JP2013047998A - High-frequency magnetic field assist perpendicular magnetic recording head - Google Patents

High-frequency magnetic field assist perpendicular magnetic recording head Download PDF

Info

Publication number
JP2013047998A
JP2013047998A JP2011186307A JP2011186307A JP2013047998A JP 2013047998 A JP2013047998 A JP 2013047998A JP 2011186307 A JP2011186307 A JP 2011186307A JP 2011186307 A JP2011186307 A JP 2011186307A JP 2013047998 A JP2013047998 A JP 2013047998A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording head
frequency oscillation
facing surface
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011186307A
Other languages
Japanese (ja)
Other versions
JP5651086B2 (en
Inventor
Mikito Sugiyama
幹人 杉山
Katsuro Watanabe
克朗 渡邉
Kazuhiko Hosomi
和彦 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011186307A priority Critical patent/JP5651086B2/en
Publication of JP2013047998A publication Critical patent/JP2013047998A/en
Application granted granted Critical
Publication of JP5651086B2 publication Critical patent/JP5651086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the controllability of oscillation properties of a high-frequency oscillatory element in a high-frequency magnetic field assist magnetic recording head.SOLUTION: The width of a high-frequency oscillatory element 110 in a cross track direction is made narrower as it goes away from a medium-opposing surface. When the medium-opposing surface is polished, the electric resistance of the high-frequency oscillatory element is measured, and if it reaches a target electric resistance value, the polishing is finished.

Description

本発明は、磁気記録媒体に対し高周波磁界を印加することにより磁化反転を誘導する機能を有する磁気記録ヘッドに関するものである。   The present invention relates to a magnetic recording head having a function of inducing magnetization reversal by applying a high frequency magnetic field to a magnetic recording medium.

HDD(Hard Disk Drive)に代表される磁気記録再生装置は、情報インフラの基盤として広範な利用がされている。インターネットの普及を契機とした情報化社会の発展とともに、デジタルデータの生成量は爆発的な増加を続けており、その保存に必要な情報ストレージには信頼性・コスト・環境負荷・消費エネルギーなど様々な観点の性能改善が必要とされている。このうちコストは、現状の情報ストレージデバイスに要求される最も重要な性能の一つである。これに対してHDDでは、面記録密度の向上によるビットコスト低減のための技術開発が進められてきた。その記録密度向上は年率40%程度に達し、2012年ごろには面記録密度は、1Tbits/inch2に達すると予想されている。 2. Description of the Related Art Magnetic recording / reproducing devices represented by HDD (Hard Disk Drive) are widely used as an infrastructure for information infrastructure. Along with the development of the information society with the spread of the Internet, the amount of digital data generated has continued to explode, and the information storage required for its storage includes reliability, cost, environmental impact, and energy consumption. There is a need to improve performance from a different perspective. Of these, cost is one of the most important performance requirements for current information storage devices. On the other hand, in the HDD, technological development for reducing the bit cost by improving the surface recording density has been advanced. The increase in recording density reaches about 40% per year, and the surface recording density is expected to reach 1 Tbits / inch 2 around 2012.

面記録密度向上は、磁気記録ヘッド及び再生ヘッドの微細化と磁気記録媒体の粒径の微細化によってなされてきた。しかしながら磁気記録ヘッドの微細化に伴う記録磁界強度の減少によって、記録能力不足の問題が顕在化しつつある。一方、磁気記録媒体の粒径が微細化すると熱揺らぎの問題が顕在化するため、粒径の微細化と同時に媒体の保磁力や異方性エネルギーを増加させる必要があり、結果的に記録が困難になる。そこで上記の相反を脱却するための技術として、熱や高周波磁界の印加により記録時のみ一時的に磁気記録媒体の保磁力を低下させるアシスト記録が提案されている。「熱」の印加によるアシスト記録方式は、例えば特許文献1に記載されている。   The surface recording density has been improved by miniaturizing the magnetic recording head and the reproducing head and by miniaturizing the particle diameter of the magnetic recording medium. However, the problem of insufficient recording capability is becoming apparent due to a decrease in the recording magnetic field strength accompanying the miniaturization of the magnetic recording head. On the other hand, when the particle size of the magnetic recording medium becomes finer, the problem of thermal fluctuation becomes obvious. Therefore, it is necessary to increase the coercive force and anisotropic energy of the medium at the same time as making the particle diameter finer. It becomes difficult. Therefore, as a technique for overcoming the above conflict, assist recording has been proposed in which the coercive force of a magnetic recording medium is temporarily reduced only during recording by application of heat or a high-frequency magnetic field. An assist recording method by applying “heat” is described in Patent Document 1, for example.

一方、高周波磁界印加による方式は、「マイクロ波アシスト記録(MAMR)」という名称とともに、近年着目されている。MAMRでは、強力なマイクロ波帯の高周波磁界をナノメートル単位の領域に印加して記録媒体を局所的に励起し、磁化反転磁界を低減して情報を記録する。磁気共鳴を利用するため、大きな磁化反転磁界の低減効果を得るためには、記録媒体の異方性磁界に比例する周波数の高い高周波磁界を用いる必要がある。特許文献2には、高周波アシスト磁界を発生させるための、GMR素子(巨大磁気抵抗効果素子)に類似する構造の積層膜を電極で挟んだ構造の高周波発振素子が開示されている。高周波発振素子は、GMR構造に発生するスピン揺らぎをもつ伝導電子を非磁性体を介して磁性体に注入することにより、局所的な高周波振動磁界を発生させることができる。同様に、非特許文献1には、スピントルクによるマイクロ波発振が報告されている。非特許文献2には、垂直磁気ヘッドの主磁極に隣接して、スピントルクによって高速回転する高周波磁界発生層を配置してマイクロ波(高周波磁界)を発生せしめ、磁気異方性の大きな磁気記録媒体に情報を記録する技術が開示されている。さらに、非特許文献3には発振素子を磁気記録ヘッドの主磁極と主磁極後方のトレーリングシールドの間に配置させ、高周波磁界の回転方向を記録磁界極性に応じて変化させることにより、磁気記録媒体の磁化反転を効率的にアシストする技術が開示されている。   On the other hand, a method using a high frequency magnetic field has recently attracted attention together with the name “microwave assisted recording (MAMR)”. In MAMR, a high-frequency magnetic field of a strong microwave band is applied to a nanometer unit region to locally excite a recording medium, and a magnetization reversal magnetic field is reduced to record information. Since magnetic resonance is used, it is necessary to use a high-frequency magnetic field having a high frequency proportional to the anisotropic magnetic field of the recording medium in order to obtain a reduction effect of a large magnetization reversal magnetic field. Patent Document 2 discloses a high-frequency oscillation element having a structure in which a laminated film having a structure similar to a GMR element (giant magnetoresistive element) for generating a high-frequency assist magnetic field is sandwiched between electrodes. The high-frequency oscillation element can generate a local high-frequency oscillating magnetic field by injecting conduction electrons having a spin fluctuation generated in the GMR structure into the magnetic material via the non-magnetic material. Similarly, Non-Patent Document 1 reports microwave oscillation by spin torque. In Non-Patent Document 2, a high-frequency magnetic field generating layer that rotates at high speed by spin torque is arranged adjacent to the main pole of a perpendicular magnetic head to generate a microwave (high-frequency magnetic field), and magnetic recording with a large magnetic anisotropy. A technique for recording information on a medium is disclosed. Further, in Non-Patent Document 3, an oscillating element is disposed between the main magnetic pole of a magnetic recording head and a trailing shield behind the main magnetic pole, and the rotation direction of the high-frequency magnetic field is changed in accordance with the recording magnetic field polarity, thereby magnetic recording. A technique for efficiently assisting magnetization reversal of a medium is disclosed.

特開平7−244801号公報JP-A-7-244801 特開2005−025831号公報JP 2005-025831 A 特開2001−101634号公報JP 2001-101634 A 特開2006−344381号公報Japanese Patent Laid-Open No. 2006-344381

Nature 425, 380(2003)Nature 425, 380 (2003) “Microwave Assisted Magnetic Recording” J-G. Zhu et. al., IEEE trans. Magn., Vol.44, NO.1, 125 (2008)“Microwave Assisted Magnetic Recording” J-G. Zhu et. Al., IEEE trans. Magn., Vol.44, NO.1, 125 (2008) ”Medium damping constant and performance characteristics in microwave assisted magnetic recording with circular ac filed” Y. Wang, et al., Journal of Applied Physics, Vol.105, p.07B902 (2009)“Medium damping constant and performance characteristics in microwave assisted magnetic recording with circular ac filed” Y. Wang, et al., Journal of Applied Physics, Vol.105, p.07B902 (2009)

GMR素子に類似する構造を有する発振素子を従来の再生ヘッドと同様な手法によって形成する場合、従来の再生素子と同様に、フォトリソグラフィーによりクロストラック方向の長さを決定し、スライダーの研磨(ラップ)工程において発振素子の浮上高さ方向の長さを定める。このとき発振素子の特性(周波数や磁界強度)は、素子の微細化が進むほど外形に強く依存する。なぜならば素子外周部分における反磁界の影響が顕著になるためである。したがって、ウェハ製造工程における形状及び位置バラツキを抑制することと、ラップ加工量を高精度に制御することとは、性能のよいヘッドを歩留りよく生産する上で重要な課題である。特に、後工程である研磨工程における加工量を非破壊かつ簡便に検知し、加工量を定めることは、最終的な寸法のバラツキ制御に有効である。   When an oscillating element having a structure similar to that of a GMR element is formed by a method similar to that of a conventional reproducing head, the length in the cross-track direction is determined by photolithography, and the slider is polished (wrapped) like the conventional reproducing element. ) In the process, the length of the oscillation element in the flying height direction is determined. At this time, the characteristics (frequency and magnetic field strength) of the oscillation element strongly depend on the outer shape as the element becomes finer. This is because the influence of the demagnetizing field on the outer peripheral portion of the element becomes significant. Therefore, suppressing shape and position variations in the wafer manufacturing process and controlling the lapping amount with high accuracy are important issues in producing a head with good performance with high yield. In particular, it is effective in controlling the final dimensional variation to detect the amount of processing in the polishing step, which is a subsequent step, in a non-destructive and simple manner and to determine the amount of processing.

研磨工程の精度を向上する手法として、研磨の進行とともに体積が減少しそれとともに電気抵抗が増大する電気抵抗検出素子が用いられる。例えば、特許文献3には、研磨面にダミーの抵抗検知膜を埋め込んでおき、研磨されるにつれ変化する抵抗値を監視しながら研磨量を調整する方法が開示されている。また、特許文献4には、スライダー形態で研磨加工を行い、スライダー内に形成されている抵抗検出素子の抵抗値を加工中に検出し、検出した抵抗値又は抵抗値から換算した再生素子の浮上高さ方向の長さが所定の値に達した場合に研磨を停止する方法が開示されている。   As a technique for improving the accuracy of the polishing process, an electric resistance detection element is used in which the volume decreases with the progress of polishing and the electric resistance increases with the volume. For example, Patent Document 3 discloses a method in which a dummy resistance detection film is embedded in a polished surface, and a polishing amount is adjusted while monitoring a resistance value that changes as it is polished. Further, in Patent Document 4, polishing processing is performed in the form of a slider, the resistance value of the resistance detection element formed in the slider is detected during the processing, and the detected resistance value or the floating value of the reproducing element converted from the resistance value is detected. A method is disclosed in which polishing is stopped when the length in the height direction reaches a predetermined value.

本発明が対象とする高周波発振素子を備えた記録ヘッドにおいても同様な電気抵抗検出素子を用いることで、一定の精度で発振素子の浮上高さ方向の長さを制御することは可能である。しかし、一般的な電気抵抗検出素子は高周波発振素子と別個に製造され、2つの素子の相対的位置関係には微細加工精度に応じたバラツキが生じるため、高周波発振素子の形状バラツキを高精度に抑制することができない。   In the recording head including the high-frequency oscillation element targeted by the present invention, it is possible to control the length of the oscillation element in the flying height direction with a certain accuracy by using the same electric resistance detection element. However, a general electric resistance detection element is manufactured separately from the high-frequency oscillation element, and the relative positional relationship between the two elements varies depending on the fine processing accuracy. Therefore, the shape variation of the high-frequency oscillation element is highly accurate. It cannot be suppressed.

本発明は、高周波発振素子を備えた磁気記録ヘッドにおいて、ウェハ加工及びスライダー研磨工程のバラツキに起因する発振特性のバラツキを抑制するものである。   The present invention suppresses variations in oscillation characteristics due to variations in wafer processing and slider polishing processes in a magnetic recording head including a high-frequency oscillation element.

ヘッドの媒体対向面研磨工程において高周波発振素子の電気抵抗を測定することが可能な電気回路を付与するとともに、高周波発振素子のクロストラック方向の幅が、媒体対向面から浮上高さ方向に遠ざかるにつれて狭くなるよう形成する。   An electric circuit capable of measuring the electric resistance of the high-frequency oscillation element in the medium facing surface polishing process of the head is provided, and the width of the high-frequency oscillation element in the cross-track direction is moved away from the medium facing surface in the flying height direction. Form to be narrow.

すなわち、本発明による垂直磁気記録ヘッドは、記録磁界を発生する主磁極と、主磁極のトレーリング側に配置されたトレーリングシールドと、主磁極とトレーリングシールドの間に電気的に接続して配置された高周波発振素子と、主磁極を励磁するためのコイルと、主磁極、高周波発振素子及びトレーリングシールドを介して電流を流すための手段とを備え、主磁極とトレーリングシールドとは浮上高さ方向の上方位置で電気的に絶縁されており、高周波発振素子は、媒体対向面の近くにおいて、媒体対向面から浮上高さ方向に離れるに従ってクロストラック方向の幅が狭くなる形状を有する。   That is, the perpendicular magnetic recording head according to the present invention includes a main magnetic pole for generating a recording magnetic field, a trailing shield disposed on the trailing side of the main magnetic pole, and an electrical connection between the main magnetic pole and the trailing shield. A high-frequency oscillation element disposed; a coil for exciting the main magnetic pole; and a means for allowing a current to flow through the main magnetic pole, the high-frequency oscillation element, and the trailing shield. The high frequency oscillating element is electrically insulated at an upper position in the height direction, and has a shape in which the width in the cross-track direction becomes narrower as the distance from the medium facing surface increases in the flying height direction near the medium facing surface.

高周波発振素子は、一例として、媒体対向面から浮上高さ方向に距離xだけ離れた位置におけるクロストラック方向の幅をWとするとき、Wのxに対する変化率(dW/dx)がxとともに増加する形状とすることができる。なお、媒体対向面から浮上高さ方向に遠い領域では、クロストラック方向の幅が一定であってもよい。   For example, in the high-frequency oscillator, when the width in the cross-track direction at a position separated from the medium facing surface in the flying height direction by a distance x is W, the rate of change of W with respect to x (dW / dx) increases with x. It can be made into the shape to do. In the region far from the medium facing surface in the flying height direction, the width in the cross track direction may be constant.

また、本発明による垂直磁気記録ヘッドの製造方法は、基板上に主磁極を形成する工程と、主磁極上に高周波発振素子となる積層膜を形成する工程と、その積層膜を媒体対向面から浮上高さ方向に離れるに従ってクロストラック方向の幅が狭くなる形状に加工する工程と、基板を1つ又は複数の垂直磁気記録ヘッドが含まれるスタックに切断する工程と、スタックの垂直磁気記録ヘッドの媒体対向面に相当する面を研磨する研磨工程とを含み、研磨工程では、積層膜の電気抵抗値を測定しながら研磨を進め、電気抵抗値が目標値に達したときに研磨を終了する。   The method of manufacturing a perpendicular magnetic recording head according to the present invention includes a step of forming a main magnetic pole on a substrate, a step of forming a laminated film to be a high-frequency oscillation element on the main magnetic pole, and the laminated film from the medium facing surface. A step of processing into a shape in which the width in the cross-track direction becomes narrower with increasing distance in the flying height direction, a step of cutting the substrate into a stack including one or more perpendicular magnetic recording heads, A polishing step of polishing a surface corresponding to the medium facing surface. In the polishing step, the polishing proceeds while measuring the electric resistance value of the laminated film, and the polishing is terminated when the electric resistance value reaches the target value.

本発明によると、スライダー研磨の進行に伴う、高周波発振素子の電気抵抗変化を高感度に検知することができる。その結果、電気抵抗から素子の形状を推定して研磨加工量を決定することが可能になり、高周波発振素子の特性バラツキを抑制することができる。   According to the present invention, it is possible to detect with high sensitivity the change in electrical resistance of the high-frequency oscillation element accompanying the progress of slider polishing. As a result, it is possible to estimate the shape of the element from the electric resistance and determine the polishing amount, and to suppress the characteristic variation of the high-frequency oscillation element.

上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

磁気記録再生ヘッドの断面模式図。FIG. 3 is a schematic sectional view of a magnetic recording / reproducing head. 高周波発振素子と主磁極の模式図。The schematic diagram of a high frequency oscillation element and a main pole. 本発明による高周波発振素子の形状説明図。The shape explanatory view of the high frequency oscillation element by the present invention. 高周波発振素子の電気抵抗のラップ加工量依存性を示す図。The figure which shows the lapping amount dependence of the electrical resistance of a high frequency oscillation element. 高周波発振素子の、発振周波数シミュレーションのモデル図。The model figure of the oscillation frequency simulation of a high frequency oscillation element. 高周波発振素子の、発振周波数とクロストラック方向端部の傾斜角度θの関係を示す図。The figure which shows the relationship between the oscillating frequency of the high frequency oscillation element, and the inclination angle (theta) of the cross-track direction edge part. 高周波発振素子の電気抵抗変化率とラップ加工ずれの関係を示す図。The figure which shows the relationship between the electrical resistance change rate of a high frequency oscillation element, and a lapping process shift | offset | difference. 高周波発振素子の発振周波数とラップ加工ずれの関係を示す図。The figure which shows the relationship between the oscillation frequency of a high frequency oscillation element, and a lapping process shift | offset | difference. 高周波発振素子の角度θと発振周波数のバラツキの関係を示す図。The figure which shows the relationship between the angle (theta) of a high frequency oscillation element, and the variation of an oscillation frequency. 本発明による高周波発振素子の平面形状の例を示す図。The figure which shows the example of the planar shape of the high frequency oscillation element by this invention. 本発明による高周波発振素子の平面形状の例を示す図。The figure which shows the example of the planar shape of the high frequency oscillation element by this invention. 磁気ヘッドの媒体対向面研磨加工工程の一例を示す説明図。FIG. 3 is an explanatory diagram illustrating an example of a medium facing surface polishing process of a magnetic head. 加工プロセスのフローチャート。The flowchart of a process.

以下に本発明の実施例を挙げ、図面を参照しながら更に具体的に説明する。
〔実施例1〕
図1は、本発明が対象とする磁気記録再生ヘッドの断面模式図である。この磁気記録再生ヘッドは、記録ヘッド部100と再生ヘッド部200を有する記録再生分離ヘッドである。記録ヘッド部100は、高周波磁界を発生するための高周波発振素子110、記録ヘッド磁界を発生するための主磁極120、主磁極に磁場を励磁するためのコイル160を有する。主磁極120のトレーリング方向にはトレーリングシールド130が設けられている。ここで、トレーリング方向はヘッドの磁気記録媒体170に対する進行方向と反対の方向であり、リーディング方向はヘッドの媒体対向面に対する進行方向であると定義している。主磁極120とトレーリングシールドとは、媒体対向面から離れた浮上高さ方向の上方位置に設けられた絶縁領域150によって、電気的に絶縁されている。図1には示していないが、主磁極120のクロストラック方向の外側にサイドシールドを設けてもよい。サイドシールドは主磁極120の両側に設けてもよいし、片側にだけ設けてもよい。高周波発振素子110には、絶縁領域150を挟んで接続された電源140から主磁極120とトレーリングシールド130を介して電流が印加される。再生ヘッド部200には、下部磁気シールド220と上部磁気シールド230に挟まれて、TMR素子やGMR素子などの再生素子210が配置される。記録時、磁気記録媒体170には、主磁極120からの記録磁界と高周波発振素子110からの高周波磁界が印加される。
Examples of the present invention will be described below, and will be described more specifically with reference to the drawings.
[Example 1]
FIG. 1 is a schematic cross-sectional view of a magnetic recording / reproducing head targeted by the present invention. This magnetic recording / reproducing head is a recording / reproducing separation head having a recording head unit 100 and a reproducing head unit 200. The recording head unit 100 includes a high-frequency oscillating element 110 for generating a high-frequency magnetic field, a main magnetic pole 120 for generating a recording head magnetic field, and a coil 160 for exciting a magnetic field in the main magnetic pole. A trailing shield 130 is provided in the trailing direction of the main magnetic pole 120. Here, the trailing direction is defined as the direction opposite to the traveling direction of the head with respect to the magnetic recording medium 170, and the leading direction is defined as the traveling direction of the head with respect to the medium facing surface. The main magnetic pole 120 and the trailing shield are electrically insulated by an insulating region 150 provided at an upper position in the flying height direction away from the medium facing surface. Although not shown in FIG. 1, a side shield may be provided outside the main magnetic pole 120 in the cross track direction. The side shields may be provided on both sides of the main magnetic pole 120, or may be provided only on one side. A current is applied to the high-frequency oscillator 110 from the power supply 140 connected across the insulating region 150 through the main magnetic pole 120 and the trailing shield 130. In the reproducing head unit 200, a reproducing element 210 such as a TMR element or a GMR element is disposed between the lower magnetic shield 220 and the upper magnetic shield 230. During recording, a recording magnetic field from the main magnetic pole 120 and a high-frequency magnetic field from the high-frequency oscillation element 110 are applied to the magnetic recording medium 170.

磁気ヘッド部100の高周波発振素子110は、高周波磁界を発生する発振層111、スピン透過性の高い材料からなる中間層112、発振層111にスピントルクを与えるためのスピン注入層113を備える。高周波発振素子110は、図1に示すように、主磁極120側から発振層111、中間層112、スピン注入層113の順に積層してもよいし、反対に主磁極120側からスピン注入層113、中間層112、発振層111の順に積層してもよい。   The high-frequency oscillation element 110 of the magnetic head unit 100 includes an oscillation layer 111 that generates a high-frequency magnetic field, an intermediate layer 112 made of a material having high spin permeability, and a spin injection layer 113 for applying spin torque to the oscillation layer 111. As shown in FIG. 1, the high-frequency oscillation element 110 may be formed by laminating the oscillation layer 111, the intermediate layer 112, and the spin injection layer 113 in this order from the main magnetic pole 120 side, and conversely, the spin injection layer 113 from the main magnetic pole 120 side. The intermediate layer 112 and the oscillation layer 111 may be stacked in this order.

発振層111の材料には、例えばFeCoなどの強磁性金属を用いる。FeCo合金の他に、NiFe合金や、CoFeGe,CoMnGe,CoFeAl,CoFeSi,CoMnSi,CoFeSiなどのホイスラー合金、TbFeCoなどのRe−TM系アルモファス系合金、CoCr系合金などを用いてもよい。また、CoIrなど負の垂直異方性エネルギーを持つ材料を用いることで、効率的な発振が期待できることが報告されている(”Spin Torque Oscillator With Negative Magnetic Anisotropy Materials for MAMR” K. Yoshida et al., IEEE trans. Magn., vol.46, p.2466, 2010)。中間層112にはCuなどの非磁性の伝導材料を用い、他に例えばAu,Ag,Pt,Ta,Ir,Al,Si,Ge,Tiなどを用いることができる。スピン注入層113には垂直磁気異方性を持った材料を用いることにより、発振層111の発振を安定させることができ、例えばCo/Pt,Co/Ni,Co/Pd,CoCrTa/Pdなどの人工格子磁性材料を用いることが好ましい。また、発振の安定性は若干失われるが、発振層111と同様の材料を用いることもできる。   As the material of the oscillation layer 111, for example, a ferromagnetic metal such as FeCo is used. In addition to the FeCo alloy, a NiFe alloy, a Heusler alloy such as CoFeGe, CoMnGe, CoFeAl, CoFeSi, CoMnSi, and CoFeSi, a Re-TM-based amorphous alloy such as TbFeCo, and a CoCr-based alloy may be used. In addition, it has been reported that efficient oscillation can be expected by using a material having negative perpendicular anisotropy energy such as CoIr (“Spin Torque Oscillator With Negative Magnetic Anisotropy Materials for MAMR” K. Yoshida et al. , IEEE trans. Magn., Vol.46, p.2466, 2010). For the intermediate layer 112, a non-magnetic conductive material such as Cu can be used, and for example, Au, Ag, Pt, Ta, Ir, Al, Si, Ge, Ti, or the like can be used. By using a material having perpendicular magnetic anisotropy for the spin injection layer 113, the oscillation of the oscillation layer 111 can be stabilized. For example, Co / Pt, Co / Ni, Co / Pd, CoCrTa / Pd, etc. It is preferable to use an artificial lattice magnetic material. Further, although the oscillation stability is slightly lost, the same material as that of the oscillation layer 111 can be used.

図2に、記録媒体方向から見た、高周波発振素子110と主磁極120の模式図を示す。ここでは簡単のため、トレーリングシールド130は図示を省略している。また、主磁極120は、クロストラック方向の幅がトレーリング側で広くリーディング側で狭い逆台形もしくは三角形の形状であってもよい。ここで、高周波発振素子110のクロストラック方向の幅Wは、媒体対向面から遠ざかるにつれて小さくなる。ここでは簡単のため、高周波発振素子110のトラック端部の外形線は浮上高さ方向とθの角度をなす直線であるとする。   FIG. 2 shows a schematic diagram of the high-frequency oscillation element 110 and the main magnetic pole 120 as seen from the recording medium direction. Here, for the sake of simplicity, the trailing shield 130 is not shown. The main magnetic pole 120 may have an inverted trapezoidal shape or a triangular shape whose width in the cross-track direction is wide on the trailing side and narrow on the leading side. Here, the width W in the cross-track direction of the high-frequency oscillation element 110 decreases as the distance from the medium facing surface decreases. Here, for the sake of simplicity, it is assumed that the outline of the track end portion of the high-frequency oscillator 110 is a straight line that forms an angle θ with the flying height direction.

以下、本実施例の構成によって得られる効果について説明する。電源140によって印加された電圧によって発生した電流は、主磁極120から高周波発振素子110を介してトレーリングシールドへ(あるいはその逆方向へ)流れる。このときの電気抵抗は、高周波発振素子の比抵抗ρと面積Aを用いてρ/Aと表される。従って、媒体対向面のラップ加工に伴う電気抵抗の変化を計測することで、素子形状を非破壊で検知することが可能である。   Hereinafter, effects obtained by the configuration of the present embodiment will be described. The current generated by the voltage applied by the power supply 140 flows from the main magnetic pole 120 to the trailing shield via the high frequency oscillation element 110 (or in the opposite direction). The electrical resistance at this time is expressed as ρ / A using the specific resistance ρ and the area A of the high-frequency oscillation element. Therefore, it is possible to detect the element shape in a non-destructive manner by measuring a change in electrical resistance accompanying lapping of the medium facing surface.

図3に示すように、例えばラップ加工前の浮上高さ方向の長さがL0、媒体対向面における素子の幅がW0である素子を考える。これにラップ加工を施し、初期の状態からxだけ浮上高さ方向に素子を削り込んだ時の素子の形状について考える。このとき浮上高さ方向の長さは(L0−x)である。一方、加工後の媒体対向面における素子の幅Wは、W0−2x・tanθとなる。従って加工後の素子の面積Sは、(L0−x)・(W0−(x+L0)・tanθ)となる。このとき微小加工量dxに対する面積の変化dSは、dS/dx=2x・tanθ−W0である。故にθの増加とともに面積の変化率は増加する。   As shown in FIG. 3, for example, consider an element in which the length in the flying height direction before lapping is L0 and the element width on the medium facing surface is W0. Considering the shape of the element when lapping is applied to the element and the element is cut in the flying height direction by x from the initial state. At this time, the length in the flying height direction is (L0−x). On the other hand, the width W of the element on the medium facing surface after processing is W0-2x · tan θ. Therefore, the area S of the element after processing is (L0−x) · (W0− (x + L0) · tan θ). At this time, the change dS of the area with respect to the minute processing amount dx is dS / dx = 2x · tan θ−W0. Therefore, the area change rate increases with increasing θ.

図4(a)に、L0=100,W0=100とした時の、高周波発振素子の電気抵抗のラップ加工量依存性を示す。横軸はラップ加工量x、縦軸は電気抵抗である。ここでは高周波発振素子にトンネル型磁気抵抗素子構造を用いることを想定し、比抵抗は磁気記録再生ヘッドに一般的に用いられている素子を念頭に0.6Ωμmとした。図4(b)は、加工前の電気抵抗値で規格化したものである。ラップ加工量に対する電気抵抗の変化はθとともに増加する。従って、この電気抵抗を検知しつつラップ加工量を決定する場合、θを大きくすることで高精度に加工量を制御することが可能となる。 FIG. 4A shows the lap processing amount dependency of the electrical resistance of the high-frequency oscillation element when L0 = 100 and W0 = 100. The horizontal axis is the lapping amount x, and the vertical axis is the electrical resistance. Here, it is assumed that a tunnel type magnetoresistive element structure is used for the high-frequency oscillation element, and the specific resistance is set to 0.6 Ωμm 2 in consideration of an element generally used in a magnetic recording / reproducing head. FIG. 4B is normalized by the electric resistance value before processing. The change in electrical resistance with respect to the lapping amount increases with θ. Therefore, when determining the lapping amount while detecting this electrical resistance, it is possible to control the amount of machining with high accuracy by increasing θ.

一方、θを大きくすることは、高周波発振素子の外形を、矩形から台形にすることを意味する。従って、θの増加とともに形状の対称性が低下する可能性がある。以下では、十分な発振磁界強度と発振周波数を実現するうえで適切なθの範囲について述べる。高周波発振素子の磁化挙動は、下記のLLG方程式(”Magnetization dynamics with a spin-transfer torque” Z. Li and S. Zhang, Phys. Rev. B, vol.68, p.024404, 2003)を用いて計算した。
(1+α2)dM/dt=−γM(Heff−αHst)−λ/Ms・M2(αHeff+Hst
st=hηJMp/2eMs
α:ダンピング定数(0.02)
M:磁化ベクトル
γ:ジャイロ磁気定数
eff:異方性磁界、静磁界、交換結合磁界、ゼーマンエネルギー、電流磁界の総和
st:スピントルク磁界
λ:損失定数
s:飽和磁化
h:プランク定数
η:スピン分極率
J:電流密度
p:スピン注入層の単位磁化ベクトル
d:FGLの膜厚
e:単位電荷
On the other hand, increasing θ means changing the outer shape of the high-frequency oscillation element from a rectangle to a trapezoid. Therefore, the symmetry of the shape may decrease as θ increases. In the following, a range of θ appropriate for realizing sufficient oscillation magnetic field strength and oscillation frequency will be described. The magnetization behavior of a high-frequency oscillator is calculated using the following LLG equation ("Magnetization dynamics with a spin-transfer torque" Z. Li and S. Zhang, Phys. Rev. B, vol. 68, p. 024404, 2003). Calculated.
(1 + α 2 ) dM / dt = −γM (H eff −αH st ) −λ / M s · M 2 (αH eff + H st )
H st = hηJM p / 2eM s d
α: Damping constant (0.02)
M: magnetization vector γ: gyromagnetic constant H eff : sum of anisotropic magnetic field, static magnetic field, exchange coupling magnetic field, Zeeman energy, and current magnetic field H st : spin torque magnetic field λ: loss constant M s : saturation magnetization h: Planck constant η: Spin polarizability J: Current density M p : Unit magnetization vector of spin injection layer d: Film thickness of FGL e: Unit charge

計算に用いたモデルを図5に示す。基本形状は幅40nm、高さ40nmの正方形とし、クロストラック方向と浮上高さ方向に24分割した単位胞ごとに磁化を計算した。これをθの増加とともに台形形状として、発振周波数の変化を見積もった。計算に用いた発振層、中間層及びスピン注入層の物性値を表1に示す。主磁極−シールド間の電流密度は1.8A/cm2とし、ダウントラック方向に10kOeの一様外部磁界を仮定した。 The model used for the calculation is shown in FIG. The basic shape was a square with a width of 40 nm and a height of 40 nm, and the magnetization was calculated for each unit cell divided into 24 in the cross track direction and the flying height direction. The change in oscillation frequency was estimated by using this as a trapezoidal shape with an increase in θ. Table 1 shows physical property values of the oscillation layer, the intermediate layer, and the spin injection layer used in the calculation. The current density between the main magnetic pole and the shield was 1.8 A / cm 2, and a uniform external magnetic field of 10 kOe was assumed in the down track direction.

Figure 2013047998
Figure 2013047998

図6に、計算によって得られた、発振周波数とθの関係を示す。θの増加とともに発振周波数は低減する。これは素子が小さくなるとともに、素子周縁部で発生する反磁界の影響が強くなり、発振が不安定化することが原因であると考えられる。このときθが7°から18°の範囲では比較的安定して発振が継続するが、θが20°を超えると大きく発振周波数が低下しており、θは7〜20゜の範囲で用いることが性能維持の観点からは望ましい。   FIG. 6 shows the relationship between the oscillation frequency and θ obtained by calculation. The oscillation frequency decreases as θ increases. This is considered to be caused by the fact that the element becomes smaller, the influence of the demagnetizing field generated at the peripheral edge of the element becomes stronger, and the oscillation becomes unstable. At this time, the oscillation continues relatively stably when θ is in the range of 7 ° to 18 °. However, when θ exceeds 20 °, the oscillation frequency greatly decreases, and θ should be used in the range of 7 to 20 °. Is desirable from the viewpoint of maintaining performance.

次に、本発明による高周波発振素子の特性バラツキ低減効果について述べる。まず、図4に示した素子の電気抵抗ラップ加工依存性を基に算出した抵抗変化率1/R(x)・dR(x)/dxのラップ加工量ずれの依存性を図7に示す。R(x)はxnmのラップ加工後の素子の電気抵抗である。ここで高周波発振素子の最終狙い寸法40nmと仮定し、x=40からの加工ずれをΔxとして横軸にとってある。   Next, the characteristic variation reducing effect of the high frequency oscillation device according to the present invention will be described. First, FIG. 7 shows the dependence of the resistance change rate 1 / R (x) · dR (x) / dx deviation of the lapping amount calculated based on the electrical resistance lapping dependence of the element shown in FIG. R (x) is the electrical resistance of the element after lnm lapping. Here, it is assumed that the final target size of the high-frequency oscillation element is 40 nm, and the horizontal axis indicates the processing deviation from x = 40 as Δx.

図4(b)と同様に、θの増加とともに抵抗変化率は増加する。ここで抵抗変化率±0.5%が抵抗検出系の検出限界と仮定すると、高周波発振素子の最終寸法は図中四角で囲った横軸方向の長さのバラツキ(σx)を有することになる。図からわかるように、σxはθの増加とともに低下する。   Similar to FIG. 4B, the rate of change in resistance increases as θ increases. Assuming that the resistance change rate ± 0.5% is the detection limit of the resistance detection system, the final dimension of the high-frequency oscillation element has a variation in length in the horizontal axis (σx) surrounded by a square in the figure. . As can be seen from the figure, σx decreases as θ increases.

このバラツキが発振周波数に与える影響を図8に示す。図8は、発振周波数と高周波発振素子の最終狙い寸法40nmからのずれの関係を示したものである。すべてのθにおいて、発振周波数はΔxの増加ともに減少する。ここで、図7に示したσxに応じてラップ加工量がΔx=0を中心として変動した際、発振周波数の変化Δfは図中に示した四角線の縦軸方向の長さで表される。   The effect of this variation on the oscillation frequency is shown in FIG. FIG. 8 shows the relationship between the oscillation frequency and the deviation of the high-frequency oscillation element from the final target size of 40 nm. At every θ, the oscillation frequency decreases as Δx increases. Here, when the lapping amount fluctuates around Δx = 0 in accordance with σx shown in FIG. 7, the change in oscillation frequency Δf is expressed by the length of the rectangular line in the vertical axis direction shown in the figure. .

図9は、図8をもとにθとΔfの関係について纏めたものである。Δfはθの増加とともに減少し、例えばθ=20°とすることで、発振周波数の変動をθ=0°の場合の1/4程度に抑制することが可能になる。   FIG. 9 summarizes the relationship between θ and Δf based on FIG. Δf decreases as θ increases. For example, by setting θ = 20 °, fluctuations in the oscillation frequency can be suppressed to about ¼ that in the case of θ = 0 °.

〔実施例2〕
以下では実施例1で述べた形態と同等な効果を得ることができる、高周波発振素子の様々な平面形状について述べる。
[Example 2]
Hereinafter, various planar shapes of the high-frequency oscillation element that can obtain the same effects as those described in the first embodiment will be described.

本発明の本質は、媒体対向面のラップ加工が進行するとともに高周波発振素子のクロストラック方向の幅が小さくなり、その面積すなわち電気抵抗の変化率が増加することである。従ってクロストラック方向の幅の変化率は一様でなくても、同様な効果を得ることができる。すなわち図10(a),(b)に示すように、トラック端部の側面が湾曲していても同様な効果を得ることができる。とりわけ図10(b)に示すように、クロストラック方向の幅の変化率が、媒体対向面から浮上高さ方向に遠ざかるにつれて大きくなる形状とすることは、抵抗変化率を向上するうえで望ましい形態である。この形状は、換言すると、媒体対向面から浮上高さ方向に距離xだけ離れた位置におけるクロストラック方向の幅をWとするとき、Wのxに対する変化率(dW/dx)がxとともに増加する形状である。あるいは幅の変化が、いくつかの段階的に変化する図10(c)に示す形状でも同様に抵抗変化率を向上することが可能であり、本発明の範疇である。   The essence of the present invention is that the lapping of the medium facing surface proceeds, the width of the high-frequency oscillation element in the cross-track direction is reduced, and the area, that is, the rate of change in electrical resistance increases. Therefore, even if the rate of change in the width in the cross track direction is not uniform, the same effect can be obtained. That is, as shown in FIGS. 10A and 10B, the same effect can be obtained even if the side surface of the track end is curved. In particular, as shown in FIG. 10B, a shape in which the rate of change in the width in the cross-track direction increases with increasing distance from the medium facing surface in the flying height direction is desirable for improving the resistance change rate. It is. In other words, when the width in the cross-track direction at a position separated by a distance x in the flying height direction from the medium facing surface is W, the rate of change of W with respect to x (dW / dx) increases with x. Shape. Alternatively, the resistance change rate can be improved in the same manner even in the shape shown in FIG. 10C in which the change in width changes in several steps, and is within the scope of the present invention.

このような形態において、実施例1で述べたトラック端部の外形線と浮上高さ方向の成す角度θは、図中に破線で示すように、外形線に最小二乗法で引いた近似直線と浮上高さ方向の成す角度によって定義する。このように定義されたθにおいても、その増加とともに、ラップ加工量に伴う抵抗変化率が増加することは明らかである。   In such a form, the angle θ formed by the outline of the track end and the flying height direction described in the first embodiment is an approximate straight line drawn by the least square method on the outline as indicated by a broken line in the figure. It is defined by the angle formed by the flying height direction. It is clear that the resistance change rate accompanying the lapping amount increases with the increase in θ defined as described above.

また、発振周波数とθの関係も、トラック端部の外形線が直線又は曲線の場合で大きく変わるものではない。   Also, the relationship between the oscillation frequency and θ does not change greatly depending on whether the outline at the track end is a straight line or a curved line.

〔実施例3〕
高周波発振素子の平面形状の別の実施例について説明する。
高周波発振素子の素子全体で、クロストラック方向の長さが変化している必要は必ずしもない。例えば図11(a)〜(e)に示すように、ラップ加工後の媒体対向面近傍にクロストラック方向の長さが変化する領域を有していれば、本発明の効果を得ることができる。従って、媒体対向面から遠い高周波発振素子の端面側に、クロストラック方向の幅が一定の領域を有する図11(a),(b),(c),(d)に示すような形状もまた、本発明の範疇である。
Example 3
Another embodiment of the planar shape of the high-frequency oscillation element will be described.
It is not always necessary to change the length in the cross-track direction in the entire high-frequency oscillation element. For example, as shown in FIGS. 11A to 11E, the effect of the present invention can be obtained as long as it has a region in which the length in the cross-track direction changes in the vicinity of the medium facing surface after lapping. . Therefore, the shape as shown in FIGS. 11A, 11B, 11C, and 11D having a region having a constant width in the cross-track direction on the end face side of the high-frequency oscillation element far from the medium facing surface is also used. This is the category of the present invention.

また、実施例2で述べたように、クロストラック方向の幅の変化率が、媒体対向面から遠ざかるにつれて大きくなる部位を媒体対向面側に有し、媒体対向面から離れた位置ではその変化率が一定となる図11(e)のような高周波発振素子の形状としても、本発明の効果を得ることができる。   Further, as described in the second embodiment, the rate of change in the width in the cross track direction has a portion on the medium facing surface side that increases as the distance from the medium facing surface increases, and the rate of change at a position away from the medium facing surface. The effect of the present invention can be obtained even when the shape of the high-frequency oscillation element as shown in FIG.

〔実施例4〕
本発明による垂直磁気記録ヘッドの媒体対向面研磨加工工程の一例について述べる。
通常のプロセスによって基板上に複数の垂直磁気記録ヘッド素子をアレイ状に形成する。ここで、本発明の高周波磁界アシスト垂直磁気記録ヘッド素子の製造に特徴的な工程は、主磁極を形成した後、主磁極の上に電気的に接続された状態で高周波発振素子となる積層膜を形成する工程、その積層膜を媒体対向面から浮上高さ方向に離れるに従ってクロストラック方向の幅が狭くなる形状に加工して高周波発振素子を形成する工程である。
Example 4
An example of the medium facing surface polishing process of the perpendicular magnetic recording head according to the present invention will be described.
A plurality of perpendicular magnetic recording head elements are formed in an array on a substrate by a normal process. Here, a characteristic process for manufacturing the high-frequency magnetic field-assisted perpendicular magnetic recording head element of the present invention is that the main film is formed and then a laminated film that becomes a high-frequency oscillation element in a state of being electrically connected to the main pole. Forming a high-frequency oscillation element by processing the laminated film into a shape in which the width in the cross-track direction becomes narrower as the distance from the medium facing surface increases in the flying height direction.

こうして基板上に形成された垂直磁気記録ヘッドの媒体対向面を、次に所定量だけ研磨する。図12(a)に示すように、始めに基板310上に形成した高周波発振素子を含む垂直磁気記録ヘッド素子を、個別あるいは複数の素子ごとのスタック311に切断する。次に、垂直磁気記録ヘッド素子が形成された基板上の面に直交する面(すなわち媒体対向面)を、回転研磨定盤312及び研磨液313などを用いて研磨する。図12(c)は、スタック311の支持部の拡大図である。スタック311は弾性体315を介してスタック支持部314に固定される。ここで支持部314及びスタック311に設けられた端子316,317を金線318にて接続する。   The medium facing surface of the perpendicular magnetic recording head thus formed on the substrate is then polished by a predetermined amount. As shown in FIG. 12A, the perpendicular magnetic recording head element including the high-frequency oscillation element formed on the substrate 310 is first cut into a stack 311 for each or a plurality of elements. Next, the surface orthogonal to the surface on the substrate on which the perpendicular magnetic recording head element is formed (that is, the medium facing surface) is polished using the rotary polishing surface plate 312 and the polishing liquid 313. FIG. 12C is an enlarged view of the support portion of the stack 311. The stack 311 is fixed to the stack support portion 314 via the elastic body 315. Here, terminals 316 and 317 provided on the support portion 314 and the stack 311 are connected by a gold wire 318.

加工プロセスのフローチャートを、図13に示す。加工進行中あるいは断続的な加工の合間に高周波発振素子の電気抵抗を測定し、目標電気抵抗値に達したときに研磨加工を終了する。目標電気抵抗値は、最終的な目標形状と高周波発振素子を形成するウェハ工程においてGMR膜等の電気抵抗を用いて定める。この方法によると、高周波発振素子の特性バラツキを抑制し、所望の性能を有する高周波磁界アシスト垂直磁気記録ヘッドを高い歩留まりで製造することができる。   A flowchart of the machining process is shown in FIG. The electrical resistance of the high-frequency oscillation element is measured during processing or between intermittent processing, and the polishing process is terminated when the target electrical resistance value is reached. The target electric resistance value is determined using an electric resistance such as a GMR film in a wafer process for forming a final target shape and a high-frequency oscillation element. According to this method, it is possible to manufacture a high-frequency magnetic field assisted perpendicular magnetic recording head having desired performance while suppressing variation in characteristics of the high-frequency oscillation element with a high yield.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

100 記録ヘッド
110 高周波発振素子
111 発振層
112 中間層
113 スピン注入層
120 主磁極
130 トレーリングシールド
140 電源
150 絶縁領域
160 コイル
170 磁気記録媒体
200 再生ヘッド
210 再生素子
220 下部磁気シールド
230 上部磁気シールド
310 基板
311 スタック
312 回転研磨定盤
313 研磨液
314 スタック支持部
315 弾性体
316 端子
317 端子
318 金線
100 recording head 110 high frequency oscillation element 111 oscillation layer
112 Intermediate layer 113 Spin injection layer 120 Main magnetic pole 130 Trailing shield 140 Power supply 150 Insulating region 160 Coil 170 Magnetic recording medium 200 Playback head 210 Playback element 220 Lower magnetic shield 230 Upper magnetic shield 310 Substrate 311 Stack 312 Rotating polishing surface plate 313 Polishing Liquid 314 Stack support part 315 Elastic body 316 Terminal 317 Terminal 318 Gold wire

Claims (7)

記録磁界を発生する主磁極と、
前記主磁極のトレーリング側に配置されたトレーリングシールドと、
前記主磁極と前記トレーリングシールドの間に電気的に接続して配置された高周波発振素子と、
前記主磁極を励磁するためのコイルと、
前記主磁極、前記高周波発振素子及び前記トレーリングシールドを介して電流を流すための手段とを備え、
前記主磁極と前記トレーリングシールドとは浮上高さ方向の上方位置で電気的に絶縁されており、
前記高周波発振素子は、媒体対向面の近くにおいて、前記媒体対向面から浮上高さ方向に離れるに従ってクロストラック方向の幅が狭くなる形状を有することを特徴とする垂直磁気記録ヘッド。
A main magnetic pole for generating a recording magnetic field;
A trailing shield disposed on the trailing side of the main pole;
A high-frequency oscillation element arranged in electrical connection between the main pole and the trailing shield;
A coil for exciting the main magnetic pole;
Means for passing a current through the main pole, the high-frequency oscillation element and the trailing shield;
The main magnetic pole and the trailing shield are electrically insulated at an upper position in the flying height direction,
The perpendicular magnetic recording head according to claim 1, wherein the high-frequency oscillation element has a shape in which the width in the cross-track direction becomes narrower as the distance from the medium facing surface increases in the flying height direction near the medium facing surface.
請求項1に記載の垂直磁気記録ヘッドにおいて、前記高周波発振素子は、前記媒体対向面から浮上高さ方向に距離xだけ離れた位置におけるクロストラック方向の幅をWとするとき、Wのxに対する変化率(dW/dx)がxとともに増加することを特徴とする垂直磁気記録ヘッド。   2. The perpendicular magnetic recording head according to claim 1, wherein the high-frequency oscillation element has a width in the cross-track direction at a position separated from the medium facing surface by a distance x in the flying height direction, where W A perpendicular magnetic recording head characterized in that the rate of change (dW / dx) increases with x. 請求項1に記載の垂直磁気記録ヘッドにおいて、前記高周波発振素子は、前記クロストラック方向の幅が、前記媒体対向面から浮上高さ方向に遠ざかるにつれて狭くなる第1の領域を前記媒体対向面から浮上高さ方向に一定の範囲で有し、前記クロストラック方向の幅が一定の第2の領域を前記第1の領域より媒体対向面から浮上高さ方向に遠い位置に有することを特徴とする垂直磁気記録ヘッド。   2. The perpendicular magnetic recording head according to claim 1, wherein the high-frequency oscillation element has a first region in which the width in the cross-track direction becomes narrower as the distance from the medium facing surface increases in the flying height direction. A second region having a constant range in the flying height direction and having a constant width in the cross-track direction is located farther from the medium facing surface in the flying height direction than the first region. Perpendicular magnetic recording head. 請求項1に記載の垂直磁気記録ヘッドにおいて、前記高周波発振素子は、前記媒体対向面から浮上高さ方向に距離xだけ離れた位置におけるクロストラック方向の幅をWとするとき、Wのxに対する変化率(dW/dx)がxとともに増加する第1の領域を前記媒体対向面から浮上高さ方向に一定の範囲で有し、前記変化率が一定である第2の領域を前記第1の領域より媒体対向面から浮上高さ方向に遠い位置に有することを特徴とする垂直磁気記録ヘッド。   2. The perpendicular magnetic recording head according to claim 1, wherein the high-frequency oscillation element has a width in the cross-track direction at a position separated from the medium facing surface by a distance x in the flying height direction, where W The first region in which the rate of change (dW / dx) increases with x is in a certain range in the flying height direction from the medium facing surface, and the second region in which the rate of change is constant is the first region. A perpendicular magnetic recording head having a position farther in the flying height direction from the medium facing surface than the area. 請求項4に記載の垂直磁気記録ヘッドにおいて、前記変化率は前記第2の領域でゼロであることを特徴とする垂直磁気記録ヘッド。   5. The perpendicular magnetic recording head according to claim 4, wherein the rate of change is zero in the second region. 請求項1に記載の垂直磁気記録ヘッドにおいて、前記高周波発振素子のクロストラック方向端部の外形線に最小二乗法で引いた近似直線と、浮上高さ方向のなす角度が20°以下であることを特徴とする垂直磁気記録ヘッド。   2. The perpendicular magnetic recording head according to claim 1, wherein an angle formed by an approximate straight line drawn by a least-squares method on an outline of a cross-track direction end of the high-frequency oscillation element and a flying height direction is 20 ° or less. A perpendicular magnetic recording head. 主磁極と、前記主磁極に電気的に接続された高周波発振素子と、前記高周波発振素子に電気的に接続されたトレーリングシールドとを有する垂直磁気記録ヘッドの製造方法において、
基板上に前記主磁極を形成する工程と、
前記主磁極上に前記高周波発振素子となる積層膜を形成する工程と、
前記積層膜を前記媒体対向面から浮上高さ方向に離れるに従ってクロストラック方向の幅が狭くなる形状に加工する工程と、
前記基板を1つ又は複数の垂直磁気記録ヘッドが含まれるスタックに切断する工程と、
前記スタックの前記垂直磁気記録ヘッドの媒体対向面に相当する面を研磨する研磨工程とを含み、
前記研磨工程では、前記積層膜の電気抵抗値を測定しながら研磨を進め、電気抵抗値が目標値に達したときに研磨を終了することを特徴とする垂直磁気記録ヘッドの製造方法。
In a method of manufacturing a perpendicular magnetic recording head having a main magnetic pole, a high-frequency oscillation element electrically connected to the main magnetic pole, and a trailing shield electrically connected to the high-frequency oscillation element,
Forming the main pole on a substrate;
Forming a laminated film to be the high-frequency oscillation element on the main pole;
Processing the laminated film into a shape in which the width in the cross-track direction becomes narrower as it moves away from the medium facing surface in the flying height direction;
Cutting the substrate into a stack including one or more perpendicular magnetic recording heads;
Polishing a surface corresponding to a medium facing surface of the perpendicular magnetic recording head of the stack,
In the polishing step, the polishing proceeds while measuring the electric resistance value of the laminated film, and the polishing is finished when the electric resistance value reaches a target value.
JP2011186307A 2011-08-29 2011-08-29 High frequency magnetic field assisted perpendicular magnetic recording head Active JP5651086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186307A JP5651086B2 (en) 2011-08-29 2011-08-29 High frequency magnetic field assisted perpendicular magnetic recording head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186307A JP5651086B2 (en) 2011-08-29 2011-08-29 High frequency magnetic field assisted perpendicular magnetic recording head

Publications (2)

Publication Number Publication Date
JP2013047998A true JP2013047998A (en) 2013-03-07
JP5651086B2 JP5651086B2 (en) 2015-01-07

Family

ID=48010916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186307A Active JP5651086B2 (en) 2011-08-29 2011-08-29 High frequency magnetic field assisted perpendicular magnetic recording head

Country Status (1)

Country Link
JP (1) JP5651086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010871A (en) * 2012-06-29 2014-01-20 Toshiba Corp Magnetic recording head and disk drive including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037695A (en) 2015-08-12 2017-02-16 株式会社東芝 Manufacturing method of magnetic head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064499A (en) * 2007-09-05 2009-03-26 Toshiba Corp Magnetic recording/reproducing device
WO2010053187A1 (en) * 2008-11-10 2010-05-14 株式会社日立製作所 Information recording device
JP2010118089A (en) * 2008-11-11 2010-05-27 Fujitsu Ltd Magnetic head, method of manufacturing magnetic head, and information storage device using magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064499A (en) * 2007-09-05 2009-03-26 Toshiba Corp Magnetic recording/reproducing device
WO2010053187A1 (en) * 2008-11-10 2010-05-14 株式会社日立製作所 Information recording device
JP2010118089A (en) * 2008-11-11 2010-05-27 Fujitsu Ltd Magnetic head, method of manufacturing magnetic head, and information storage device using magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010871A (en) * 2012-06-29 2014-01-20 Toshiba Corp Magnetic recording head and disk drive including the same

Also Published As

Publication number Publication date
JP5651086B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6414250B2 (en) Underlying laminated body, laminated element including the same, magnetic sensor, and microwave assisted magnetic head
US9824701B2 (en) Microwave assisted magnetic recording head with spin torque oscillator corner angle relationship, head gimbal assembly, and magnetic recording device
US8081397B2 (en) Magnetic head assembly and magnetic recording apparatus
JP5451096B2 (en) Magnetic head
JP5977988B2 (en) Microwave-assisted magnetic recording head and magnetic recording apparatus having a spin torque oscillator
JP5117606B1 (en) Magnetic recording head, manufacturing method thereof, and magnetic disk apparatus
US8345380B2 (en) Spin torque oscillator and magnetic recording head and magnetic recording device mounted with the spin torque oscillator
US8537497B2 (en) Magnetic recording head and magnetic recording/reproducing apparatus
US8238058B2 (en) Magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8810946B2 (en) Energy-assisted magnetic recording head and magnetic recording device
JP5558365B2 (en) Information recording device
US20100027158A1 (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using magnetic head for high-frequency field assist recording
US8279548B2 (en) Microwave oscillating element and thin film magnetic head therewith
JP2009301695A (en) Thin-film magnetic head for microwave assist and microwave-assisted magnetic recording method
JP6451763B2 (en) Magnetic recording apparatus and magnetic recording method
JP2014211934A (en) High frequency magnetic field assisted magnetic recording head, and manufacturing method of the same
JP2013251042A (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recorder
JP2010040059A (en) Magnetic recording apparatus
US9007721B2 (en) Microwave assisted magnetic recording head having spin torque oscillator, and magnetic recording apparatus
US8908330B1 (en) Spin torque oscillator for microwave assisted magnetic recording with optimal geometries
US20150131184A1 (en) Tapered write head for mamr
JP2014049155A (en) Microwave assisted magnetic recording head
JP5682472B2 (en) Microwave assisted magnetic recording head
JP5570745B2 (en) Magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8824103B2 (en) Magnetic recording head and magnetic recording apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R151 Written notification of patent or utility model registration

Ref document number: 5651086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151