテーブルTを作成できる。作成されたテーブルTは,信号処理器26内に記憶され,アセチレンガス量の算出に利用できる。   There is a proportional relationship between the logarithm “log (S1 / S2)” of the ratio ΔS and the concentration N1 of the acetylene gas. For this reason, for example, by enclosing a fluid having a known acetylene gas concentration in the space of the electrical equipment container 30, and measuring the signal intensities S1 and S2 from the APDs 25a and 25b, the ratio of the signal intensities S1 and S2 (S1 / S2) or the logarithm thereof and the table T representing the relationship between the amount of acetylene gas in the fluid in the electrical equipment container 30 can be created. The created table T is stored in the signal processor 26 and can be used to calculate the amount of acetylene gas.

(第1の実施形態のアセチレンガスセンサの動作)
以下,アセチレンガスセンサの動作を説明する。
SLD20より発せられた赤外光は,光ファイバ21aによって伝達され,コリメーターレンズ22aにより平行光に変換される。この平行赤外光は,電気機器容器30の石英ガラス32a,32bを介し,電気機器容器30内の絶縁媒体を通過する。絶縁媒体を通過した赤外光は,コリメーターレンズ22bにより,絞られ,光ファイバ21bに入射,伝達される。
(Operation of the acetylene gas sensor of the first embodiment)
Hereinafter, the operation of the acetylene gas sensor will be described.
Infrared light emitted from the SLD 20 is transmitted by the optical fiber 21a and converted into parallel light by the collimator lens 22a. The parallel infrared light passes through the insulating medium in the electrical equipment container 30 through the quartz glass 32 a and 32 b of the electrical equipment container 30. The infrared light that has passed through the insulating medium is focused by the collimator lens 22b, and is incident on and transmitted to the optical fiber 21b.

カプラ23により赤外光は二分割され,帯域フィルタ24a,24bを介してアバランシェフォトダイオ−ド(APD)25a,25bで電気信号S1,S2に変換される。   The infrared light is divided into two by the coupler 23 and converted into electrical signals S1 and S2 by avalanche photodiodes (APD) 25a and 25b through band-pass filters 24a and 24b.

既述のように,テーブルTおよび信号S1,S2に基づいて,信号処理器26が絶縁媒体中のアセチレンガス量(濃度N1)を算出する。即ち,信号処理器26において,APD25bからの信号S2を用いて,エチレンガス以外での吸収の影響を低減できる(APD25aからの信号S1が補正される)。この結果,電気機器異常と判断される絶縁媒体中のアセチレンガスを,経年変化を考慮して感度良く検出できる。   As described above, based on the table T and the signals S1 and S2, the signal processor 26 calculates the amount of acetylene gas (concentration N1) in the insulating medium. That is, the signal processor 26 can reduce the influence of absorption other than ethylene gas by using the signal S2 from the APD 25b (the signal S1 from the APD 25a is corrected). As a result, it is possible to detect acetylene gas in the insulating medium, which is judged to be abnormal in electrical equipment, with high sensitivity in consideration of aging.

(第2の実施の形態)
図4は第2の実施の形態の構成図である。第1の実施の形態と同一の構成には同一の符号を付し,重複する説明は省略する。第1の実施の形態においてスーパールミネッセンスダイオード20の代わりにレーザー41a,41bを用いるように変形した実施の形態である。
(Second Embodiment)
FIG. 4 is a configuration diagram of the second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. In this embodiment, the laser 41a and 41b are used in place of the super luminescence diode 20 in the first embodiment.

レーザー41aは,アセチレンガスの吸収波長に対応する1513〜1543[nm]の少なくとも一部の波長を含む波長域A1の赤外光を出射する光源である。   The laser 41a is a light source that emits infrared light in a wavelength region A1 including at least a part of wavelengths 1513 to 1543 [nm] corresponding to the absorption wavelength of acetylene gas.

レーザー41bは,アセチレンガスの吸収波長に対応せず,波長域A1から間隔D(例えば,100nm以内)の波長を含む波長域A2の赤外光(レーザー41aの経年変化を監視する参照光)を出射する光源である。   The laser 41b does not correspond to the absorption wavelength of the acetylene gas, and the infrared light in the wavelength region A2 including the wavelength D (for example, within 100 nm) from the wavelength region A1 (reference light for monitoring the secular change of the laser 41a). A light source that emits light.

第1の実施形態では光源がスーパールミネッセンスダイオード(SLD)20であったため,波長域A1,A2の幅W1,W2が広かった。
これに対して,本実施形態では,光源がレーザー41a,41bであることから,波長域A1,A2の幅W1,W2が狭くなる。レーザー41aの発光波長をアセチレンガスの吸収ピークP1,P2に対応させることで,高感度なアセチレンの検出が可能となる。
In the first embodiment, since the light source is the super luminescence diode (SLD) 20, the widths W1 and W2 of the wavelength regions A1 and A2 are wide.
On the other hand, in this embodiment, since the light sources are the lasers 41a and 41b, the widths W1 and W2 of the wavelength regions A1 and A2 are narrowed. By making the emission wavelength of the laser 41a correspond to the absorption peaks P1 and P2 of the acetylene gas, it is possible to detect acetylene with high sensitivity.

光ファイバ21e,21fはそれぞれ,レーザー41a,41bから発せられたレーザー光を伝達する。
カプラ23aは,光ファイバ21e,21fによって伝達されたレーザ光を合成し,1つのビームの光とするものであり,レーザー41a,41bから出射される光を混合する混合器として機能する。
The optical fibers 21e and 21f transmit laser beams emitted from the lasers 41a and 41b, respectively.
The coupler 23a combines the laser beams transmitted by the optical fibers 21e and 21f into a single beam, and functions as a mixer that mixes the light emitted from the lasers 41a and 41b.

干渉フィルタ42a,42bはそれぞれ,レーザー41a,41bからの出射光に対応した波長を通過させる通過波長帯域を持つフィルタである。帯域フィルタと干渉フィルタは設計時に設定された波長の光を透過させる点では同じであるが,レーザー用に特に狭い窓で意図した波長を選び出すフィルタを干渉フィルタと一般に呼ぶ。   The interference filters 42a and 42b are filters having pass wavelength bands that pass wavelengths corresponding to light emitted from the lasers 41a and 41b, respectively. A bandpass filter and an interference filter are the same in that they transmit light having a wavelength set at the time of design, but a filter for selecting a wavelength intended for a laser with a particularly narrow window is generally called an interference filter.

第1の実施形態と同様,信号処理器26は,APD25a,25bそれぞれからの第1,第2の電気信号S1,S2に基づいて,電気機器容器30中の流体中のアセチレンガス量を算出する。後述のように,APD25a,25bからの信号強度S1,S2の比(S1/S2)またはその対数と,電気機器容器30中の流体中のアセチレンガス量との関係を表すテーブルTに基づき,電気機器容器30中のアセチレンガス量を算出できる。   Similar to the first embodiment, the signal processor 26 calculates the amount of acetylene gas in the fluid in the electrical device container 30 based on the first and second electrical signals S1 and S2 from the APDs 25a and 25b, respectively. . As will be described later, based on the table T representing the relationship between the ratio (S1 / S2) of the signal intensities S1 and S2 from the APDs 25a and 25b or the logarithm thereof and the amount of acetylene gas in the fluid in the electrical equipment container 30, The amount of acetylene gas in the device container 30 can be calculated.

本実施形態でも,既述のように,テーブルTおよび信号S1,S2に基づいて,信号処理器26が絶縁媒体中のアセチレンガス量(濃度N1)を算出する。即ち,信号処理器26において,APD25bからの信号S2を用いて,アセチレンガス以外での吸収の影響を低減できる(APD25aからの信号S1が補正される)。この結果,電気機器異常と判断される絶縁媒体中のアセチレンガスを,経年変化を考慮して感度良く検出できる。   Also in this embodiment, as described above, the signal processor 26 calculates the amount of acetylene gas (concentration N1) in the insulating medium based on the table T and the signals S1 and S2. That is, the signal processor 26 can reduce the influence of absorption other than acetylene gas using the signal S2 from the APD 25b (the signal S1 from the APD 25a is corrected). As a result, it is possible to detect acetylene gas in the insulating medium, which is judged to be abnormal in electrical equipment, with high sensitivity in consideration of aging.

(第3の実施の形態)
図5は第3の実施の形態の構成図である。第1の実施の形態と同一の構成には同一の符号を付し,重複する説明は省略する。
(Third embodiment)
FIG. 5 is a configuration diagram of the third embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

ここでは,第1の実施の形態と異なり,石英ガラス32a,32bは使用せず,光ファイバ21をシ−ル部33a,33bを介して,コリメーターレンズ22a,22bを電気機器容器30内部に配置する。コリメーターレンズ22a,22b間に,石英ガラス32a,32bを配置しないことで,石英ガラス32a,32bによる反射や光の損失を低減できる。この結果,絶縁媒体中のアセチレンガスをさらに感度良く検出できる。   Here, unlike the first embodiment, the quartz glass 32a and 32b are not used, and the optical fiber 21 is connected to the inside of the electrical equipment container 30 through the seal portions 33a and 33b and the collimator lenses 22a and 22b. Deploy. By not disposing the quartz glass 32a, 32b between the collimator lenses 22a, 22b, reflection by the quartz glass 32a, 32b and light loss can be reduced. As a result, acetylene gas in the insulating medium can be detected with higher sensitivity.

(第4の実施の形態)
図6は第4の実施の形態の構成図である。第1の実施形態と同一の構成には同一の符号を付し,重複する説明は省略する。
(Fourth embodiment)
FIG. 6 is a configuration diagram of the fourth embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

ここでは,前記第1の実施の形態のアセチレンガスセンサを電力用機器の一つとして変圧器に取り付けている。電気機器容器50中に鉄心51,巻線52が配置され,電気機器容器50の上部にフランジ53が取り付けられている。このフランジ53は,両側に石英ガラス32a,32bを配置したセンサ容器54のフランジ55と接続される。フランジ55は,センサ容器54の,石英ガラス32a,32bの設置面と異なる面に配置される。石英ガラス32a,32bの外部に発光部と受光部を設置することで変圧器内の絶縁油中のアセチレンガスの検出が可能となる。
なお,フランジ55は,変圧器タンクに設けたボスに固定しても良い。
Here, the acetylene gas sensor according to the first embodiment is attached to a transformer as one of power devices. An iron core 51 and a winding 52 are arranged in the electric equipment container 50, and a flange 53 is attached to the upper part of the electric equipment container 50. This flange 53 is connected to a flange 55 of a sensor container 54 in which quartz glass 32a and 32b are arranged on both sides. The flange 55 is arranged on a surface of the sensor container 54 different from the installation surface of the quartz glass 32a, 32b. By installing a light emitting part and a light receiving part outside the quartz glass 32a, 32b, it becomes possible to detect acetylene gas in the insulating oil in the transformer.
The flange 55 may be fixed to a boss provided in the transformer tank.

フランジ53,55によってセンサ容器54が電気機器容器50に接続される。この結果,センサ容器54を簡単にとりはずすことが可能になり,石英ガラス32a,32b表面の汚れの除去や交換等が容易にできる。また,既設の変圧器への取り付けも容易になる。   The sensor container 54 is connected to the electric device container 50 by the flanges 53 and 55. As a result, the sensor container 54 can be easily removed, and the surface of the quartz glass 32a, 32b can be easily removed or replaced. In addition, it can be easily installed on existing transformers.

また,第3の実施の形態のようにコリメーターレンズ22をセンサ容器内に設置することも可能である。この場合,第3の実施の形態と同様に,設置・点検が容易となる。   It is also possible to install the collimator lens 22 in the sensor container as in the third embodiment. In this case, as in the third embodiment, installation and inspection are easy.

(その他の実施の形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

例えば,第1,第2,第3の実施の形態における電気機器容器30,第4の実施の形態における電気機器容器50については,アセチレンガスの検出を行う対象で,絶縁媒体が封入された電力機器を持つ電力用機器であれば何でもよく変圧器,計器用変成器,ブッシング,リアクトルなどにしてもよい。
また,センサの取り付け位置を変更したり,センサの取り付け数を変更したりしても良い。
実施形態では,信号S1を信号S2で除算することで(比(S1/S2)を求める),信号S1を補正している。これ以外の手法で信号S1を補正しても良い。
For example, for the electric device container 30 in the first, second, and third embodiments and the electric device container 50 in the fourth embodiment, the electric power in which an insulating medium is sealed is a target for detecting acetylene gas. Any power device having a device may be used, such as a transformer, an instrument transformer, a bushing, or a reactor.
Also, the sensor mounting position may be changed, or the number of sensor mountings may be changed.
In the embodiment, the signal S1 is corrected by dividing the signal S1 by the signal S2 (to obtain the ratio (S1 / S2)). The signal S1 may be corrected by other methods.

20 スーパールミネッセンスダイオード
21a〜21f 光ファイバ
22a,22b コリメーターレンズ
23a カプラ
24a,24b 帯域フィルタ
25a,25b APD
26 信号処理器
30 電気機器容器
31a,31b 側板
32a,32b 石英ガラス
33a,33b シール部
41a,41b レーザー
42a,42b 干渉フィルタ
50 電気機器容器
51 鉄心
52 巻線
53 フランジ
54 センサ容器
55 フランジ
20 Super luminescence diode 21a-21f Optical fiber 22a, 22b Collimator lens 23a Coupler 24a, 24b Bandpass filter 25a, 25b APD
26 Signal processor 30 Electric equipment container 31a, 31b Side plate 32a, 32b Quartz glass 33a, 33b Sealing part 41a, 41b Laser 42a, 42b Interference filter 50 Electric equipment container 51 Iron core 52 Winding 53 Flange 54 Sensor container 55 Flange

Claims (6)

1510nm〜1540nmの少なくとも一部の波長を含む第1の波長域,およびこの第1の波長域から100nm以内の波長を含む第2の波長域の光を出射する光源と,
前記光源から出射される光を伝達する第1の光ファイバと,
前記第1の光ファイバで伝達された光を平行光に変換する第1のレンズと,
流体が封入され,かつ前記第1のレンズから出射される光が通過する空間を有する容器と,
前記空間内を通過した平行光を収束光に変換する第2のレンズと,
前記第2のレンズから出射される光を伝達する第2の光ファイバと,
前記第2の光ファイバで伝達された光を第1,第2の光に分岐する光分岐器と,
前記第1の光が入射され,前記第1の波長域の光を通過し,前記第2の波長域の光を遮断する第1のフィルタと,
前記第2の光が入射され,前記第2の波長域の光を通過し,前記第1の波長域の光を遮断する第2のフィルタと,
前記第1のフィルタから出射される光を受光する第1の光検出器と,
前記第2のフィルタから出射される光を受光する第2の光検出器と,
前記第1,第2の光検出器それぞれからの第1,第2の電気信号に基づいて,前記流体中のアセチレンガス量を算出する信号処理器と,
を備えることを特徴とするアセチレンガスセンサ。
A light source that emits light in a first wavelength range including at least a part of wavelengths of 1510 nm to 1540 nm and a second wavelength range including a wavelength within 100 nm from the first wavelength range;
A first optical fiber for transmitting light emitted from the light source;
A first lens for converting light transmitted through the first optical fiber into parallel light;
A container containing a fluid and having a space through which light emitted from the first lens passes;
A second lens that converts parallel light that has passed through the space into convergent light;
A second optical fiber for transmitting light emitted from the second lens;
An optical branching device for branching light transmitted through the second optical fiber into first and second light;
A first filter that receives the first light, passes the light in the first wavelength range, and blocks the light in the second wavelength range;
A second filter that receives the second light, passes the light in the second wavelength range, and blocks the light in the first wavelength range;
A first photodetector for receiving light emitted from the first filter;
A second photodetector for receiving light emitted from the second filter;
A signal processor for calculating the amount of acetylene gas in the fluid based on the first and second electric signals from the first and second photodetectors;
An acetylene gas sensor comprising:
前記光源が,前記第1,第2の波長域の赤外光を発光波長領域に含むスーパールミネッセンスダイオード(SLD)である
ことを特徴とする請求項1記載のアセチレンガスセンサ。
2. The acetylene gas sensor according to claim 1, wherein the light source is a super luminescence diode (SLD) including infrared light in the first and second wavelength regions in an emission wavelength region. 3.
前記光源が,
前記第1の波長域の赤外光を発光波長領域に含む第1の赤外光レーザと,
前記第2の波長域の赤外光を発光波長領域に含む第2の赤外光レーザと,
前記第1,第2の赤外光レーザから出射される光を混合する混合器と,を有する
ことを特徴とする請求項1記載のアセチレンガスセンサ。
The light source is
A first infrared laser including infrared light in the first wavelength region in an emission wavelength region;
A second infrared laser that includes infrared light in the second wavelength region in an emission wavelength region;
The acetylene gas sensor according to claim 1, further comprising a mixer that mixes light emitted from the first and second infrared lasers.
前記容器が,互いに対向する第1,第2の面と,これら第1,第2の面それぞれに配置され,前記第1,第2の波長域の光を透過する材料からなる第1,第2の窓と,を有し,
前記第1,第2のレンズが,前記容器の外部に,前記第1,第2の窓と対向して配置される
ことを特徴とする請求項1乃至3のいずれか1項に記載のアセチレンガスセンサ。
The container is disposed on each of the first and second surfaces facing each other and the first and second surfaces, and the first and first materials are made of materials that transmit light in the first and second wavelength regions. Two windows,
4. The acetylene according to claim 1, wherein the first and second lenses are disposed outside the container so as to face the first and second windows. 5. Gas sensor.
前記第1,第2のレンズが,前記容器の内部に,互いに対向して配置される
ことを特徴とする請求項1乃至3のいずれか1項に記載のアセチレンガスセンサ。
The acetylene gas sensor according to any one of claims 1 to 3, wherein the first and second lenses are disposed inside the container so as to face each other.
前記容器が,電気機器およびこの電気機器を収納し絶縁媒体を充填する電気機器容器を含む,前記電力用機器に接続されるか,少なくとも前記電力用機器の一部であり,
前記流体が前記絶縁媒体である
ことを特徴とする請求項1乃至5のいずれか1項に記載のアセチレンガスセンサ。
The container is connected to the power device or includes at least part of the power device, including an electrical device and an electrical device container that houses the electrical device and is filled with an insulating medium;
The acetylene gas sensor according to claim 1, wherein the fluid is the insulating medium.
JP2011192882A 2011-09-05 2011-09-05 Acetylene gas sensor Withdrawn JP2013053949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192882A JP2013053949A (en) 2011-09-05 2011-09-05 Acetylene gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192882A JP2013053949A (en) 2011-09-05 2011-09-05 Acetylene gas sensor

Publications (1)

Publication Number Publication Date
JP2013053949A true JP2013053949A (en) 2013-03-21

Family

ID=48131066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192882A Withdrawn JP2013053949A (en) 2011-09-05 2011-09-05 Acetylene gas sensor

Country Status (1)

Country Link
JP (1) JP2013053949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140117997A (en) * 2013-03-27 2014-10-08 삼성디스플레이 주식회사 Detecting apparatus for organic compounds and manufacturing equipment for display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140117997A (en) * 2013-03-27 2014-10-08 삼성디스플레이 주식회사 Detecting apparatus for organic compounds and manufacturing equipment for display device
KR102095474B1 (en) * 2013-03-27 2020-04-01 삼성디스플레이 주식회사 Detecting apparatus for organic compounds and manufacturing equipment for display device

Similar Documents

Publication Publication Date Title
CN107923841B (en) Concentration measuring device
JP6075372B2 (en) Material property measuring device
KR101756490B1 (en) Fiber-optic measuring apparatus
CN104914066A (en) Detection device of dissolved gases in transformer oil based on infrared spectrum absorption
WO2017029791A1 (en) Concentration measurement device
CN108061722A (en) The detection device and detection method of a kind of carbonomonoxide concentration
CN103499545A (en) Semiconductor laser gas detection system with function of gas reference cavity feedback compensation
JP2015049168A (en) Gas absorbance measuring device
CN110987869A (en) Integrated optical fiber gas detection system and method
CN109087719A (en) Main steam line leakage monitoring system in a kind of containment
JP2016121926A (en) Optical analyzer
JP6516484B2 (en) Dissolved matter concentration measuring device
JP2012037344A (en) Optical type gas sensor and gas concentration measuring method
CN109375132A (en) A kind of filling type current mulual inductor malfunction detection device
JP5473919B2 (en) Photon density wave spectrometer
JP2013053949A (en) Acetylene gas sensor
CN105157830A (en) Laser power meter based on infrared radiation measurement
CN109239008B (en) Oil-immersed transformer fault detection device based on micro-nano optical fiber evanescent field
CN112710628A (en) Ultra-sensitive SF (sulfur hexafluoride) based on broadband double-optical-comb spectrum6Gas decomposition component detection method
CN110553987A (en) gas detection method and system
JP6689453B2 (en) Radiation measuring apparatus and method
CA2857124C (en) Sensor structure for online monitoring of furans in power transformers
KR20200118349A (en) Optical emission spectroscopy calibration device and system using the same
KR20150136760A (en) Gas detecting sensor and method
Li et al. Optical fiber remote sensing system of methane at 1645nm using wavelength-modulation technique

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202