JP2013053128A - Production method for methacrylic acid compound, and catalyst - Google Patents

Production method for methacrylic acid compound, and catalyst Download PDF

Info

Publication number
JP2013053128A
JP2013053128A JP2012026031A JP2012026031A JP2013053128A JP 2013053128 A JP2013053128 A JP 2013053128A JP 2012026031 A JP2012026031 A JP 2012026031A JP 2012026031 A JP2012026031 A JP 2012026031A JP 2013053128 A JP2013053128 A JP 2013053128A
Authority
JP
Japan
Prior art keywords
catalyst
formula
group
mol
hydrotalcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012026031A
Other languages
Japanese (ja)
Inventor
Avelino Corma
コルマ アベリノ
Marcelo E Domine
エデュアルド ドミネ マルセロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012026031A priority Critical patent/JP2013053128A/en
Priority to PCT/JP2012/070526 priority patent/WO2013022095A1/en
Publication of JP2013053128A publication Critical patent/JP2013053128A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • B01J27/236Hydroxy carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a methacrylic acid compound (II) in a high yield.SOLUTION: The production method for a methacrylic acid compound (II) is characterized by reacting a propionic acid compound (I) and at least one kind selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane and paraformaldehyde, in the presence of a catalyst containing a calcined product obtained by calcination of hydrotalcite. Preferably, the hydrotalcite is represented by formula (III): [M1M2(OH)][AnHO] or formula (IV): [M1M2M3(OH)][AnHO].

Description

本発明は、式(I)   The present invention relates to a compound of formula (I)

Figure 2013053128
Figure 2013053128

(式中、Rは水素原子、アルキル基、又はアシル基を表す。)
で示される化合物〔以下、プロピオン酸化合物(I)ということがある。〕と、ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも1種〔以下、ホルムアルデヒド化合物ということがある。〕とを反応させて、式(II)
(In the formula, R 1 represents a hydrogen atom, an alkyl group, or an acyl group.)
[Hereinafter, it may be called propionic acid compound (I). ] And at least one selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane and paraformaldehyde [hereinafter sometimes referred to as a formaldehyde compound. And a compound of formula (II)

Figure 2013053128
Figure 2013053128

(式中、Rは、前記と同じ意味を表す。)
で示される化合物〔以下、メタクリル酸化合物(II)ということがある。〕を製造する方法と、この製造方法に適した触媒とに関する。
(Wherein R 1 represents the same meaning as described above.)
[Hereinafter, it may be referred to as methacrylic acid compound (II). And a catalyst suitable for this production method.

従来、プロピオン酸化合物(I)と、ホルムアルデヒド化合物とを反応させてメタクリル酸化合物(II)を製造する方法として、例えば、特許文献1には、ジルコニウム及びセシウムを含有するシリカ触媒の存在下に、プロピオン酸メチルと、メタノールと、ホルマリンとを反応させてメタクリル酸及びメタクリル酸メチルを製造する方法が提案されている。   Conventionally, as a method for producing a methacrylic acid compound (II) by reacting a propionic acid compound (I) with a formaldehyde compound, for example, in Patent Document 1, in the presence of a silica catalyst containing zirconium and cesium, A method for producing methacrylic acid and methyl methacrylate by reacting methyl propionate, methanol, and formalin has been proposed.

特表2002−511336号公報Japanese translation of PCT publication No. 2002-511336

しかしながら、上記従来の方法では、メタクリル酸化合物(II)の収率の点で必ずしも満足のいくものではなかった。   However, the above conventional methods are not always satisfactory in terms of the yield of the methacrylic acid compound (II).

そこで、本発明の目的は、メタクリル酸化合物(II)を良好な収率で製造する方法を提供することにある。   Then, the objective of this invention is providing the method of manufacturing methacrylic acid compound (II) with a favorable yield.

本発明者らは、上記課題を達成すべく鋭意研究した結果、本発明を完成するに至った。すなわち、本発明は、以下の構成からなる。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have completed the present invention. That is, this invention consists of the following structures.

(1)ハイドロタルサイトを焼成して得られる焼成物を含む触媒の存在下、式(I)   (1) In the presence of a catalyst containing a calcined product obtained by calcining hydrotalcite, formula (I)

Figure 2013053128
Figure 2013053128

(式中、Rは水素原子、アルキル基、又はアシル基を表す。)
で示される化合物と、ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも1種とを反応させることを特徴とする式(II)
(In the formula, R 1 represents a hydrogen atom, an alkyl group, or an acyl group.)
And a compound represented by the formula (II), wherein the compound is reacted with at least one selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane and paraformaldehyde

Figure 2013053128
Figure 2013053128

(式中、Rは、前記と同じ意味を表す。)
で示される化合物の製造方法。
(2)前記ハイドロタルサイトが、式(III)
[M11−xM2(OH)][Am− x/m・nHO] (III)
(式中、M1はマグネシウム、亜鉛、銅、コバルト、マンガン、鉄、鉛、ニッケル、カルシウム、バリウム及びストロンチウムからなる群より選ばれる少なくとも1種の2価の金属元素を表し、M2はアルミニウム、鉄、チタン、クロム、マンガン、コバルト、ニッケル、ランタン、ガリウム及びインジウムからなる群より選ばれる少なくとも1種の3価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0<x≦0.5、n>0である。)
で示されるものである前記(1)に記載の製造方法。
(3)前記ハイドロタルサイトが、式(IV)
[M1M2M3(OH)][Am− (b+2c)/m・nHO]
(IV)
(式中、M1はマグネシウム、亜鉛、銅、コバルト、マンガン、鉄、鉛、ニッケル、カルシウム、バリウム及びストロンチウムからなる群より選ばれる少なくとも1種の2価の金属元素を表し、M2はアルミニウム、鉄、チタン、クロム、マンガン、コバルト、ニッケル、ランタン、ガリウム及びインジウムからなる群より選ばれる少なくとも1種の3価の金属元素を表し、M3はスズ、チタン及びジルコニウムからなる群より選ばれる少なくとも1種の4価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0.5≦a<1、0<b<0.5、0<c<0.5であり、a+b+c=1かつ0<b+c≦0.5であり、n>0である。)
で示されるものである請求項1に記載の製造方法。
(4)前記M1がマグネシウム、亜鉛、鉛及びカルシウムからなる群より選ばれる少なくとも1種であり、前記M2がアルミニウム及び鉄からなる群より選ばれる少なくとも1種である前記(2)又は(3)に記載の製造方法。
(5)前記焼成を250〜650℃で行う前記(1)〜(4)のいずれかに記載の製造方法。
(6)さらに水の存在下で前記反応を行う前記(1)〜(5)のいずれかに記載の製造方法。
(7)式(I)
(Wherein R 1 represents the same meaning as described above.)
The manufacturing method of the compound shown by these.
(2) The hydrotalcite has the formula (III)
[M1 1-x M2 x (OH) 2 ] [A m- x / m · nH 2 O] (III)
(In the formula, M1 represents at least one divalent metal element selected from the group consisting of magnesium, zinc, copper, cobalt, manganese, iron, lead, nickel, calcium, barium and strontium, and M2 represents aluminum, iron , titanium, chromium, manganese, cobalt, is .m represents nickel, lanthanum, the at least one trivalent metal element selected from the group consisting of gallium and indium, a m-is representative of the m-valent anion 1-4 Represents an integer of 0 <x ≦ 0.5 and n> 0.)
The manufacturing method as described in said (1) which is shown by these.
(3) The hydrotalcite has the formula (IV)
[M1 a M2 b M3 c (OH) 2 ] [A m− (b + 2c) / m · nH 2 O]
(IV)
(In the formula, M1 represents at least one divalent metal element selected from the group consisting of magnesium, zinc, copper, cobalt, manganese, iron, lead, nickel, calcium, barium and strontium, and M2 represents aluminum, iron Represents at least one trivalent metal element selected from the group consisting of titanium, chromium, manganese, cobalt, nickel, lanthanum, gallium and indium, and M3 is at least one selected from the group consisting of tin, titanium and zirconium A m− represents an m-valent anion, m represents an integer of 1 to 4, 0.5 ≦ a <1, 0 <b <0.5, 0 <c <. 0.5, a + b + c = 1, 0 <b + c ≦ 0.5, and n> 0.)
The manufacturing method according to claim 1, wherein
(4) The above (2) or (3), wherein M1 is at least one selected from the group consisting of magnesium, zinc, lead and calcium, and M2 is at least one selected from the group consisting of aluminum and iron. The manufacturing method as described in.
(5) The manufacturing method according to any one of (1) to (4), wherein the baking is performed at 250 to 650 ° C.
(6) The production method according to any one of (1) to (5), wherein the reaction is further performed in the presence of water.
(7) Formula (I)

Figure 2013053128
Figure 2013053128

(式中、Rは水素原子、アルキル基、又はアシル基を表す。)
で示される化合物と、ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも1種とを反応させて式(II)
(In the formula, R 1 represents a hydrogen atom, an alkyl group, or an acyl group.)
Is reacted with at least one selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane, and paraformaldehyde to give a compound of formula (II)

Figure 2013053128
Figure 2013053128

(式中、Rは、前記と同じ意味を表す。)
で示される化合物を製造する際に使用される触媒であって、ハイドロタルサイトを焼成して得られる焼成物を含むことを特徴とする触媒。
(Wherein R 1 represents the same meaning as described above.)
The catalyst used when manufacturing the compound shown by these, Comprising: The catalyst characterized by including the baked material obtained by baking hydrotalcite.

本発明によれば、メタクリル酸化合物(II)を良好な収率で製造することができる。   According to the present invention, methacrylic acid compound (II) can be produced in a good yield.

本発明では、ハイドロタルサイトを焼成して得られる焼成物を含む触媒の存在下、式(I)   In the present invention, in the presence of a catalyst containing a calcined product obtained by calcining hydrotalcite, formula (I)

Figure 2013053128
Figure 2013053128

(式中、Rは水素原子、アルキル基、又はアシル基を表す。)
で示される化合物〔プロピオン酸化合物(I)〕と、ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも1種〔ホルムアルデヒド化合物〕とを反応させる。
(In the formula, R 1 represents a hydrogen atom, an alkyl group, or an acyl group.)
[Propionic acid compound (I)] and at least one [formaldehyde compound] selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane and paraformaldehyde are reacted.

式(I)中、アルキル基としては、炭素数が1〜4のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基等が挙げられる。アシル基としては、ホルミル基、アセチル基、アクリロイル基、プロピオニル基、ブチリル基、イソブチリル基、メタクリロイル基等が挙げられる。プロピオン酸化合物(I)として、中でも、プロピオン酸、プロピオン酸メチル又はプロピオン酸無水物を原料として使用する場合に、本発明の方法は有利に採用される。   In formula (I), the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t- A butyl group etc. are mentioned. Examples of the acyl group include formyl group, acetyl group, acryloyl group, propionyl group, butyryl group, isobutyryl group, methacryloyl group and the like. In particular, when propionic acid, methyl propionate or propionic anhydride is used as the propionic acid compound (I) as a raw material, the method of the present invention is advantageously employed.

ホルムアルデヒド化合物としては、中でも、ホルムアルデヒドが好ましい。ホルムアルデヒド化合物は、そのまま使用してもよいし、水溶液として使用してもよいし、有機溶媒溶液として使用してもよいし、水と有機溶媒との混合溶媒の溶液として使用してもよい。該有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、s−ブタノール、t−ブタノール、n−ペンタノール、n−ヘキサノール、n−オクタノール、2−エチルヘキサノール等の炭素数が1〜8のアルコール;ペンタン、ヘキサン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられ、必要に応じてこれらの2種以上を用いることもできる。ホルムアルデヒド化合物としてホルムアルデヒドを使用する場合、水溶液、アルコール溶液又は水とアルコールとの混合溶媒の溶液として使用するのが好ましい。ホルムアルデヒド化合物の使用量は、プロピオン酸化合物(I)1モルに対して、ホルムアルデヒドに換算して、通常0.05〜20モルである。ここで、メチラール1モルは、ホルムアルデヒド1モルと換算し、1,3,5−トリオキサン1モルは、ホルムアルデヒド3モルと換算し、パラホルムアルデヒド[HO(CHO)H]1モルは、ホルムアルデヒドnモルと換算するものとする。ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも2種を使用する場合は、その合計使用量がホルムアルデヒドに換算して上記範囲となればよい。 Among these, formaldehyde is preferable as the formaldehyde compound. The formaldehyde compound may be used as it is, as an aqueous solution, as an organic solvent solution, or as a mixed solvent solution of water and an organic solvent. Examples of the organic solvent include methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, n-pentanol, n-hexanol, n-octanol, 2-ethylhexanol and the like having 1 to 1 carbon atoms. 8 alcohols; aliphatic hydrocarbons such as pentane, hexane, and octane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and the like. Two or more kinds can also be used. When formaldehyde is used as the formaldehyde compound, it is preferably used as an aqueous solution, an alcohol solution, or a mixed solvent solution of water and alcohol. The amount of the formaldehyde compound used is usually 0.05 to 20 mol in terms of formaldehyde with respect to 1 mol of the propionic acid compound (I). Here, 1 mol of methylal is converted to 1 mol of formaldehyde, 1 mol of 1,3,5-trioxane is converted to 3 mol of formaldehyde, and 1 mol of paraformaldehyde [HO (CH 2 O) n H] is formaldehyde. It shall be converted to nmoles. When using at least two selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane and paraformaldehyde, the total amount used may be in the above range in terms of formaldehyde.

ハイドロタルサイトとは、層状構造を有する化合物であり、2価の金属元素及び3価の金属元素から構成される正に荷電した層と層の間に、アニオンが存在してなる層状化合物であり、一般には次式(V)   Hydrotalcite is a compound having a layered structure, and is a layered compound in which an anion exists between positively charged layers composed of a divalent metal element and a trivalent metal element. In general, the following formula (V)

[MII 1−xIII (OH)][Am− x/m・nHO] (V)
(式中、MIIは少なくとも1種の2価の金属元素を表し、MIIIは少なくとも1種の3価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0<x≦0.5、n>0である。)
で示される化合物である。尚、ハイドロタルサイトにおいては、その構造を保持し得る限り、正に荷電した層を構成する金属元素として、4価以上の金属元素も含み得る。本発明においては、中でも、式(III)
[M II 1-x M III x (OH) 2] [A m- x / m · nH 2 O] (V)
(Wherein, M II represents at least one divalent metal element, M III represents at least one trivalent metal element, A m-is .m representing the m-valent anion 1-4 Represents an integer of 0 <x ≦ 0.5 and n> 0.)
It is a compound shown by these. In addition, in the hydrotalcite, as long as the structure can be hold | maintained, a tetravalent or more metal element may also be included as a metal element which comprises a positively charged layer. In the present invention, among others, the formula (III)

[M11−xM2(OH)][Am− x/m・nHO] (III)
(式中、M1はマグネシウム、亜鉛、銅、コバルト、マンガン、鉄、鉛、ニッケル、カルシウム、バリウム及びストロンチウムからなる群より選ばれる少なくとも1種の2価の金属元素を表し、M2はアルミニウム、鉄、チタン、クロム、マンガン、コバルト、ニッケル、ランタン、ガリウム及びインジウムからなる群より選ばれる少なくとも1種の3価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0<x≦0.5、n>0である。)
で示されるハイドロタルサイトが好ましく使用される。また、本発明においては、正に荷電した層を構成する金属元素として、さらに4価の金属元素を含む式(IV)
[M1 1-x M2 x (OH) 2 ] [A m- x / m · nH 2 O] (III)
(In the formula, M1 represents at least one divalent metal element selected from the group consisting of magnesium, zinc, copper, cobalt, manganese, iron, lead, nickel, calcium, barium and strontium, and M2 represents aluminum, iron , titanium, chromium, manganese, cobalt, is .m represents nickel, lanthanum, the at least one trivalent metal element selected from the group consisting of gallium and indium, a m-is representative of the m-valent anion 1-4 Represents an integer of 0 <x ≦ 0.5 and n> 0.)
The hydrotalcite represented by is preferably used. In the present invention, the formula (IV) further contains a tetravalent metal element as the metal element constituting the positively charged layer.

[M1M2M3(OH)][Am− (b+2c)/m・nHO] (IV)
(式中、M1はマグネシウム、亜鉛、銅、コバルト、マンガン、鉄、鉛、ニッケル、カルシウム、バリウム及びストロンチウムからなる群より選ばれる少なくとも1種の2価の金属元素を表し、M2はアルミニウム、鉄、チタン、クロム、マンガン、コバルト、ニッケル、ランタン、ガリウム及びインジウムからなる群より選ばれる少なくとも1種の3価の金属元素を表し、M3はスズ、チタン及びジルコニウムからなる群より選ばれる少なくとも1種の4価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0.5≦a<1、0<b<0.5、0<c<0.5であり、a+b+c=1かつ0<b+c≦0.5であり、n>0である。)
で示されるハイドロタルサイトが好ましく使用される。
[M1 a M2 b M3 c (OH) 2 ] [A m− (b + 2c) / m · nH 2 O] (IV)
(In the formula, M1 represents at least one divalent metal element selected from the group consisting of magnesium, zinc, copper, cobalt, manganese, iron, lead, nickel, calcium, barium and strontium, and M2 represents aluminum, iron Represents at least one trivalent metal element selected from the group consisting of titanium, chromium, manganese, cobalt, nickel, lanthanum, gallium and indium, and M3 is at least one selected from the group consisting of tin, titanium and zirconium A m− represents an m-valent anion, m represents an integer of 1 to 4, 0.5 ≦ a <1, 0 <b <0.5, 0 <c <. 0.5, a + b + c = 1, 0 <b + c ≦ 0.5, and n> 0.)
The hydrotalcite represented by is preferably used.

式(III)及び式(IV)において、M1としてはマグネシウム、亜鉛、鉛及びカルシウムからなる群より選ばれる少なくとも1種が好ましく、M2としてはアルミニウム及び鉄からなる群より選ばれる少なくとも1種が好ましい。   In Formula (III) and Formula (IV), M1 is preferably at least one selected from the group consisting of magnesium, zinc, lead and calcium, and M2 is preferably at least one selected from the group consisting of aluminum and iron. .

式(III)及び式(IV)において、m価のアニオンとしては、例えば、塩化物イオン、フッ化物イオン、臭化物イオン、ヨウ化物イオン、硝酸イオン、過塩素酸イオン、塩素酸イオン、酢酸イオン、安息香酸イオン、メタンスルホン酸イオン、p−トルエンスルホン酸イオン、フェノキシイオン、アルコキシドイオン等の1価のアニオン;炭酸イオン、硫酸イオン、テレフタル酸イオン等の2価のアニオン;リン酸イオン、ヘキサシアノ鉄(III)酸イオン等の3価のアニオン;ヘキサシアノ鉄(II)酸イオン等の4価のアニオン等が挙げられ、中でも、塩化物イオン、硝酸イオン、炭酸イオン、硫酸イオンが好ましい。   In the formula (III) and formula (IV), examples of the m-valent anion include chloride ion, fluoride ion, bromide ion, iodide ion, nitrate ion, perchlorate ion, chlorate ion, acetate ion, Monovalent anions such as benzoate ion, methanesulfonate ion, p-toluenesulfonate ion, phenoxy ion, alkoxide ion; divalent anions such as carbonate ion, sulfate ion, terephthalate ion; phosphate ion, hexacyanoiron (III) trivalent anions such as acid ions; tetravalent anions such as hexacyanoferrate (II) acid ions, and the like. Among them, chloride ions, nitrate ions, carbonate ions, and sulfate ions are preferable.

式(III)において、xは、好ましくは1/6≦x≦0.5であり、より好ましくは1/4.5≦x≦1/2.4である。   In the formula (III), x is preferably 1/6 ≦ x ≦ 0.5, more preferably 1 / 4.5 ≦ x ≦ 1/2.

式(IV)において、a、b及びcは、好ましくは0.5≦a≦5/6、1/6<b<0.5、1/6<c<0.5であり、より好ましくは1.4/2.4≦a≦3.5/4.5、1/4.5<b<1/2.4、1/4.5<c<1/2.4であり、b+cは、好ましくは1/6≦b+c≦0.5であり、より好ましくは1/4.5≦b+c≦1/2.4である。   In the formula (IV), a, b and c are preferably 0.5 ≦ a ≦ 5/6, 1/6 <b <0.5, 1/6 <c <0.5, and more preferably 1.4 / 2.4 ≦ a ≦ 3.5 / 4.5, 1 / 4.5 <b <1 / 2.4, 1 / 4.5 <c <1 / 2.4, and b + c is Preferably, 1/6 ≦ b + c ≦ 0.5, and more preferably 1 / 4.5 ≦ b + c ≦ 1 / 2.4.

式(III)で示されるハイドロタルサイト及び式(IV)で示されるハイドロタルサイトは、共沈法、水熱合成法等の方法により調製することができる。共沈法による式(III)で示されるハイドロタルサイトの調製は、例えば、2価の金属元素を含む化合物と、3価の金属元素を含む化合物と、水との混合溶液Aを、層間に導入するアニオンを含む化合物と、水酸化物イオンを含む化合物と、水との混合溶液Bと混合し、得られた結晶を含むスラリーを必要に応じて濾過、洗浄した後、乾燥することにより行うことができ、共沈法による式(IV)で示されるハイドロタルサイトの調製は、例えば、2価の金属元素を含む化合物と、3価の金属元素を含む化合物と、4価の金属元素を含む化合物と、水との混合溶液Cを、層間に導入するアニオンを含む化合物と、水酸化物イオンを含む化合物と、水との混合溶液Dと混合し、得られた結晶を含むスラリーを必要に応じて濾過、洗浄した後、乾燥することにより行うことができる。各金属元素を含む化合物としては、例えば、各金属元素のハロゲン化物、硝酸塩、硫酸塩、硫酸アンモニウム塩、カルボン酸塩、オキソ酸塩等が挙げられる。アニオンを含む化合物としては、例えば、該アニオンのナトリウム塩、カリウム塩等が挙げられ、水酸化物イオンを含む化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。尚、ハイドロタルサイト構造の有無については、XRD(X線回折)分析により確認することができ、ハイドロタルサイト及びハイドロタルサイトを焼成して得られる焼成物の組成(構成成分の種類や量)は、誘導結合プラズマ(ICP)発光分析等により分析することができる。   The hydrotalcite represented by the formula (III) and the hydrotalcite represented by the formula (IV) can be prepared by a method such as a coprecipitation method or a hydrothermal synthesis method. The hydrotalcite represented by the formula (III) by the coprecipitation method is prepared, for example, by mixing a mixed solution A of a compound containing a divalent metal element, a compound containing a trivalent metal element, and water between layers. It mixes with the mixed solution B of the compound containing the anion to introduce | transduce, the compound containing a hydroxide ion, and water, and is performed by filtering and wash | cleaning the slurry containing the obtained crystal | crystallization as needed, and drying. The hydrotalcite represented by the formula (IV) by the coprecipitation method can be prepared, for example, by adding a compound containing a divalent metal element, a compound containing a trivalent metal element, and a tetravalent metal element. A slurry containing a crystal obtained by mixing a mixed solution C of a compound containing water and water with a mixed solution D of a compound containing an anion introduced between layers, a compound containing hydroxide ions, and water is necessary. After filtering and washing according to It can be carried out by 燥. Examples of the compound containing each metal element include halides, nitrates, sulfates, ammonium sulfates, carboxylates and oxoacid salts of each metal element. Examples of the compound containing an anion include sodium salt and potassium salt of the anion, and examples of the compound containing hydroxide ion include sodium hydroxide and potassium hydroxide. The presence or absence of the hydrotalcite structure can be confirmed by XRD (X-ray diffraction) analysis, and the composition of the hydrotalcite and the fired product obtained by firing the hydrotalcite (type and amount of constituent components). Can be analyzed by inductively coupled plasma (ICP) emission analysis or the like.

本発明においては、ハイドロタルサイトを焼成して得られる焼成物を含む触媒の存在下に前記反応を行う。該焼成は、通常、ハイドロタルサイトをガス雰囲気下で加熱することにより行われる。焼成温度は好ましくは250〜650℃、より好ましくは400〜550℃であり、焼成時間は好ましくは0.5〜48時間、より好ましくは2〜24時間である。前記ガスとしては、酸化性ガス、非酸化性ガスが挙げられ、酸化性ガスとしては、空気、酸素等が挙げられ、非酸化性ガスとしては、窒素、アルゴン、ヘリウム等の不活性ガスや、二酸化炭素、水素、アンモニア等の還元性ガスが挙げられる。これらの中でも、窒素、空気、又はこれらの混合ガスが好ましい。   In the present invention, the reaction is performed in the presence of a catalyst containing a calcined product obtained by calcining hydrotalcite. The calcination is usually performed by heating hydrotalcite in a gas atmosphere. The firing temperature is preferably 250 to 650 ° C, more preferably 400 to 550 ° C, and the firing time is preferably 0.5 to 48 hours, more preferably 2 to 24 hours. Examples of the gas include an oxidizing gas and a non-oxidizing gas. Examples of the oxidizing gas include air and oxygen. Examples of the non-oxidizing gas include inert gases such as nitrogen, argon, and helium. Examples of the reducing gas include carbon dioxide, hydrogen, and ammonia. Among these, nitrogen, air, or a mixed gas thereof is preferable.

式(III)で示されるハイドロタルサイトを焼成して得られる焼成物に含まれる前記M1の含有量は、1モルの前記M2に対して、1.0〜5.0モルが好ましく、1.4〜3.5モルがより好ましい。前記M1及び/又は前記M2が2種以上の金属元素である場合は、それぞれの含有量の合計の比率が前記範囲となればよい。式(IV)で示されるハイドロタルサイトを焼成して得られる焼成物に含まれる前記M1の含有量は、前記M2及び前記M3の各含有量の合計1モルに対して、1.0〜5.0モルが好ましく、1.4〜3.5モルがより好ましい。前記M1、前記M2及び/又は前記M3が2種以上の金属元素である場合は、それぞれの含有量の合計の比率が前記範囲となればよい。   The content of the M1 contained in the fired product obtained by firing the hydrotalcite represented by the formula (III) is preferably 1.0 to 5.0 moles relative to 1 mole of the M2. 4-3.5 mol is more preferable. When said M1 and / or said M2 are 2 or more types of metal elements, the total ratio of each content should just become said range. Content of said M1 contained in the baked product obtained by baking the hydrotalcite shown by Formula (IV) is 1.0-5 with respect to the total of 1 mol of each content of said M2 and said M3. 0.0 mol is preferable, and 1.4 to 3.5 mol is more preferable. When said M1, said M2, and / or said M3 are 2 or more types of metal elements, the total ratio of each content should just become said range.

尚、ハイドロタルサイトの中でも、炭酸イオンを層間アニオンとするハイドロタルサイトは、400℃以上の温度で焼成することにより、脱水及び脱炭酸され、酸化物になることが知られている。前記式(III)においてm価のアニオンが炭酸イオンであるハイドロタルサイトを400℃以上の温度で焼成した場合、前記M1及び前記M2を含む酸化物が得られる。前記式(IV)においてm価のアニオンが炭酸イオンであるハイドロタルサイトを400℃以上の温度で焼成した場合、前記M1、前記M2及び前記M3を含む酸化物が得られる。   Among hydrotalcites, hydrotalcite having carbonate ions as interlayer anions is known to be dehydrated and decarboxylated into an oxide by firing at a temperature of 400 ° C. or higher. In the formula (III), when hydrotalcite whose m-valent anion is carbonate ion is baked at a temperature of 400 ° C. or higher, an oxide containing M1 and M2 is obtained. When the hydrotalcite whose m-valent anion is carbonate ion in the formula (IV) is calcined at a temperature of 400 ° C. or higher, an oxide containing the M1, the M2, and the M3 is obtained.

前記反応においては、有機溶媒を使用してもよい。有機溶媒の例としては、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、s−ブタノール、t−ブタノール、n−ペンタノール、n−ヘキサノール、n−オクタノール、2−エチルヘキサノール等の炭素数が1〜8のアルコール;ペンタン、ヘキサン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられ、必要に応じてこれらの2種以上を用いることもできる。中でも、炭素数が1〜4のアルコールが好ましい。   In the reaction, an organic solvent may be used. Examples of the organic solvent include methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, t-butanol, n-pentanol, n-hexanol, n-octanol, 2-ethylhexanol, and the like. ~ 8 alcohols; aliphatic hydrocarbons such as pentane, hexane and octane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene, and the like. Two or more of these can also be used. Among these, alcohol having 1 to 4 carbon atoms is preferable.

有機溶媒を使用する場合、その量は、プロピオン酸化合物(I)100重量部に対して、通常10〜1000重量部、好ましくは50〜500重量部である。尚、ホルムアルデヒド化合物を有機溶媒溶液、又は水と有機溶媒との混合溶媒の溶液として使用する場合、ホルムアルデヒド化合物の溶液中に含まれる有機溶媒の量を考慮して、前記反応における有機溶媒の使用量が前記範囲となればよい。   When using an organic solvent, the quantity is 10-1000 weight part normally with respect to 100 weight part of propionic acid compound (I), Preferably it is 50-500 weight part. In the case where the formaldehyde compound is used as an organic solvent solution or a mixed solvent solution of water and an organic solvent, the amount of the organic solvent used in the reaction is considered in consideration of the amount of the organic solvent contained in the formaldehyde compound solution. Should just become said range.

本発明においては、前記触媒とともに水を存在させて前記反応を行うのが好ましい。水を存在させる場合、水の使用量は、プロピオン酸化合物(I)1モルに対して、通常0.1モル以上であり、好ましくは3〜50モルであり、より好ましくは10〜40モルである。前記ホルムアルデヒド化合物を水溶液、又は水と有機溶媒との混合溶媒の溶液として使用する場合、ホルムアルデヒド化合物の溶液中に含まれる水の量を考慮して、前記反応における水の使用量が前記範囲となればよい。   In the present invention, the reaction is preferably carried out in the presence of water together with the catalyst. When water is present, the amount of water used is usually 0.1 mol or more, preferably 3 to 50 mol, more preferably 10 to 40 mol, relative to 1 mol of propionic acid compound (I). is there. When the formaldehyde compound is used as an aqueous solution or a mixed solvent solution of water and an organic solvent, the amount of water used in the reaction should be within the above range in consideration of the amount of water contained in the formaldehyde compound solution. That's fine.

前記反応において、反応方式は、バッチ式でもよく、連続式でもよい。反応温度は、通常50〜400℃、好ましくは100〜200℃であり、反応圧力は、通常0.1〜10MPaである。連続式の反応においては、例えば、気相条件下に、固定床形式又は流動床形式を採用して前記反応を行うことができる。前記反応をバッチ式で行う場合、不活性ガス雰囲気下で行ってもよいし、酸化性ガス雰囲気下で行ってもよい。また、前記反応を連続式で行う場合、不活性ガスや酸化性ガスを原料とともに供給してもよい。前記不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられる。前記酸化性ガスとしては、空気、酸素等が挙げられる。前記反応をバッチ式で行う場合、前記触媒の使用量は、プロピオン酸化合物(I)1モルに対して、通常1〜50g、好ましくは10〜30gである。   In the reaction, the reaction method may be a batch method or a continuous method. The reaction temperature is usually 50 to 400 ° C., preferably 100 to 200 ° C., and the reaction pressure is usually 0.1 to 10 MPa. In the continuous reaction, for example, the reaction can be carried out by employing a fixed bed type or a fluidized bed type under gas phase conditions. When performing the said reaction by a batch type, you may carry out in inert gas atmosphere and may carry out in oxidizing gas atmosphere. Moreover, when performing the said reaction by a continuous type, you may supply an inert gas and oxidizing gas with a raw material. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide and the like. Examples of the oxidizing gas include air and oxygen. When performing the said reaction by a batch type, the usage-amount of the said catalyst is 1-50 g normally with respect to 1 mol of propionic acid compounds (I), Preferably it is 10-30 g.

かくして、式(II)   Thus, formula (II)

Figure 2013053128
Figure 2013053128

(式中、Rは、前記と同じ意味を表す。)
で示される化合物〔メタクリル酸化合物(II)〕を含む反応混合物を得ることができる。反応後の後処理操作については適宜選択されるが、例えば、必要に応じて濾過やデカンテーション等により反応混合物から前記触媒を分離した後、抽出、蒸留、晶析等の操作を行うことにより、メタクリル酸化合物(II)を分離することができる。
(Wherein R 1 represents the same meaning as described above.)
To obtain a reaction mixture containing the compound [methacrylic acid compound (II)]. The post-treatment operation after the reaction is appropriately selected.For example, after separating the catalyst from the reaction mixture by filtration, decantation or the like, if necessary, by performing operations such as extraction, distillation, and crystallization, Methacrylic acid compound (II) can be separated.

尚、プロピオン酸化合物(I)として、プロピオン酸〔式(I)中、Rが水素原子である化合物〕を使用する場合、上記の炭素数が1〜4のアルコールを存在させて前記反応を行うことにより、メタクリル酸化合物(II)として、メタクリル酸〔式(II)中、Rが水素原子である化合物〕と該アルコールとのエステルであるメタクリル酸アルキルエステル〔式(II)中、Rが炭素数が1〜4のアルキル基である化合物〕を得ることができる。また、プロピオン酸化合物(I)として、プロピオン酸アルキルエステル〔式(I)中、Rがアルキル基である化合物〕を使用する場合、プロピオン酸アルキルエステルとホルムアルデヒド化合物との反応により副生した水や、該反応に好ましく使用される水の存在により、プロピオン酸アルキルエステル及び/又は該反応による生成物が加水分解され、メタクリル酸が生成し得る。同様に、プロピオン酸化合物(I)として、プロピオン酸無水物〔式(I)中、Rがプロピオニル基である化合物〕を使用する場合、プロピオン酸無水物とホルムアルデヒド化合物との反応により副生した水や、該反応に好ましく使用される水の存在により、プロピオン酸無水物及び/又は該反応による生成物が加水分解され、メタクリル酸が生成し得る。よって、プロピオン酸化合物(I)として、プロピオン酸無水物を使用する場合には、上記の炭素数が1〜4のアルコールを存在させて反応を行うことにより、メタクリル酸化合物(II)として、メタクリル酸アルキルエステル〔式(II)中、Rが炭素数が1〜4のアルキル基である化合物〕が生成し得る。 When propionic acid [compound in which R 1 is a hydrogen atom in formula (I)] is used as propionic acid compound (I), the reaction is carried out in the presence of the alcohol having 1 to 4 carbon atoms. By carrying out, as the methacrylic acid compound (II), methacrylic acid [a compound in which R 1 is a hydrogen atom in the formula (II)] and an methacrylic acid alkyl ester which is an ester of the alcohol [in the formula (II), R 1 can be obtained as compound] an alkyl group having 1 to 4 carbon atoms. Further, when propionic acid alkyl ester [compound in which R 1 is an alkyl group in formula (I)] is used as propionic acid compound (I), water produced as a by-product by the reaction of propionic acid alkyl ester and formaldehyde compound Alternatively, the presence of water that is preferably used in the reaction may hydrolyze the propionic acid alkyl ester and / or the product of the reaction to produce methacrylic acid. Similarly, when propionic anhydride (a compound in which R 1 is a propionyl group in formula (I)) is used as propionic acid compound (I), a by-product is formed by reaction of propionic anhydride and formaldehyde compound. Due to the presence of water and water preferably used for the reaction, propionic anhydride and / or the product of the reaction can be hydrolyzed to produce methacrylic acid. Therefore, when propionic acid anhydride is used as the propionic acid compound (I), the reaction is carried out in the presence of the alcohol having 1 to 4 carbon atoms, whereby the methacrylic acid compound (II) is converted into methacrylic acid compound (II). An acid alkyl ester [a compound in which R 1 is an alkyl group having 1 to 4 carbon atoms in formula (II)] can be formed.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited to these.

尚、以下の各例において得られた触媒の組成(構成元素比)は、ICP発光分光分析装置(Varian社製「715−ES」)を用い、触媒を分析することにより求めた。   In addition, the composition (constituent element ratio) of the catalyst obtained in each of the following examples was obtained by analyzing the catalyst using an ICP emission spectroscopic analyzer (“715-ES” manufactured by Varian).

実施例1
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕11.56g(0.039モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕14.58g(0.039モル)を41.32gの水に溶解させ、これをα1液とした。一方、炭酸ナトリウム5.49g(0.052モル)、及び水酸化ナトリウム7.77g(0.194モル)を51.82gの水に溶解させ、これをβ1液とした。撹拌機を備えた容器内に、α1液とβ1液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α1液とβ1液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(A)〔[Zn0.60Al0.40(OH)][CO 2− 0.20・nHO]〕を得た。このハイドロタルサイト(A)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(A)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(A)を得た。触媒(A)は、組成分析の結果、Zn及びAlの総モルに対して、Znを60モル%、Alを40モル%〔Zn/Al=1.5(モル比)〕の割合で含有するものであった。
Example 1
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3) 2 · 6H 2 O ] 11.56 g (0.039 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 14.58g (0.039 mol) was dissolved in 41.32 g of water to obtain α1 solution. On the other hand, 5.49 g (0.052 mol) of sodium carbonate and 7.77 g (0.194 mol) of sodium hydroxide were dissolved in 51.82 g of water to obtain β1 solution. In a container equipped with a stirrer, the α1 liquid and the β1 liquid were each stirred at room temperature while being continuously supplied (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α1 solution and β1 solution was 13. The resulting mixture was aged at 60 ° C. overnight, filtered, and the residue was washed with water until the pH of the washing filtrate was around 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (A) [[Zn 0.60 Al 0.40 (OH) 2 ] [CO 3 2 −0.20 · nH 2 O]] was obtained. This hydrotalcite (A) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (A) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (A). As a result of the compositional analysis, the catalyst (A) contains 60 mol% Zn and 40 mol% [Zn / Al = 1.5 (molar ratio)] with respect to the total mol of Zn and Al. It was a thing.

<触媒の活性試験>
2.5mLのガラス製マイクロリアクターに、プロピオン酸〔式(I)中、Rが水素原子である化合物〕0.30g(4.0ミリモル)、24.6重量%ホルムアルデヒド水溶液0.61g(ホルムアルデヒド5.0ミリモル、水25.7ミリモル)、メタノール0.26g(8.0ミリモル)、及び上記で得られた触媒(A)0.075gを入れ、マイクロリアクター内の気相部に窒素を導入してマイクロリアクター内の圧力を1.5MPa(ゲージ圧)まで加圧した。次いで、撹拌しながらマイクロリアクターを120℃に加熱し、4時間反応を行った。反応液をガスクロマトグラフィーにより分析して、下記式に基づき、プロピオン酸転化率(%)、メタクリル酸メチル〔式(II)中、Rがメチル基である化合物〕選択率(%)、メタクリル酸〔式(II)中、Rが水素原子である化合物〕選択率(%)及びメタクリル酸とメタクリル酸メチルの合計収率(%)を求め、表1に示した。
<Catalyst activity test>
To a 2.5 mL glass microreactor, 0.30 g (4.0 mmol) of propionic acid [compound in which R 1 is a hydrogen atom in formula (I)], 0.61 g of a 24.6 wt% formaldehyde aqueous solution (formaldehyde 5.0 mmol, 25.7 mmol of water), 0.26 g (8.0 mmol) of methanol, and 0.075 g of the catalyst (A) obtained above were introduced, and nitrogen was introduced into the gas phase in the microreactor. The pressure inside the microreactor was increased to 1.5 MPa (gauge pressure). Next, the microreactor was heated to 120 ° C. while stirring and reacted for 4 hours. The reaction solution was analyzed by gas chromatography. Based on the following formula, propionic acid conversion rate (%), methyl methacrylate [compound in which R 1 is a methyl group in formula (II)] selectivity (%), methacrylic acid The selectivity (%) for the acid [compound in which R 1 is a hydrogen atom in formula (II)] and the total yield (%) of methacrylic acid and methyl methacrylate are shown in Table 1.

プロピオン酸転化率(%)=〔反応したプロピオン酸のモル数÷供給したプロピオン酸のモル数〕×100
メタクリル酸メチル選択率(%)=〔生成したメタクリル酸メチルのモル数÷生成した全生成物のモル数〕×100
メタクリル酸選択率(%)=〔生成したメタクリル酸のモル数÷生成した全生成物のモル数〕×100
メタクリル酸とメタクリル酸メチルの合計収率(%)=〔プロピオン酸転化率(%)×(メタクリル酸メチル選択率(%)+メタクリル酸選択率(%))〕÷100
Propionic acid conversion (%) = [number of moles of reacted propionic acid ÷ number of moles of propionic acid supplied] × 100
Methyl methacrylate selectivity (%) = [number of moles of methyl methacrylate produced / number of moles of all products produced] × 100
Methacrylic acid selectivity (%) = [number of moles of methacrylic acid produced ÷ number of moles of all products produced] × 100
Total yield of methacrylic acid and methyl methacrylate (%) = [propionic acid conversion (%) × (methyl methacrylate selectivity (%) + methacrylic acid selectivity (%))] ÷ 100

実施例2
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕13.65g(0.046モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕11.47g(0.031モル)を41.05gの水に溶解させ、これをα2液とした。一方、炭酸ナトリウム5.40g(0.051モル)、及び水酸化ナトリウム7.34g(0.184モル)を51.82gの水に溶解させ、これをβ2液とした。撹拌機を備えた容器内に、α2液とβ2液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α2液とβ2液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(B)〔[Zn0.67Al0.33(OH)][CO 2− 0.33/2・nHO]〕を得た。このハイドロタルサイト(B)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(B)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(B)を得た。触媒(B)は、組成分析の結果、Zn及びAlの総モルに対して、Znを67モル%、Alを33モル%〔Zn/Al=2.0(モル比)〕の割合で含有するものであった。
Example 2
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3) 2 · 6H 2 O ] 13.65 g (0.046 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 11.47g (0.031 mol) was dissolved in 41.05 g of water, and this was designated α2 solution. On the other hand, 5.40 g (0.051 mol) of sodium carbonate and 7.34 g (0.184 mol) of sodium hydroxide were dissolved in 51.82 g of water, and this was used as β2 solution. In a container equipped with a stirrer, the α2 liquid and the β2 liquid were each stirred at room temperature while being continuously supplied (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α2 solution and β2 solution was 13. The resulting mixture was aged at 60 ° C. overnight, then filtered, and the residue was washed with water until the pH of the washing filtrate was around 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (B) [[Zn 0.67 Al 0.33 (OH) 2 ] [CO 3 2 − 0.33 / 2 · nH 2 O]] was obtained. This hydrotalcite (B) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (B) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (B). As a result of composition analysis, the catalyst (B) contains 67 mol% Zn and 33 mol% Al [Zn / Al = 2.0 (molar ratio)] with respect to the total moles of Zn and Al. It was a thing.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(B)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 1 except that the catalyst (B) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例3
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕14.52g(0.049モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕10.17g(0.027モル)を40.94gの水に溶解させ、これをα3液とした。一方、炭酸ナトリウム5.36g(0.051モル)、及び水酸化ナトリウム7.16g(0.179モル)を50.62gの水に溶解させ、これをβ3液とした。撹拌機を備えた容器内に、α3液とβ3液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α3液とβ3液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(C)〔[Zn0.69Al0.31(OH)][CO 2− 0.31/2・nHO]〕を得た。このハイドロタルサイト(C)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(C)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(C)を得た。触媒(C)は、組成分析の結果、Zn及びAlの総モルに対して、Znを69モル%、Alを31モル%〔Zn/Al=2.2(モル比)〕の割合で含有するものであった。
Example 3
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3) 2 · 6H 2 O ] 14.52 g (0.049 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 10.17g (0.027 mol) was dissolved in 40.94 g of water to obtain α3 solution. On the other hand, 5.36 g (0.051 mol) of sodium carbonate and 7.16 g (0.179 mol) of sodium hydroxide were dissolved in 50.62 g of water to obtain β3 solution. In a container equipped with a stirrer, the α3 solution and the β3 solution were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α3 solution and β3 solution was 13. The resulting mixture was aged at 60 ° C. overnight, filtered, and then the residue was washed with water until the pH of the washing filtrate was around 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (C) [[Zn 0.69 Al 0.31 (OH) 2 ] [CO 3 2 − 0.31 / 2 · nH 2 O]] was obtained. This hydrotalcite (C) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (C) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (C). As a result of compositional analysis, the catalyst (C) contains 69 mol% Zn and 31 mol% [Zn / Al = 2.2 (molar ratio)] with respect to the total mol of Zn and Al. It was a thing.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(C)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was conducted in the same manner as in Example 1 except that the catalyst (C) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例4
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕15.00g(0.050モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕9.46g(0.025モル)を40.88gの水に溶解させ、これをα4液とした。一方、炭酸ナトリウム5.34g(0.050モル)、及び水酸化ナトリウム7.06g(0.177モル)を50.42gの水に溶解させ、これをβ4液とした。撹拌機を備えた容器内に、α4液とβ4液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α4液とβ4液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(D)〔[Zn0.71Al0.29(OH)][CO 2− 0.29/2・nHO]〕を得た。このハイドロタルサイト(D)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(D)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(D)を得た。触媒(D)は、組成分析の結果、Zn及びAlの総モルに対して、Znを71モル%、Alを29モル%〔Zn/Al=2.5(モル比)〕の割合で含有するものであった。
Example 4
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3) 2 · 6H 2 O ] 15.00 g (0.050 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 9.46g (0.025 mol) was dissolved in 40.88 g of water to obtain α4 solution. On the other hand, 5.34 g (0.050 mol) of sodium carbonate and 7.06 g (0.177 mol) of sodium hydroxide were dissolved in 50.42 g of water to obtain β4 solution. In a container equipped with a stirrer, the α4 liquid and the β4 liquid were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α4 solution and β4 solution was 13. The resulting mixture was aged at 60 ° C. overnight, then filtered, and the residue was washed with water until the pH of the washing filtrate was close to 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (D) [[Zn 0.71 Al 0.29 (OH) 2 ] [CO 3 2 −0.29 / 2 · nH 2 O]] was obtained. This hydrotalcite (D) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (D) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (D). As a result of the compositional analysis, the catalyst (D) contains 71 mol% Zn and 29 mol% Al [Zn / Al = 2.5 (molar ratio)] with respect to the total mol of Zn and Al. It was a thing.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(D)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was performed in the same manner as in Example 1 except that the catalyst (D) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例5
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕15.95g(0.054モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕8.04g(0.021モル)を40.76gの水に溶解させ、これをα5液とした。一方、炭酸ナトリウム5.30g(0.050モル)、及び水酸化ナトリウム6.86g(0.172モル)を50.03gの水に溶解させ、これをβ5液とした。撹拌機を備えた容器内に、α5液とβ5液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α5液とβ5液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(E)〔[Zn0.75Al0.25(OH)][CO 2− 0.25/2・nHO]〕を得た。このハイドロタルサイト(E)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(E)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(E)を得た。触媒(E)は、組成分析の結果、Zn及びAlの総モルに対して、Znを75モル%、Alを25モル%〔Zn/Al=3.1(モル比)〕の割合で含有するものであった。
Example 5
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3) 2 · 6H 2 O ] 15.95 g (0.054 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 8.04g (0.021 mol) was dissolved in 40.76 g of water to obtain α5 solution. On the other hand, 5.30 g (0.050 mol) of sodium carbonate and 6.86 g (0.172 mol) of sodium hydroxide were dissolved in 50.03 g of water to obtain β5 solution. In a container equipped with a stirrer, the α5 liquid and the β5 liquid were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α5 solution and β5 solution was 13. The resulting mixture was aged at 60 ° C. overnight, filtered, and then the residue was washed with water until the pH of the washing filtrate was close to 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (E) [[Zn 0.75 Al 0.25 (OH) 2 ] [CO 3 2− 0.25 / 2 · nH 2 O]] was obtained. This hydrotalcite (E) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (E) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (E). As a result of the compositional analysis, the catalyst (E) contains 75 mol% of Zn and 25 mol% of Al [Zn / Al = 3.1 (molar ratio)] with respect to the total mol of Zn and Al. It was a thing.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(E)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was performed in the same manner as in Example 1 except that the catalyst (E) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例6
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕16.65g(0.056モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕7.00g(0.019モル)を40.67gの水に溶解させ、これをα6液とした。一方、炭酸ナトリウム5.27g(0.050モル)、及び水酸化ナトリウム6.72g(0.168モル)を49.75gの水に溶解させ、これをβ6液とした。撹拌機を備えた容器内に、α6液とβ6液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α6液とβ6液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(F)〔[Zn0.77Al0.23(OH)][CO 2− 0.23/2・nHO]〕を得た。このハイドロタルサイト(F)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(F)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(F)を得た。触媒(F)は、組成分析の結果、Zn及びAlの総モルに対して、Znを77モル%、Alを23モル%〔Zn/Al=3.3(モル比)〕の割合で含有するものであった。
Example 6
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3) 2 · 6H 2 O ] 16.65 g (0.056 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 7.00g (0.019 mol) was dissolved in 40.67 g of water to obtain α6 solution. On the other hand, 5.27 g (0.050 mol) of sodium carbonate and 6.72 g (0.168 mol) of sodium hydroxide were dissolved in 49.75 g of water to obtain β6 solution. In a container equipped with a stirrer, the α6 liquid and the β6 liquid were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α6 solution and β6 solution was 13. The resulting mixture was aged at 60 ° C. overnight and filtered, and then the residue was washed with water until the pH of the washing filtrate was around 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (F) [[Zn 0.77 Al 0.23 (OH) 2 ] [CO 3 2 − 0.23 / 2 · nH 2 O]] was obtained. This hydrotalcite (F) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (F) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (F). As a result of the compositional analysis, the catalyst (F) contains 77 mol% Zn and 23 mol% Al (Zn / Al = 3.3 (molar ratio)) with respect to the total mol of Zn and Al. It was a thing.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(F)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 1 except that the catalyst (F) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例7
<触媒の調製>
硝酸マグネシウム6水和物〔Mg(NO・6HO〕7.76g(0.030モル)、硝酸カルシウム4水和物〔Ca(NO・4HO〕7.15g(0.030モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕11.36g(0.030モル)を50.19gの水に溶解させ、これをα7液とした。一方、炭酸ナトリウム6.42g(0.061モル)、及び水酸化ナトリウム8.48g(0.212モル)を60.56gの水に溶解させ、これをβ7液とした。撹拌機を備えた容器内に、α7液とβ7液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α7液とβ7液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(G)〔[Mg0.40Ca0.19Al0.41(OH)][CO 2− 0.41/2・nHO]〕を得た。このハイドロタルサイト(G)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(G)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(G)を得た。触媒(G)は、組成分析の結果、Mg、Ca及びAlの総モルに対して、Mgを40モル%、Caを19モル%、Alを41モル%〔(Mg+Ca)/Al=1.5(モル比)〕の割合で含有するものであった。
Example 7
<Preparation of catalyst>
Magnesium nitrate hexahydrate [Mg (NO 3 ) 2 .6H 2 O] 7.76 g (0.030 mol), calcium nitrate tetrahydrate [Ca (NO 3 ) 2 .4H 2 O] 7.15 g ( 0.030 mol), and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 11.36g of (0.030 mol) was dissolved in water of 50.19G, which was used as a α7 solution . On the other hand, 6.42 g (0.061 mol) of sodium carbonate and 8.48 g (0.212 mol) of sodium hydroxide were dissolved in 60.56 g of water to obtain β7 solution. In a container equipped with a stirrer, the α7 liquid and the β7 liquid were each stirred at room temperature while being continuously supplied (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α7 solution and β7 solution was 13. The resulting mixture was aged at 60 ° C. overnight and filtered, and then the residue was washed with water until the pH of the washing filtrate was close to 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (G). [[Mg 0.40 Ca 0.19 Al 0.41 (OH) 2 ] [CO 3 2 − 0.41 / 2 · nH 2 O]] was obtained. This hydrotalcite (G) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (G) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (G). As a result of the composition analysis, the catalyst (G) is 40 mol% Mg, 19 mol% Ca and 41 mol% Al [(Mg + Ca) /Al=1.5 with respect to the total mol of Mg, Ca and Al. (Molar ratio)].

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(G)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was performed in the same manner as in Example 1 except that the catalyst (G) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例8
<触媒の調製>
硝酸マグネシウム6水和物〔Mg(NO・6HO〕14.93g(0.058モル)、硝酸鉄(III)9水和物〔Fe(NO・9HO〕1.81g(0.0045モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕11.76g(0.031モル)を50.59gの水に溶解させ、これをα8液とした。一方、炭酸ナトリウム6.65g(0.063モル)、及び水酸化ナトリウム8.78g(0.220モル)を62.69gの水に溶解させ、これをβ8液とした。撹拌機を備えた容器内に、α8液とβ8液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α8液とβ8液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(H)〔[Mg0.65Fe0.05Al0.30(OH)][CO 2− 0.35/2・nHO]〕を得た。このハイドロタルサイト(H)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(H)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(H)を得た。触媒(H)は、組成分析の結果、Mg、Fe及びAlの総モルに対して、Mgを65モル%、Feを5モル%、Alを30モル%〔Mg/(Fe+Al)=1.9(モル比)〕の割合で含有するものであった。
Example 8
<Preparation of catalyst>
Magnesium nitrate hexahydrate [Mg (NO 3 ) 2 .6H 2 O] 14.93 g (0.058 mol), iron nitrate (III) 9 hydrate [Fe (NO 3 ) 3 .9H 2 O] 1 .81G (0.0045 mol) and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 11.76g of (0.031 mol) was dissolved in water of 50.59G, this α8 Liquid. On the other hand, 6.65 g (0.063 mol) of sodium carbonate and 8.78 g (0.220 mol) of sodium hydroxide were dissolved in 62.69 g of water to obtain β8 solution. The α8 liquid and β8 liquid were each stirred at room temperature while being continuously supplied (co-feed) at a flow rate of 20 mL / h into a container equipped with a stirrer. The pH of the liquid phase of the mixture obtained after supplying all the α8 solution and β8 solution was 13. The resulting mixture was aged at 60 ° C. overnight, filtered, and then the residue was washed with water until the pH of the washing filtrate was close to 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (H) [[Mg 0.65 Fe 0.05 Al 0.30 (OH) 2 ] [CO 3 2 − 0.35 / 2 · nH 2 O]] was obtained. This hydrotalcite (H) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (H) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (H). As a result of the compositional analysis, the catalyst (H) is 65 mol% Mg, 5 mol% Fe, and 30 mol% Al with respect to the total mol of Mg, Fe and Al [Mg / (Fe + Al) = 1.9. (Molar ratio)].

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(H)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was performed in the same manner as in Example 1 except that the catalyst (H) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例9
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕13.98g(0.047モル)、硝酸鉄(III)9水和物〔Fe(NO・9HO〕1.46g(0.0036モル)、及び硝酸アルミニウム9水和物〔Al(NO・9HO〕9.49g(0.025モル)を40.83gの水に溶解させ、これをα9液とした。一方、炭酸ナトリウム5.36g(0.051モル)、及び水酸化ナトリウム7.08g(0.177モル)を50.59gの水に溶解させ、これをβ9液とした。撹拌機を備えた容器内に、α9液とβ9液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α9液とβ9液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(I)〔[Zn0.66Fe0.05Al0.29(OH)][CO 2− 0.17・nHO]〕を得た。このハイドロタルサイト(I)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(I)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(I)を得た。触媒(I)は、組成分析の結果、Zn、Fe及びAlの総モルに対して、Znを66モル%、Feを5モル%、Alを29モル%〔Zn/(Fe+Al)=1.9(モル比)〕の割合で含有するものであった。
Example 9
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3 ) 2 .6H 2 O] 13.98 g (0.047 mol), iron nitrate (III) 9 hydrate [Fe (NO 3 ) 3 .9H 2 O] 1 .46G (0.0036 mol) and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 9.49g of (0.025 mol) was dissolved in water of 40.83G, this α9 Liquid. On the other hand, 5.36 g (0.051 mol) of sodium carbonate and 7.08 g (0.177 mol) of sodium hydroxide were dissolved in 50.59 g of water, and this was designated as β9 solution. In a container equipped with a stirrer, the α9 liquid and the β9 liquid were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α9 solution and β9 solution was 13. The resulting mixture was aged at 60 ° C. overnight, then filtered, and the residue was washed with water until the pH of the washing filtrate was close to 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (I) [[Zn 0.66 Fe 0.05 Al 0.29 (OH) 2 ] [CO 3 2 − 0.17 · nH 2 O]] was obtained. This hydrotalcite (I) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (I) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain catalyst (I). As a result of the compositional analysis, the catalyst (I) was found to contain 66 mol% Zn, 5 mol% Fe, 29 mol% Al with respect to the total mol of Zn, Fe and Al [Zn / (Fe + Al) = 1.9. (Molar ratio)].

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(I)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 1 except that the catalyst (I) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例10
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕17.82g(0.060モル)、硝酸鉛〔Pb(NO〕1.54g(0.0047モル)及び硝酸アルミニウム9水和物〔Al(NO・9HO〕12.10g(0.032モル)を49.66gの水に溶解させ、これをα10液とした。一方、炭酸ナトリウム1.71g(0.016モル)、及び水酸化ナトリウム7.74g(0.194モル)を31.39gの水に溶解させ、これをβ10液とした。撹拌機を備えた容器内に、α10液とβ10液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α10液とβ10液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(J)〔[Zn0.64Pb0.05Al0.31(OH)][CO 2− 0.31/2・nHO]〕を得た。このハイドロタルサイト(J)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(J)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(J)を得た。触媒(J)は、組成分析の結果、Zn、Pb及びAlの総モルに対して、Znを64モル%、Pbを5モル%、Alを31モル%〔(Zn+Pb)/Al=2.2(モル比)〕の割合で含有するものであった。
Example 10
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3 ) 2 .6H 2 O] 17.82 g (0.060 mol), lead nitrate [Pb (NO 3 ) 2 ] 1.54 g (0.0047 mol) and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 12.10g of (0.032 mol) was dissolved in water of 49.66G, which was α10 solution. On the other hand, 1.71 g (0.016 mol) of sodium carbonate and 7.74 g (0.194 mol) of sodium hydroxide were dissolved in 31.39 g of water, and this was designated as β10 solution. In a container equipped with a stirrer, the α10 liquid and the β10 liquid were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α10 solution and β10 solution was 13. The resulting mixture was aged at 60 ° C. overnight and filtered, and then the residue was washed with water until the pH of the washing filtrate was close to 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (J) [[Zn 0.64 Pb 0.05 Al 0.31 (OH) 2 ] [CO 3 2 − 0.31 / 2 · nH 2 O]] was obtained. This hydrotalcite (J) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (J) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (J). As a result of the compositional analysis, the catalyst (J) has a Zn content of 64 mol%, a Pb content of 5 mol%, and an Al content of 31 mol% [(Zn + Pb) /Al=2.2 based on the total mol of Zn, Pb and Al. (Molar ratio)].

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(J)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 1 except that the catalyst (J) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

実施例11
<触媒の調製>
硝酸亜鉛6水和物〔Zn(NO・6HO〕13.50g(0.045モル)、塩化スズ5水和物〔SnCl・5HO〕1.22g(0.0035モル)及び硝酸アルミニウム9水和物〔Al(NO・9HO〕9.17g(0.024モル)を39.70gの水に溶解させ、これをα11液とした。一方、炭酸ナトリウム5.18g(0.049モル)、及び水酸化ナトリウム7.12g(0.178モル)を48.88gの水に溶解させ、これをβ11液とした。撹拌機を備えた容器内に、α11液とβ11液をそれぞれ20mL/hの流量で連続的に供給(共フィード)しながら室温で撹拌した。α11液とβ11液を全量供給した後に得られた混合物の液相のpHは13であった。得られた混合物を60℃にて一晩熟成した後、濾過し、次いで濾残を洗浄濾液のpHが7付近になるまで水洗した後、60℃で18時間乾燥させ、ハイドロタルサイト(K)〔[Zn0.64Al0.26Sn0.10(OH)][CO 2− 0.23・nHO]〕を得た。このハイドロタルサイト(K)は、銅Kα線によるX線回折分析の結果、ハイドロタルサイト構造を有することが確認された。得られたハイドロタルサイト(K)を100mL/minの窒素流通下、450℃で6時間焼成し、触媒(K)を得た。触媒(K)は、組成分析の結果、Zn、Al及びSnの総モルに対して、Znを64モル%、Alを26モル%、Snを10モル%〔Zn/(Al+Sn)=1.8(モル比)〕の割合で含有するものであった。
Example 11
<Preparation of catalyst>
Zinc nitrate hexahydrate [Zn (NO 3 ) 2 · 6H 2 O] 13.50 g (0.045 mol), tin chloride pentahydrate [SnCl 4 · 5H 2 O] 1.22 g (0.0035 mol) ) and aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] 9.17g of (0.024 mol) was dissolved in water of 39.70G, which was α11 solution. On the other hand, 5.18 g (0.049 mol) of sodium carbonate and 7.12 g (0.178 mol) of sodium hydroxide were dissolved in 48.88 g of water, and this was designated as β11 solution. In a container equipped with a stirrer, the α11 solution and the β11 solution were each stirred at room temperature while being continuously fed (co-feed) at a flow rate of 20 mL / h. The pH of the liquid phase of the mixture obtained after supplying all the α11 solution and β11 solution was 13. The resulting mixture was aged at 60 ° C. overnight and filtered, and then the residue was washed with water until the pH of the washing filtrate was around 7, then dried at 60 ° C. for 18 hours, and hydrotalcite (K). [[Zn 0.64 Al 0.26 Sn 0.10 (OH) 2 ] [CO 3 2 − 0.23 · nH 2 O]] was obtained. This hydrotalcite (K) was confirmed to have a hydrotalcite structure as a result of X-ray diffraction analysis using copper Kα rays. The obtained hydrotalcite (K) was calcined at 450 ° C. for 6 hours under a nitrogen flow of 100 mL / min to obtain a catalyst (K). As a result of the compositional analysis, the catalyst (K) has a Zn content of 64 mol%, an Al content of 26 mol%, and an Sn content of 10 mol% [Zn / (Al + Sn) = 1.8, based on the total mol of Zn, Al and Sn. (Molar ratio)].

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(K)を使用し、マイクロリアクターを140℃に加熱した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
<Catalyst activity test> In the same manner as in Example 1, except that the catalyst (K) obtained above was used instead of the catalyst (A) and the microreactor was heated to 140 ° C. went. The results are shown in Table 1.

実施例12
<触媒の調製>
実施例4と同様の方法で触媒(D)を得た。
Example 12
<Preparation of catalyst>
Catalyst (D) was obtained in the same manner as in Example 4.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)0.075gに代えて上記で得られた触媒(D)0.040gを使用し、マイクロリアクターを160℃に加熱した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
<Catalyst activity test> In the same manner as in Example 1 except that 0.040 g of the catalyst (D) obtained above was used instead of 0.075 g of the catalyst (A), and the microreactor was heated to 160 ° C. The activity test was conducted by the method described above. The results are shown in Table 1.

実施例13
<触媒の調製>
実施例11と同様の方法で触媒(K)を得た。
Example 13
<Preparation of catalyst>
A catalyst (K) was obtained in the same manner as in Example 11.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(K)を使用し、マイクロリアクターを160℃に加熱して0.5時間反応を行った以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, except that the catalyst (K) obtained above was used in place of the catalyst (A), and the microreactor was heated to 160 ° C. and reacted for 0.5 hours, Example The activity test was conducted in the same manner as in 1. The results are shown in Table 1.

実施例14
<触媒の調製>
実施例11と同様の方法で触媒(K)を得た。
Example 14
<Preparation of catalyst>
A catalyst (K) was obtained in the same manner as in Example 11.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)0.075gに代えて上記で得られた触媒(K)0.11gを使用し、マイクロリアクターを160℃に加熱して0.5時間反応を行った以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, 0.11 g of the catalyst (K) obtained above was used instead of 0.075 g of the catalyst (A), and the microreactor was heated to 160 ° C. and reacted for 0.5 hours. The activity test was performed in the same manner as in Example 1 except that. The results are shown in Table 1.

比較例1
<触媒の調製>
炭酸セシウム〔CsCO〕0.516g(0.0016モル)を水に溶解させ、200mLの水溶液とした。得られた水溶液に、シリカゲル〔SiO〕10.00gを添加し、室温で4時間撹拌した。撹拌後、ロータリーエバポレーターを用いて水を留去し、得られた固体を空気雰囲気下、120℃で一晩乾燥させた。得られた乾燥物を空気雰囲気下、450℃にて3時間焼成し、セシウムの含有量が4重量%であるセシウム含有シリカ触媒(R1)を得た。
Comparative Example 1
<Preparation of catalyst>
Cesium carbonate [Cs 2 CO 3 ] 0.516 g (0.0016 mol) was dissolved in water to make a 200 mL aqueous solution. To the obtained aqueous solution, 10.00 g of silica gel [SiO 2 ] was added and stirred at room temperature for 4 hours. After stirring, water was distilled off using a rotary evaporator, and the resulting solid was dried overnight at 120 ° C. in an air atmosphere. The obtained dried product was calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a cesium-containing silica catalyst (R1) having a cesium content of 4% by weight.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(R1)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was performed in the same manner as in Example 1 except that the catalyst (R1) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

比較例2
<触媒の調製>
オキシ塩化ジルコニウム8水和物〔Zr(ClO)・8HO〕0.644g(0.0020モル)を水に溶解させ、200mLの水溶液とした。得られた水溶液に、シリカゲル〔SiO〕10.00gを添加し、室温で4時間撹拌した。撹拌後、ロータリーエバポレーターを用いて水を留去し、得られた固体を空気雰囲気下、120℃で一晩乾燥させた。得られた乾燥物9.80gを、炭酸セシウム〔CsCO〕0.516g(0.0016モル)を水に溶解させて200mLとした水溶液に添加し、室温で4時間撹拌した。撹拌後、ロータリーエバポレーターを用いて水を留去し、得られた固体を空気雰囲気下、120℃で一晩乾燥させた。得られた乾燥物を空気雰囲気下、450℃にて3時間焼成し、セシウムの含有量が3.9重量%、ジルコニウムの含有量が1.2重量%であるセシウム−ジルコニウム含有シリカ触媒(R2)を得た。
Comparative Example 2
<Preparation of catalyst>
Zirconium oxychloride octahydrate [Zr (Cl 2 O) · 8H 2 O] (0.644 g, 0.0020 mol) was dissolved in water to obtain a 200 mL aqueous solution. To the obtained aqueous solution, 10.00 g of silica gel [SiO 2 ] was added and stirred at room temperature for 4 hours. After stirring, water was distilled off using a rotary evaporator, and the resulting solid was dried overnight at 120 ° C. in an air atmosphere. 9.80 g of the obtained dried product was added to an aqueous solution in which 0.516 g (0.0016 mol) of cesium carbonate [Cs 2 CO 3 ] was dissolved in water to make 200 mL, and stirred at room temperature for 4 hours. After stirring, water was distilled off using a rotary evaporator, and the resulting solid was dried overnight at 120 ° C. in an air atmosphere. The obtained dried product was calcined at 450 ° C. for 3 hours in an air atmosphere, and the cesium-zirconium-containing silica catalyst (R2) having a cesium content of 3.9 wt% and a zirconium content of 1.2 wt% )

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(R2)を使用した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 1 except that the catalyst (R2) obtained above was used instead of the catalyst (A). The results are shown in Table 1.

比較例3
<触媒の調製>
比較例1と同様の方法で触媒(R1)を得た。
Comparative Example 3
<Preparation of catalyst>
A catalyst (R1) was obtained in the same manner as in Comparative Example 1.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(R1)を使用し、マイクロリアクターを160℃に加熱した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
<Catalyst activity test> In the same manner as in Example 1, except that the catalyst (R1) obtained above was used instead of the catalyst (A) and the microreactor was heated to 160 ° C. went. The results are shown in Table 1.

比較例4
<触媒の調製>
比較例2と同様の方法で触媒(R2)を得た。
Comparative Example 4
<Preparation of catalyst>
A catalyst (R2) was obtained in the same manner as in Comparative Example 2.

<触媒の活性試験>
<触媒の活性試験>において、触媒(A)に代えて上記で得られた触媒(R2)を使用し、マイクロリアクターを160℃に加熱した以外は、実施例1と同様の方法で活性試験を行った。結果を表1に示した。
<Catalyst activity test>
<Catalyst activity test> In the same manner as in Example 1, except that the catalyst (R2) obtained above was used instead of the catalyst (A) and the microreactor was heated to 160 ° C. went. The results are shown in Table 1.

Figure 2013053128
Figure 2013053128

表1において、活性試験結果のPA、MMA、及びMAAは、以下のものを示す。   In Table 1, the activity test results PA, MMA, and MAA are as follows.

PA:プロピオン酸
MMA:メタクリル酸メチル
MAA:メタクリル酸
PA: propionic acid MMA: methyl methacrylate MAA: methacrylic acid

実施例15
<触媒の調製>
実施例4と同様の方法で触媒(D)を得た。
Example 15
<Preparation of catalyst>
Catalyst (D) was obtained in the same manner as in Example 4.

<触媒の活性試験>
2.5mLのガラス製マイクロリアクターに、プロピオン酸メチル〔式(I)中、Rがメチル基である化合物〕0.35g(4.0ミリモル)、24.6重量%ホルムアルデヒド水溶液0.61g(ホルムアルデヒド5.0ミリモル、水25.7ミリモル)、メタノール0.26g(8.0ミリモル)、及び上記で得られた触媒(D)0.075gを入れ、マイクロリアクター内の気相部に窒素を導入してマイクロリアクター内の圧力を1.5MPa(ゲージ圧)とした。次いで、撹拌しながらマイクロリアクターを120℃に加熱し、4時間反応を行った。反応液をガスクロマトグラフィーにより分析して、下記式に基づき、プロピオン酸メチル転化率(%)、メタクリル酸メチル選択率(%)、メタクリル酸選択率(%)及びメタクリル酸とメタクリル酸メチルの合計収率(%)を求め、表2に示した。
<Catalyst activity test>
To a 2.5 mL glass microreactor, 0.35 g (4.0 mmol) of methyl propionate [compound in which R 1 is a methyl group in formula (I)], 0.61 g of a 24.6 wt% aqueous formaldehyde solution ( Formaldehyde 5.0 mmol, water 25.7 mmol), methanol 0.26 g (8.0 mmol), and catalyst (D) 0.075 g obtained above were charged, and nitrogen was introduced into the gas phase part in the microreactor. The pressure inside the microreactor was set to 1.5 MPa (gauge pressure). Next, the microreactor was heated to 120 ° C. while stirring and reacted for 4 hours. The reaction solution was analyzed by gas chromatography, and based on the following formula, methyl propionate conversion (%), methyl methacrylate selectivity (%), methacrylic acid selectivity (%), and the total of methacrylic acid and methyl methacrylate The yield (%) was determined and shown in Table 2.

プロピオン酸メチル転化率(%)=〔反応したプロピオン酸メチルのモル数÷供給したプロピオン酸メチルのモル数〕×100
メタクリル酸メチル選択率(%)=〔生成したメタクリル酸メチルのモル数÷生成した全生成物のモル数〕×100
メタクリル酸選択率(%)=〔生成したメタクリル酸のモル数÷生成した全生成物のモル数〕×100
メタクリル酸とメタクリル酸メチルの合計収率(%)=〔プロピオン酸メチル転化率(%)×(メタクリル酸メチル選択率(%)+メタクリル酸選択率(%))〕÷100
Conversion rate of methyl propionate (%) = [number of moles of reacted methyl propionate / number of moles of supplied methyl propionate] × 100
Methyl methacrylate selectivity (%) = [number of moles of methyl methacrylate produced / number of moles of all products produced] × 100
Methacrylic acid selectivity (%) = [number of moles of methacrylic acid produced ÷ number of moles of all products produced] × 100
Total yield of methacrylic acid and methyl methacrylate (%) = [methyl propionate conversion (%) × (methyl methacrylate selectivity (%) + methacrylic acid selectivity (%))] ÷ 100

実施例16
<触媒の調製>
実施例4と同様の方法で触媒(D)を得た。
Example 16
<Preparation of catalyst>
Catalyst (D) was obtained in the same manner as in Example 4.

<触媒の活性試験>
<触媒の活性試験>において、24.6重量%ホルムアルデヒド水溶液0.61gに代えて、15重量%ホルムアルデヒド水溶液1.00g(ホルムアルデヒド5.0ミリモル、水47.1ミリモル)を使用した以外は、実施例15と同様の方法で活性試験を行った。結果を表2に示した。
<Catalyst activity test>
In <Catalyst activity test>, the procedure was carried out except that 1.00 g of 15 wt% formaldehyde aqueous solution (5.0 mmol of formaldehyde, 47.1 mmol of water) was used instead of 0.61 g of 24.6 wt% formaldehyde aqueous solution. The activity test was conducted in the same manner as in Example 15. The results are shown in Table 2.

比較例5
<触媒の調製>
比較例2と同様の方法で触媒(R2)を得た。
Comparative Example 5
<Preparation of catalyst>
A catalyst (R2) was obtained in the same manner as in Comparative Example 2.

<触媒の活性試験>
<触媒の活性試験>において、触媒(D)に代えて上記で得られた触媒(R2)を使用した以外は、実施例15と同様の方法で活性試験を行った。結果を表2に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 15 except that the catalyst (R2) obtained above was used instead of the catalyst (D). The results are shown in Table 2.

Figure 2013053128
Figure 2013053128

表2において、活性試験結果のMP、MMA、及びMAAは、以下のものを示す。   In Table 2, the activity test results MP, MMA, and MAA indicate the following.

MP:プロピオン酸メチル
MMA:メタクリル酸メチル
MAA:メタクリル酸
MP: methyl propionate MMA: methyl methacrylate MAA: methacrylic acid

実施例17
<触媒の調製>
実施例4と同様の方法で触媒(D)を得た。
Example 17
<Preparation of catalyst>
Catalyst (D) was obtained in the same manner as in Example 4.

<触媒の活性試験>
2.5mLのガラス製マイクロリアクターに、プロピオン酸無水物〔式(I)中、Rがプロピオニル基である化合物〕0.52g(4.0ミリモル)、24.6重量%ホルムアルデヒド水溶液0.61g(ホルムアルデヒド5.0ミリモル、水25.7ミリモル)、メタノール0.26g(8.0ミリモル)、及び上記で得られた触媒(D)0.075gを入れ、マイクロリアクター内の気相部に窒素を導入してマイクロリアクター内の圧力を1.5MPa(ゲージ圧)とした。次いで、撹拌しながらマイクロリアクターを120℃に加熱し、4時間反応を行った。反応液をガスクロマトグラフィーにより分析して、下記式に基づき、プロピオン酸無水物転化率(%)、メタクリル酸メチル選択率(%)、メタクリル酸選択率(%)及びメタクリル酸とメタクリル酸メチルの合計収率(%)を求め、表3に示した。
<Catalyst activity test>
To a 2.5 mL glass microreactor, propionic anhydride [a compound in which R 1 is a propionyl group in formula (I)] 0.52 g (4.0 mmol), 24.6 wt% aqueous formaldehyde solution 0.61 g (Formaldehyde 5.0 mmol, water 25.7 mmol), methanol 0.26 g (8.0 mmol), and 0.075 g of the catalyst (D) obtained above were charged, and nitrogen was added to the gas phase in the microreactor. Was introduced to adjust the pressure in the microreactor to 1.5 MPa (gauge pressure). Next, the microreactor was heated to 120 ° C. while stirring and reacted for 4 hours. The reaction solution was analyzed by gas chromatography, and based on the following formula, propionic anhydride conversion (%), methyl methacrylate selectivity (%), methacrylic acid selectivity (%) and methacrylic acid and methyl methacrylate The total yield (%) was determined and shown in Table 3.

プロピオン酸無水物転化率(%)=〔反応したプロピオン酸無水物のモル数÷供給したプロピオン酸無水物のモル数〕×100
メタクリル酸メチル選択率(%)=〔生成したメタクリル酸メチルのモル数÷生成した全生成物のモル数〕×100
メタクリル酸選択率(%)=〔生成したメタクリル酸のモル数÷生成した全生成物のモル数〕×100
メタクリル酸とメタクリル酸メチルの合計収率(%)=〔プロピオン酸無水物転化率(%)×(メタクリル酸メチル選択率(%)+メタクリル酸選択率(%))〕÷100
Conversion rate of propionic anhydride (%) = [number of moles of reacted propionic anhydride ÷ number of moles of supplied propionic anhydride] × 100
Methyl methacrylate selectivity (%) = [number of moles of methyl methacrylate produced / number of moles of all products produced] × 100
Methacrylic acid selectivity (%) = [number of moles of methacrylic acid produced ÷ number of moles of all products produced] × 100
Total yield of methacrylic acid and methyl methacrylate (%) = [propionic anhydride conversion (%) × (methyl methacrylate selectivity (%) + methacrylic acid selectivity (%))] ÷ 100

実施例18
<触媒の調製>
実施例4と同様の方法で触媒(D)を得た。
Example 18
<Preparation of catalyst>
Catalyst (D) was obtained in the same manner as in Example 4.

<触媒の活性試験>
<触媒の活性試験>において、マイクロリアクターを160℃に加熱して1時間反応を行った以外は、実施例17と同様の方法で活性試験を行った。結果を表3に示した。
<Catalyst activity test>
In <Catalyst activity test>, an activity test was conducted in the same manner as in Example 17, except that the microreactor was heated to 160 ° C. and reacted for 1 hour. The results are shown in Table 3.

実施例19
<触媒の調製>
実施例4と同様の方法で触媒(D)を得た。
Example 19
<Preparation of catalyst>
Catalyst (D) was obtained in the same manner as in Example 4.

<触媒の活性試験>
<触媒の活性試験>において、触媒(D)の使用量を0.040gとし、マイクロリアクターを160℃に加熱して1時間反応を行った以外は、実施例17と同様の方法で活性試験を行った。結果を表3に示した。
<Catalyst activity test>
In <Catalyst activity test>, the activity test was performed in the same manner as in Example 17, except that the amount of catalyst (D) used was 0.040 g, and the reaction was carried out for 1 hour by heating the microreactor to 160 ° C. went. The results are shown in Table 3.

実施例20
<触媒の調製>
実施例11と同様の方法で触媒(K)を得た。
Example 20
<Preparation of catalyst>
A catalyst (K) was obtained in the same manner as in Example 11.

<触媒の活性試験>
<触媒の活性試験>において、触媒(D)0.075gに代えて上記で得られた触媒(K)0.11gを使用し、マイクロリアクターを160℃に加熱して0.5時間反応を行った以外は、実施例17と同様の方法で活性試験を行った。結果を表3に示した。
<Catalyst activity test>
In <Catalyst activity test>, 0.11 g of the catalyst (K) obtained above was used instead of 0.075 g of the catalyst (D), and the microreactor was heated to 160 ° C. and reacted for 0.5 hours. The activity test was performed in the same manner as in Example 17 except that. The results are shown in Table 3.

Figure 2013053128
Figure 2013053128

表3において、活性試験結果のPAnh、MMA、及びMAAは、以下のものを示す。   In Table 3, the activity test results PAnh, MMA, and MAA indicate the following.

PAnh:プロピオン酸無水物
MMA:メタクリル酸メチル
MAA:メタクリル酸
PAnh: propionic anhydride MMA: methyl methacrylate MAA: methacrylic acid

Claims (7)

ハイドロタルサイトを焼成して得られる焼成物を含む触媒の存在下、式(I)
Figure 2013053128
(式中、Rは水素原子、アルキル基、又はアシル基を表す。)
で示される化合物と、ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも1種とを反応させることを特徴とする式(II)
Figure 2013053128
(式中、Rは、前記と同じ意味を表す。)
で示される化合物の製造方法。
In the presence of a catalyst containing a calcined product obtained by calcining hydrotalcite, formula (I)
Figure 2013053128
(In the formula, R 1 represents a hydrogen atom, an alkyl group, or an acyl group.)
And a compound represented by the formula (II), wherein the compound is reacted with at least one selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane and paraformaldehyde
Figure 2013053128
(Wherein R 1 represents the same meaning as described above.)
The manufacturing method of the compound shown by these.
前記ハイドロタルサイトが、式(III)
[M11−xM2(OH)][Am− x/m・nHO] (III)
(式中、M1はマグネシウム、亜鉛、銅、コバルト、マンガン、鉄、鉛、ニッケル、カルシウム、バリウム及びストロンチウムからなる群より選ばれる少なくとも1種の2価の金属元素を表し、M2はアルミニウム、鉄、チタン、クロム、マンガン、コバルト、ニッケル、ランタン、ガリウム及びインジウムからなる群より選ばれる少なくとも1種の3価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0<x≦0.5、n>0である。)
で示されるものである請求項1に記載の製造方法。
The hydrotalcite has the formula (III)
[M1 1-x M2 x (OH) 2 ] [A m- x / m · nH 2 O] (III)
(In the formula, M1 represents at least one divalent metal element selected from the group consisting of magnesium, zinc, copper, cobalt, manganese, iron, lead, nickel, calcium, barium and strontium, and M2 represents aluminum, iron , titanium, chromium, manganese, cobalt, is .m represents nickel, lanthanum, the at least one trivalent metal element selected from the group consisting of gallium and indium, a m-is representative of the m-valent anion 1-4 Represents an integer of 0 <x ≦ 0.5 and n> 0.)
The manufacturing method according to claim 1, wherein
前記ハイドロタルサイトが、式(IV)
[M1M2M3(OH)][Am− (b+2c)/m・nHO]
(IV)
(式中、M1はマグネシウム、亜鉛、銅、コバルト、マンガン、鉄、鉛、ニッケル、カルシウム、バリウム及びストロンチウムからなる群より選ばれる少なくとも1種の2価の金属元素を表し、M2はアルミニウム、鉄、チタン、クロム、マンガン、コバルト、ニッケル、ランタン、ガリウム及びインジウムからなる群より選ばれる少なくとも1種の3価の金属元素を表し、M3はスズ、チタン及びジルコニウムからなる群より選ばれる少なくとも1種の4価の金属元素を表し、Am−はm価のアニオンを表す。mは1〜4の整数を表し、0.5≦a<1、0<b<0.5、0<c<0.5であり、a+b+c=1かつ0<b+c≦0.5であり、n>0である。)
で示されるものである請求項1に記載の製造方法。
The hydrotalcite has the formula (IV)
[M1 a M2 b M3 c (OH) 2 ] [A m− (b + 2c) / m · nH 2 O]
(IV)
(In the formula, M1 represents at least one divalent metal element selected from the group consisting of magnesium, zinc, copper, cobalt, manganese, iron, lead, nickel, calcium, barium and strontium, and M2 represents aluminum, iron Represents at least one trivalent metal element selected from the group consisting of titanium, chromium, manganese, cobalt, nickel, lanthanum, gallium and indium, and M3 is at least one selected from the group consisting of tin, titanium and zirconium A m− represents an m-valent anion, m represents an integer of 1 to 4, 0.5 ≦ a <1, 0 <b <0.5, 0 <c <. 0.5, a + b + c = 1, 0 <b + c ≦ 0.5, and n> 0.)
The manufacturing method according to claim 1, wherein
前記M1がマグネシウム、亜鉛、鉛及びカルシウムからなる群より選ばれる少なくとも1種であり、前記M2がアルミニウム及び鉄からなる群より選ばれる少なくとも1種である請求項2又は3に記載の製造方法。   The manufacturing method according to claim 2 or 3, wherein the M1 is at least one selected from the group consisting of magnesium, zinc, lead and calcium, and the M2 is at least one selected from the group consisting of aluminum and iron. 前記焼成を250〜650℃で行う請求項1〜4のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-4 which perform the said baking at 250-650 degreeC. さらに水の存在下で前記反応を行う請求項1〜5のいずれかに記載の製造方法。   Furthermore, the manufacturing method in any one of Claims 1-5 which perform the said reaction in presence of water. 式(I)
Figure 2013053128
(式中、Rは水素原子、アルキル基、又はアシル基を表す。)
で示される化合物と、ホルムアルデヒド、メチラール、1,3,5−トリオキサン及びパラホルムアルデヒドからなる群より選ばれる少なくとも1種とを反応させて式(II)
Figure 2013053128
(式中、Rは、前記と同じ意味を表す。)
で示される化合物を製造する際に使用される触媒であって、ハイドロタルサイトを焼成して得られる焼成物を含むことを特徴とする触媒。
Formula (I)
Figure 2013053128
(In the formula, R 1 represents a hydrogen atom, an alkyl group, or an acyl group.)
Is reacted with at least one selected from the group consisting of formaldehyde, methylal, 1,3,5-trioxane, and paraformaldehyde to give a compound of formula (II)
Figure 2013053128
(Wherein R 1 represents the same meaning as described above.)
The catalyst used when manufacturing the compound shown by these, Comprising: The catalyst characterized by including the baked material obtained by baking hydrotalcite.
JP2012026031A 2011-08-11 2012-02-09 Production method for methacrylic acid compound, and catalyst Pending JP2013053128A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012026031A JP2013053128A (en) 2011-08-11 2012-02-09 Production method for methacrylic acid compound, and catalyst
PCT/JP2012/070526 WO2013022095A1 (en) 2011-08-11 2012-08-10 Production method for methacrylic acid compound, and catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011175673 2011-08-11
JP2011175673 2011-08-11
JP2012026031A JP2013053128A (en) 2011-08-11 2012-02-09 Production method for methacrylic acid compound, and catalyst

Publications (1)

Publication Number Publication Date
JP2013053128A true JP2013053128A (en) 2013-03-21

Family

ID=47668597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026031A Pending JP2013053128A (en) 2011-08-11 2012-02-09 Production method for methacrylic acid compound, and catalyst

Country Status (2)

Country Link
JP (1) JP2013053128A (en)
WO (1) WO2013022095A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201714756D0 (en) 2017-09-13 2017-10-25 Lucite Int Uk Ltd A catalyst and a process for the production of ethylenicallly unsaturated carboxylic acids or esters
US11806694B2 (en) * 2020-03-12 2023-11-07 Mitsubishi Chemical UK Limited Catalyst and a process for the production of ethylenically unsaturated carboxylic acids or esters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246342A (en) * 1984-05-21 1985-12-06 Toagosei Chem Ind Co Ltd Preparation of acrylic acid or methacrylic acid
JPH0621100B2 (en) * 1985-04-03 1994-03-23 東亞合成化学工業株式会社 Method for producing acrylic acid or methacrylic acid
JPS61118344A (en) * 1984-11-13 1986-06-05 Toagosei Chem Ind Co Ltd Production of acrylic acid or methacrylic acid
JP3024863B2 (en) * 1992-05-25 2000-03-27 三菱レイヨン株式会社 Method for producing methacrylic acid and its ester
JP4346382B2 (en) * 2002-08-29 2009-10-21 花王株式会社 Method for producing glycidyl ether adduct and catalyst used in the method
KR100912882B1 (en) * 2005-03-03 2009-08-20 미쓰이 가가쿠 가부시키가이샤 Method for producing olefins
WO2010113993A1 (en) * 2009-04-01 2010-10-07 三井化学株式会社 Process for producing olefin

Also Published As

Publication number Publication date
WO2013022095A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US20130165729A1 (en) Zinc and/or manganese aluminate catalyst useful for alkane dehdyrogenation
KR101472230B1 (en) Modified zinc ferrite catalyst and method of preparation and use
JPH01165535A (en) Production of monoalkylene glycol using mixed metal skeletal composition
EP2219782B1 (en) Method of preparing 1,3-butadiene using a mixed manganese ferrite catalyst prepared by coprecipitation
KR20150088235A (en) Method for obtaining higher alcohols
KR20090098707A (en) Catalyst for synthesizing acrylonitrile and process for producing acrylonitrile
CN107096540B (en) A kind of metal composite oxide and its preparation method and application
Deacon et al. Synthesis and characterisation of rare earth complexes supported by para‐substituted cinnamate ligands
TWI468390B (en) Production method of α-hydroxycarboxylate
CN108473388B (en) Method for preparing butadiene with catalyst reproducibility
JP6958916B2 (en) Glycine manufacturing method
JP2013053128A (en) Production method for methacrylic acid compound, and catalyst
EP3189892A1 (en) Catalyst for glycerin dehydration, preparation method therefor, and acrolein preparation method using catalyst
JP6431810B2 (en) Catalyst for synthesis of dibutyl carbonate and method for producing the same
JP2019518596A (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for producing the same and method for producing butadiene using the same
WO2016099066A1 (en) Catalyst for glycerin dehydration, preparation method therefor, and acrolein preparation method using catalyst
JP6552355B2 (en) Process for producing unsaturated alcohol and catalyst
KR102222771B1 (en) Catalyst for oxidative dehydrogenation, method of preparing the same and method for preparing butadien using the same
CN114845810A (en) Method for producing ceria-zirconia composite oxide, catalyst comprising same, and method for producing butadiene
JP2012140312A (en) METHOD FOR PRODUCING YTTRIUM MANGANATE YMnO3
KR20180122768A (en) Catalyst for oxidative dehydrogenation reaction, method for preparing thereof and method for preparing butadiene using the same catalyst
JP7039817B2 (en) Manufacturing method of metal composite catalyst and metal composite catalyst manufactured by this method
JP6636871B2 (en) Method for producing catalyst for producing unsaturated alcohol, method for producing catalyst for producing unsaturated alcohol, and method for producing catalyst for unsaturated alcohol
JP6727079B2 (en) Catalyst for producing unsaturated alcohol and method for producing unsaturated alcohol
TWI441816B (en) Process for synthesizing tetrahydrofuran