JP2013049008A - System and method for manufacturing oxygen-enriched air - Google Patents

System and method for manufacturing oxygen-enriched air Download PDF

Info

Publication number
JP2013049008A
JP2013049008A JP2011188042A JP2011188042A JP2013049008A JP 2013049008 A JP2013049008 A JP 2013049008A JP 2011188042 A JP2011188042 A JP 2011188042A JP 2011188042 A JP2011188042 A JP 2011188042A JP 2013049008 A JP2013049008 A JP 2013049008A
Authority
JP
Japan
Prior art keywords
air
oxygen
enriched air
enriched
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011188042A
Other languages
Japanese (ja)
Other versions
JP5780063B2 (en
Inventor
Tomohide Nakamura
智英 中村
Nozomi Tanihara
望 谷原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011188042A priority Critical patent/JP5780063B2/en
Publication of JP2013049008A publication Critical patent/JP2013049008A/en
Application granted granted Critical
Publication of JP5780063B2 publication Critical patent/JP5780063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air separation system capable of controlling flow rate and oxygen concentration of oxygen-enriched air by a simple and convenient method.SOLUTION: This system includes an air compressor 12 and an air separator 11, and these are connected through a compressed air supply line 21. Further, the air separator 11 connects an oxygen-enriched air line 22 and a nitrogen-enriched air line 23. A control valve 13 is installed on the compressed air supply line as a pressure control means, an oxygen concentration measuring instrument 14 and a flowmeter 15 are installed on the oxygen-enriched air line 22, and a control valve 16 is installed on the nitrogen-enriched air line 23 as a flow rate control means for the nitrogen-enriched air.

Description

本発明は、酸素富化空気の製造方法であって、酸素富化空気の製造量と酸素濃度とを簡便な方法で調整できる方法に関する。   The present invention relates to a method for producing oxygen-enriched air, which can adjust the production amount and oxygen concentration of oxygen-enriched air by a simple method.

酸素富化空気は、ゴミ焼却炉や下水の汚泥焼却炉などの燃焼装置、生ゴミ処理機、自動車、燃料電池、農業、漁業、バイオ分野等での生物の育成促進装置、健康機器、医療機器等、様々な分野で利用されている。これらの分野においては、酸素富化空気を用いることにより、酸素濃度が約21%の空気を用いる場合に比べて、熱エネルギーの使用効率を高めることができたり、大気汚染の問題を生じる窒素酸化物(NO)の排出を低減したりすることができる。 Oxygen-enriched air is used for combustion equipment such as garbage incinerators and sewage sludge incinerators, garbage processing machines, automobiles, fuel cells, agriculture, fisheries, biological growth promotion equipment in bio fields, health equipment, medical equipment, etc. Etc. are used in various fields. In these fields, the use of oxygen-enriched air can improve the use efficiency of heat energy and cause the problem of air pollution compared to the case of using air with an oxygen concentration of about 21%. The emission of substances (NO X ) can be reduced.

酸素富化空気の利用においては、用途に応じて異なる酸素濃度が要求される。例えば、燃焼装置で酸素富化空気を用いる場合、酸素濃度が高すぎると炉内温度が上昇し、炉材質が耐えられないため、酸素富化空気中の酸素濃度が21モル%以上50モル%以下程度であることが求められる。   In the use of oxygen-enriched air, different oxygen concentrations are required depending on the application. For example, when oxygen-enriched air is used in a combustion apparatus, if the oxygen concentration is too high, the furnace temperature rises and the furnace material cannot be tolerated, so the oxygen concentration in the oxygen-enriched air is 21 mol% or more and 50 mol%. The following is required.

酸素富化空気を製造する方法としては、空気を原料とし、低温液化空気分離装置や酸素PSAを用いた方法が知られているが(特許文献1)、これらの方法は、装置が大掛かりであり、ランニングコストも高いという問題がある。さらに、低温液化空気分離装置により得られた液体酸素や、酸素PSAから発生した酸素富化空気は、酸素濃度が約90%以上で純度が高すぎるため、用途によっては空気で希釈してから使用されており、エネルギー効率の面においても問題がある。   As a method for producing oxygen-enriched air, methods using air as a raw material and using a low-temperature liquefied air separation device or oxygen PSA are known (Patent Document 1), but these methods are large-scale devices. There is a problem that the running cost is high. Furthermore, liquid oxygen obtained from a low-temperature liquefied air separator or oxygen-enriched air generated from oxygen PSA has an oxygen concentration of about 90% or more and is too high in purity. There is also a problem in terms of energy efficiency.

酸素富化空気を製造する別の方法として、ガス分離膜を用いる方法も知られている(特許文献2等)。この方法は、酸素を選択的に透過するガス分離膜を用いて、空気を透過ガス(酸素富化空気)と非透過ガス(窒素富化空気)とに分離する方法であり、酸素濃度が22〜50モル%程度と比較的低い酸素富化空気を製造することが可能である。   As another method for producing oxygen-enriched air, a method using a gas separation membrane is also known (Patent Document 2, etc.). This method is a method of separating air into a permeate gas (oxygen-enriched air) and a non-permeate gas (nitrogen-enriched air) using a gas separation membrane that selectively permeates oxygen, and the oxygen concentration is 22 It is possible to produce oxygen-enriched air having a relatively low level of about ˜50 mol%.

ガス分離膜により製造された酸素富化空気を燃焼炉等で用いる際、酸素富化空気の所定の酸素濃度を維持したまま需要量(流量)を変動させたい場合がある。酸素富化空気の需要量の変動に対しては、ガス分離膜へ供給する原料空気の圧力を調整することにより酸素富化空気の流量を制御することができる。しかし、単純にガス分離膜へ供給する空気の圧力を変えるだけでは、製造される酸素富化空気の酸素濃度が変動してしまい、所定の酸素濃度を維持できないという問題があった。   When oxygen-enriched air produced by a gas separation membrane is used in a combustion furnace or the like, there is a case where it is desired to vary the demand (flow rate) while maintaining a predetermined oxygen concentration of oxygen-enriched air. With respect to fluctuations in demand for oxygen-enriched air, the flow rate of oxygen-enriched air can be controlled by adjusting the pressure of the raw material air supplied to the gas separation membrane. However, simply changing the pressure of the air supplied to the gas separation membrane fluctuates the oxygen concentration of the produced oxygen-enriched air, and there is a problem that the predetermined oxygen concentration cannot be maintained.

特許3694343号公報Japanese Patent No. 3694343 特許4254271号公報Japanese Patent No. 4254271

本発明は、空気を原料として酸素富化空気の製造を行う際の上記問題点を解決することを目的とする。   An object of this invention is to solve the said problem at the time of manufacturing oxygen-enriched air using air as a raw material.

本発明は以下の事項に関する。   The present invention relates to the following matters.

1.空気圧縮機と、
酸素富化空気と窒素富化空気を製造する空気分離装置と、
を備え、
前記空気分離装置への空気の供給圧力を調整することにより酸素富化空気の流量を制御し、かつ、
窒素富化空気の流量を調整することにより酸素富化空気の酸素濃度を制御する、
システム。
1. An air compressor,
An air separation device for producing oxygen-enriched air and nitrogen-enriched air;
With
Controlling the flow rate of the oxygen-enriched air by adjusting the supply pressure of air to the air separation device; and
Control the oxygen concentration of oxygen-enriched air by adjusting the flow rate of nitrogen-enriched air,
system.

2.酸素富化空気の必要な流量が変動したとき、前記空気分離装置への空気の供給圧力を調整して酸素富化空気の流量を調整し、かつ、窒素富化空気の流量を調整して酸素富化空気中の酸素濃度を一定に保つように制御できる、上記1に記載のシステム。   2. When the required flow rate of oxygen-enriched air fluctuates, the supply pressure of air to the air separation device is adjusted to adjust the flow rate of oxygen-enriched air, and the flow rate of nitrogen-enriched air is adjusted to adjust oxygen flow rate. 2. The system according to 1 above, which can be controlled to keep the oxygen concentration in the enriched air constant.

3.前記空気分離装置が、酸素濃度22モル%以上50モル%以下の酸素富化空気と、酸素濃度0.1モル%以上10モル%以下の窒素富化空気を製造することができる、上記1または2に記載のシステム。   3. 1 or 2 above, wherein the air separation device can produce oxygen-enriched air having an oxygen concentration of 22 mol% to 50 mol% and nitrogen-enriched air having an oxygen concentration of 0.1 mol% to 10 mol%. 2. The system according to 2.

4.前記空気分離装置への空気の供給圧力が、0.02MPaG以上1MPaG以下の範囲に制御される、上記1〜3のいずれかに記載のシステム。   4). 4. The system according to any one of 1 to 3, wherein a supply pressure of air to the air separation device is controlled in a range of 0.02 MPaG to 1 MPaG.

5.前記空気分離装置の酸素富化空気排出側が大気圧以下に減圧された、上記1〜4のいずれかに記載のシステム。   5). The system according to any one of the above 1 to 4, wherein the oxygen-enriched air discharge side of the air separation device is depressurized to an atmospheric pressure or lower.

6.前記空気分離装置がガス分離膜を含む、上記1〜5のいずれかに記載のシステム。   6). The system according to any one of the above 1 to 5, wherein the air separation device includes a gas separation membrane.

7.前記空気分離膜装置が、ガス分離膜にパージ用空気を供給できる構造を有する、上記1〜6のいずれかに記載のシステム。   7). 7. The system according to any one of 1 to 6, wherein the air separation membrane device has a structure capable of supplying purge air to the gas separation membrane.

8.製造される窒素富化空気の大気圧露点が−20℃以下である、上記1〜7のいずれかに記載のシステム。   8). The system in any one of said 1-7 whose atmospheric pressure dew point of the nitrogen enriched air manufactured is -20 degrees C or less.

9.0.02MPaG〜1MPaGの圧縮空気を空気分離装置に供給する工程と、
前記空気分離装置により酸素濃度22モル%以上50モル%以下の酸素富化空気と酸素濃度0.1モル%以上10モル%以下の窒素富化空気とを製造する工程と、
を含み、
前記圧縮空気の圧力を調整することにより酸素富化空気の流量を制御し、かつ、
窒素富化空気の流量を調整することにより酸素富化空気の酸素濃度を制御する、酸素富化空気と窒素富化空気の製造方法。
9. supplying compressed air of 0.02 MPaG to 1 MPaG to the air separation device;
Producing oxygen-enriched air having an oxygen concentration of 22 mol% or more and 50 mol% or less and nitrogen-enriched air having an oxygen concentration of 0.1 mol% or more and 10 mol% or less by the air separator;
Including
Controlling the flow rate of the oxygen-enriched air by adjusting the pressure of the compressed air; and
A method for producing oxygen-enriched air and nitrogen-enriched air, wherein the oxygen concentration of oxygen-enriched air is controlled by adjusting the flow rate of nitrogen-enriched air.

10.上記9の製造方法により製造された窒素富化空気の防爆用ガスおよび/または計装空気としての使用。   10. Use of nitrogen-enriched air produced by the above production method 9 as an explosion-proof gas and / or instrument air.

本発明によると、空気を原料として酸素富化空気を製造するシステムにおいて、酸素富化空気の所定の酸素濃度を維持したまま需要量の変動に容易に対応できる。本発明は、特に酸素濃度が約22〜50モル%の比較的低い酸素富化空気の製造に好適であり、従来の製造方法よりエネルギー効率を高めることができる。そして、製造される酸素富化空気は燃焼炉等に使用することができ、同時に製造される窒素富化空気は防爆用ガス等として有効に利用できる。   According to the present invention, in a system for producing oxygen-enriched air using air as a raw material, it is possible to easily cope with fluctuations in demand while maintaining a predetermined oxygen concentration of oxygen-enriched air. The present invention is particularly suitable for producing a relatively low oxygen-enriched air having an oxygen concentration of about 22 to 50 mol%, and can increase energy efficiency over conventional production methods. The produced oxygen-enriched air can be used in a combustion furnace or the like, and the simultaneously produced nitrogen-enriched air can be effectively used as an explosion-proof gas or the like.

本発明のシステムの構成図の一例である。It is an example of the block diagram of the system of this invention.

本発明のシステムは、少なくとも、空気を加圧する空気圧縮機と、空気を原料として酸素富化空気と窒素富化空気を製造する空気分離装置とを備え、さらに、空気分離装置に供給する圧縮空気の供給圧力を制御する圧力制御手段と、窒素富化空気の流量を制御する流量制御手段とを有する。   The system of the present invention includes at least an air compressor that pressurizes air, and an air separation device that produces oxygen-enriched air and nitrogen-enriched air using air as a raw material, and further supplies compressed air to the air separation device. Pressure control means for controlling the supply pressure and flow rate control means for controlling the flow rate of the nitrogen-enriched air.

本発明のシステムの構成図の一例を図1に示す。このシステムは、空気圧縮機(12)と空気分離装置(11)を有し、これらは圧縮空気供給ライン(21)により連結されている。空気分離装置(11)は、さらに、酸素富化空気ライン(22)と、窒素富化空気ライン(23)と連結している。そして、圧縮空気供給ライン上には圧力制御手段として制御弁(13)が設置され、酸素富化空気ライン(22)上には酸素濃度測定器(14)と流量計(15)が設置され、窒素富化空気ライン(23)上には窒素富化空気の流量制御手段として制御弁(16)が設置されている。   An example of the configuration diagram of the system of the present invention is shown in FIG. This system has an air compressor (12) and an air separation device (11), which are connected by a compressed air supply line (21). The air separation device (11) is further connected to an oxygen-enriched air line (22) and a nitrogen-enriched air line (23). A control valve (13) is installed as pressure control means on the compressed air supply line, an oxygen concentration measuring device (14) and a flow meter (15) are installed on the oxygen-enriched air line (22), A control valve (16) is installed on the nitrogen-enriched air line (23) as a flow control means for nitrogen-enriched air.

図1のシステムにおいては、まず、空気圧縮機(12)により加圧された空気が、圧縮空気供給ライン(21)により空気分離装置(11)に供給される。その際、圧縮された空気の圧力は、制御弁(13)により調整することができる。そして、供給された空気を原料として、空気分離装置(11)により酸素富化空気と窒素富化空気が製造される。製造された酸素富化空気は空気分離装置の酸素富化空気排出口から酸素富化空気ライン(22)に排出され、窒素富化空気は空気分離装置の窒素富化空気排出口から窒素富化空気ライン(23)に排出される。窒素富化空気の流量は制御弁(16)により調整できる。製造された酸素富化空気の酸素濃度は酸素濃度測定器(14)により測定され、酸素富化空気の流量は、流量計(15)により測定される。   In the system of FIG. 1, first, air pressurized by the air compressor (12) is supplied to the air separation device (11) through the compressed air supply line (21). At that time, the pressure of the compressed air can be adjusted by the control valve (13). Then, oxygen-enriched air and nitrogen-enriched air are produced by the air separation device (11) using the supplied air as a raw material. The produced oxygen-enriched air is discharged from the oxygen-enriched air outlet of the air separator to the oxygen-enriched air line (22), and the nitrogen-enriched air is nitrogen-enriched from the nitrogen-enriched air outlet of the air separator. It is discharged to the air line (23). The flow rate of the nitrogen-enriched air can be adjusted by the control valve (16). The oxygen concentration of the produced oxygen-enriched air is measured by an oxygen concentration measuring device (14), and the flow rate of the oxygen-enriched air is measured by a flow meter (15).

このシステムにおいて、酸素富化空気の流量は、空気分離装置への圧縮空気の供給圧力を調整することで制御できる。したがって、流量計(15)による測定結果をフィードバックしながら、上記圧縮空気の圧力を制御弁(13)で調整して、所望の需要量(流量)の酸素富化空気が得られるように制御する。さらに、酸素富化空気の酸素濃度は、製造された窒素富化空気の流量を調整することで制御できる。したがって、酸素濃度測定器(14)による測定結果をフィードバックしながら、制御弁(16)で窒素富化空気の流量を調整して、酸素富化空気の酸素濃度が所望の濃度になるように制御する。このように、本発明は、簡便な方法で酸素富化空気の流量と酸素濃度を制御でき、特に酸素富化空気の所定の酸素濃度を維持したまま流量を変動させたい場合に好適に使用できる。   In this system, the flow rate of oxygen-enriched air can be controlled by adjusting the supply pressure of compressed air to the air separation device. Therefore, while feeding back the measurement result of the flow meter (15), the pressure of the compressed air is adjusted by the control valve (13), and control is performed so that oxygen-enriched air having a desired demand (flow rate) is obtained. . Furthermore, the oxygen concentration of the oxygen-enriched air can be controlled by adjusting the flow rate of the produced nitrogen-enriched air. Therefore, while feeding back the measurement result by the oxygen concentration measuring device (14), the flow rate of the nitrogen-enriched air is adjusted by the control valve (16) to control the oxygen concentration of the oxygen-enriched air to a desired concentration. To do. As described above, the present invention can control the flow rate and oxygen concentration of oxygen-enriched air by a simple method, and can be suitably used particularly when it is desired to change the flow rate while maintaining a predetermined oxygen concentration of oxygen-enriched air. .

本発明において、空気圧縮機(12)が圧力制御機能も有している場合は、制御弁(13)を設けなくてもよい。上述のように、圧縮空気の供給圧力は、酸素富化空気の需要量に応じて調整でき、特に限定はされないが、0MPaGより大きく2MPaG以下であることが好ましく、0.02MPaG以上1MPaG以下であることがより好ましい。また、酸素富化空気ライン(22)上に減圧手段を設け、空気分離装置の酸素富化空気排出口側を大気圧より低くしてもよい。この場合、圧縮空気の供給圧力と、空気分離装置の酸素富化空気排出口側の圧力との差を調整することにより、酸素富化空気の流量を調整できる。   In the present invention, when the air compressor (12) also has a pressure control function, the control valve (13) may not be provided. As described above, the supply pressure of compressed air can be adjusted according to the demand for oxygen-enriched air, and is not particularly limited, but is preferably greater than 0 MPaG and not greater than 2 MPaG, and is not less than 0.02 MPaG and not greater than 1 MPaG. It is more preferable. Further, pressure reducing means may be provided on the oxygen-enriched air line (22), and the oxygen-enriched air discharge side of the air separation device may be made lower than the atmospheric pressure. In this case, the flow rate of the oxygen-enriched air can be adjusted by adjusting the difference between the supply pressure of the compressed air and the pressure on the oxygen-enriched air discharge side of the air separation device.

上記空気分離装置としては、特に限定はなく、ガス分離膜を有する装置、酸素PSA等が挙げられるが、ガス分離膜を有する装置が好ましい。   The air separation device is not particularly limited, and examples thereof include a device having a gas separation membrane and oxygen PSA, but a device having a gas separation membrane is preferable.

ガス分離膜を有する装置におけるガス分離膜は、空気から酸素を選択的に透過させる。ガス分離膜は、特に限定されないが、シリコーン樹脂、ポリブタジエン樹脂などのゴム状ポリマー材料、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリカーボネート、セルロースなどのガラス状ポリマー材料、又は、ゼオライトなどのセラミックス材料によって好適に製造される。また、ガス分離膜は、均質膜、均質層と多孔層とからなる非対称膜、微多孔質膜などいずれであってもよい。容器内の収納形態も、プレートアンドフレーム型、スパイラル型、中空糸型などいずれであっても構わない。尚、本発明においては、均質層の厚さが10〜200nm及び多孔質層の厚さが20〜200μmの非対称構造を持ち内径が30〜500μm程度の芳香族ポリイミドからなる中空糸ガス分離膜が、窒素ガスの透過速度に対する酸素ガスの透過速度の比(P’O2/P’N2)や酸素ガスの透過速度(P’O2)が大きく、更に装置内に配置するガス分離膜の有効膜面積を大きくできるので、特に好適に用いられる。 The gas separation membrane in the apparatus having the gas separation membrane selectively transmits oxygen from the air. The gas separation membrane is not particularly limited, but is a rubbery polymer material such as silicone resin or polybutadiene resin, a glassy polymer material such as polyimide, polyetherimide, polyamide, polyamideimide, polysulfone, polycarbonate, cellulose, or zeolite. It is preferably manufactured from a ceramic material. The gas separation membrane may be any of a homogeneous membrane, an asymmetric membrane comprising a homogeneous layer and a porous layer, and a microporous membrane. The storage form in the container may be any of a plate-and-frame type, a spiral type, and a hollow fiber type. In the present invention, there is provided a hollow fiber gas separation membrane made of an aromatic polyimide having an asymmetric structure with a homogeneous layer thickness of 10 to 200 nm and a porous layer thickness of 20 to 200 μm and an inner diameter of about 30 to 500 μm. The ratio of the oxygen gas permeation rate to the nitrogen gas permeation rate ( P'O2 / P'N2 ) and the oxygen gas permeation rate ( P'O2 ) are large, and the effective membrane area of the gas separation membrane disposed in the apparatus Can be made large, and is particularly preferably used.

本発明において、ガス分離膜は、少なくとも原料空気供給口、透過ガス(酸素富化空気)排出口、及び、非透過ガス(窒素富化ガス)排出口を備えた容器内に、ガス分離膜の透過側と非透過側とが隔絶するように配置されて、ガス分離膜モジュールを形成していることが好ましい。本発明のガス分離膜モジュールが中空糸膜によって構成される場合には、通常中空糸膜の多数本(例えば、数百本から数十万本)を集束して中空糸束とし、その中空糸束の少なくとも一方の端部をエポキシ樹脂のような硬化性樹脂やポリアミド樹脂のような熱可塑性樹脂などで前記端部において中空糸膜が開口状態となるように固着(樹脂固着部を管板という。)して中空糸分離膜エレメントを構成し、更に、単数個又は複数個の前記中空糸分離膜エレメントを、少なくとも原料空気供給口、透過ガス排出口、及び、非透過ガス排出口を有する容器内に、中空糸の内側へ通じる空間と中空糸の外側へ通じる空間が隔絶するように装着されて構成されている。   In the present invention, the gas separation membrane is provided in a container having at least a raw material air supply port, a permeate gas (oxygen-enriched air) discharge port, and a non-permeate gas (nitrogen-enriched gas) discharge port. It is preferable that the gas separation membrane module is formed so that the permeation side and the non-permeation side are separated from each other. When the gas separation membrane module of the present invention is constituted by a hollow fiber membrane, usually a number of hollow fiber membranes (for example, hundreds to hundreds of thousands) are converged to form a hollow fiber bundle, and the hollow fiber At least one end of the bundle is fixed with a curable resin such as an epoxy resin or a thermoplastic resin such as a polyamide resin so that the hollow fiber membrane is open at the end (the resin fixing portion is referred to as a tube plate) .) To form a hollow fiber separation membrane element, and further, a container having at least one raw air supply port, a permeate gas discharge port, and a non-permeate gas discharge port for one or a plurality of the hollow fiber separation membrane elements Inside, the space leading to the inside of the hollow fiber and the space leading to the outside of the hollow fiber are mounted so as to be isolated.

容器はステンレスなどの金属材料、プラスチック材料、繊維強化プラスチック材料などの複合材料で製造される。   The container is made of a composite material such as a metal material such as stainless steel, a plastic material, or a fiber reinforced plastic material.

また、上記ガス分離膜モジュールは、さらに、大気から空気を取り込むパージ空気供給口を有していてもよい。この場合、パージ空気は、ガス分離膜の透過側へ供給され、透過ガス(酸素富化空気)と合流し、酸素富化空気ラインに排出される。   The gas separation membrane module may further include a purge air supply port that takes air from the atmosphere. In this case, the purge air is supplied to the permeate side of the gas separation membrane, merges with the permeate gas (oxygen-enriched air), and is discharged to the oxygen-enriched air line.

本発明においては、上記流量計(15)の代わりに、酸素富化空気ライン(22)上にタンクを設け、そのタンク内の酸素富化空気の圧力の測定結果から酸素富化空気の流量を換算してもよい。   In the present invention, a tank is provided on the oxygen-enriched air line (22) instead of the flow meter (15), and the flow rate of the oxygen-enriched air is determined from the measurement result of the pressure of the oxygen-enriched air in the tank. You may convert.

本発明により製造される酸素富化空気の酸素濃度は、空気の酸素濃度である21モル%より大きければよく、必要に応じて適宜調整できる。燃焼炉等に用いる場合は、22モル%以上50モル%以下であることが好ましく、22モル%以上40モル%以下であることがより好ましい。   The oxygen concentration of the oxygen-enriched air produced according to the present invention only needs to be larger than 21 mol%, which is the oxygen concentration of air, and can be adjusted as necessary. When used in a combustion furnace or the like, it is preferably 22 mol% or more and 50 mol% or less, and more preferably 22 mol% or more and 40 mol% or less.

製造された酸素富化空気は酸素富化空気ラインから回収されてもよいし、酸素富化空気ラインが、酸素富化空気を使用する燃焼炉等に直接連結されていてもよい。本発明により得られた酸素富化空気は、ゴミ焼却炉や下水の汚泥焼却炉などの燃焼装置、生ゴミ処理機、自動車、燃料電池、農業、漁業、バイオ分野等での生物の育成促進装置、健康機器、医療機器等の様々な分野で使用できる。   The produced oxygen-enriched air may be recovered from the oxygen-enriched air line, or the oxygen-enriched air line may be directly connected to a combustion furnace or the like that uses oxygen-enriched air. Oxygen-enriched air obtained by the present invention is a combustion apparatus such as a garbage incinerator or a sewage sludge incinerator, a garbage disposal machine, an automobile, a fuel cell, agriculture, fishery, an apparatus for promoting the growth of organisms in the bio field, etc. It can be used in various fields such as health equipment and medical equipment.

一方、本発明のシステムにおいては、上述のように、酸素富化空気以外に窒素富化空気も製造される。製造される窒素富化空気中の酸素濃度は、特に限定されないが、0.01モル%以上15モル%以下であることが好ましく、0.1モル%以上10モル%以下であることがより好ましい。また、特にガス分離膜を用いる場合、ガス分離膜が水分も透過しやすいため、水分含有量の小さい乾燥した窒素富化空気を得ることができる。本発明により製造される窒素富化空気は、例えば、大気圧露点が−20℃以下まで乾燥していることが好ましい。得られた窒素富化空気は、防爆用ガスや計装用空気として使用することができる。   On the other hand, in the system of the present invention, as described above, nitrogen-enriched air is also produced in addition to oxygen-enriched air. The oxygen concentration in the produced nitrogen-enriched air is not particularly limited, but is preferably 0.01 mol% or more and 15 mol% or less, more preferably 0.1 mol% or more and 10 mol% or less. . In particular, when a gas separation membrane is used, since the gas separation membrane easily permeates moisture, dry nitrogen-enriched air having a small moisture content can be obtained. The nitrogen-enriched air produced according to the present invention is preferably dried, for example, to an atmospheric pressure dew point of −20 ° C. or lower. The obtained nitrogen-enriched air can be used as an explosion-proof gas or instrumentation air.

以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は下記実施例により制限されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples.

宇部興産社製空気分離膜モジュール(NM−410A)を用いて、室温(25℃)で透過側圧力を常圧として30モル%の酸素富化ガスを製造した場合の酸素富化ガスの流量を測定した。運転圧力と窒素富化ガスの流量を調整することにより、酸素濃度が30モル%で維持され、流量が変化した酸素富化ガスが得られた(表1)。窒素富化ガスの酸素濃度は、1モル%〜8モル%であった。   Using an air separation membrane module (NM-410A) manufactured by Ube Industries, Ltd., the flow rate of oxygen-enriched gas when 30 mol% oxygen-enriched gas was produced at room temperature (25 ° C.) with the permeate side pressure at normal pressure. It was measured. By adjusting the operating pressure and the flow rate of the nitrogen-enriched gas, the oxygen concentration was maintained at 30 mol%, and an oxygen-enriched gas having a changed flow rate was obtained (Table 1). The oxygen concentration of the nitrogen-enriched gas was 1 mol% to 8 mol%.

Figure 2013049008
Figure 2013049008

本発明によると、空気分離装置を含むシステムにおいて、簡便な方法で、酸素富化空気の流量と酸素濃度を調整することができる。   According to the present invention, in a system including an air separation device, the flow rate and oxygen concentration of oxygen-enriched air can be adjusted by a simple method.

11 空気分離装置
12 空気圧縮機
13 制御弁
14 酸素濃度測定器
15 流量計
16 制御弁
21 圧縮空気供給ライン
22 酸素富化空気ライン
23 窒素富化空気ライン
DESCRIPTION OF SYMBOLS 11 Air separation apparatus 12 Air compressor 13 Control valve 14 Oxygen concentration measuring device 15 Flowmeter 16 Control valve 21 Compressed air supply line 22 Oxygen-enriched air line 23 Nitrogen-enriched air line

Claims (10)

空気圧縮機と、
酸素富化空気と窒素富化空気を製造する空気分離装置と、
を備え、
前記空気分離装置への空気の供給圧力を調整することにより酸素富化空気の流量を制御し、かつ、
窒素富化空気の流量を調整することにより酸素富化空気の酸素濃度を制御する、
システム。
An air compressor,
An air separation device for producing oxygen-enriched air and nitrogen-enriched air;
With
Controlling the flow rate of the oxygen-enriched air by adjusting the supply pressure of air to the air separation device; and
Control the oxygen concentration of oxygen-enriched air by adjusting the flow rate of nitrogen-enriched air,
system.
酸素富化空気の必要な流量が変動したとき、前記空気分離装置への空気の供給圧力を調整して酸素富化空気の流量を調整し、かつ、窒素富化空気の流量を調整して酸素富化空気中の酸素濃度を一定に保つように制御できる、請求項1に記載のシステム。   When the required flow rate of oxygen-enriched air fluctuates, the supply pressure of air to the air separation device is adjusted to adjust the flow rate of oxygen-enriched air, and the flow rate of nitrogen-enriched air is adjusted to adjust oxygen flow rate. The system of claim 1, wherein the system can be controlled to keep the oxygen concentration in the enriched air constant. 前記空気分離装置が、酸素濃度22モル%以上50モル%以下の酸素富化空気と、酸素濃度0.1モル%以上10モル%以下の窒素富化空気を製造することができる、請求項1または2に記載のシステム。   The air separation device can produce oxygen-enriched air having an oxygen concentration of 22 mol% to 50 mol% and nitrogen-enriched air having an oxygen concentration of 0.1 mol% to 10 mol%. Or the system of 2. 前記空気分離装置への空気の供給圧力が、0.02MPaG以上1MPaG以下の範囲に制御される、請求項1〜3のいずれか1項に記載のシステム。   The system according to any one of claims 1 to 3, wherein a supply pressure of air to the air separation device is controlled in a range of 0.02 MPaG to 1 MPaG. 前記空気分離装置の酸素富化空気排出側が大気圧以下に減圧された、請求項1〜4のいずれか1項に記載のシステム。   The system according to any one of claims 1 to 4, wherein the oxygen-enriched air discharge side of the air separator is depressurized to an atmospheric pressure or lower. 前記空気分離装置がガス分離膜を含む、請求項1〜5のいずれか1項に記載のシステム。   The system according to claim 1, wherein the air separation device includes a gas separation membrane. 前記空気分離膜装置が、ガス分離膜にパージ用空気を供給できる構造を有する、請求項〜6のいずれか1項に記載のシステム。   The system according to claim 1, wherein the air separation membrane device has a structure capable of supplying purge air to the gas separation membrane. 製造される窒素富化空気の大気圧露点が−20℃以下である、請求項1〜7のいずれか1項に記載のシステム。   The system according to claim 1, wherein the produced nitrogen-enriched air has an atmospheric pressure dew point of −20 ° C. or lower. 0.02MPaG〜1MPaGの圧縮空気を空気分離装置に供給する工程と、
前記空気分離装置により酸素濃度22モル%以上50モル%以下の酸素富化空気と酸素濃度0.1モル%以上10モル%以下の窒素富化空気とを製造する工程と、
を含み、
前記圧縮空気の圧力を調整することにより酸素富化空気の流量を制御し、かつ、
窒素富化空気の流量を調整することにより酸素富化空気の酸素濃度を制御する、酸素富化空気と窒素富化空気の製造方法。
Supplying compressed air of 0.02 MPaG to 1 MPaG to the air separation device;
Producing oxygen-enriched air having an oxygen concentration of 22 mol% or more and 50 mol% or less and nitrogen-enriched air having an oxygen concentration of 0.1 mol% or more and 10 mol% or less by the air separator;
Including
Controlling the flow rate of the oxygen-enriched air by adjusting the pressure of the compressed air; and
A method for producing oxygen-enriched air and nitrogen-enriched air, wherein the oxygen concentration of oxygen-enriched air is controlled by adjusting the flow rate of nitrogen-enriched air.
請求項9の製造方法により製造された窒素富化空気の防爆用ガスおよび/または計装空気としての使用。   Use of nitrogen-enriched air produced by the production method of claim 9 as explosion-proof gas and / or instrumentation air.
JP2011188042A 2011-08-30 2011-08-30 System and method for producing oxygen-enriched air Expired - Fee Related JP5780063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188042A JP5780063B2 (en) 2011-08-30 2011-08-30 System and method for producing oxygen-enriched air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188042A JP5780063B2 (en) 2011-08-30 2011-08-30 System and method for producing oxygen-enriched air

Publications (2)

Publication Number Publication Date
JP2013049008A true JP2013049008A (en) 2013-03-14
JP5780063B2 JP5780063B2 (en) 2015-09-16

Family

ID=48011541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188042A Expired - Fee Related JP5780063B2 (en) 2011-08-30 2011-08-30 System and method for producing oxygen-enriched air

Country Status (1)

Country Link
JP (1) JP5780063B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699160A (en) * 2013-12-24 2014-04-02 北京航天时代光电科技有限公司 High-precision gas quantitative and constant-pressure supply device
CN106044719A (en) * 2016-08-10 2016-10-26 济南美迪宇能科技有限公司 Modular molecular sieve oxygenerator
JP2017170381A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Gas separation device
CN112292195A (en) * 2018-06-18 2021-01-29 麦克罗普罗格尔有限公司 Method for controlling gas generation
CN114295527A (en) * 2021-12-27 2022-04-08 杭州哲达科技股份有限公司 Monitoring system for monitoring operation of membrane module in real time and analysis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024442A (en) * 1998-07-10 2000-01-25 Ube Ind Ltd Nitrogen enriching device
JP2001206707A (en) * 2000-01-19 2001-07-31 Nippon Mitsubishi Oil Corp Nitrogen filling device
JP2002068081A (en) * 2000-09-01 2002-03-08 Nippon Sensui Kyokai Nitrogen-oxygen mixture gas manufacturing and supplying system for air-supplied-type diving
JP2002326807A (en) * 2001-05-07 2002-11-12 Nishishiba Electric Co Ltd Generator of nitrogen and oxygen
JP2004255287A (en) * 2003-02-26 2004-09-16 Ube Ind Ltd Apparatus and method for preparing oxygen-enriched air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024442A (en) * 1998-07-10 2000-01-25 Ube Ind Ltd Nitrogen enriching device
JP2001206707A (en) * 2000-01-19 2001-07-31 Nippon Mitsubishi Oil Corp Nitrogen filling device
JP2002068081A (en) * 2000-09-01 2002-03-08 Nippon Sensui Kyokai Nitrogen-oxygen mixture gas manufacturing and supplying system for air-supplied-type diving
JP2002326807A (en) * 2001-05-07 2002-11-12 Nishishiba Electric Co Ltd Generator of nitrogen and oxygen
JP2004255287A (en) * 2003-02-26 2004-09-16 Ube Ind Ltd Apparatus and method for preparing oxygen-enriched air

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699160A (en) * 2013-12-24 2014-04-02 北京航天时代光电科技有限公司 High-precision gas quantitative and constant-pressure supply device
CN103699160B (en) * 2013-12-24 2016-02-10 北京航天时代光电科技有限公司 The quantitative level pressure feeding mechanism of a kind of high-precision gas
JP2017170381A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Gas separation device
CN106044719A (en) * 2016-08-10 2016-10-26 济南美迪宇能科技有限公司 Modular molecular sieve oxygenerator
CN112292195A (en) * 2018-06-18 2021-01-29 麦克罗普罗格尔有限公司 Method for controlling gas generation
CN112292195B (en) * 2018-06-18 2023-07-14 麦克罗普罗格尔有限公司 Method for controlling gas generation
CN114295527A (en) * 2021-12-27 2022-04-08 杭州哲达科技股份有限公司 Monitoring system for monitoring operation of membrane module in real time and analysis method
CN114295527B (en) * 2021-12-27 2023-11-21 杭州哲达科技股份有限公司 Monitoring system for monitoring operation of membrane module in real time and analysis method

Also Published As

Publication number Publication date
JP5780063B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5780063B2 (en) System and method for producing oxygen-enriched air
Liu et al. CO2/N2 separation by poly (ether block amide) thin film hollow fiber composite membranes
Poloncarzova et al. Effective Purification of Biogas by a Condensing‐Liquid Membrane
Lin et al. Membrane-based oxygen-enriched combustion
Ramírez-Morales et al. Evaluation of two gas membrane modules for fermentative hydrogen separation
KR101354680B1 (en) Carbon dioxide separating apparatus using silicone separators
Kárászová et al. A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane
KR20170102266A (en) Process for separation of gases with reduced maintenance costs
US9937464B2 (en) Device for separating carbon dioxide using silicone separation film and method for manufacturing same
US20130032028A1 (en) Method for operating gas separation device
JP2019520198A (en) Process and equipment for gas separation
Ramezani et al. A review on hollow fiber membrane contactors for carbon capture: Recent advances and future challenges
JP5948853B2 (en) Gas separation system
Imtiaz et al. Challenges, opportunities and future directions of membrane technology for natural gas purification: a critical review
JP6953764B2 (en) Biogas Concentration System and Biogas Concentration Method
Soto et al. Recent advances in membrane-based biogas and biohydrogen upgrading
Harlacher et al. Gas–gas separation by membranes
US7449047B2 (en) Method and device for separating a gas flow using a membrane for enriching at least one gas component in the gas flow
Rahimalimamaghani et al. Carbon molecular sieve membranes for selective CO2/CH4 and CO2/N2 separation: Experimental study, optimal process design, and economic analysis
JP5982876B2 (en) Gas separation system
EP2576010B1 (en) A process for enriching of methane in biogas from sewerage plants or agricultural basic industries in methane and an apparatus for carrying out the same
Guiver Field grand challenge for membrane science and technology
JP6102130B2 (en) Carbon dioxide recovery system and carbon dioxide recovery method
JP2001333639A (en) Carbon dioxide fertilizing to plant using highly selectable separation membrane of carbon dioxide
Grekou et al. Tailor-Made Modification of Commercial Ceramic Membranes for Environmental and Energy-Oriented Gas Separation Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5780063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees