JP2013048062A - Lamp - Google Patents

Lamp Download PDF

Info

Publication number
JP2013048062A
JP2013048062A JP2011186370A JP2011186370A JP2013048062A JP 2013048062 A JP2013048062 A JP 2013048062A JP 2011186370 A JP2011186370 A JP 2011186370A JP 2011186370 A JP2011186370 A JP 2011186370A JP 2013048062 A JP2013048062 A JP 2013048062A
Authority
JP
Japan
Prior art keywords
light
optical axis
emitting element
total reflection
exit surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011186370A
Other languages
Japanese (ja)
Other versions
JP5803051B2 (en
Inventor
Hidetaka Okada
英隆 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011186370A priority Critical patent/JP5803051B2/en
Publication of JP2013048062A publication Critical patent/JP2013048062A/en
Application granted granted Critical
Publication of JP5803051B2 publication Critical patent/JP5803051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lamp capable of performing multipoint light-emission in a polygonal shape or a lattice form without lessening light use efficiency in comparison with a conventional lamp.SOLUTION: The lamp includes a semiconductor light-emitting element 20 and a lens 30 arranged in front of the semiconductor light-emitting element 20. The lens 30 is a solid lens having a light incident surface 31, a central light outgoing surface 32, a first totally reflecting surface 33, a peripheral light outgoing surface 34, and a second totally reflecting surface 35 on a surface thereof. The lens 30: has a light incident surface 31 which is arranged in front of the semiconductor light-emitting element 20 and on an optical axis AX so as to make light emitted from the semiconductor light-emitting element 20 incident thereto; and is configured so that the light which is emitted from the semiconductor light-emitting element 20 and introduced therein by penetration through the light incident surface 31 is converted into a light beam parallel to the optical axis AX. The central light outgoing surface 32 is arranged in front of the light incident surface 31 and on the optical axis AX so as to emit the light with relatively high luminous intensity Ray1 which advances rather along the optical axis AX among the light of the semiconductor light-emitting element 20 introduced inside the lens 30.

Description

本発明は、灯具に係り、特に、半導体発光素子とレンズ体とを組み合わせた灯具に関する。   The present invention relates to a lamp, and more particularly, to a lamp combining a semiconductor light emitting element and a lens body.

従来、半導体発光素子とレンズ体とを組み合わせた灯具が提案されている(例えば、特許文献1参照)。   Conventionally, a lamp that combines a semiconductor light emitting element and a lens body has been proposed (see, for example, Patent Document 1).

図14、図15に示すように、特許文献1に記載の灯具200は、LED光源等の半導体発光素子210、その前方に配置され、半導体発光素子210の光軸AXに対して回転対称の回転放物面221を含むレンズ体220、光軸AXの周りに同心円状に配置された複数の反射面230を備えている。灯具200においては、半導体発光素子210から放射されレンズ体220内部に導入された半導体発光素子210からの光は、回転放物面221で光軸AXを中心に放射状に(すなわち、軸AXを中心に360°方向に)反射されてレンズ体220から出射し、さらに、複数の反射面230で反射されて前方に照射される。これにより、同心円状に多点発光する仮想光源が構成される。   As shown in FIGS. 14 and 15, a lamp 200 described in Patent Document 1 is disposed in front of a semiconductor light emitting element 210 such as an LED light source, and is rotationally symmetric with respect to the optical axis AX of the semiconductor light emitting element 210. A lens body 220 including a parabolic surface 221 and a plurality of reflecting surfaces 230 arranged concentrically around the optical axis AX are provided. In the lamp 200, the light from the semiconductor light emitting element 210 emitted from the semiconductor light emitting element 210 and introduced into the lens body 220 is radially centered on the optical axis AX on the paraboloid 221 (that is, centered on the axis AX). (In the direction of 360 °), is emitted from the lens body 220, is further reflected by the plurality of reflecting surfaces 230, and is irradiated forward. Thereby, the virtual light source which light-emits multipoints concentrically is comprised.

特開2008−226702号公報JP 2008-226702 A

しかしながら、上記構成の灯具200においては、回転放物面221で放射状に反射される半導体発光素子210からの光の利用効率を向上させる観点から、複数の反射面230を同心円状に密に配置した構成であるため、複数の反射面230を同心円状ではなく多角形状又は格子状に配置すると、半導体発光素子210からの光の利用効率が低下するという問題がある。   However, in the lamp 200 having the above-described configuration, the plurality of reflecting surfaces 230 are densely arranged concentrically from the viewpoint of improving the utilization efficiency of light from the semiconductor light emitting element 210 that is radially reflected by the rotary paraboloid 221. Due to the configuration, when the plurality of reflecting surfaces 230 are arranged in a polygonal shape or a lattice shape instead of a concentric shape, there is a problem in that the utilization efficiency of light from the semiconductor light emitting element 210 is lowered.

本発明は、このような事情に鑑みてなされたものであり、従来の灯具と比べて光利用効率が低下することなく多角形状又は格子状に多点発光させることが可能な灯具を提供することを提供することを目的とする。   This invention is made | formed in view of such a situation, and provides the lamp which can be made to light-emit multipoint in a polygonal shape or a grid | lattice form, without reducing the light utilization efficiency compared with the conventional lamp. The purpose is to provide.

上記課題を解決するため、請求項1に記載の発明は、半導体発光素子と、前記半導体発光素子の前方に配置されたレンズ体と、を備えており、前記レンズ体は、その表面に、入光面、中央出光面、第1全反射面、周囲出光面、第2全反射面を含む中実のレンズ体であり、前記入光面は、前記半導体発光素子から放射される光が入射するように、前記半導体発光素子の前方かつ光軸上に配置されるとともに、これを透過して前記レンズ体内部に導入される前記半導体発光素子からの光を前記光軸に対して平行な光線に変換するように構成されており、前記中央出光面は、前記レンズ体内部に導入された前記半導体発光素子からの光のうち、前記光軸寄りを進行する相対的に高い光度の光が出射するように、前記入光面の前方かつ前記光軸上に配置されており、前記第1全反射面は、前記レンズ体内部に導入された前記半導体発光素子からの光のうち、前記中央出光面から出射する光以外の光が入射するように、前記中央出光面の周囲に周方向にN個配置されて略N角錐を構成する三角形状の平面反射面であって、頂点側が前記中央出光面の外周近傍に位置するとともに、その反対側の底辺側が前記中央出光面より前方かつ外側に位置するように、前記光軸に対して傾斜して配置されており、前記周囲出光面は、正面視で中心が前記光軸上に位置しかつ頂点が前記第1全反射面で反射された反射光の各光路上に位置するN角形の各頂点に対応する位置にそれぞれ配置されており、前記第2全反射面は、前記第1全反射面で反射された反射光が入射するように、前記第1全反射面で反射された反射光の各光路上かつ前記周囲出光面の後方に配置された平面反射面であって、これに入射した前記第1全反射面からの反射光が前記周囲出光面に向かって反射されて、当該周囲出光面から出射するように、前記光軸に対して傾斜して配置されていることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 includes a semiconductor light emitting element and a lens body disposed in front of the semiconductor light emitting element, and the lens body is formed on the surface thereof. It is a solid lens body including a light surface, a central light exit surface, a first total reflection surface, a surrounding light exit surface, and a second total reflection surface, and light incident from the semiconductor light emitting element is incident on the light incident surface. As described above, the light from the semiconductor light emitting element that is disposed in front of and on the optical axis of the semiconductor light emitting element and that is transmitted through the lens body and introduced into the lens body is converted into a light beam parallel to the optical axis. The center light-emitting surface emits light having a relatively high luminous intensity that travels closer to the optical axis, out of the light from the semiconductor light-emitting element introduced into the lens body. As described above, it is arranged in front of the light incident surface and on the optical axis. The first total reflection surface is arranged such that light other than light emitted from the central light output surface is incident on light from the semiconductor light emitting element introduced into the lens body. A plane reflecting surface in the shape of a triangle that is arranged in a circumferential direction around the surface and forms a substantially N pyramid, the apex side being located in the vicinity of the outer periphery of the central light emitting surface, and the bottom side on the opposite side is the center The peripheral light exit surface is disposed so as to be in front of and outside the light exit surface, and the ambient light exit surface is centered on the optical axis and the apex is the first in the front view. The second total reflection surface is reflected by the first total reflection surface, and is disposed at a position corresponding to each apex of the N-angle located on each optical path of the reflected light reflected by the total reflection surface. Reflected by the first total reflection surface so that reflected light is incident. A plane reflecting surface disposed on each optical path of the reflected light and behind the surrounding light emitting surface, and the reflected light from the first total reflecting surface incident thereon is reflected toward the surrounding light emitting surface. The light emitting device is characterized in that it is arranged so as to be inclined with respect to the optical axis so as to be emitted from the surrounding light emitting surface.

請求項1に記載の発明によれば、半導体発光素子から放射された光は、中央出光面の周囲に周方向にN個配置されて略N角錐を構成する三角形状の平面反射面(及び第2全反射面)の作用により、多角形状に配置された(N角形の各頂点に対応する位置にそれぞれ配置された)周囲出光面から出射する。これにより、従来の灯具と比べて光利用効率が低下することなくN角形状に多点発光する仮想光源を構成することが可能となる。   According to the first aspect of the present invention, the light emitted from the semiconductor light emitting element is arranged in the circumferential direction around the central light exit surface in the circumferential direction so as to form a triangular planar reflecting surface (and the first number). (2 total reflection surface), the light is emitted from the surrounding light emitting surfaces (arranged at positions corresponding to the respective apexes of the N-gon) arranged in a polygonal shape. As a result, it is possible to configure a virtual light source that emits multipoint light in an N-corner shape without lowering the light use efficiency as compared with a conventional lamp.

請求項2に記載の発明は、請求項1に記載の発明において、前記第1全反射面は、前記中央出光面の周囲に周方向に八個配置されて略八角錐を構成する三角形状の平面反射面であり、前記周囲出光面は、正面視で中心が前記光軸上に位置しかつ頂点及び頂点を両端に持つ稜線の中間点が前記第1全反射面で反射された反射光の光路上に位置する矩形の前記頂点に対応する位置及び前記中間点に対応する位置にそれぞれ配置されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the first total reflection surface has a triangular shape that forms eight octagonal pyramids by arranging eight first total reflection surfaces in the circumferential direction around the central light exit surface. The ambient light exit surface is a planar reflection surface, and the center of the ridge line whose center is located on the optical axis and has apexes and apexes at both ends in the front view is reflected by the first total reflection surface. It is arranged at a position corresponding to the apex of the rectangle located on the optical path and a position corresponding to the intermediate point.

請求項2に記載の発明によれば、半導体発光素子から放射された光は、中央出光面の周囲に周方向に八個配置されて略八角錐を構成する三角形状の平面反射面(及び第2全反射面)の作用により、格子状に配置された中央出光面及び各周囲出光面から出射する。これにより、従来の灯具と比べて光利用効率が低下することなく格子状に多点発光する仮想光源を構成することが可能となる。   According to the second aspect of the present invention, the light radiated from the semiconductor light emitting element is arranged in the circumferential direction around the central light-emitting surface in the circumferential direction to form a triangular planar reflecting surface (and the first reflecting surface) that forms a substantially octagonal pyramid. 2), the light is emitted from the central light emitting surface and the surrounding light emitting surfaces arranged in a lattice shape. As a result, it is possible to configure a virtual light source that emits multipoint light in a lattice shape without lowering the light use efficiency as compared with a conventional lamp.

請求項3に記載の発明は、請求項1又は2に記載の発明において、前記中央出光面の直径として、当該中央出射面から出射する光束が前記周囲出光面から出射する光束と略同一となる寸法が選定されていることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the light flux emitted from the central light exit surface is substantially the same as the light flux emitted from the peripheral light exit surface as the diameter of the central light exit surface. The dimensions are selected.

請求項3に記載の発明によれば、多点発光する各仮想光源からの光束が略等しくなる灯具を構成することが可能となる。   According to the third aspect of the present invention, it is possible to configure a lamp in which the light beams from the virtual light sources that emit multipoint light are substantially equal.

請求項4に記載の発明は、請求項1から3のいずれかに記載の発明において、前記中央出光面及び/又は周囲出光面は、当該中央出光面及び/又は周囲出光面から出射する光が拡散するように構成されていることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the central light exit surface and / or the ambient light exit surface is light emitted from the central light exit surface and / or the ambient light exit surface. It is configured to diffuse.

請求項4に記載の発明によれば、輝度むらが無い均一な面発光(又は輝度むらが殆ど無い略均一な面発光)を実現することが可能となる。また、灯具正面に正対するスクリーン上に輝度むらの無い均一な配光(又は輝度むらの殆ど無い略均一な配光)を形成することが可能となる。   According to the fourth aspect of the present invention, it is possible to realize uniform surface light emission without luminance unevenness (or substantially uniform surface light emission with almost no luminance unevenness). In addition, it is possible to form a uniform light distribution with no luminance unevenness (or a substantially uniform light distribution with almost no luminance unevenness) on the screen facing the front of the lamp.

本発明によれば、従来の灯具と比べて光利用効率が低下することなく多角形状又は格子状に多点発光させることが可能な灯具を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the lamp which can be made to light-emit multipoint in a polygonal shape or a grid | lattice form, without reducing light utilization efficiency compared with the conventional lamp.

灯具10の正面図である。1 is a front view of a lamp 10. FIG. 図1に示した灯具10のA−A断面図である。It is AA sectional drawing of the lamp 10 shown in FIG. 図1に示した灯具10のB−B断面図である。It is BB sectional drawing of the lamp 10 shown in FIG. 灯具10を構成するレンズ体30の背面図である。3 is a rear view of a lens body 30 that constitutes the lamp 10. FIG. 半導体発光素子20の指向特性を説明するための図である。4 is a diagram for explaining directivity characteristics of a semiconductor light emitting element 20. FIG. 図1に示した灯具10のA−A断面における各周囲出光面34から出射する光線の光線追跡図である。FIG. 2 is a ray tracing diagram of light rays emitted from each peripheral light exit surface 34 in the AA cross section of the lamp 10 shown in FIG. 1. 図1に示した灯具10のB−B断面における各周囲出光面34から出射する光線の光線追跡図である。FIG. 3 is a ray tracing diagram of light rays emitted from each surrounding light exit surface 34 in the BB cross section of the lamp 10 shown in FIG. 1. 各周囲出光面34から出射する光線の正面視での光線追跡図である。It is a ray tracing figure in the front view of the light ray radiate | emitted from each surrounding light emission surface. 中央出光面32から出射する光線の正面視での光線追跡図である。FIG. 4 is a ray tracing diagram of a ray emitted from a central light exit surface 32 in a front view. 中央出光面32、各周囲出光面34から出射する光線の斜視図での光線追跡図である。It is a ray tracing diagram in the perspective view of the light ray radiate | emitted from the center light emission surface 32 and each surrounding light emission surface 34. FIG. 中央出光面32、各周囲出光面34から出射する光線の側面視での光線追跡図である。It is a ray tracing diagram in the side view of the light ray emitted from the central light emitting surface 32 and each surrounding light emitting surface. 各周囲出光面34の変形例(正面視での配置例)である。It is a modification (arrangement example in front view) of each surrounding light emission surface 34. 各周囲出光面34の変形例(正面視での配置例)である。It is a modification (arrangement example in front view) of each surrounding light emission surface 34. 従来の車両用灯具200の断面図である。It is sectional drawing of the conventional vehicle lamp 200. FIG. 従来の車両用灯具200の正面図(レンズ体220省略)である。It is a front view (lens body 220 abbreviation) of conventional vehicular lamp 200.

以下、本発明の実施形態である灯具について図面を参照しながら説明する。   Hereinafter, the lamp which is embodiment of this invention is demonstrated, referring drawings.

図1は灯具10の正面図、図2は図1に示した灯具10のA−A断面図、図3は図1に示した灯具10のB−B断面図、図4は灯具10を構成するレンズ体30の背面図である。   1 is a front view of the lamp 10, FIG. 2 is a cross-sectional view taken along line AA of the lamp 10 shown in FIG. 1, FIG. 3 is a cross-sectional view taken along line BB of the lamp 10 shown in FIG. It is a rear view of the lens body 30 to perform.

図1〜図4に示すように、本実施形態の灯具10は、PC等のモニタ、TV等のディスプレイ等のバックライト用の照明や室内照明等に適用される灯具であって、半導体発光素子20、レンズ体30等を備えている。   As shown in FIGS. 1 to 4, a lamp 10 according to the present embodiment is a lamp applied to backlight illumination such as a monitor such as a PC and a display such as a TV, indoor lighting, and the like. 20, a lens body 30 and the like.

半導体発光素子20は例えば一つ又は複数の青色LEDチップであり、その発光面は黄色蛍光体(例えば、YAG蛍光体)で覆われている。半導体発光素子20は、蛍光体を透過するLEDチップからの光とLEDチップから入射する光で励起されて発光した蛍光体からの光との混色による白色光(擬似白色光)を放射する。なお、半導体発光素子20は、略点状に面発光する発光チップを有する素子状の光源であればよく、LEDチップに限定されない。例えば、半導体発光素子20は、青色LEDチップ以外の発光色の発光ダイオードやレーザダイオードと蛍光体とを組み合わせたものであってもよい。   The semiconductor light emitting element 20 is, for example, one or a plurality of blue LED chips, and the light emitting surface thereof is covered with a yellow phosphor (for example, a YAG phosphor). The semiconductor light emitting element 20 emits white light (pseudo white light) resulting from a color mixture of light from the LED chip that passes through the phosphor and light from the phosphor that is excited by light incident from the LED chip. The semiconductor light emitting element 20 may be an element-like light source having a light emitting chip that emits light in a substantially dot shape, and is not limited to an LED chip. For example, the semiconductor light emitting element 20 may be a combination of a light emitting diode or laser diode of a light emitting color other than a blue LED chip and a phosphor.

図5は、半導体発光素子20の指向特性を説明するための図である。図5に示すように、半導体発光素子20から放射される光の指向特性は略ランバーシアンになる。ランバーシアンとは、半導体発光素子20上の光軸AX上光度を100%(I)とした場合の(θ=0)、半導体発光素子20に対して所定角度θ傾いた方向の光度の割合のことであり、I(θ)=I×cosθで表される。これは、半導体発光素子20が放射する光の広がりを表している。 FIG. 5 is a diagram for explaining the directivity characteristics of the semiconductor light emitting element 20. As shown in FIG. 5, the directivity characteristic of the light emitted from the semiconductor light emitting element 20 is substantially Lambertian. Lambertian is the ratio of luminous intensity in a direction inclined by a predetermined angle θ with respect to the semiconductor light emitting element 20 when the luminous intensity on the optical axis AX on the semiconductor light emitting element 20 is 100% (I 0 ) (θ = 0). This is expressed as I (θ) = I 0 × cos θ. This represents the spread of light emitted by the semiconductor light emitting element 20.

図1〜図4に示すように、レンズ体30は、透明樹脂製(例えば、アクリル又はポリカーボネイト)又はガラス製の中実のレンズ体であって、その表面に、入光面31、中央出光面32、第1全反射面33、周囲出光面34、第2全反射面35等を含んでいる。   As shown in FIGS. 1 to 4, the lens body 30 is a solid lens body made of transparent resin (for example, acrylic or polycarbonate) or glass, and has a light incident surface 31, a central light exit surface on the surface thereof. 32, a first total reflection surface 33, an ambient light exit surface 34, a second total reflection surface 35, and the like.

入光面31は、半導体発光素子20から放射される光が入射するように、半導体発光素子20の前方かつ光軸AX上に配置されるとともに、これを透過してレンズ体30内部に導入される半導体発光素子20からの光を光軸AXに対して平行な光線に変換するように構成されたレンズ面である。入光面31は、光軸AXを中心とする所定立体角内(例えば、半値角内)の相対的に高い光度の光が入射するように、光軸AXに対して回転対称で、半導体発光素子20に向かって凸の円形のレンズ面とされている。   The light incident surface 31 is disposed in front of the semiconductor light emitting element 20 and on the optical axis AX so that light emitted from the semiconductor light emitting element 20 is incident thereon, and is transmitted through the light incident surface 31 and introduced into the lens body 30. This is a lens surface configured to convert light from the semiconductor light emitting element 20 into a light beam parallel to the optical axis AX. The light incident surface 31 is rotationally symmetric with respect to the optical axis AX and emits semiconductor light so that light having a relatively high luminous intensity within a predetermined solid angle (for example, within a half-value angle) centered on the optical axis AX is incident. The lens surface is convex toward the element 20.

中央出光面32は、レンズ体30内部に導入された半導体発光素子20からの光のうち、光軸AX寄りを進行する相対的に高い光度の光Ray1(図2、図3参照)が出射するように、入光面31の前方かつ光軸AX上に配置されている。   Of the light from the semiconductor light emitting element 20 introduced into the lens body 30, the central light exit surface 32 emits light Ray 1 (see FIGS. 2 and 3) having a relatively high luminous intensity that travels closer to the optical axis AX. Thus, it is arranged in front of the light incident surface 31 and on the optical axis AX.

中央出光面32は、これから出射する光Ray1を拡散させるために、光軸AXに対して回転対称で、後方(半導体発光素子20)に向かって凸の円形のレンズ面とされている。なお、中央出光面32は、後方に向かって凹の円形のレンズ面であってもよい。これによっても、中央出光面32から出射する光Ray1を拡散させることが可能となる。   The central light exit surface 32 is a rotationally symmetrical lens surface with respect to the optical axis AX and convex toward the rear (semiconductor light emitting element 20) in order to diffuse the light Ray1 emitted from now on. The central light exit surface 32 may be a circular lens surface that is concave toward the rear. This also makes it possible to diffuse the light Ray 1 emitted from the central light exit surface 32.

中央出光面32の直径として、当該中央出光面32から出射する光束が各周囲出光面34から出射する光束と略同一となる寸法が選定されている。具体的には、中央出光面32の直径<周囲出光面34の直径となる寸法が選定される。   As the diameter of the central light exit surface 32, a dimension is selected such that the light flux emitted from the central light exit surface 32 is substantially the same as the light flux emitted from each peripheral light exit surface 34. Specifically, a dimension is selected such that the diameter of the central light emitting surface 32 <the diameter of the surrounding light emitting surface 34.

第1全反射面33は、正面視で三角形状の平面反射面であって、レンズ体30内部に導入された半導体発光素子20からの光のうち、中央出光面32から出射する光Ray1以外の光Ray2(図2、図3参照)が入射するように、中央出光面32の周囲に周方向に八個配置されて、略八角錐を構成している(図1参照)。   The first total reflection surface 33 is a triangular planar reflection surface when viewed from the front, and the light from the semiconductor light emitting element 20 introduced into the lens body 30 other than the light Ray 1 emitted from the central light emission surface 32. Eight light rays 2 (see FIG. 2 and FIG. 3) are arranged in the circumferential direction around the central light exit surface 32 so as to form a substantially octagonal pyramid (see FIG. 1).

各第1全反射面33は、頂点33a側が中央出光面32の外周近傍に位置するとともに、その反対側の底辺33b側が中央出光面32より前方かつ外側に位置するように、光軸AXに対して角度θ1(本実施形態では45°)傾斜して配置されている(図2、図3参照)。各第1全反射面33の底辺33bは、中央出光面32より前方で光軸AXに直交する平面上に位置して、正八角形を構成している(図1参照)。   Each of the first total reflection surfaces 33 is positioned with respect to the optical axis AX so that the apex 33a side is positioned in the vicinity of the outer periphery of the central light exit surface 32, and the opposite bottom 33b side is positioned forward and outward from the central light exit surface 32. The angle θ1 (45 ° in this embodiment) is inclined (see FIGS. 2 and 3). The base 33b of each first total reflection surface 33 is located on a plane that is in front of the central light exit surface 32 and orthogonal to the optical axis AX, and forms a regular octagon (see FIG. 1).

各第1全反射面33は同一サイズで、光軸AXに対する傾斜角度θ1も同一とされている。このため、各第1全反射面33に入射する半導体発光素子20からの光Ray2は各方向(光軸AXに直交する合計八方向)へ均等に反射(配分)される(図6〜図8参照)。   The first total reflection surfaces 33 have the same size and the same inclination angle θ1 with respect to the optical axis AX. For this reason, the light Ray2 from the semiconductor light emitting element 20 incident on each first total reflection surface 33 is uniformly reflected (distributed) in each direction (total eight directions orthogonal to the optical axis AX) (FIGS. 6 to 8). reference).

図1に示すように、中央出光面32、各周囲出光面34は、正面視で3×3の格子状に配置されている。周囲出光面34は、正面視で中心Cが光軸AX上に位置する矩形Rの各頂点V1〜V4に対応する位置及び頂点V1〜V4を両端に持つ稜線の中間点V5〜V8に対応する位置にそれぞれ配置されている。矩形Rは光軸AXに直交する平面上に位置しており、かつ、矩形Rの頂点V1〜V4及び頂点V1〜V4を両端に持つ稜線の中間点V5〜V8は、正面視で第1全反射面33で反射された反射光の各光路L1〜L8上に位置している(図8参照)。   As shown in FIG. 1, the central light exit surface 32 and the surrounding light exit surfaces 34 are arranged in a 3 × 3 lattice shape in a front view. The ambient light exit surface 34 corresponds to the positions corresponding to the vertices V1 to V4 of the rectangle R whose center C is located on the optical axis AX in front view and the midpoints V5 to V8 of the ridge line having the vertices V1 to V4 at both ends. It is arranged at each position. The rectangle R is located on a plane orthogonal to the optical axis AX, and the vertexes V1 to V4 of the rectangle R and the midpoints V5 to V8 of the ridge line having the vertices V1 to V4 at both ends are the first all in the front view. It is located on each optical path L1-L8 of the reflected light reflected by the reflective surface 33 (refer FIG. 8).

各周囲出光面34は、これから出射する光を拡散させるために、光軸AXに対して平行な中心軸AXに対して回転対称で、後方に向かって凸の円形のレンズ面とされている(図2、図3参照)。なお、各周囲出光面34は、後方に向かって凹の円形のレンズ面であってもよい。これによっても、各周囲出光面34から出射する光を拡散させることが可能となる。 Each peripheral light-emitting surface 34, in order to diffuse light coming emitted, rotationally symmetrical relative to a central axis parallel AX c with respect to the optical axis AX, is a circular lens surface convex toward the rear (See FIGS. 2 and 3). In addition, each surrounding light emission surface 34 may be a circular lens surface that is concave toward the rear. This also makes it possible to diffuse the light emitted from each of the surrounding light exit surfaces 34.

各周囲出光面34の直径として、第1全反射面33の底辺33bと略同一寸法(又は、第1全反射面33の底辺33bより長い寸法)が選定されている。これにより、第2全反射面35で反射された第1全反射面33からの反射光を略全て、各周囲出光面34から出射させることが可能となる。   As the diameter of each ambient light exit surface 34, a dimension substantially the same as the bottom 33b of the first total reflection surface 33 (or a dimension longer than the bottom 33b of the first total reflection surface 33) is selected. As a result, substantially all of the reflected light from the first total reflection surface 33 reflected by the second total reflection surface 35 can be emitted from each ambient light output surface 34.

第2全反射面35は、平面反射面であって、第1全反射面33で反射された反射光が入射するように、第1全反射面33で反射された反射光の光路L1〜L8上かつ周囲出光面34の後方に配置されている(図2、図3、図8参照)。   The second total reflection surface 35 is a plane reflection surface, and the light paths L1 to L8 of the reflected light reflected by the first total reflection surface 33 so that the reflected light reflected by the first total reflection surface 33 enters. It is arranged on the upper side and the rear side of the surrounding light emitting surface 34 (see FIGS. 2, 3, and 8).

第2全反射面35は、これに入射した第1全反射面33からの反射光が当該第2全反射面35の前方の周囲出光面34に向かって反射されて、当該周囲出光面34から出射するように、光軸AXに対して傾斜して配置されている。本実施形態では、図2、図3に示すように、第2全反射面35は、外側縁35aが内側縁35bより前方に位置するように、光軸AXに対して角度θ2(本実施形態では45°)傾斜して配置されている。   In the second total reflection surface 35, the reflected light from the first total reflection surface 33 incident on the second total reflection surface 35 is reflected toward the surrounding light emitting surface 34 in front of the second total reflecting surface 35. It is inclined with respect to the optical axis AX so as to be emitted. In the present embodiment, as shown in FIGS. 2 and 3, the second total reflection surface 35 has an angle θ2 (this embodiment) with respect to the optical axis AX so that the outer edge 35a is positioned in front of the inner edge 35b. (45 °).

上記構成の灯具10においては、半導体発光素子20から放射された光は、以下の光路を辿る。   In the lamp 10 having the above-described configuration, the light emitted from the semiconductor light emitting element 20 follows the following optical path.

入光面31からレンズ体30内部に導入された半導体発光素子20からの光のうち、光軸AX寄りを進行する相対的に高い光度の光Ray1は、中央出光面32から拡散光として出射して、前方に照射される(図2、図3、図9〜図11参照)。   Of the light from the semiconductor light emitting element 20 introduced into the lens body 30 from the light incident surface 31, the light Ray 1 having relatively high luminous intensity traveling near the optical axis AX is emitted as diffused light from the central light emitting surface 32. Then, it is irradiated forward (see FIGS. 2, 3, and 9 to 11).

一方、入光面31からレンズ体30内部に導入された半導体発光素子20からの光のうち、中央出光面32から出射する光Ray1以外の光Ray2は、各第1全反射面33で各方向(光軸AXに直交する合計八方向)へ均等に反射(配分)され、さらに、各第2全反射面35で反射されて光軸AXに沿って前方へ進行し、各周囲出光面34から拡散光として出射して、前方に照射される(図2、図3、図6〜図8、図10、図11参照)。   On the other hand, among the light from the semiconductor light emitting element 20 introduced into the lens body 30 from the light incident surface 31, the light Ray2 other than the light Ray1 emitted from the central light emitting surface 32 is in each direction on each first total reflection surface 33. Reflected (distributed) evenly in a total of eight directions orthogonal to the optical axis AX, and further reflected by each second total reflection surface 35 and proceeding forward along the optical axis AX, from each ambient light exit surface 34 The light is emitted as diffused light and irradiated forward (see FIGS. 2, 3, 6 to 8, 10, and 11).

以上説明したように、本実施形態の灯具10によれば、一つの半導体発光素子20から放射された光は、中央出光面32の周囲に周方向に八個配置されて略八角錐を構成する三角形状の平面反射面33(及び第2全反射面35)の作用により、各方向(光軸AXに直交する合計八方向)へ均等に反射(配分)され、3×3の格子状に配置された中央出光面32、各周囲出光面34から出射する。これにより、従来の灯具と比べて光利用効率が低下することなく3×3の格子状に多点発光する合計9つの仮想光源を構成することが可能となる。   As described above, according to the lamp 10 of the present embodiment, eight pieces of light emitted from one semiconductor light emitting element 20 are arranged in the circumferential direction around the central light emitting surface 32 to form a substantially octagonal pyramid. By the action of the triangular planar reflection surface 33 (and the second total reflection surface 35), it is uniformly reflected (distributed) in each direction (total eight directions orthogonal to the optical axis AX) and arranged in a 3 × 3 lattice shape. The light exits from the central light exit surface 32 and the surrounding light exit surfaces 34. As a result, it is possible to configure a total of nine virtual light sources that emit light at multiple points in a 3 × 3 grid without lowering the light utilization efficiency as compared with conventional lamps.

本実施形態では、周囲出光面34が後方に向かって凸のレンズ面とされているため、周囲出光面34から出射する光の強度は、光軸AX側(最内側)が最も強く、光軸AXから離れるにつれ(外側に向かうにつれ)徐々に弱くなり、最外側が最も弱い分布となる(図3参照)。これは、半導体発光素子20の指向特性がランバーシアンのためである。   In the present embodiment, since the surrounding light exit surface 34 is a convex lens surface toward the rear, the intensity of light emitted from the ambient light exit surface 34 is strongest on the optical axis AX side (innermost side), and the optical axis As it moves away from AX (toward the outside), it gradually becomes weaker and the outermost side has the weakest distribution (see FIG. 3). This is because the directional characteristics of the semiconductor light emitting element 20 are Lambertian.

これにより、光軸AX近傍が明るく、周辺に向かうにつれ徐々に暗くなる照明に適した灯具10を構成することが可能となる。なお、周囲出光面34が後方に向かって凹のレンズ面とされている場合には、これとは逆の分布、すなわち、光軸AX側(最内側)が最も弱く、光軸AXから離れるにつれ(外側に向かうにつれ)徐々に強くなり、最外側が最も強い分布となる。   Accordingly, it is possible to configure the lamp 10 suitable for illumination in which the vicinity of the optical axis AX is bright and gradually becomes darker toward the periphery. When the surrounding light exit surface 34 is a concave lens surface toward the rear, the distribution opposite to this, that is, the optical axis AX side (innermost side) is the weakest, and as the distance from the optical axis AX increases. It gradually becomes stronger (as it goes outward), and the outermost side has the strongest distribution.

また、本実施形態の灯具10によれば、上記のように構成される3×3の格子状に配置された合計9つの仮想光源からの光は、上記分布となり、しかも、中央出光面32、各周囲出光面34の作用により灯具10正面に正対するスクリーンSを拡散して照射することになるため、スクリーンSとの距離によって、輝度むらの無い均一な面発光(又は輝度むらの殆ど無い略均一な面発光)を実現することが可能となる(図11参照)。また、灯具10正面に正対するスクリーンS上に輝度むらの無い均一な配光(又は輝度むらの殆ど無い略均一な配光)を形成することが可能となる。   Further, according to the lamp 10 of the present embodiment, the light from a total of nine virtual light sources arranged in a 3 × 3 lattice configuration configured as described above has the above distribution, and the central light exit surface 32, Since the screen S facing the front of the lamp 10 is diffused and irradiated by the action of each ambient light emitting surface 34, uniform surface light emission with no luminance unevenness (or almost no luminance unevenness depending on the distance to the screen S). Uniform surface light emission) can be realized (see FIG. 11). Further, it is possible to form a uniform light distribution with no luminance unevenness (or a substantially uniform light distribution with almost no luminance unevenness) on the screen S facing the front of the lamp 10.

また、本実施形態の灯具10によれば、中央出光面32の直径として、当該中央出光面32から出射する光束が各周囲出光面34から出射する光束と略同一となる寸法が選定されているため、多点発光する各仮想光源からの光束が略等しくなる灯具を構成することが可能となる。   Further, according to the lamp 10 of the present embodiment, as the diameter of the central light exit surface 32, a dimension is selected so that the light flux emitted from the central light exit surface 32 is substantially the same as the light flux emitted from each peripheral light exit surface 34. Therefore, it is possible to configure a lamp in which the light beams from the virtual light sources that emit multipoint light are substantially equal.

次に、変形例について説明する。   Next, a modified example will be described.

上記実施形態では、中央出光面32の周囲には周方向に八個の第1全反射面33が配置されて、略八角錐を構成しているように説明したが(図1参照)、本発明はこれに限定されない。   In the above-described embodiment, the eight first total reflection surfaces 33 are arranged in the circumferential direction around the central light exit surface 32 to form a substantially octagonal pyramid (see FIG. 1). The invention is not limited to this.

例えば、中央出光面32の周囲には周方向にN個(Nは三以上の整数)の第1全反射面33が配置されて、略N角錐を構成していればよい。例えば、中央出光面32の周囲には周方向に三個の第1全反射面33が配置されて、略三角錐を構成していてもよいし(図12参照)、あるいは、中央出光面32の周囲には周方向に四個の第1全反射面33が配置されて、略四角錐を構成していてもよい(図13参照)。   For example, N (N is an integer of 3 or more) first total reflection surfaces 33 may be arranged around the central light exit surface 32 in the circumferential direction to form a substantially N pyramid. For example, three first total reflection surfaces 33 may be arranged in the circumferential direction around the central light exit surface 32 to form a substantially triangular pyramid (see FIG. 12), or the central light exit surface 32. The four first total reflection surfaces 33 may be arranged in the circumferential direction around the, and may constitute a substantially quadrangular pyramid (see FIG. 13).

このようにすれば、一つの半導体発光素子20から放射された光は、中央出光面32の周囲に周方向にN個配置されて略N角錐を構成する三角形状の平面反射面33(及び第2全反射面35)の作用により、各方向(光軸AXに直交する合計N方向)へ均等に反射(配分)され、正面視で多角形状に配置された周囲出光面34から出射する。これにより、従来の灯具と比べて光利用効率が低下することなく多角形状に多点発光させることが可能な灯具を構成することが可能となる。   In this way, the light radiated from one semiconductor light emitting element 20 is arranged in a circumferential direction around the central light emitting surface 32 in the circumferential direction, and the triangular planar reflecting surface 33 (and the first reflecting surface 33) that forms a substantially N pyramid. 2 is totally reflected (distributed) in each direction (total N directions orthogonal to the optical axis AX) by the action of the total reflection surface 35, and is emitted from the surrounding light emitting surface 34 arranged in a polygonal shape in a front view. As a result, it is possible to configure a lamp that can emit multiple points of light in a polygonal shape without lowering the light use efficiency as compared with a conventional lamp.

例えば、図12の例では、一つの半導体発光素子20から放射された光は、中央出光面32の周囲に周方向に三個配置されて略三角錐を構成する三角形状の平面反射面33(及び第2全反射面35)の作用により、各方向(光軸AXに直交する合計三方向)へ均等に反射(配分)され、正面視で三角形状に配置された周囲出光面34から出射する。これにより、従来の灯具と比べて光利用効率が低下することなく三角形状に多点発光する合計四つの仮想光源を構成することが可能となる。   For example, in the example of FIG. 12, the light emitted from one semiconductor light emitting element 20 is arranged in the circumferential direction around the central light emitting surface 32 in the circumferential direction, and forms a triangular planar reflecting surface 33 (substantially triangular pyramid). And the second total reflection surface 35) are reflected (distributed) uniformly in each direction (total three directions orthogonal to the optical axis AX), and are emitted from the surrounding light emitting surface 34 arranged in a triangular shape in front view. . This makes it possible to configure a total of four virtual light sources that emit light at multiple points in a triangular shape without lowering the light utilization efficiency as compared with conventional lamps.

また、図13の例では、一つの半導体発光素子20から放射された光は、中央出光面32の周囲に周方向に四個配置されて略四角錐を構成する三角形状の平面反射面33(及び第2全反射面35)の作用により、各方向(光軸AXに直交する合計四方向)へ均等に反射(配分)され、正面視で四角形状に配置された周囲出光面34から出射する。これにより、従来の灯具と比べて光利用効率が低下することなく四角形状に多点発光する合計五つの仮想光源を構成することが可能となる。   Further, in the example of FIG. 13, the light emitted from one semiconductor light emitting element 20 is arranged in a circumferential direction around the central light emitting surface 32 in the circumferential direction, and is a triangular planar reflecting surface 33 (which forms a substantially quadrangular pyramid). And the second total reflection surface 35) are reflected (distributed) uniformly in each direction (a total of four directions orthogonal to the optical axis AX), and are emitted from the surrounding light emitting surface 34 arranged in a square shape in front view. . This makes it possible to configure a total of five virtual light sources that emit multiple points in a square shape without lowering the light utilization efficiency compared to conventional lamps.

上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。   The above embodiment is merely an example in all respects. The present invention is not construed as being limited to these descriptions. The present invention can be implemented in various other forms without departing from the spirit or main features thereof.

10…灯具、20…半導体発光素子、30…レンズ体31、32…入光面、32…中央出光面、33…第1全反射面、33a…頂点、33b…底辺、34…周囲出光面、35…第2全反射面、35a…外側縁、35b…内側縁   DESCRIPTION OF SYMBOLS 10 ... Lamp, 20 ... Semiconductor light emitting element, 30 ... Lens body 31, 32 ... Light entrance surface, 32 ... Center light emission surface, 33 ... 1st total reflection surface, 33a ... Vertex, 33b ... Base, 34 ... Ambient light emission surface, 35 ... 2nd total reflection surface, 35a ... Outer edge, 35b ... Inner edge

Claims (4)

半導体発光素子と、
前記半導体発光素子の前方に配置されたレンズ体と、
を備えており、
前記レンズ体は、その表面に、入光面、中央出光面、第1全反射面、周囲出光面、第2全反射面を含む中実のレンズ体であり、
前記入光面は、前記半導体発光素子から放射される光が入射するように、前記半導体発光素子の前方かつ光軸上に配置されるとともに、これを透過して前記レンズ体内部に導入される前記半導体発光素子からの光を前記光軸に対して平行な光線に変換するように構成されており、
前記中央出光面は、前記レンズ体内部に導入された前記半導体発光素子からの光のうち、前記光軸寄りを進行する相対的に高い光度の光が出射するように、前記入光面の前方かつ前記光軸上に配置されており、
前記第1全反射面は、前記レンズ体内部に導入された前記半導体発光素子からの光のうち、前記中央出光面から出射する光以外の光が入射するように、前記中央出光面の周囲に周方向にN個配置されて略N角錐を構成する三角形状の平面反射面であって、頂点側が前記中央出光面の外周近傍に位置するとともに、その反対側の底辺側が前記中央出光面より前方かつ外側に位置するように、前記光軸に対して傾斜して配置されており、
前記周囲出光面は、正面視で中心が前記光軸上に位置しかつ頂点が前記第1全反射面で反射された反射光の各光路上に位置するN角形の各頂点に対応する位置にそれぞれ配置されており、
前記第2全反射面は、前記第1全反射面で反射された反射光が入射するように、前記第1全反射面で反射された反射光の各光路上かつ前記周囲出光面の後方に配置された平面反射面であって、これに入射した前記第1全反射面からの反射光が前記周囲出光面に向かって反射されて、当該周囲出光面から出射するように、前記光軸に対して傾斜して配置されていることを特徴とする灯具。
A semiconductor light emitting device;
A lens body disposed in front of the semiconductor light emitting element;
With
The lens body is a solid lens body including a light incident surface, a central light exit surface, a first total reflection surface, a surrounding light exit surface, and a second total reflection surface on the surface thereof,
The light incident surface is disposed in front of the semiconductor light emitting element and on the optical axis so that light emitted from the semiconductor light emitting element is incident thereon, and is transmitted through the light incident surface and introduced into the lens body. It is configured to convert light from the semiconductor light emitting element into light rays parallel to the optical axis,
The central light exit surface is arranged in front of the light incident surface so that light from the semiconductor light emitting element introduced into the lens body emits light having a relatively high luminous intensity that travels closer to the optical axis. And disposed on the optical axis,
The first total reflection surface is disposed around the central light exit surface so that light other than light emitted from the central light exit surface is incident on the light from the semiconductor light emitting element introduced into the lens body. Triangular planar reflecting surfaces arranged in a circumferential direction to form a substantially N pyramid, the apex side being located in the vicinity of the outer periphery of the central light emitting surface, and the bottom side on the opposite side being forward of the central light emitting surface And arranged to be inclined with respect to the optical axis so as to be located outside,
The ambient light exit surface is located at a position corresponding to each apex of the N-angle in which the center is located on the optical axis in front view and the apex is located on each optical path of the reflected light reflected by the first total reflection surface. Each is arranged,
The second total reflection surface is on each optical path of the reflected light reflected by the first total reflection surface and behind the surrounding light exit surface so that the reflected light reflected by the first total reflection surface is incident. A planar reflection surface disposed on the optical axis so that the reflected light from the first total reflection surface incident thereon is reflected toward the ambient light exit surface and is emitted from the ambient light exit surface. A lamp characterized by being inclined with respect to the lamp.
前記第1全反射面は、前記中央出光面の周囲に周方向に八個配置されて略八角錐を構成する三角形状の平面反射面であり、
前記周囲出光面は、正面視で中心が前記光軸上に位置しかつ頂点及び頂点を両端に持つ稜線の中間点が前記第1全反射面で反射された反射光の光路上に位置する矩形の前記頂点に対応する位置及び前記中間点に対応する位置にそれぞれ配置されていることを特徴とする請求項1に記載の灯具。
The first total reflection surface is a triangular planar reflection surface that is arranged in the circumferential direction around the central light exit surface and constitutes a substantially octagonal pyramid,
The ambient light exit surface is a rectangle whose center is located on the optical axis when viewed from the front and whose midpoint between the apex and the ridge line having the apexes at both ends is located on the optical path of the reflected light reflected by the first total reflection surface The lamp according to claim 1, wherein the lamp is disposed at a position corresponding to the apex and a position corresponding to the intermediate point.
前記中央出光面の直径として、当該中央出射面から出射する光束が前記周囲出光面から出射する光束と略同一となる寸法が選定されていることを特徴とする請求項1又は2に記載の灯具。   3. The lamp according to claim 1, wherein the diameter of the central light exit surface is selected such that a light flux emitted from the central light exit surface is substantially the same as a light flux emitted from the surrounding light exit surface. . 前記中央出光面及び/又は周囲出光面は、当該中央出光面及び/又は周囲出光面から出射する光が拡散するように構成されていることを特徴とする請求項1から3のいずれかに記載の灯具。   The said center light-emitting surface and / or surrounding light-emitting surface are comprised so that the light radiate | emitted from the said center light-emitting surface and / or surrounding light-emitting surface may be spread | diffused. Lamps.
JP2011186370A 2011-08-29 2011-08-29 Lamp Active JP5803051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186370A JP5803051B2 (en) 2011-08-29 2011-08-29 Lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186370A JP5803051B2 (en) 2011-08-29 2011-08-29 Lamp

Publications (2)

Publication Number Publication Date
JP2013048062A true JP2013048062A (en) 2013-03-07
JP5803051B2 JP5803051B2 (en) 2015-11-04

Family

ID=48010955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186370A Active JP5803051B2 (en) 2011-08-29 2011-08-29 Lamp

Country Status (1)

Country Link
JP (1) JP5803051B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160137249A (en) * 2015-05-22 2016-11-30 에스엘 주식회사 Head lamp for vehicle
KR101843946B1 (en) 2016-07-26 2018-03-30 황보성 Optical science device of rear combination lamp
JP2019504455A (en) * 2016-01-21 2019-02-14 フィリップス ライティング ホールディング ビー ヴィ Collimator and collimator components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330902B1 (en) 2017-06-16 2019-06-25 Dbm Reflex Enterprises Inc. Illumination optics and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047351A (en) * 2002-07-15 2004-02-12 Koito Mfg Co Ltd Vehicular lighting fixture
JP2006244923A (en) * 2005-03-04 2006-09-14 Stanley Electric Co Ltd Lens, lens unit and lighting fixture equipped with the same
JP2006278309A (en) * 2005-03-01 2006-10-12 Toshiba Lighting & Technology Corp Lighting system
JP2008166072A (en) * 2006-12-27 2008-07-17 Ichikoh Ind Ltd Light guide and vehicular lighting fixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047351A (en) * 2002-07-15 2004-02-12 Koito Mfg Co Ltd Vehicular lighting fixture
JP2006278309A (en) * 2005-03-01 2006-10-12 Toshiba Lighting & Technology Corp Lighting system
JP2006244923A (en) * 2005-03-04 2006-09-14 Stanley Electric Co Ltd Lens, lens unit and lighting fixture equipped with the same
JP2008166072A (en) * 2006-12-27 2008-07-17 Ichikoh Ind Ltd Light guide and vehicular lighting fixture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160137249A (en) * 2015-05-22 2016-11-30 에스엘 주식회사 Head lamp for vehicle
KR102289727B1 (en) 2015-05-22 2021-08-13 에스엘 주식회사 Head lamp for vehicle
JP2019504455A (en) * 2016-01-21 2019-02-14 フィリップス ライティング ホールディング ビー ヴィ Collimator and collimator components
KR101843946B1 (en) 2016-07-26 2018-03-30 황보성 Optical science device of rear combination lamp

Also Published As

Publication number Publication date
JP5803051B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5178930B1 (en) Lighting device
US8905598B2 (en) Lighting device
TWI417473B (en) Optical device for semiconductor based lamp
US8641238B2 (en) Light source module
JP2016534513A (en) Optical system that produces uniform illumination
JP5842147B2 (en) Light emitting device and lighting apparatus using the same
WO2013190979A1 (en) Lighting device
JP2011044315A (en) Optical lens and lighting fixture using this
TWM580691U (en) A direct type backlight device
JP2015530718A (en) Light emitting assembly, lamp and lighting fixture
JP2013016463A (en) Optical device and light-emitting device having the same
JP5939849B2 (en) Lighting device
JP5803051B2 (en) Lamp
JP2017032609A (en) Optical lens, lens array, and lighting fixture
JP2014211983A (en) Vehicular lighting tool unit
JP2008218089A (en) Lighting system
JP5783940B2 (en) LED lamp
US8157411B2 (en) Illuminating device
JP2016526764A (en) Lighting device
JP5861111B2 (en) lighting equipment
JP2012009356A (en) Lamp for vehicle
JP5950198B2 (en) lighting equipment
JP2013038010A (en) Light source unit for vehicular headlight and vehicular headlight using the same
TW201506321A (en) Light emitting diode light source module
JP3197828U (en) Lamp with uniform illuminance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150816

R150 Certificate of patent or registration of utility model

Ref document number: 5803051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250