JP2013048096A - Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same - Google Patents

Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same Download PDF

Info

Publication number
JP2013048096A
JP2013048096A JP2012204121A JP2012204121A JP2013048096A JP 2013048096 A JP2013048096 A JP 2013048096A JP 2012204121 A JP2012204121 A JP 2012204121A JP 2012204121 A JP2012204121 A JP 2012204121A JP 2013048096 A JP2013048096 A JP 2013048096A
Authority
JP
Japan
Prior art keywords
electrode
enzyme
fuel cell
cathode electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204121A
Other languages
Japanese (ja)
Inventor
Takaaki Nakagawa
貴晶 中川
Atsushi Sato
敦 佐藤
Hideki Sakai
秀樹 酒井
Tsukasa Hatakeyama
士 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012204121A priority Critical patent/JP2013048096A/en
Publication of JP2013048096A publication Critical patent/JP2013048096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell, a usage of the same, a cathode electrode for the same, an electrode reaction utilization apparatus, and an electrode for the same, capable of achieving a reaction environment allowing sufficient exhibition of excellent electrode characteristics.SOLUTION: In a fuel cell 10 which holds an electrolytic solution 7 between a cathode electrode 1 and an anode electrode 5, the cathode electrode 1 is composed of a porous material, such as carbon, fixed with an enzyme and at least a portion of the cathode electrode 1 is made to contact a reaction substrate of a gas phase. To the cathode electrode 1, an electron transfer mediator is preferably fixed in addition to the enzyme. For the reaction substrate of a gas phase, air or oxygen is used, for example.

Description

この発明は、燃料電池、燃料電池の使用方法、燃料電池用カソード電極、電子機器、電極反応利用装置および電極反応利用装置用電極に関し、例えば、携帯電話などの各種の電子機器の電源に用いられる燃料電池に適用して好適なものである。   The present invention relates to a fuel cell, a fuel cell usage method, a fuel cell cathode electrode, an electronic device, an electrode reaction utilization device, and an electrode reaction utilization device electrode, and is used, for example, as a power source for various electronic devices such as mobile phones. It is suitable for application to a fuel cell.

生物内で行われている生体代謝は基質選択性が高く、極めて高効率の反応機構であり、室温・中性の比較的穏やかな雰囲気下で反応が進行するという特徴を有している。ここで言う生体代謝には、酸素や糖類・脂肪・タンパク質など種々の栄養素を、微生物や細胞の成長に必要なエネルギーに変換する呼吸や光合成などが含まれる。
このような生体内反応には、タンパク質からなる生体触媒、すなわち酵素が大きく関与している。この酵素の触媒作用を利用するという考え方は、人類の歴史とともに古くから実践されてきた。
Biological metabolism carried out in living organisms has a high substrate selectivity, is an extremely efficient reaction mechanism, and has a feature that the reaction proceeds in a relatively mild atmosphere at room temperature and neutrality. The biological metabolism mentioned here includes respiration and photosynthesis that convert various nutrients such as oxygen, sugars, fats and proteins into energy necessary for the growth of microorganisms and cells.
In such in vivo reactions, biocatalysts consisting of proteins, that is, enzymes, are greatly involved. The idea of utilizing the catalytic action of this enzyme has been practiced for a long time with the history of mankind.

特に酵素を固定化して使用するという考え方や手法は、従来においても種々の技術的検討がなされている。酵素を高密度で固定化することにより、少量で高い触媒性能を示し、かつ特異性の高い酵素を一般の化学反応に用いられているような固体触媒と同様に取り扱うことができ、酵素の利用方法として非常に有用であることが知られている。
酵素を固定化して使用することの応用範囲は、醸造業、発酵業、繊維工業、皮革工業、食品工業、医薬品工業など多種にわたり、近年においては、その触媒機能を電極系に組み込んだバイオセンサー、バイオリアクター、バイオ燃料電池など、エレクトロニクス分野への応用も検討されてきている。
In particular, various technical studies have been made on the concept and method of immobilizing an enzyme. By immobilizing the enzyme at a high density, it shows high catalytic performance in a small amount and can handle highly specific enzymes in the same way as solid catalysts used in general chemical reactions. It is known to be very useful as a method.
The application range of immobilizing an enzyme is various, such as brewing industry, fermentation industry, textile industry, leather industry, food industry, pharmaceutical industry, and in recent years, a biosensor incorporating its catalytic function in an electrode system, Applications in the field of electronics such as bioreactors and biofuel cells are also being studied.

従来、生体代謝を燃料電池に利用する技術に関しては、微生物中で発生した電気エネルギーを電子メディエータを介して微生物外に取り出し、この電子を電極に渡すことで電流を得るという、微生物電池についての報告がなされている(例えば、特許文献1参照)。これは、エネルギーの取り出しに酵素が用いられる技術に関するものである。
ところで、燃料電池に酵素を使用する技術を応用する場合において、電極上に酵素を高密度で固定化することにより、電極近傍で起こっている酵素反応現象を効率良く電気信号として捉えることが可能となる。
Conventionally, regarding the technology that uses biometabolism for fuel cells, a report on microbial cells in which electric energy generated in microorganisms is taken out of the microorganisms via an electron mediator and current is obtained by passing these electrons to electrodes. (For example, refer to Patent Document 1). This relates to a technique in which an enzyme is used to extract energy.
By the way, when applying technology that uses an enzyme to a fuel cell, it is possible to efficiently capture the enzyme reaction phenomenon occurring near the electrode as an electrical signal by immobilizing the enzyme on the electrode at a high density. Become.

なお、電極系を検討する場合、タンパク質である酵素と電極との間では、一般的に、電子媒介が起こり難いため、電子伝達媒体(電子伝達メディエータ)となる電子受容体化合物が必要となるが、この電子受容体化合物も酵素と同様に電極上に固定化することが望ましい。
一方、酵素の触媒作用が進行するためには、電子やプロトンの移動を可能にする環境下であることが不可欠であり、上述したような酵素および電子受容体化合物を固定化した機能性電極(酵素固定化電極)に関しても同様のことが言える。
In addition, when examining an electrode system, an electron acceptor compound that is an electron transfer medium (electron transfer mediator) is required because electron mediation is generally difficult between an enzyme, which is a protein, and an electrode. This electron acceptor compound is also preferably immobilized on the electrode in the same manner as the enzyme.
On the other hand, in order for the catalytic action of the enzyme to proceed, it is indispensable to be in an environment that allows movement of electrons and protons, and a functional electrode (on which an enzyme and an electron acceptor compound as described above are immobilized ( The same can be said for the enzyme-immobilized electrode.

このような酵素固定化電極の評価を行う場合、有機溶媒中では酵素の活性低下が懸念されることから、従来においては、水あるいは緩衝液(緩衝溶液)中での評価が一般的であった。
このとき、酵素触媒反応の反応基質となる物質は、水あるいは緩衝液に溶解した方が均一に、かつ効率良く酵素の触媒作用を受けるようにすることができる。
When evaluating such an enzyme-immobilized electrode, there is a concern that the activity of the enzyme may be reduced in an organic solvent, and thus, conventionally, evaluation in water or a buffer solution (buffer solution) has been common. .
At this time, the substance serving as a reaction substrate for the enzyme-catalyzed reaction can be more uniformly and efficiently catalyzed by the enzyme when dissolved in water or a buffer solution.

しかしながら、反応基質となる物質を、水あるいは緩衝液に溶解させる場合、これらの溶解度は物質固有の物性値であるため制限があり、これによって電極反応も制限されてしまう。
特に酸素は、空気中と比較して溶液中の溶存酸素濃度は非常に小さい物質であり、これにより、電極反応に著しい制限が課せられることになる。また、溶液中の酸素拡散は、空気中の酸素拡散と比べて非常に大きい。
上述したことから、反応基質として酸素を適用する場合において、水あるいは緩衝液を用いると、この水あるいは緩衝液への酸素の溶解度によって電極反応に限界が生じてしまい、これは酵素を燃料電池に実用化する上での大きな技術上の解決課題であると言える。
However, when a substance serving as a reaction substrate is dissolved in water or a buffer solution, the solubility is limited because it is a physical property value specific to the substance, and this limits the electrode reaction.
In particular, oxygen is a substance having a very small dissolved oxygen concentration in the solution as compared with air, which places a significant limitation on the electrode reaction. Also, the oxygen diffusion in the solution is much larger than the oxygen diffusion in the air.
From the above, when oxygen is applied as a reaction substrate, if water or a buffer solution is used, the electrode reaction is limited by the solubility of oxygen in the water or buffer solution. It can be said that this is a major technical solution for practical application.

しかも、使用される酵素固定化電極の触媒作用が優れているほど、反応基質となる物質の電極への供給が反応全体の律速となるため、物質固有の水あるいは緩衝液への溶解度によって制限されてしまうことにより、優れた酵素固定化電極特性を充分に発揮できないという問題があった。
このようなことから、溶液中における溶存酸素を反応基質とした系においては、酸素分圧を高めたり、溶液を攪拌したりすることにより、酸素の供給量を増大化させて、酵素固定化電極としての機能を向上させていた(例えば、非特許文献1参照。)。
In addition, the better the catalytic action of the enzyme-immobilized electrode used, the more the rate of supply of the substance as the reaction substrate to the electrode becomes the rate of the whole reaction, so it is limited by the solubility of the substance in water or buffer. As a result, there has been a problem that excellent enzyme-immobilized electrode characteristics cannot be fully exhibited.
For this reason, in a system using dissolved oxygen in the solution as a reaction substrate, the oxygen supply amount is increased by increasing the oxygen partial pressure or stirring the solution, and the enzyme-immobilized electrode As a function (see, for example, Non-Patent Document 1).

特開2000−133297号公報JP 2000-133297 A

N.Mano, H.H Kim, Y.Zhang and A.Heller, J. Am. Chem. Soc. 124 ( 2002) 6480N. Mano, H. H Kim, Y. Zhang and A. Heller, J. Am. Chem. Soc. 124 (2002) 6480

上述したように、従来は、酵素を用いた酸素還元電極においては、液中で反応させる構成を採りつつ、酸素分圧を高くしたり、溶液を攪拌したりすることによって酸素供給量を増加させて電極反応効率の向上を図っていた。
しかしながら、燃料電池の実用化の観点からは、酸素分圧を高めたり、溶液を攪拌することにより酸素供給量を高めたりするという操作は、設計上不向きである。
すなわち、静止した条件下で反応を行うことが必要であることや、溶存酸素の拡散律速の観点から、酸素供給量には制限があり、大きな酸素還元電流を得ることが困難である。
そこで、この発明は、優れた電極特性を充分に発揮することのできる反応環境を実現することができる燃料電池、この燃料電池の使用方法、この燃料電池に用いて好適な燃料電池用カソード電極およびこの燃料電池を搭載した電子機器を提供することである。
この発明は、より一般的には、優れた電極特性を充分に発揮することのできる反応環境を実現することができる燃料電池その他の電極反応利用装置および電極反応利用装置用電極を提供することである。
As described above, conventionally, in an oxygen reduction electrode using an enzyme, the oxygen supply amount is increased by increasing the oxygen partial pressure or stirring the solution while adopting a structure in which the reaction is performed in the liquid. Thus, the electrode reaction efficiency was improved.
However, from the viewpoint of putting the fuel cell to practical use, operations such as increasing the oxygen partial pressure or increasing the oxygen supply amount by stirring the solution are unsuitable for design.
That is, it is difficult to obtain a large oxygen reduction current because there is a limit to the amount of oxygen supplied from the standpoint of performing the reaction under stationary conditions and from the viewpoint of limiting the diffusion rate of dissolved oxygen.
Accordingly, the present invention provides a fuel cell capable of realizing a reaction environment that can sufficiently exhibit excellent electrode characteristics, a method of using the fuel cell, a cathode electrode for a fuel cell suitable for use in the fuel cell, and It is to provide an electronic device equipped with this fuel cell.
More generally, the present invention provides a fuel cell and other electrode reaction utilization device and an electrode for an electrode reaction utilization device capable of realizing a reaction environment capable of sufficiently exhibiting excellent electrode characteristics. is there.

本発明者らは、従来技術が有する上記の課題を解決するために鋭意研究を行った結果、酵素触媒反応における反応基質を、酵素を固定した多孔質材料、より一般的には電気伝導性を有し、かつ気体が透過可能な材料からなる電極に、気体として直接的に接触供給することを創案し、この方法で実際に酵素が気相の反応基質と効率良く酵素触媒反応を起こすことを実験的に確認した。本発明者らが知る限り、これまで、酵素触媒反応において、気相の反応基質を用いる報告は皆無であり、上述のように水あるいは緩衝液への浸漬が不可欠であったが、このように気相の反応基質を用いることが可能になったことにより、上記の課題を一挙に解決することができる。   As a result of diligent research to solve the above-mentioned problems of the prior art, the present inventors have determined that the reaction substrate in the enzyme-catalyzed reaction is a porous material with an enzyme immobilized, more generally, electrical conductivity. It was devised to directly contact and supply as a gas to an electrode made of a gas permeable material, and in this method, an enzyme actually causes an enzyme-catalyzed reaction with a gas phase reaction substrate. Confirmed experimentally. As far as the present inventors know, there have been no reports of using gas phase reaction substrates in enzyme-catalyzed reactions, and immersion in water or a buffer solution was indispensable as described above. By using a gas phase reaction substrate, the above problems can be solved all at once.

この発明は、以上の知見に基づいて案出されたものである。
すなわち、上記課題を解決するために、第1の発明は、
カソード電極とアノード電極との間にプロトン伝導体を挟持する燃料電池において、
カソード電極が、電気伝導性を有し、かつ気体が透過可能な材料に酵素が固定されたものであり、カソード電極の少なくとも一部が気相の反応基質と接触するように構成されていることを特徴とするものである。
第2の発明は、
電気伝導性を有し、かつ気体が透過可能な材料に酵素が固定されていることを特徴とする燃料電池用カソード電極である。
The present invention has been devised based on the above knowledge.
That is, in order to solve the above problem, the first invention
In a fuel cell in which a proton conductor is sandwiched between a cathode electrode and an anode electrode,
The cathode electrode is configured such that an enzyme is immobilized on a material that is electrically conductive and permeable to gas, and at least a part of the cathode electrode is configured to contact a gas phase reaction substrate. It is characterized by.
The second invention is
A cathode for a fuel cell, characterized in that an enzyme is fixed to a material that has electrical conductivity and is permeable to gas.

第3の発明は、
カソード電極とアノード電極との間にプロトン伝導体を挟持する燃料電池を搭載した電子機器において、
燃料電池は、カソード電極が電気伝導性を有し、かつ気体が透過可能な材料に酵素が固定されたものであり、カソード電極の少なくとも一部が気相の反応基質と接触するように構成されていることを特徴とするものである。
The third invention is
In an electronic device equipped with a fuel cell that sandwiches a proton conductor between a cathode electrode and an anode electrode,
The fuel cell has a structure in which at least a part of the cathode electrode is in contact with a gas phase reaction substrate, in which the cathode electrode is electrically conductive and an enzyme is immobilized on a gas-permeable material. It is characterized by that.

第1〜第3の発明において、電気伝導性を有し、かつ気体が透過可能な材料は電極基板となるものであるが、この材料は、電極として用いることができる程度に良好な電気伝導性を有し、かつ気体が透過可能な内部構造を有するものであれば、基本的にはどのようなものであっても良いが、特に炭素(カーボン)などからなる高比表面積を有する多孔質材料は反応面積を稼ぐ上で有利であり、好ましい。   In the first to third inventions, the material having electrical conductivity and allowing the gas to permeate is an electrode substrate. This material has an electrical conductivity that is good enough to be used as an electrode. Basically, any material can be used as long as it has an internal structure that allows gas to pass therethrough, and in particular, a porous material having a high specific surface area made of carbon or the like Is advantageous and preferable for increasing the reaction area.

上記のカソード電極は、少なくともその一部が気相の反応基質と接触した状態で使用するが、使用に際しては、湿潤状態に置くことが還元反応を行わせる上で好ましい。具体的には、カソード電極を緩衝液に浸漬するなどして酵素に接触させて濡らしておくことで酵素活性を高めておくことが好ましい。気相の反応基質としては種々のものを用いることができるが、常温・常圧で気相である反応基質は酸素が代表的であり、一般的には空気または酸素ガスとして供給される。酸素は大気中に無尽蔵に存在し、環境への悪影響も全くないことから、その還元反応の利用は極めて有効である。気相の反応基質は、酸素のほかに例えばNOx を用いても良い。また、気相の反応基質は、気化可能な物質であれば、基本的には適用可能である。気相の反応基質は、カソード電極を液相中に置いて気泡の形で供給するようにしても良い。 The cathode electrode is used in a state in which at least a part thereof is in contact with a gas phase reaction substrate. In use, it is preferable to place the cathode electrode in a wet state in order to perform the reduction reaction. Specifically, it is preferable to increase the enzyme activity by immersing the cathode electrode in a buffer solution so that the cathode electrode is contacted with the enzyme and moistened. Various reaction substrates can be used as the gas phase, but oxygen is typically used as the reaction substrate that is in the gas phase at normal temperature and pressure, and is generally supplied as air or oxygen gas. Since oxygen is inexhaustible in the atmosphere and has no adverse effect on the environment, the use of its reduction reaction is extremely effective. As the gas phase reaction substrate, for example, NO x may be used in addition to oxygen. The gas phase reaction substrate is basically applicable as long as it is a vaporizable substance. The gas phase reaction substrate may be supplied in the form of bubbles by placing the cathode electrode in the liquid phase.

カソード電極の材料には、好適には酵素に加えて電子伝達メディエータが固定される。この電子伝達メディエータは本来、酵素反応によりこの電子伝達メディエータに受け渡される電子をカソード電極に受け渡すためのものであるが、この電子伝達メディエータをカソード電極の材料に充分高濃度に固定することにより、この電子伝達メディエータを一時的に電子を蓄積するための電子プールとして使用することが可能である。すなわち、これまでのバイオ燃料電池では、電池の持つ限界出力に対して低出力で放電しているときや無限抵抗に接続されているときに余った能力を生かすことができず、限界出力以上の出力を発電することも不可能であり、酸素濃度・燃料濃度が一時的に低下すると非常にセンシティブに出力に影響する問題点があったが、これらは電子伝達メディエータを電子プールとして使用することにより一挙に解決することができる。この場合、この電子伝達メディエータはカソード電極表面に充分に高濃度に固定するのが好ましく、具体的には、カソード電極表面の単位面積当たり平均値で例えば0.64×10-6mol/mm2 以上固定するのが好ましい。この電子伝達メディエータへの電子の蓄積は、バイオ燃料電池の外部回路に負荷として無限抵抗が接続されている時または低電力供給時において、酵素の余っている触媒能を最大限に活用することで、自発的に電子伝達メディエータに電子を一時的に蓄積する、すなわち充電することが可能となる。また、バイオ燃料電池の持つ限界出力以上の出力が必要になった時においても、バイオ燃料電池の触媒能に加えて、充電した電子伝達メディエータを利用することで、限界出力以上の出力が可能となる。電子プールとなる電子伝達メディエータは、アノード電極にも固定するようにしてもよい。
カソード電極とアノード電極との間に挟持するプロトン伝導体は電解質などである。
In addition to the enzyme, an electron transfer mediator is preferably fixed to the cathode electrode material. This electron transfer mediator is originally intended to transfer electrons transferred to the electron transfer mediator by an enzyme reaction to the cathode electrode. By fixing the electron transfer mediator to the cathode electrode material at a sufficiently high concentration, This electron transfer mediator can be used as an electron pool for temporarily accumulating electrons. In other words, conventional biofuel cells cannot take advantage of their extra capacity when discharged at a low output relative to the limit output of the battery or when connected to an infinite resistance, exceeding the limit output. It is also impossible to generate power, and there was a problem that the output was very sensitively affected when the oxygen concentration and fuel concentration were temporarily reduced, but these were caused by using an electron transfer mediator as an electron pool. It can be solved all at once. In this case, this electron transfer mediator is preferably fixed at a sufficiently high concentration on the surface of the cathode electrode. Specifically, for example, the average value per unit area of the cathode electrode surface is 0.64 × 10 −6 mol / mm 2. It is preferable to fix the above. The accumulation of electrons in this electron transfer mediator is achieved by making the best use of the remaining catalytic ability of the enzyme when an infinite resistance is connected as a load to the external circuit of the biofuel cell or when supplying low power. It becomes possible to store electrons temporarily in the electron transfer mediator spontaneously, that is, to charge them. In addition to biocatalyst's catalytic ability, when it is necessary to output more than the limit output of a biofuel cell, it is possible to output more than the limit output by using a charged electron transfer mediator. Become. You may make it fix the electron transfer mediator used as an electron pool also to an anode electrode.
The proton conductor sandwiched between the cathode electrode and the anode electrode is an electrolyte or the like.

電子機器は、基本的にはどのようなものであっても良く、携帯型のものと据え置き型のものとの双方を含むが、具体例を挙げると、携帯電話、モバイル機器、ロボット、パーソナルコンピュータ、車載機器、各種家庭電気製品などである。   Electronic devices can be basically any type, including both portable and stationary devices. Specific examples include mobile phones, mobile devices, robots, and personal computers. , In-vehicle equipment, various home appliances.

第4の発明は、
カソード電極とアノード電極との間にプロトン伝導体を挟持し、カソード電極が、電気伝導性を有し、かつ気体が透過可能な材料に酵素および電子伝達メディエータが固定されたものであり、この電子伝達メディエータにより、電子を蓄積する電子プールが形成され、カソード電極の少なくとも一部を気相の反応基質と接触させることにより発電を行う燃料電池の使用方法であって、
カソード電極に対する反応基質の供給が停止した時、カソード電極に対する反応基質の供給が減少した時、または、出力を増加させる時、電子プールからカソード電極に電子を供給するようにした
ことを特徴とするものである。
この第4の発明においては、上記以外のことは、その性質に反しない限り、第1〜第3の発明に関連して説明したことが成立する。
The fourth invention is:
A proton conductor is sandwiched between a cathode electrode and an anode electrode, and the cathode electrode is an electrically conductive and gas permeable material in which an enzyme and an electron transfer mediator are fixed. A method of using a fuel cell in which an electron pool for accumulating electrons is formed by a transfer mediator, and power is generated by bringing at least a part of a cathode electrode into contact with a gas phase reaction substrate,
When the supply of the reaction substrate to the cathode electrode is stopped, the supply of the reaction substrate to the cathode electrode is decreased, or the output is increased, electrons are supplied from the electron pool to the cathode electrode. Is.
In the fourth aspect of the present invention, what has been described in relation to the first to third aspects of the present invention is valid as long as not otherwise contrary to the nature thereof.

第5の発明は、
一対の電極を有する電極反応利用装置において、
一対の電極のうちの一つの電極が、電気伝導性を有し、かつ気体が透過可能な材料に酵素が固定されたものであり、電極の少なくとも一部が気相の反応基質と接触するように構成されていることを特徴とするものである。
The fifth invention is:
In the electrode reaction utilization apparatus having a pair of electrodes,
One of the pair of electrodes is one in which an enzyme is fixed to a material that is electrically conductive and permeable to gas so that at least a part of the electrode is in contact with a gas phase reaction substrate. It is comprised by these.

第6の発明は、
電気伝導性を有し、かつ気体が透過可能な材料に酵素が固定されていることを特徴とする電極反応利用装置用電極である。
電極反応利用装置としては、具体的には、例えば、生体代謝を模倣した、バイオ燃料電池、バイオセンサー、バイオリアクターなどが挙げられる。電極反応利用装置の一対の電極は、例えば、バイオ燃料電池においてはカソード電極およびアノード電極であり、バイオリアクターにおいては作用電極(ワーキング電極)および対向電極である。
第5および第6の発明においては、上記以外のことは、その性質に反しない限り、第1〜第3の発明に関連して説明したことが成立する。
上述のように構成されたこの発明においては、電気伝導性を有し、かつ気体が透過可能な材料に酵素が固定されたカソード電極の少なくとも一部が気相の反応基質と接触するように構成されていることにより、カソード電極に固定化した酵素が触媒となって気相の反応基質、例えば空気または酸素ガスとして供給される酸素の還元が起こる。この場合、溶液中における溶存酸素を反応基質に用いる場合に比べて反応基質の供給量の制限がなく、優れた効率で酵素触媒反応を行うことが可能となり、大きな還元電流を得ることができ、実用的に優れた発電効率を実現可能である。また、この燃料電池あるいは電極反応利用装置は、構造的にも簡易である。
The sixth invention is:
An electrode for an electrode reaction utilization device, wherein an enzyme is fixed to a material that has electrical conductivity and is permeable to gas.
Specific examples of the electrode reaction utilization device include a biofuel cell, a biosensor, a bioreactor and the like that mimic biological metabolism. The pair of electrodes of the electrode reaction utilization device is, for example, a cathode electrode and an anode electrode in a biofuel cell, and a working electrode (working electrode) and a counter electrode in a bioreactor.
In the fifth and sixth inventions, what has been described in relation to the first to third inventions holds true for the matters other than those described above, as long as they are not contrary to their properties.
In the present invention configured as described above, at least a part of the cathode electrode in which an enzyme is immobilized on a gas-permeable material is in contact with a gas phase reaction substrate. As a result, the enzyme immobilized on the cathode electrode serves as a catalyst to reduce oxygen supplied as a gas phase reaction substrate, for example, air or oxygen gas. In this case, compared to the case where dissolved oxygen in the solution is used as a reaction substrate, there is no limitation on the supply amount of the reaction substrate, it is possible to perform an enzyme-catalyzed reaction with excellent efficiency, and a large reduction current can be obtained. Practical power generation efficiency can be realized. In addition, this fuel cell or electrode reaction utilization device is structurally simple.

この発明によれば、酵素固定化電極の優れた電極特性を充分に発揮することのできる反応環境を実現することができる。そして、高効率のバイオ燃料電池のほか、バイオセンサー、バイオリアクターなどの各種の高効率の電極反応利用装置を実現することができる。この電極反応利用装置によれば、環境リメディエーションや汚染物の分解を気相中で行うことが可能となり、この技術を用いたバイオセンサーでは基質選択性が広がり、新たなセンシングを行うことが可能となる。   According to this invention, it is possible to realize a reaction environment in which the excellent electrode characteristics of the enzyme-immobilized electrode can be sufficiently exhibited. In addition to high-efficiency biofuel cells, various high-efficiency electrode reaction utilization devices such as biosensors and bioreactors can be realized. According to this electrode reaction utilization device, environmental remediation and decomposition of contaminants can be performed in the gas phase, and biosensors using this technology can expand substrate selectivity and enable new sensing. It becomes.

この発明の一実施形態による燃料電池の概略構成図である。It is a schematic block diagram of the fuel cell by one Embodiment of this invention. 比較例における電極構成を示す略線図である。It is a basic diagram which shows the electrode structure in a comparative example. 実施例における電極構成を示す略線図である。It is a basic diagram which shows the electrode structure in an Example. 実施例サンプルおよび比較例サンプルのI−t測定結果を示す略線図である。It is a basic diagram which shows the It measurement result of an Example sample and a comparative example sample. この発明の一実施形態による燃料電池の概略構成図である。It is a schematic block diagram of the fuel cell by one Embodiment of this invention. 燃料電池を用いたときのI−t測定結果を示す略線図である。It is a basic diagram which shows the It measurement result when using a fuel cell. 電子伝達メディエータの濃度を変えたときのI−t測定結果を示す略線図である。It is a basic diagram which shows the It measurement result when the density | concentration of an electron transfer mediator is changed. この発明の一実施形態による燃料電池のより実用に適した構成例を示す概略構成図である。It is a schematic block diagram which shows the structural example more suitable for practical use of the fuel cell by one Embodiment of this invention.

以下、この発明の一実施形態について図面を参照しながら説明する。
図1はこの発明の一実施形態による燃料電池を示す。
図1に示すように、この一実施形態による燃料電池10は、カソード電極(正極)1を具備する第1構成部11と、アノード電極(負極)5を具備する第2構成部12とにより構成されており、これらの一対の電極がプロトン伝導体としての電解質溶液7を挟持した構成を有している。
カソード電極1は、例えばカーボンなどの多孔質材料の、電解質溶液7側の表面に酵素が固定された酵素固定化電極よりなる。酵素としては、酸素を反応基質とするオキシダーゼ活性を有する酵素、例えばラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼなどを用いることができる。また、多孔質材料には、酵素に加えて電子伝達メディエータも固定化することが望ましく、より望ましくは充分に高濃度、例えば、平均値で0.64×10-6mol/mm2 以上固定化する。これらの酵素および電子伝達メディエータを固定化する手法としては、従来公知のいずれの方法を用いても良く、特に従来、水あるいは緩衝液のpHやイオン強度などに影響を受けやすかった固定化手法の利用も可能である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a fuel cell according to an embodiment of the present invention.
As shown in FIG. 1, the fuel cell 10 according to this embodiment includes a first component 11 having a cathode electrode (positive electrode) 1 and a second component 12 having an anode electrode (negative electrode) 5. The pair of electrodes has a configuration in which an electrolyte solution 7 as a proton conductor is sandwiched.
The cathode electrode 1 is composed of an enzyme-immobilized electrode made of a porous material such as carbon and having an enzyme immobilized on the surface on the electrolyte solution 7 side. As the enzyme, an enzyme having oxidase activity using oxygen as a reaction substrate, for example, laccase, bilirubin oxidase, ascorbate oxidase and the like can be used. In addition to the enzyme, it is desirable to immobilize the electron transfer mediator in addition to the enzyme. More desirably, the porous material has a sufficiently high concentration, for example, an average value of 0.64 × 10 −6 mol / mm 2 or more. To do. As a method for immobilizing these enzymes and electron transfer mediators, any conventionally known method may be used, and in particular, a conventional immobilization method that is easily affected by the pH or ionic strength of water or a buffer solution. Use is also possible.

第1構成部11において、酵素が固定されたカソード電極1は、例えばチタンメッシュよりなる集電体8と積層されており、集電を容易に行うことができる構造となっている。
アノード電極5は、従来公知のプロトン(H+ )を供給し得る電極であれば良く、例えば、水素白金電極、メタノール・ルテニウム・白金電極などのいずれも適用することができる。
第2構成部12において、アノード電極5は、電解質溶液7内に配置されている。電解質溶液7内には、必要に応じて参照電極(図示せず)が設置される。
In the first component 11, the cathode electrode 1 on which the enzyme is immobilized is laminated with a current collector 8 made of, for example, a titanium mesh, so that current collection can be easily performed.
The anode electrode 5 may be any electrode that can supply a conventionally known proton (H + ). For example, any of a hydrogen platinum electrode and a methanol / ruthenium / platinum electrode can be applied.
In the second component 12, the anode electrode 5 is disposed in the electrolyte solution 7. A reference electrode (not shown) is installed in the electrolyte solution 7 as necessary.

電解質溶液7としては、一般的には強酸性(硫酸など)や強塩基性(水酸化カリウムなど)の溶液があるが、バイオ燃料電池においては、カソード電極1に固定化した触媒である酵素がpH7付近においても触媒活性を持つため、pH7付近の緩衝液や水を用いることもできるので、穏やかな環境下である中性条件下においても作動させることができるという利点を有している。   The electrolyte solution 7 is generally a strongly acidic (such as sulfuric acid) or strongly basic (such as potassium hydroxide) solution. In a biofuel cell, an enzyme that is a catalyst immobilized on the cathode electrode 1 is used. Since it has catalytic activity even in the vicinity of pH 7, it is possible to use a buffer solution or water in the vicinity of pH 7, so that it has an advantage that it can be operated even under neutral conditions in a mild environment.

第1構成部11と第2構成部12とは、絶縁性かつプロトン透過性を有する膜、例えばセロハン(メチルセルロース)よりなるセパレータ9によって分離されており、電解質溶液7がカソード電極1側に流入しないようになっている。
燃料電池10においては、カソード電極1を気相の反応基質と接触させる。このためには、カソード電極1の少なくとも一部を気相中に置くことで反応基質と接触させる。カソード電極1は多孔質材料からなるため、このカソード電極1と接触した気相の反応基質はこのカソード電極1の中に入り込むことができ、この多孔質材料に固定された酵素と反応することができるようになっている。
The first component 11 and the second component 12 are separated by an insulating and proton-permeable membrane, for example, a separator 9 made of cellophane (methylcellulose), so that the electrolyte solution 7 does not flow into the cathode electrode 1 side. It is like that.
In the fuel cell 10, the cathode electrode 1 is brought into contact with a gas phase reaction substrate. For this purpose, at least a part of the cathode electrode 1 is brought into contact with the reaction substrate by placing it in the gas phase. Since the cathode electrode 1 is made of a porous material, a gas phase reaction substrate in contact with the cathode electrode 1 can enter the cathode electrode 1 and can react with an enzyme immobilized on the porous material. It can be done.

燃料電池10において、カソード電極1は、このカソード電極1が接触している気相から酸素(O2 )の供給を受けるとともに、電解質溶液7からH+ の供給を受け、カソード電極1に固定化された酵素が触媒となって、下記に示す反応(1)が起こる。一方、アノード電極5においては、これがメタノール・ルテニウム・白金電極の場合には下記に示す反応(2)、水素白金電極の場合には下記に示す反応(3)が起こり、カソード電極1とアノード電極5との間において外部回路を通して電子のやりとりが行われ電流が流れる。
なお、カソード電極1における酸素還元反応は、湿潤状態において良好な反応進行が確認されている。
カソード電極:O2 +4H+ +4e- →2H2 O・・・(1)
アノード電極(メタノール・ルテニウム・白金電極):CH3 OH+H2 O→CO2 +6H+ +6e- ・・・(2)
アノード電極(水素白金電極):H2 →2H+ +2e- ・・・(3)
In the fuel cell 10, the cathode electrode 1 is supplied with oxygen (O 2 ) from the gas phase with which the cathode electrode 1 is in contact, and supplied with H + from the electrolyte solution 7, and is immobilized on the cathode electrode 1. The enzyme (enzyme) used as a catalyst causes the following reaction (1). On the other hand, when the anode electrode 5 is a methanol / ruthenium / platinum electrode, the following reaction (2) occurs. When the anode electrode 5 is a hydrogen platinum electrode, the following reaction (3) occurs. 5 exchanges electrons through an external circuit and current flows.
The oxygen reduction reaction at the cathode electrode 1 has been confirmed to proceed well in a wet state.
Cathode electrode: O 2 + 4H + + 4e → 2H 2 O (1)
Anode electrode (methanol, ruthenium, platinum electrode): CH 3 OH + H 2 O → CO 2 + 6H + + 6e (2)
Anode electrode (hydrogen platinum electrode): H 2 → 2H + + 2e (3)

この発明による燃料電池およびこれを構成するカソード電極としての酵素固定化電極(正極)の具体的なサンプルを作製し、評価を行った。
以下においては、酵素固定化電極について、緩衝液中の溶存酸素を反応基質とした場合と気相中の酸素を反応基質とした場合とで、それぞれについての反応性を評価した。
Specific samples of the fuel cell according to the present invention and an enzyme-immobilized electrode (positive electrode) as a cathode electrode constituting the fuel cell were prepared and evaluated.
In the following, the reactivity of each enzyme-immobilized electrode was evaluated when dissolved oxygen in the buffer was used as the reaction substrate and when oxygen in the gas phase was used as the reaction substrate.

反応基質(酸素)を還元する酵素固定化電極については、気相中の酸素を反応基質としているかを確認するためには、酵素固定化電極の触媒反応速度が、溶存酸素拡散の速度と比較して充分速くなければならない。
そこで、下記に示す例においては、酵素としてビリルビンオキシダーゼを用い、電子伝達メディエータとしてヘキサシアノ鉄酸カリウムを適用することとした。これらを、ポリ−L−リシンの静電相互作用を用いて電極表面に固定化した。
このようにして作製した酵素固定化電極は非常に高い酸素還元能を有することが知られており、溶液中では溶存酸素拡散が律速状態となることが確認されている(Nakagawa, T., Tsujimura, S., Kano, K., and Ikeda, T. Chem. Lett., 32 (1), 54-55 (2003))。
For enzyme-immobilized electrodes that reduce the reaction substrate (oxygen), the catalytic reaction rate of the enzyme-immobilized electrode is compared with the dissolved oxygen diffusion rate in order to confirm whether oxygen in the gas phase is used as the reaction substrate. And fast enough.
Therefore, in the example shown below, bilirubin oxidase was used as the enzyme, and potassium hexacyanoferrate was applied as the electron transfer mediator. These were immobilized on the electrode surface using electrostatic interaction of poly-L-lysine.
The enzyme-immobilized electrode prepared in this way is known to have a very high oxygen reducing ability, and it has been confirmed that dissolved oxygen diffusion is in a rate-limiting state in the solution (Nakagawa, T., Tsujimura S., Kano, K., and Ikeda, T. Chem. Lett., 32 (1), 54-55 (2003)).

まず、酵素固定化電極を次のようにして作製した。
多孔質材料として、市販のカーボンフェルト(TORAY製 B0030)を用い、このカーボンフェルトを直径6mmの円形に打ち抜いた。
次に、ポリ−L−リシン(1wt%)を20μl、電子伝達メディエータであるヘキサシアノ鉄酸イオン(10mM)を10μl、ビリルビンオキシダーゼ(Myrothecium verrucaria)の溶液を10μl(100mg/ml)を上記カーボンフェルトに順に染み込ませ、乾燥することで、酵素固定化電極を得た。
First, an enzyme-immobilized electrode was produced as follows.
As the porous material, a commercially available carbon felt (B0030 made by TORAY) was used, and this carbon felt was punched into a circle having a diameter of 6 mm.
Next, 20 μl of poly-L-lysine (1 wt%), 10 μl of hexacyanoferrate ion (10 mM), which is an electron transfer mediator, and 10 μl (100 mg / ml) of a solution of bilirubin oxidase (Myrothecium verrucaria) are added to the carbon felt. By soaking in order and drying, an enzyme-immobilized electrode was obtained.

〔比較例〕
この例においては、図2に示すような構造の電極構成を有する測定系を組み立てた。
上述したようにして作製した酵素固定化電極101を市販のグラッシーカーボン電極102(BAS社製 No.002012)に、ナイロンネットよりなる固定手段103を用いて物理的に固定して、容易に集電を行うことができる構造の作用電極100を構成した。
[Comparative Example]
In this example, a measurement system having an electrode configuration as shown in FIG. 2 was assembled.
The enzyme-immobilized electrode 101 produced as described above is physically fixed to a commercially available glassy carbon electrode 102 (No. 002012 manufactured by BAS) using a fixing means 103 made of a nylon net to easily collect current. The working electrode 100 having a structure capable of performing the above was configured.

なお、図2においては、酵素固定化電極101は、グラッシーカーボン電極102の先端が視認できるように、このグラッシーカーボン電極102から離れているように見えるが、実際にはこのグラッシーカーボン電極102と物理的に接触している状態であるものとする。
このような構成の電極を酸素飽和状態の緩衝液104に浸漬させ、さらに所定の位置に白金線よりなる対向電極105と参照電極(Ag|AgCl)106とを設置した。
In FIG. 2, the enzyme-immobilized electrode 101 appears to be separated from the glassy carbon electrode 102 so that the tip of the glassy carbon electrode 102 can be visually recognized. It is assumed that they are in contact with each other.
The electrode having such a configuration was immersed in a buffer solution 104 in an oxygen saturation state, and a counter electrode 105 made of a platinum wire and a reference electrode (Ag | AgCl) 106 were installed at predetermined positions.

〔実施例〕
この例においては、図3に示すような構造の電極構成を有する測定系を組み立てた。
上述したようにして作製した酵素固定化電極101を市販のグラッシーカーボン電極102(BAS社製 No.002012)に、ナイロンネットよりなる固定手段103を用いて物理的に固定して、容易に集電を行うことができる構造の作用電極100を構成した。
〔Example〕
In this example, a measurement system having an electrode configuration as shown in FIG. 3 was assembled.
The enzyme-immobilized electrode 101 produced as described above is physically fixed to a commercially available glassy carbon electrode 102 (No. 002012 manufactured by BAS) using a fixing means 103 made of a nylon net to easily collect current. The working electrode 100 having a structure capable of performing the above was configured.

なお、図3においては、酵素固定化電極101は、グラッシーカーボン電極102の先端が視認できるように、このグラッシーカーボン電極102から離れているように見えるが、実際にはこのグラッシーカーボン電極102と物理的に接触している状態であるものとする。
このような構成の電極を緩衝液104の外側に配置し、大気と接触させた状態とした。また、酵素固定化電極101を、カーボンフェルトよりなるリード110により緩衝液104と連結させ、電気化学測定系を構成した。
さらに、所定の位置に白金線よりなる対向電極105と参照電極(Ag|AgCl)106とを設置した。
In FIG. 3, the enzyme-immobilized electrode 101 appears to be separated from the glassy carbon electrode 102 so that the tip of the glassy carbon electrode 102 can be visually recognized. It is assumed that they are in contact with each other.
The electrode having such a configuration was disposed outside the buffer solution 104 and was in contact with the atmosphere. Further, the enzyme-immobilized electrode 101 was connected to the buffer solution 104 by a lead 110 made of carbon felt to constitute an electrochemical measurement system.
Furthermore, a counter electrode 105 made of a platinum wire and a reference electrode (Ag | AgCl) 106 were installed at predetermined positions.

図2および図3に示すような構成の測定系についてそれぞれ電気化学測定を行った。
0.1Vの一定電圧下における、I(電流)−t(時間)測定を行った。測定結果を図4に示す。図2に示した構成の比較例サンプルにおいては、破線Yに示すように、測定開始時より、緩衝液104中の酸素の溶解量に対し、酵素固定化電極101の性能が勝っているため、酸素の枯渇が始まり、酸素還元による触媒電流は徐々に減少し、最終的に17μA/cm2 となった。
一方、実施例サンプルにおいては、カーボンフェルトよりなるリード110を緩衝液104に浸したとき、触媒作用による電流値は3μA/cm2 であった(図4中、実線Xの状態A)。
Electrochemical measurements were performed on the measurement systems configured as shown in FIGS.
I (current) -t (time) measurement was performed under a constant voltage of 0.1V. The measurement results are shown in FIG. In the comparative example sample having the configuration shown in FIG. 2, the performance of the enzyme-immobilized electrode 101 is superior to the dissolved amount of oxygen in the buffer 104 from the start of measurement, as indicated by the broken line Y. Oxygen depletion began, the catalyst current due to oxygen reduction gradually decreased, and finally reached 17 μA / cm 2 .
On the other hand, in the example sample, when the lead 110 made of carbon felt was immersed in the buffer solution 104, the current value due to the catalytic action was 3 μA / cm 2 (state A in the solid line X in FIG. 4).

次に、酵素固定化電極101自体を一度緩衝液104に湿らせ、僅かながら酵素に活性を与えると、266μA/cm2 の極めて高い電流密度が得られた(図4中、実線Xの状態B)。
これは、緩衝液104中の溶存酸素濃度に比べ、気相中の酸素濃度が非常に高く、酵素固定化電極101が気相中の酸素を効率良く還元しているためである。
上述したことから、酵素固定化電極101に固定化した酵素と気相中の酸素とで、優れた効率をもって反応を行うことが可能であることが明らかになった。
Next, when the enzyme-immobilized electrode 101 itself was once moistened with the buffer 104 and the enzyme was slightly activated, a very high current density of 266 μA / cm 2 was obtained (state B in the solid line X in FIG. 4). ).
This is because the oxygen concentration in the gas phase is very high compared to the dissolved oxygen concentration in the buffer solution 104, and the enzyme-immobilized electrode 101 efficiently reduces oxygen in the gas phase.
From the above, it has been clarified that the reaction can be performed with excellent efficiency between the enzyme immobilized on the enzyme-immobilized electrode 101 and oxygen in the gas phase.

〔燃料電池〕
次に、上述したようにして作製した酵素固定化電極101の酸素還元反応を利用して燃料電池のカソード電極として適用し、電池性能の評価を行った。
図5に示すように、燃料電池200は、カソード電極(正極)としての酵素固定化電極101と、メタノール・ルテニウム・白金電極よりなるアノード電極(負極)115とが電解質溶液107を介して対向した構成を有している。
カソード電極としての酵素固定化電極101は、10mm×10mmの大きさに切り取ったカーボンフェルトに上述した実施例と同様の方法によって酵素固定を行ったものとする。
〔Fuel cell〕
Next, using the oxygen reduction reaction of the enzyme-immobilized electrode 101 produced as described above, it was applied as a cathode electrode of a fuel cell, and the cell performance was evaluated.
As shown in FIG. 5, in the fuel cell 200, an enzyme-immobilized electrode 101 as a cathode electrode (positive electrode) and an anode electrode (negative electrode) 115 made of methanol, ruthenium, and platinum electrodes face each other with an electrolyte solution 107 interposed therebetween. It has a configuration.
The enzyme-immobilized electrode 101 as the cathode electrode is obtained by performing enzyme immobilization on a carbon felt cut to a size of 10 mm × 10 mm by the same method as in the above-described example.

図5に示すように、電池下部201にある、連通孔120が設けられた電極接触領域121上に酵素固定化電極101を載せ、さらにその上に集電体108としてチタンメッシュを置いて集電を容易に行うことができる構造とし、作用電極を形成した。さらに、酵素固定化電極101上にセパレータ109として、絶縁性でかつプロトン透過性を有する所定のフィルム、例えばセロハン(メチルセルロース)を載せ、電池上部202と分離された構成とした。
電池上部202においては、電解質溶液107中に、メタノール・ルテニウム・白金電極よりなるアノード電極115が配置されており、さらに参照電極106が電解質溶液107と接触した形で配置されている。これらのアノード電極115および参照電極106は、充分量の反応表面積を有しているものとする。符号122は蓋を示す。
セパレータ109により、電池上部202から電解質溶液107が染み出さないようになっている。そして、カソード電極としての酵素固定化電極101は、気相中に存在する状態となっている。
As shown in FIG. 5, the enzyme-immobilized electrode 101 is placed on the electrode contact region 121 provided with the communication hole 120 in the battery lower portion 201, and a titanium mesh is placed thereon as the current collector 108 to collect the current. And a working electrode was formed. Further, a predetermined film having insulation properties and proton permeability, such as cellophane (methylcellulose), is placed on the enzyme-immobilized electrode 101 as the separator 109, and separated from the battery upper portion 202.
In the upper part 202 of the battery, an anode electrode 115 made of methanol, ruthenium and platinum is disposed in the electrolyte solution 107, and a reference electrode 106 is disposed in contact with the electrolyte solution 107. The anode electrode 115 and the reference electrode 106 are assumed to have a sufficient amount of reaction surface area. Reference numeral 122 denotes a lid.
The separator 109 prevents the electrolyte solution 107 from oozing out from the battery upper portion 202. And the enzyme fixed electrode 101 as a cathode electrode exists in the gaseous phase.

上述したような構成の燃料電池200においては、カソード電極としての酵素固定化電極101は、この酵素固定化電極101が接触している気相からO2 の供給を受けるとともに、電解質溶液107からH+ の供給を受け、酵素固定化電極101に固定化された酵素が触媒となって、下記に示す反応(1)が起こる。一方、アノード電極115においては下記に示す反応(2)が起こり、カソード電極としての酵素固定化電極101とアノード電極115との間において外部回路を通して電子のやりとりが行われ電流が流れる。
カソード電極:O2 +4H+ +4e- →2H2 O・・・(1)
アノード電極:CH3 OH+H2 O→CO2 +6H+ +6e- ・・・(2)
In the fuel cell 200 configured as described above, the enzyme-immobilized electrode 101 serving as the cathode electrode is supplied with O 2 from the gas phase with which the enzyme-immobilized electrode 101 is in contact, and is supplied with H 2 from the electrolyte solution 107. Following the supply of + , the enzyme immobilized on the enzyme-immobilized electrode 101 serves as a catalyst, and the following reaction (1) occurs. On the other hand, the following reaction (2) occurs in the anode electrode 115, and electrons are exchanged between the enzyme-immobilized electrode 101 as the cathode electrode and the anode electrode 115 through an external circuit, and a current flows.
Cathode electrode: O 2 + 4H + + 4e → 2H 2 O (1)
Anode electrode: CH 3 OH + H 2 O → CO 2 + 6H + + 6e (2)

図5中の電極接触領域121に空気を入れ、連通孔120を介してカソード電極としての酵素固定化電極101に酸素が供給されるようにした状態で、0.1VでのI(電流)−t(時間)測定を行った。測定結果を図6の曲線aに示す。
この場合は、気相中の酸素が反応基質となり、電池上部202に電解質溶液107を入れた直後より、酸素還元電流が観測され、図6中、曲線aの左端部に示すように、1.5mA/cm2 の触媒定常電流を得ることができた。
In a state where air is introduced into the electrode contact region 121 in FIG. 5 and oxygen is supplied to the enzyme-immobilized electrode 101 as the cathode electrode through the communication hole 120, I (current) at 0.1 V− t (time) measurement was performed. The measurement result is shown by curve a in FIG.
In this case, oxygen in the gas phase becomes a reaction substrate, and an oxygen reduction current is observed immediately after the electrolyte solution 107 is put into the battery upper portion 202. As shown at the left end of the curve a in FIG. A steady catalyst current of 5 mA / cm 2 could be obtained.

一方、図5中の電極接触領域121に電解質溶液を入れ、カソード電極としての酵素固定化電極101をこの電解質溶液に完全に浸した状態として0.1VでのI(電流)−t(時間)測定を行った。測定結果を図6の曲線bに示す。
この場合は、電解質溶液中の溶存酸素が反応基質となり、溶存酸素の拡散により、図6中、曲線bの左端部に示すように、測定開始から触媒電流が減少し、50μA/cm2 で定常となった。
上述した結果から、カソード電極として酵素固定化電極101を用いた燃料電池においては、気相中の酸素を効率よく還元し、従来のように電解質溶液中の溶存酸素を用いた場合と比較すると、30倍もの電流密度が得られることを確認できた。
On the other hand, an electrolyte solution is put in the electrode contact region 121 in FIG. 5, and the enzyme-immobilized electrode 101 as a cathode electrode is completely immersed in this electrolyte solution. Measurements were made. The measurement result is shown by a curve b in FIG.
In this case, the dissolved oxygen in the electrolyte solution becomes a reaction substrate, and the diffusion of dissolved oxygen causes the catalyst current to decrease from the start of measurement as shown at the left end of the curve b in FIG. 6, and is steady at 50 μA / cm 2 . It became.
From the above results, in the fuel cell using the enzyme-immobilized electrode 101 as the cathode electrode, oxygen in the gas phase is efficiently reduced, and compared with the case where dissolved oxygen in the electrolyte solution is used as in the past, It was confirmed that a current density as high as 30 times was obtained.

次に、燃料電池のカソード電極表面に酵素とともに固定化する電子伝達メディエータの濃度を変え、電子伝達メディエータからなる電子プールを電子で満たしておき、カソード電極に対する酸素の供給を停止した時からの電流値の経時変化を測定した結果について説明する。
このために、酵素としてビリルビンオキシダーゼを、電子伝達メディエータとしてヘキサシアノ鉄酸イオン(Fe(CN)6 3-/4- )を用い、これらをポリカチオンであるポリ−L−リシンの静電相互作用にて5mm×5mmのカーボンフェルト上に固定した。この電極を用い、単極評価を行った。図7にその結果を示す。図7において、(1)の曲線は比較例であり、カソード電極に白金触媒を用いた場合、(2)の曲線は上記のカーボンフェルトに酵素に加えて電子伝達メディエータを1.6×10-6mol(濃度で平均0.64×10-7mol/mm2 )固定した場合、(3)の曲線は上記のカーボンフェルトに酵素に加えて電子伝達メディエータを1.6×10-5mol(濃度で平均0.64×10-6mol/mm2 )固定した場合、(4)の曲線は上記のカーボンフェルトに酵素に加えて電子伝達メディエータを1.6×10-4mol(濃度で平均0.64×10-5mol/mm2 )固定した場合を示す。図7から明らかなように、カソード電極に白金触媒を用いた場合(曲線(1))には、酸素の供給停止後約20秒で電流値は0に激減し、電子伝達メディエータを1.6×10-6mol(濃度で平均0.64×10-7mol/mm2 )固定した場合(曲線(2))にも酸素の供給停止後数十秒で電流値は激減し、約100秒経過後は初期電流値の約5%になった。これに対し、電子伝達メディエータを1.6×10-5mol(濃度で平均0.64×10-6mol/mm2 )固定した場合(曲線(3))には、酸素の供給停止後の電流値の減少は緩やかであり、600秒経過後でも初期電流値の約20%の電流値を維持しており、電子伝達メディエータを1.6×10-4mol(濃度で平均0.64×10-5mol/mm2 )固定した場合(曲線(4))には、電流を流し始めてからの電流値の減少はより緩やかであり、600秒経過後でも初期電流値の約50%以上の電流値を維持している。図7には600秒(10分)までの測定結果しか載せていないが、それ以降は、(2)の場合は30分後に2%、1時間後に1%、2時間後に1%、(3)の場合は30分後に6.3%、1時間後に5%、2時間後に3%、(4)の場合は30分後に25%、1時間後に18.9%、2時間後に14.1%であった。このように長時間高い電流値を維持することができるのは、カソード電極に電子伝達メディエータを高濃度に固定したためであり、この高濃度に固定した電子伝達メディエータが電子プールとなってこれに一次的に蓄えられていた電子が、酵素反応により生じる電子に加えて外部回路に流れることによるものである。
以上の結果から、カソード電極に電子伝達メディエータを平均値で0.64×10-6mol/mm2 以上固定することにより、カソード電極に対する酸素の供給が停止した後にも、電流値を長時間高いレベルに維持することができることがわかる。
Next, the concentration of the electron transfer mediator that is immobilized with the enzyme on the surface of the cathode electrode of the fuel cell is changed, the electron pool consisting of the electron transfer mediator is filled with electrons, and the current from when the supply of oxygen to the cathode electrode is stopped. The results of measuring the change over time of values will be described.
For this purpose, bilirubin oxidase is used as an enzyme and hexacyanoferrate ion (Fe (CN) 6 3− / 4− ) is used as an electron transfer mediator, and these are used for electrostatic interaction of poly-L-lysine, which is a polycation. And fixed on a 5 mm × 5 mm carbon felt. Unipolar evaluation was performed using this electrode. FIG. 7 shows the result. In FIG. 7, the curve of (1) is a comparative example, and when a platinum catalyst is used for the cathode electrode, the curve of (2) shows an electron transfer mediator of 1.6 × 10 in addition to the above-mentioned carbon felt in addition to the enzyme. When 6 mol (average concentration of 0.64 × 10 −7 mol / mm 2 ) is fixed, the curve in (3) shows 1.6 × 10 −5 mol of the electron transfer mediator in addition to the above-mentioned carbon felt in addition to the enzyme. When the concentration is fixed at an average of 0.64 × 10 −6 mol / mm 2 ), the curve in (4) shows 1.6 × 10 −4 mol of the electron transfer mediator in addition to the above-mentioned carbon felt in addition to the enzyme (average at the concentration) 0.64 × 10 −5 mol / mm 2 ) is shown. As is clear from FIG. 7, when a platinum catalyst was used for the cathode electrode (curve (1)), the current value drastically decreased to 0 in about 20 seconds after the supply of oxygen was stopped, and the electron transfer mediator was changed to 1.6. Even when × 10 −6 mol (concentration average 0.64 × 10 −7 mol / mm 2 ) is fixed (curve (2)), the current value drastically decreases in about tens of seconds after the supply of oxygen is stopped. After the lapse, it became about 5% of the initial current value. In contrast, when the electron transfer mediator was fixed at 1.6 × 10 −5 mol (average 0.64 × 10 −6 mol / mm 2 in concentration) (curve (3)), The decrease in the current value is gradual and maintains a current value of about 20% of the initial current value even after 600 seconds, and the electron transfer mediator is 1.6 × 10 −4 mol (0.64 × average concentration). 10 −5 mol / mm 2 ) when fixed (curve (4)), the current value decreases more slowly after the current starts to flow, and even after 600 seconds, it is about 50% or more of the initial current value. The current value is maintained. FIG. 7 shows only the measurement results up to 600 seconds (10 minutes). Thereafter, in the case of (2), 2% after 30 minutes, 1% after 1 hour, 1% after 2 hours, (3 ) Is 6.3% after 30 minutes, 5% after 1 hour, 3% after 2 hours, and (4) is 25% after 30 minutes, 18.9% after 1 hour, and 14.1 after 2 hours. %Met. The reason why a high current value can be maintained for a long time is because the electron transfer mediator is fixed at a high concentration on the cathode electrode, and the electron transfer mediator fixed at this high concentration becomes an electron pool, which is the primary pool. This is due to the fact that the stored electrons flow into the external circuit in addition to the electrons generated by the enzyme reaction.
From the above results, by fixing the electron transfer mediator to the cathode electrode at an average value of 0.64 × 10 −6 mol / mm 2 or more, the current value is increased for a long time even after the supply of oxygen to the cathode electrode is stopped. It can be seen that the level can be maintained.

図8は、より実用に適した構成の燃料電池300を示す。図8においては、図5と同一または対応する部分に同一の符号を付し、繰り返しの説明を適宜省略する。
図8に示すように、この燃料電池300は、カソード電極(正極)としての酵素固定化電極101とアノード電極(負極)115とが、プロトン伝導体としてのセパレータ109を介して対向した構成を有している。この場合、セパレータ109はプロトン伝導性を有する所定のフィルム、例えばセロハンからなる。アノード電極115は燃料123と接触している。燃料123としては、グルコースなどの各種のものを用いることができる。酵素固定化電極101の下およびアノード電極115の上にそれぞれ集電体108が置かれ、集電を容易に行うことができるようになっている。
FIG. 8 shows a fuel cell 300 having a configuration more suitable for practical use. In FIG. 8, the same or corresponding parts as in FIG.
As shown in FIG. 8, this fuel cell 300 has a configuration in which an enzyme-immobilized electrode 101 as a cathode electrode (positive electrode) and an anode electrode (negative electrode) 115 are opposed to each other with a separator 109 as a proton conductor. doing. In this case, the separator 109 is made of a predetermined film having proton conductivity, such as cellophane. The anode electrode 115 is in contact with the fuel 123. Various fuels such as glucose can be used as the fuel 123. Current collectors 108 are placed under the enzyme-immobilized electrode 101 and the anode electrode 115, respectively, so that current collection can be performed easily.

以上、この発明の一実施形態および実施例について具体的に説明したが、この発明は、上述の実施形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態および実施例において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。
Although one embodiment and example of the present invention have been specifically described above, the present invention is not limited to the above-described embodiment and example, and various modifications based on the technical idea of the present invention can be made. Is possible.
For example, the numerical values, structures, configurations, shapes, materials, and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, configurations, shapes, materials, and the like may be used as necessary. Good.

1…カソード電極、5…アノード電極、7…電解質溶液、8…集電体、9…セパレータ、10…燃料電池、11…第1構成部、12…第2構成部、100…作用電極、101…酵素固定化電極、102…グラッシーカーボン電極、103…固定手段、104…緩衝液、105…対向電極、106…参照電極、107…電解質溶液、108…集電体、109…セパレータ、110…リード、120…連通孔、121…電極接触領域、200、300…燃料電池、201…電池下部、202…電池上部   DESCRIPTION OF SYMBOLS 1 ... Cathode electrode, 5 ... Anode electrode, 7 ... Electrolyte solution, 8 ... Current collector, 9 ... Separator, 10 ... Fuel cell, 11 ... 1st component, 12 ... 2nd component, 100 ... Working electrode, 101 DESCRIPTION OF SYMBOLS ... Enzyme fixed electrode, 102 ... Glassy carbon electrode, 103 ... Fixing means, 104 ... Buffer, 105 ... Counter electrode, 106 ... Reference electrode, 107 ... Electrolyte solution, 108 ... Current collector, 109 ... Separator, 110 ... Lead , 120 ... communication hole, 121 ... electrode contact region, 200, 300 ... fuel cell, 201 ... battery lower part, 202 ... battery upper part

Claims (15)

カソード電極とアノード電極との間にプロトン伝導体を挟持し、
上記カソード電極が、電気伝導性を有し、かつ気体が透過可能な多孔質材料に酵素が固定されたものであり、上記カソード電極の少なくとも一部が気相の反応基質と接触するように構成されている燃料電池。
A proton conductor is sandwiched between the cathode electrode and the anode electrode,
The cathode electrode has an electric conductivity and an enzyme immobilized on a porous material that allows gas to pass through, and at least a part of the cathode electrode is in contact with a gas phase reaction substrate. Fuel cell.
上記カソード電極が湿潤状態にある請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the cathode electrode is in a wet state. 上記電気伝導性を有し、かつ気体が透過可能な多孔質材料がカーボンからなる請求項1または2記載の燃料電池。   The fuel cell according to claim 1 or 2, wherein the porous material having electrical conductivity and allowing gas to pass through is made of carbon. 上記電気伝導性を有し、かつ気体が透過可能な多孔質材料に上記酵素に加えて電子伝達メディエータが固定されている請求項1〜3のいずれか一項記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein an electron transfer mediator is fixed to the porous material having electrical conductivity and gas permeation in addition to the enzyme. 上記電子伝達メディエータにより、電子を蓄積する電子プールが形成されている請求項4記載の燃料電池。   The fuel cell according to claim 4, wherein an electron pool for accumulating electrons is formed by the electron transfer mediator. 上記電子伝達メディエータは平均値で0.64×10-6mol/mm2 以上固定されている請求項4または5記載の燃料電池。 6. The fuel cell according to claim 4, wherein the electron transfer mediator is fixed at an average value of 0.64 × 10 −6 mol / mm 2 or more. 負荷として無限抵抗が接続されている時または低電力供給時に自発的に上記電子プールに電子が蓄積される請求項4〜6のいずれか一項記載の燃料電池。   The fuel cell according to any one of claims 4 to 6, wherein electrons are spontaneously accumulated in the electronic pool when an infinite resistance is connected as a load or when low power is supplied. カソード電極とアノード電極との間にプロトン伝導体を挟持し、上記カソード電極が、電気伝導性を有し、かつ気体が透過可能な多孔質材料に酵素および電子伝達メディエータが固定されたものであり、この電子伝達メディエータにより、電子を蓄積する電子プールが形成され、上記カソード電極の少なくとも一部を気相の反応基質と接触させることにより発電を行う燃料電池を使用する場合に、
上記カソード電極に対する上記反応基質の供給が停止した時、上記カソード電極に対する上記反応基質の供給が減少した時、または、出力を増加させる時、上記電子プールから上記カソード電極に電子を供給するようにした燃料電池の使用方法。
A proton conductor is sandwiched between a cathode electrode and an anode electrode, and the cathode electrode is an electrically conductive and gas-permeable porous material on which an enzyme and an electron transfer mediator are fixed. The electron transfer mediator forms an electron pool for storing electrons, and when using a fuel cell that generates power by contacting at least a part of the cathode electrode with a gas phase reaction substrate,
When the supply of the reaction substrate to the cathode electrode is stopped, when the supply of the reaction substrate to the cathode electrode is decreased, or when the output is increased, electrons are supplied from the electron pool to the cathode electrode. How to use a fuel cell.
電気伝導性を有し、かつ気体が透過可能な多孔質材料に酵素が固定され、少なくとも一部が気相の反応基質と接触するように構成されている燃料電池用カソード電極。   A fuel cell cathode electrode, wherein an enzyme is fixed to a porous material that is electrically conductive and permeable to gas, and at least a part of the cathode electrode is in contact with a gas phase reaction substrate. 上記電気伝導性を有し、かつ気体が透過可能な多孔質材料に上記酵素に加えて電子伝達メディエータが固定されている請求項9記載の燃料電池用カソード電極。   The cathode electrode for a fuel cell according to claim 9, wherein an electron transfer mediator is fixed to the porous material having electrical conductivity and gas permeation in addition to the enzyme. カソード電極とアノード電極との間にプロトン伝導体を挟持する燃料電池を搭載し、
上記燃料電池は、上記カソード電極が、電気伝導性を有し、かつ気体が透過可能な多孔質材料に酵素が固定されたものであり、上記カソード電極の少なくとも一部が気相の反応基質と接触するように構成されている電子機器。
Equipped with a fuel cell that sandwiches a proton conductor between the cathode and anode electrodes,
In the fuel cell, the cathode is electrically conductive, and an enzyme is fixed to a porous material that allows gas to pass through. At least a part of the cathode electrode includes a gas phase reaction substrate. An electronic device that is configured to contact.
一対の電極を有し、
上記一対の電極のうちの一つの電極が、電気伝導性を有し、かつ気体が透過可能な多孔質材料に酵素が固定されたものであり、上記電極の少なくとも一部が気相の反応基質と接触するように構成されている電極反応利用装置。
Having a pair of electrodes,
One of the pair of electrodes is one in which an enzyme is fixed to a porous material having electrical conductivity and allowing gas to pass, and at least a part of the electrode is a gas phase reaction substrate. An electrode reaction utilization device configured to come into contact with the device.
上記電気伝導性を有し、かつ気体が透過可能な多孔質材料に上記酵素に加えて電子伝達メディエータが固定されている請求項12記載の電極反応利用装置。   13. The electrode reaction utilization apparatus according to claim 12, wherein an electron transfer mediator is fixed to the porous material having electrical conductivity and gas permeation in addition to the enzyme. 上記電極反応利用装置はバイオ燃料電池、バイオセンサーまたはバイオリアクターである請求項12または13記載の電極反応利用装置。   The electrode reaction utilization apparatus according to claim 12 or 13, wherein the electrode reaction utilization apparatus is a biofuel cell, a biosensor, or a bioreactor. 電気伝導性を有し、かつ気体が透過可能な多孔質材料に酵素が固定され、少なくとも一部が気相の反応基質と接触するように構成されている電極反応利用装置用電極。   An electrode for an electrode reaction utilization device, wherein an enzyme is fixed to a porous material that is electrically conductive and permeable to gas, and at least part of the electrode is in contact with a gas phase reaction substrate.
JP2012204121A 2004-08-23 2012-09-18 Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same Pending JP2013048096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204121A JP2013048096A (en) 2004-08-23 2012-09-18 Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004242413 2004-08-23
JP2004242413 2004-08-23
JP2012204121A JP2013048096A (en) 2004-08-23 2012-09-18 Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005135726A Division JP5307316B2 (en) 2004-08-23 2005-05-09 FUEL CELL, METHOD OF USING FUEL CELL, CATHODE ELECTRODE FOR FUEL CELL, ELECTRONIC DEVICE, ELECTRODE REACTION USE DEVICE, AND ELECTRODE REACTION USE DEVICE ELECTRODE

Publications (1)

Publication Number Publication Date
JP2013048096A true JP2013048096A (en) 2013-03-07

Family

ID=38731753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204121A Pending JP2013048096A (en) 2004-08-23 2012-09-18 Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same

Country Status (2)

Country Link
JP (1) JP2013048096A (en)
CN (1) CN100521347C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140824A (en) * 2007-12-07 2009-06-25 Sony Corp New fuel cell, and power supply device and electronic device using the fuel cell
SE541670C2 (en) * 2017-10-26 2019-11-26 Myfc Ab System and method for generating electric power with a fuel cell array, control unit and dynamic electrical load

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
WO2003106966A2 (en) * 2002-05-02 2003-12-24 Therasense, Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
JP2004165142A (en) * 2002-06-28 2004-06-10 Aame Halme Direct alcoholic fuel cell using biocatalyst
WO2004114494A2 (en) * 2003-05-06 2004-12-29 The Chemistry Faculty Of The Moscow State University Hydrogen - oxygen fuel cell based on immobilized enzymes
JP2007534115A (en) * 2003-11-05 2007-11-22 セント・ルイス・ユニバーシティ Enzyme immobilized on biological cathode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
WO2003106966A2 (en) * 2002-05-02 2003-12-24 Therasense, Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
JP2004165142A (en) * 2002-06-28 2004-06-10 Aame Halme Direct alcoholic fuel cell using biocatalyst
WO2004114494A2 (en) * 2003-05-06 2004-12-29 The Chemistry Faculty Of The Moscow State University Hydrogen - oxygen fuel cell based on immobilized enzymes
JP2007534115A (en) * 2003-11-05 2007-11-22 セント・ルイス・ユニバーシティ Enzyme immobilized on biological cathode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012055584; Itamar Willner et al.: Bioelectrochemistry and Bioenergetics 44, 1998, p.209-214 *
JPN6012055586; A. Pizzariello et al.: Bioelectrochemistry 56, 2002, p.99-105 *

Also Published As

Publication number Publication date
CN101036259A (en) 2007-09-12
CN100521347C (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP5307316B2 (en) FUEL CELL, METHOD OF USING FUEL CELL, CATHODE ELECTRODE FOR FUEL CELL, ELECTRONIC DEVICE, ELECTRODE REACTION USE DEVICE, AND ELECTRODE REACTION USE DEVICE ELECTRODE
Liu et al. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell
US9912000B2 (en) Fuel cell, manufacturing method thereof, electronic apparatus, enzyme-immobilized electrode, manufacturing method thereof, water-repellent agent, and enzyme immobilizing material
Davis et al. Biofuel cells—recent advances and applications
JP5233176B2 (en) Fuel cells and electronics
US8440333B2 (en) Fuel cell and electronic apparatus
Ho et al. Microbial electricity generation of diversified carbonaceous electrodes under variable mediators
US20110059374A1 (en) Fuel cell and electronic apparatus
Khera et al. Microbial fuel cells: recent trends
US8808928B2 (en) Fuel cell, method for operating the same, and electronic device
US20110039165A1 (en) Fuel cell and method for manufacturing the same, enzyme-immobilized electrode and method for manufacturing the same, and electronic apparatus
JP5095452B2 (en) Internal resistance measuring device for response delay type fuel cell
JP5205818B2 (en) Fuel cells and electronics
US20080213631A1 (en) Hybrid Power Strip
KR20110084164A (en) Fuel cell, electronic device and buffer solution for fuel cell
JP2013048096A (en) Fuel cell, usage of the same, cathode electrode for the same, electronic apparatus, electrode reaction utilization device, and electrode for the same
Jannu et al. Bioelectrocatalysis for biofuel cells
Gunasekaran et al. Microbial fuel cell constructed with micro-organisms isolated from industry effluent
Squadrito et al. Microbial and enzymatic fuel cells
Zielke Design of a single chamber microbial fuel cell
Topcagic et al. Alcohol-based biofuel cells
Lincy et al. Microbial fuel cells: a promising alternative energy source
Yu et al. Turning glucose and starch into electricity with an enzymatic fuel cell
Tiwari et al. Fungal Microbial Fuel Cells, an Opportunity for Energy Sources: Current Perspective and Future Challenges
Haynes A Single Chamber Microbial Fuel Cell Using Multiple Anode Plates Made of Conductive Bamboo Charcoal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318