JP2013047763A - Periodically structured reflection mirror and optical element using the same - Google Patents

Periodically structured reflection mirror and optical element using the same Download PDF

Info

Publication number
JP2013047763A
JP2013047763A JP2011186504A JP2011186504A JP2013047763A JP 2013047763 A JP2013047763 A JP 2013047763A JP 2011186504 A JP2011186504 A JP 2011186504A JP 2011186504 A JP2011186504 A JP 2011186504A JP 2013047763 A JP2013047763 A JP 2013047763A
Authority
JP
Japan
Prior art keywords
refractive index
substrate
periodic structure
curvature
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011186504A
Other languages
Japanese (ja)
Inventor
Yasuo Odera
康夫 大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2011186504A priority Critical patent/JP2013047763A/en
Publication of JP2013047763A publication Critical patent/JP2013047763A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement a reflection mirror which has low loss and strong wavelength selectivity for diverging and converging light waves and has high reflectivity, with a simple structure in the field of microphotonic elements.SOLUTION: A high-refractive index thin film layer having refractive-index periodic structures is formed on a substrate having the same curvature as a light wave to be controlled to achieve low loss, strong wavelength selectivity, and high reflectivity. A guided mode resonance phenomenon that light diffracted into a guided mode by periodic structures and propagated in the high-refractive index layer is resonantly reflected to the incidence side is utilized. When a curvature radius of the substrate is equal to or less than about 5 times the intervals of periodic structures, reflectivity at a resonance wavelength can be kept at 90% or more. Minimum requirements for operation of this structure are only a substrate made of a low-refractive index medium and a diffraction grating layer made of a high-refractive index medium, so that an element can be implemented with a much simpler configuration than a dielectric multilayer reflection mirror or the like.

Description

本発明は、曲面形状を持つ反射鏡のうち、透明な基板上に形成された周期構造性薄膜の形態を持つものに関するものである。   The present invention relates to a reflection mirror having a form of a periodic structure thin film formed on a transparent substrate among curved mirrors.

ガラス等の平坦な基板上に一定の間隔で凹凸を設け、そこに外部から平面波を入射させると、凹凸の間隔と波長及び基板の屈折率で決まる方向に光が回折される。この様な素子を表面回折格子という。これに類似する構造として、基板上の高屈折率薄膜に形成した凹凸または屈折率の変調によって光を回折させる素子がある。これを薄膜型の回折格子と呼ぶ。薄膜型の回折格子においては、薄膜の平均屈折率と格子の間隔、及び外部入射光の入射角と波長がある関係を満たす場合に、入射光のパワーが100%、反射されることが知られている。この現象は導波モード共鳴(Guided-Mode Resonance)と呼ばれる。導波モード共鳴の生じる波長の範囲は一般に狭いので、このような構造は、波長選択性の鋭い高反射率の反射鏡を実現する形態として、1980年代頃より研究が行われてきた(非特許文献1、非特許文献2、非特許文献3)。   When irregularities are provided on a flat substrate such as glass at regular intervals and a plane wave is incident on the substrate from the outside, light is diffracted in a direction determined by the interval and wavelength of the irregularities and the refractive index of the substrate. Such an element is called a surface diffraction grating. As a similar structure, there is an element that diffracts light by unevenness or modulation of refractive index formed in a high refractive index thin film on a substrate. This is called a thin film type diffraction grating. In a thin-film diffraction grating, it is known that the incident light power is reflected by 100% when the relationship between the average refractive index of the thin film and the gap between the gratings and the incident angle and wavelength of the external incident light is satisfied. ing. This phenomenon is called guided mode resonance (Guided-Mode Resonance). Since the wavelength range in which guided mode resonance occurs is generally narrow, such a structure has been studied since the 1980s as a form for realizing a highly reflective reflector with sharp wavelength selectivity (non-patented). Document 1, Non-Patent Document 2, Non-Patent Document 3).

薄膜型の回折格子は見方を変えると、基板上に形成された周期構造状の光導波路と見なすことができる。光導波路を伝搬する光の伝搬定数βが、格子の間隔Λに対し、βΛ≒2πの関係を満たすとき、導波光は回折されて導波路の上下に外部光として出て行く。この現象は、外部から到来する平面波を光導波路に入出力するための素子、すなわちグレーティング・カプラとしても利用されてきた(非特許文献4)。外部から入射した光は格子で回折され、光導波路の導波モードに変換されて薄膜層を伝搬する。このモードは再び格子で回折されて外部へと出て行く。周期構造の各部から出て行く光の位相が同相となったときに、外部光の強度が全体として増強され、100%の反射が観測される。これが本現象が導波モード共鳴と呼ばれる所以である。薄膜型の回折格子は、特に導波モード共鳴の発生を目的として使用される場合、「共鳴モード格子」(Resonant Grating)と呼ばれることもある。共鳴モード格子は最も簡単には、低屈折率基板上に1層の高屈折率周期性導波層を形成するだけで構成することができる。すなわち極めてシンプルな構成で、100%の反射鏡を実現することができる。   In other words, the thin-film diffraction grating can be regarded as an optical waveguide having a periodic structure formed on a substrate. When the propagation constant β of light propagating through the optical waveguide satisfies the relationship of βΛ≈2π with respect to the lattice interval Λ, the guided light is diffracted and goes out as external light above and below the waveguide. This phenomenon has also been used as an element for inputting and outputting a plane wave coming from the outside to the optical waveguide, that is, a grating coupler (Non-patent Document 4). Light incident from the outside is diffracted by the grating, converted into a waveguide mode of the optical waveguide, and propagates through the thin film layer. This mode is again diffracted by the grating and goes out. When the phase of the light emitted from each part of the periodic structure becomes the same phase, the intensity of the external light is enhanced as a whole, and 100% reflection is observed. This is why this phenomenon is called guided mode resonance. The thin film type diffraction grating is sometimes called a “resonant mode grating” (Resonant Grating) particularly when it is used for the purpose of generating guided mode resonance. The resonance mode grating can be constituted most simply by forming a single high refractive index periodic waveguide layer on a low refractive index substrate. That is, a 100% reflecting mirror can be realized with an extremely simple configuration.

しかしながら従来研究開発されてきた共鳴モード格子はすべて、平坦な基板上に形成されたものであった。従って、格子が反射鏡として作用するためには、外部光が平面波であることが必要であった。換言すれば、共鳴モード格子の応用は、平面波を利用する型の光デバイスに限られていた。   However, all the resonance mode gratings that have been researched and developed have been formed on a flat substrate. Therefore, in order for the grating to act as a reflecting mirror, the external light needs to be a plane wave. In other words, the application of the resonant mode grating has been limited to an optical device using a plane wave.

しかしながら現在、計測や通信、情報処理など、光工学の関わる産業分野において、非平面状の波面を利用するケースの方が圧倒的に多い。例えば太陽光発電分野ではフレネルレンズや放物面反射鏡を用いて太陽光を収束波に変換している。また通信の分野においては、光ファイバー中を伝搬する光は発散または収束する円筒状の波の重ね合わせで表現される。またガスレーザー等の共振器の反射鏡には微小な曲率が付いており、共振器中での光の拡散を防いでいる。また前述したグレーティング・カプラは、光ファイバーの端面からの放射光を光導波路に導くのが現実的な応用であるが、この場合も光ファイバーからの光は波面の曲がった波といえる。   However, at present, there are overwhelmingly more cases using non-planar wavefronts in industrial fields related to optical engineering such as measurement, communication, and information processing. For example, in the field of photovoltaic power generation, sunlight is converted into a convergent wave using a Fresnel lens or a parabolic reflector. In the field of communications, light propagating in an optical fiber is expressed by superposition of diverging or converging cylindrical waves. Further, the reflector of the resonator such as a gas laser has a minute curvature to prevent light from diffusing in the resonator. In the above-described grating coupler, it is a practical application to guide the radiated light from the end face of the optical fiber to the optical waveguide. In this case, the light from the optical fiber can be said to be a wave having a curved wavefront.

このように収束・発散する、曲がった波面を持つ波の伝搬方向を高効率で変換できる反射鏡への要求は光工学の広範囲な分野において存在する。反射鏡は例えば、アルミニウムや金などの金属面を用いれば簡便に構成することができ、実際にも多用されている。その反面、反射率を90%以上に高めるのが困難、光吸収による発熱がある、酸化により反射率が低下するなどの問題があった。また波長選択性が緩やかであることも、用途によっては不都合といえる。また反射鏡は、曲面上に誘電体の多層膜を形成することによっても実現することができた。しかしこの場合は例えば90%以上の反射率を得るのに、一般的には数十層以上の膜数を必要とするなど、製造コストの面で問題があった。   There is a need for a reflecting mirror that can efficiently convert the propagation direction of a wave having a curved wavefront that converges and diverges in a wide field of optical engineering. For example, the reflecting mirror can be simply configured by using a metal surface such as aluminum or gold, and is often used in practice. On the other hand, there are problems that it is difficult to increase the reflectance to 90% or more, heat is generated due to light absorption, and the reflectance is lowered due to oxidation. Moreover, it can be said that the wavelength selectivity is gradual depending on the application. The reflecting mirror could also be realized by forming a dielectric multilayer film on the curved surface. However, in this case, for example, in order to obtain a reflectance of 90% or more, there is a problem in terms of manufacturing cost, such as generally requiring a film number of several tens of layers or more.

P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands”, Applied Physics vol. 20, pp. 345-351, 1979.P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands”, Applied Physics vol. 20, pp. 345-351, 1979. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures”, IEEE Journal of Quantum Electronics, vol. 33, no. 11, pp. 2038-2059, 1997.D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures”, IEEE Journal of Quantum Electronics, vol. 33, no. 11, pp. 2038-2059, 1997. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications”, Optics Express, vol. 12, no. 23, pp. 5661-5674, 2004.Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications”, Optics Express, vol. 12, no. 23, pp. 5661-5674, 2004. G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay”, Optics Express, vol. 14, no. 24, pp. 11622-11630, 2006.G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay”, Optics Express, vol. 14, no. 24, pp. 11622-11630, 2006.

このように、光工学の諸分野では収束・発散波に対する高反射率な反射鏡への要求があったにも関わらず、シンプルな構造で100%に近い反射率を実現しうる構造は知られていなかった。唯一候補となりうる共鳴モード格子は平面波に対してしか反射鏡として動作しないため、応用先も著しく限定されざるを得なかった。本発明はこの課題を解決することを目的とする。   Thus, in various fields of optical engineering, there is a known structure that can achieve a reflectivity close to 100% with a simple structure, despite the need for a highly reflective mirror for convergent and divergent waves. It wasn't. Since the resonance mode grating that can be the only candidate works as a reflector only for plane waves, the application destination must be remarkably limited. The present invention aims to solve this problem.

前記課題を解決するために、本発明は、
面内方向に屈折率が少なくとも一次元的な周期構造を有する構造体であって、
曲率の付いた基板上に形成された薄膜からなり、
その周期構造の、曲面に沿う方向の間隔Λが、動作波長をλ、基板の屈折率をn、薄膜の屈折率をnとするとき、

Figure 2013047763
で表される範囲の値であることを特徴としている。 In order to solve the above problems, the present invention provides:
A structure having a periodic structure with a refractive index of at least one dimension in the in-plane direction,
It consists of a thin film formed on a substrate with curvature,
When the interval Λ in the direction along the curved surface of the periodic structure is λ, the refractive index of the substrate is n 1 , and the refractive index of the thin film is n 2 ,
Figure 2013047763
It is the value of the range represented by.

本発明は、
基板面上に形成された高屈折率薄膜を導波層とする光導波路型素子であって、
その素子の形状は円形または楕円形をなし、
その外周に屈折率の周期構造が形成されており、
その周期構造の外周に沿う方向の間隔Λが、光導波路のクラッドの屈折率をn、コアの屈折率をn、動作波長をλとするとき、請求項1に記載の関係式で表される範囲の値を持つことを特徴としている。
The present invention
An optical waveguide device having a high refractive index thin film formed on a substrate surface as a waveguide layer,
The shape of the element is circular or oval,
A periodic structure of refractive index is formed on the outer periphery,
The interval Λ in the direction along the outer periphery of the periodic structure is expressed by the relational expression according to claim 1 , where n 1 is the refractive index of the cladding of the optical waveguide, n 2 is the refractive index of the core, and λ is the operating wavelength. It is characterized by having a range of values.

本発明は、
光ファイバー型の光導波路素子であって、
ファイバーの中心に位置するコアを、屈折率の高い媒質でできた周期構造が同心円状に取り囲んでおり、
その周期構造の円周に沿った方向の間隔をΛが、周期構造より外側にあるクラッドの屈折率をn、周期構造を構成する媒質の屈折率をn、動作波長をλとするとき、請求項1に記載の関係式で表される範囲の値を持つことを特徴としている。
The present invention
An optical fiber type optical waveguide element,
The core located in the center of the fiber is concentrically surrounded by a periodic structure made of a medium with a high refractive index.
When the interval in the direction along the circumference of the periodic structure is Λ, the refractive index of the cladding outside the periodic structure is n 1 , the refractive index of the medium constituting the periodic structure is n 2 , and the operating wavelength is λ Further, it has a value in a range represented by the relational expression described in claim 1.

本発明では曲率付きの基板上に回折格子を形成することで、発散波や収束波といった、有限の曲率を持つ波に対して高効率反射鏡として動作する、共鳴モード格子を提供する。   The present invention provides a resonant mode grating that operates as a high-efficiency reflector for waves having a finite curvature, such as divergent waves and convergent waves, by forming a diffraction grating on a substrate with curvature.

図1に従来型、図2に本発明型それぞれの共鳴モード格子の概念図を示す。周期構造の形態はこの図に示したとおり薄膜上の物理的な凹凸でもよく、また薄膜に紫外線照射やイオン注入等で形成した屈折率の変調でもよい。格子に付ける曲率は、そこに入射させるべき光波の波面の曲率に一致させておく。すなわち一つ一つの格子が、入射波によって同相で励振されるようにしておく。   FIG. 1 shows a conceptual diagram of a resonance mode grating of the conventional type, and FIG. The form of the periodic structure may be physical irregularities on the thin film as shown in this figure, or may be a refractive index modulation formed on the thin film by ultraviolet irradiation or ion implantation. The curvature applied to the grating is made to coincide with the curvature of the wavefront of the light wave to be incident thereon. That is, each grating is excited in phase by the incident wave.

反射率がほぼ100%に到達し、波長選択性があり、曲率のある波面を持つ光波を反射することのできる反射鏡を、シンプルな構造で構成する方法を提供する。曲率を持つ基板上に、屈折率の周期構造を設けた高屈折率薄膜を形成することで、その曲率と同じ波面を持った光波に対し反射鏡として作用する。共鳴反射作用は原理的に、薄膜が1層以上あれば発生する。従ってシンプルな構造で曲面反射鏡を実現することができる。   Provided is a method of constructing a reflector having a simple structure, which has a reflectance of almost 100%, has wavelength selectivity, and can reflect a light wave having a curved wavefront. By forming a high refractive index thin film having a refractive index periodic structure on a substrate having a curvature, it acts as a reflecting mirror for a light wave having the same wavefront as that curvature. In principle, the resonant reflection effect occurs when there is at least one thin film. Therefore, a curved reflector can be realized with a simple structure.

平坦な基板上に形成された回折格子薄膜からなる、従来型の共鳴モード格子を示す図。The figure which shows the conventional resonance mode grating | lattice which consists of a diffraction grating thin film formed on the flat board | substrate. 曲率を持った基板上に形成された、本発明の共鳴モード格子を示す図。The figure which shows the resonance mode grating | lattice of this invention formed on the board | substrate with a curvature. 本発明の曲率付き共鳴モード格子の反射スペクトルを示す図。いくつかの曲線は曲率半径の異なるものに対応する。The figure which shows the reflection spectrum of the resonance mode grating | lattice with a curvature of this invention. Some curves correspond to different curvature radii. 本発明の曲率付き共鳴モード格子において、曲率半径と共鳴スペクトルのQ値の関係を示す図。The figure which shows the relationship between a curvature radius and Q value of a resonance spectrum in the resonance mode grating | lattice with a curvature of this invention. 本発明の曲率付き共鳴モード格子を用いた、グレーティング・カプラの概念図。The conceptual diagram of a grating coupler using the resonant mode grating with a curvature of this invention. 本発明の曲率付き共鳴モード格子を用いた、円形共振器の概念図。The conceptual diagram of the circular resonator using the resonant mode grating with a curvature of this invention. 本発明の曲率付き共鳴モード格子を第一クラッドとして配置した、光ファイバーの概念図。The conceptual diagram of the optical fiber which has arrange | positioned the resonance mode grating | lattice with a curvature of this invention as a 1st clad.

図2に示した概念図を使って、本発明である曲面上の薄膜回折格子の形態を説明する。ここでは同図に示すとおり、曲率半径が薄膜上の場所ごとに一定である構造を取り上げる。紙面に垂直な座標軸をz,曲率の中心から半径方向に向かう座標軸をr,周方向の座標軸をθとするとき、z方向に屈折率分布は一様であるとする。回折格子層は五酸化ニオブ(波長400nm〜2000nmで屈折率は約2.1〜2.2)とし、回折格子層の外側に示した基板は溶融石英(波長400nm〜2000nmで屈折率は約1.44〜1.45)とする。また回折格子層よりも中心に近い側は空気とする。回折格子層の厚みは、その凹凸をならして非周期構造型のスラブ導波路と見なした場合に、設計波長において高々3つ程度の導波モードが存在する程度の厚みとする。具体的には導波層の厚みの1/9とした。また曲率の中心から導波層までの距離である曲率半径は、格子の間隔Λの4倍以上とした。   The form of a thin film diffraction grating on a curved surface according to the present invention will be described using the conceptual diagram shown in FIG. Here, as shown in the figure, a structure in which the radius of curvature is constant for each location on the thin film will be taken up. It is assumed that the refractive index distribution is uniform in the z direction, where z is the coordinate axis perpendicular to the plane of the paper, r is the coordinate axis in the radial direction from the center of curvature, and θ is the coordinate axis in the circumferential direction. The diffraction grating layer is niobium pentoxide (wavelength 400 nm to 2000 nm and the refractive index is about 2.1 to 2.2), and the substrate shown outside the diffraction grating layer is fused silica (wavelength 400 nm to 2000 nm and the refractive index is about 1). .44 to 1.45). The side closer to the center than the diffraction grating layer is air. The thickness of the diffraction grating layer is set to such a thickness that at most about three waveguide modes exist at the design wavelength when the unevenness is leveled and regarded as an aperiodic structure type slab waveguide. Specifically, it is 1/9 of the thickness of the waveguide layer. Further, the radius of curvature, which is the distance from the center of curvature to the waveguide layer, is set to be at least four times the lattice spacing Λ.

曲率半径の異なるいくつかの構造に対し、曲率の中心から同心円状に広がるTM波(電界がz成分のみを持ち、磁界はr成分とθ成分を持つ波)を入射させた場合の反射スペクトルを図3に示した。図2の構造において、回折格子層の厚みと凹凸の深さは図1に示した値に等しくした。図3の左端には、平坦な共鳴モード格子に平面波を垂直入射した場合の反射スペクトルも合わせて示した。図にAで記した値以上の曲率半径を持つ構造では、反射スペクトルの形は平坦構造とほとんど変わらないことがわかる。このAは、円周上に格子が50ヶ配置された構造に対応する。曲率半径が格子の間隔Λに対し相対的に小さくなってくると反射率の最大値も低下するが、少なくとも円周上に格子が30個配置された構造(この場合の曲率半径は約4.8Λ)半径までは、ピーク反射率が50%以上となることが分かる。反射率が100%近くに保たれている範囲では、スペクトルの幅も平坦構造と同程度である。   Reflection spectra when TM waves that spread concentrically from the center of curvature (waves having only the z component and the magnetic field having the r and θ components) are incident on several structures with different curvature radii. This is shown in FIG. In the structure of FIG. 2, the thickness of the diffraction grating layer and the depth of the unevenness were made equal to the values shown in FIG. The left end of FIG. 3 also shows the reflection spectrum when a plane wave is vertically incident on a flat resonance mode grating. It can be seen that in the structure having a radius of curvature greater than the value indicated by A in the figure, the shape of the reflection spectrum is almost the same as the flat structure. This A corresponds to a structure in which 50 lattices are arranged on the circumference. When the radius of curvature becomes relatively small with respect to the lattice spacing Λ, the maximum value of the reflectivity also decreases, but at least 30 gratings are arranged on the circumference (in this case, the radius of curvature is about 4. It can be seen that the peak reflectance is 50% or more up to the radius of 8Λ. In the range where the reflectance is kept close to 100%, the spectrum width is about the same as the flat structure.

曲率半径に対し、反射率の最大値と共鳴のQ値(中心波長と波長幅の比に相当)を図4に示した。このようにある曲率半径以上では反射率もQ値も、元の平坦構造と同等に保たれることが分かる。   FIG. 4 shows the maximum reflectance and the resonance Q value (corresponding to the ratio of the center wavelength to the wavelength width) with respect to the radius of curvature. Thus, it can be seen that the reflectance and the Q value are kept equal to the original flat structure at a certain radius of curvature.

以上の例では1層の五酸化ニオブ層からなる回折格子層を溶融石英基板上に直接形成し、表面は空気に露出させる構造とした。しかしこのような導波モード共鳴現象を発生させるのに必要な材料及び構造はこれに限られたものではなく、例えば回折格子層にはSi(波長1300nm〜2000nmで屈折率約3.5)やTa2O5(波長400〜2000nmで屈折率2.1〜2.2)なども使用することができる。また基板は石英系のガラス(屈折率=1.52前後)でもよい。また導波層の上下にスペーサー層と称する第3、第4の層を設けてもよい。また凹凸の深さも上に示した値以上にしてもよい。また凹凸の形状は矩形波状でなくてもよく、例えば正弦波形状でもよい。また導波層を分断する程度にまで深い凹凸を形成してもよい。   In the above example, a diffraction grating layer composed of one niobium pentoxide layer is directly formed on a fused quartz substrate, and the surface is exposed to air. However, materials and structures necessary to generate such a guided mode resonance phenomenon are not limited to this. For example, the diffraction grating layer has Si (refractive index of about 3.5 at a wavelength of 1300 nm to 2000 nm), etc. Ta2O5 (having a wavelength of 400 to 2000 nm and a refractive index of 2.1 to 2.2) can also be used. The substrate may be quartz glass (refractive index = 1.52 or so). Further, third and fourth layers called spacer layers may be provided above and below the waveguide layer. Further, the depth of the unevenness may be greater than or equal to the value shown above. Further, the shape of the unevenness does not have to be a rectangular wave shape, and may be a sine wave shape, for example. Further, deep irregularities may be formed to such an extent that the waveguide layer is divided.

ここでは本構造の、グレーティング・カプラへの応用を示す。図5はその概念図である。すなわち基板内部のある平面上に、光導波層を形成する。その上方に、曲率一定の共鳴モード格子層を形成する。基板外部から到来した円筒状の発散波は格子に結合し、円周方向に伝搬を開始する。伝搬光の一部は、格子から下部の導波層に結合し、信号として下部導波層中に取り出されていく。また逆に、下部導波層中に最初に光を伝搬させておく使用法も考えられる。すなわち下部導波層中の導波光は、回折格子層と最も接近した位置で回折格子層に結合し、その一部が更に円筒波状の収束波に変換されて上方へと放出される。この波は曲率の中心に向かって収束を続け、曲率の中心(焦点)付近に集光される。ここでは局所的な曲率が一定の場合の例を示したが、曲率が格子上の場所に依存する構造、すなわち放物面状に格子を形成すれば、焦点からの発散波を平行光に変換するパラボラ反射鏡として動作させることができる。   Here we show the application of this structure to a grating coupler. FIG. 5 is a conceptual diagram thereof. That is, an optical waveguide layer is formed on a certain plane inside the substrate. Above this, a resonance mode lattice layer having a constant curvature is formed. A cylindrical divergent wave coming from the outside of the substrate is coupled to the grating and starts to propagate in the circumferential direction. A part of the propagating light is coupled from the grating to the lower waveguide layer and extracted as a signal into the lower waveguide layer. On the other hand, it is also conceivable that the light is first propagated in the lower waveguide layer. That is, the guided light in the lower waveguide layer is coupled to the diffraction grating layer at a position closest to the diffraction grating layer, and a part of the light is further converted into a cylindrical wave-like convergent wave and emitted upward. This wave continues to converge toward the center of curvature and is collected near the center (focal point) of curvature. In this example, the local curvature is constant. However, if the curvature depends on the location on the lattice, that is, if the lattice is formed in a parabolic shape, the divergent wave from the focal point is converted into parallel light. Can be operated as a parabolic reflector.

ここでは光集積回路用の円形共振器への応用を示す。図6はその概念図である。すなわち光集積回路用基板上に、同心円状に高屈折率の微小構造を配置する。この配置の間隔Λは、同心円状の構造を周方向に周回する導波モードの伝搬定数をβとするとき、これまでにも述べたとおりβΛ≒2πの関係が成り立つように設定する。   Here, application to a circular resonator for an optical integrated circuit is shown. FIG. 6 is a conceptual diagram thereof. That is, a high-refractive-index microstructure is disposed concentrically on an optical integrated circuit substrate. This arrangement interval Λ is set so that the relationship βΛ≈2π holds as described above, where β is the propagation constant of the waveguide mode that circulates in the circumferential direction of the concentric structure.

この構造の中心付近に外部から照射された光は、基板面内で発散光を形成する。この発散波はリング状周期構造で反射され、再び中心に戻っていく。一部の光はリング内を周回伝搬するモードに変換され、更に近接して配置された光導波路を介して外部に取り出される。   Light irradiated from the outside near the center of this structure forms divergent light within the substrate surface. This diverging wave is reflected by the ring-shaped periodic structure and returns to the center again. A part of the light is converted into a mode that circulates in the ring, and is extracted to the outside through an optical waveguide disposed closer to the ring.

ここでは光ファイバーガイドへの応用を示す。図7はその概念図である。すなわちコアの周囲を、高屈折率媒質からなる周期構造状の第一クラッドが同心円状に取り巻いている。その外側は低屈折率媒質からなる第二クラッドである。   Here, application to an optical fiber guide is shown. FIG. 7 is a conceptual diagram thereof. That is, a first clad having a periodic structure made of a high refractive index medium is concentrically surrounding the core. The outside is a second cladding made of a low refractive index medium.

コア中を斜めに伝搬する光は第一クラッドに入射した際、その波長が周期構造の共鳴波長に近い場合、100%に近い反射率で反射される。この結果当該波長の光はコア内をジグザグに伝搬する導波モードを形作る。この型の光ファイバーでは導波することを許される光の波長及びコアの軸に対する伝搬角度は、周期構造の共鳴条件から決定される非常に狭い範囲の値に限定される。換言すれば導波/非導波がファイバーのわずかな曲がりや、温度変化による屈折率の変化に敏感に反応する。このため、高感度な応力センサや分布型温度センサなどへ応用することができる。   When light propagating through the core obliquely enters the first cladding, it is reflected with a reflectance close to 100% when its wavelength is close to the resonance wavelength of the periodic structure. As a result, the light of the wavelength forms a waveguide mode that propagates in a zigzag manner in the core. In this type of optical fiber, the wavelength of light allowed to be guided and the propagation angle with respect to the axis of the core are limited to a very narrow range of values determined from the resonance conditions of the periodic structure. In other words, guided / non-guided waves are sensitive to slight bending of the fiber and changes in refractive index due to temperature changes. Therefore, it can be applied to highly sensitive stress sensors, distributed temperature sensors, and the like.

本発明の曲率付き薄膜回折格子構造または周期性導波路構造を用いれば、曲面状の波面を持つ光波に対する高反射率の反射鏡を簡単な構成で実現することができる。この構造は太陽エネルギー分野における波長選択性高効率光集光器や、光エレクトロニクス分野において外部光ファイバーからの光を光集積回路上の光導波路に導くグレーティング・カプラ、そして円形レーザー共振器、また光通信や光センシングの分野における高感度応力・温度計測用光ファイバーセンサに利用することができる。   By using the thin film diffraction grating structure with curvature or the periodic waveguide structure of the present invention, it is possible to realize a reflector having a high reflectivity with respect to a light wave having a curved wavefront with a simple configuration. This structure is a wavelength-selective high-efficiency optical concentrator in the solar energy field, a grating coupler that guides light from an external optical fiber to an optical waveguide on an optical integrated circuit, a circular laser resonator, and optical communication in the optoelectronic field. And optical fiber sensors for high-sensitivity stress and temperature measurement in the field of optical sensing.

101 高屈折率媒質による回折格子層、あるいは導波路のコア層
102 低屈折率媒質による基板
501 曲率付き回折格子層
502 平坦基板面上に形成された光集積回路の導波層
503 基板
504 線状の焦点
601 平面基板上に同心円状に配置した周期構造導波路
602 光取り出し用導波路
701 光ファイバーのコア
702 高屈折率媒質による第一クラッド
703 第二クラッド
101 A diffraction grating layer made of a high refractive index medium or a core layer 102 of a waveguide 102 A substrate 501 made of a low refractive index medium A curved diffraction grating layer 502 A waveguide layer 503 of an optical integrated circuit formed on a flat substrate surface Substrate 504 Linear Focal point 601 Periodic structure waveguide 602 concentrically arranged on a flat substrate Optical extraction waveguide 701 Optical fiber core 702 First clad 703 with high refractive index medium Second clad

Claims (3)

面内方向に屈折率が少なくとも一次元的な周期構造を有する構造体であって、
曲率の付いた基板上に形成された薄膜からなり、
その周期構造の、曲面に沿う方向の間隔Λが、動作波長をλ、基板の屈折率をn、薄膜の屈折率をnとするとき、
Figure 2013047763
で表される範囲の値であることを特徴とする構造体。
A structure having a periodic structure with a refractive index of at least one dimension in the in-plane direction,
It consists of a thin film formed on a substrate with curvature,
When the interval Λ in the direction along the curved surface of the periodic structure is λ, the refractive index of the substrate is n 1 , and the refractive index of the thin film is n 2 ,
Figure 2013047763
A structure having a value in the range represented by
基板面上に形成された高屈折率薄膜を導波層とする光導波路型素子であって、
その素子の形状は円形または楕円形をなし、
その外周に屈折率の周期構造が形成されており、
その周期構造の外周に沿う方向の間隔Λが、光導波路のクラッドの屈折率をn、コアの屈折率をn、動作波長をλとするとき、請求項1に記載の関係式で表される範囲の値を持つことを特徴とする光導波路型素子。
An optical waveguide device having a high refractive index thin film formed on a substrate surface as a waveguide layer,
The shape of the element is circular or oval,
A periodic structure of refractive index is formed on the outer periphery,
The interval Λ in the direction along the outer periphery of the periodic structure is expressed by the relational expression according to claim 1 , where n 1 is the refractive index of the cladding of the optical waveguide, n 2 is the refractive index of the core, and λ is the operating wavelength. An optical waveguide device characterized by having a value in a range to be controlled.
光ファイバー型の光導波路素子であって、
ファイバーの中心に位置するコアを、屈折率の高い媒質でできた周期構造が同心円状に取り囲んでおり、
その周期構造の円周に沿った方向の間隔をΛが、周期構造より外側にあるクラッドの屈折率をn、周期構造を構成する媒質の屈折率をn、動作波長をλとするとき、請求項1に記載の関係式で表される範囲の値を持つことを特徴とする光導波路型素子。
An optical fiber type optical waveguide element,
The core located in the center of the fiber is concentrically surrounded by a periodic structure made of a medium with a high refractive index.
When the interval in the direction along the circumference of the periodic structure is Λ, the refractive index of the cladding outside the periodic structure is n 1 , the refractive index of the medium constituting the periodic structure is n 2 , and the operating wavelength is λ An optical waveguide element having a value in a range represented by the relational expression according to claim 1.
JP2011186504A 2011-08-29 2011-08-29 Periodically structured reflection mirror and optical element using the same Withdrawn JP2013047763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186504A JP2013047763A (en) 2011-08-29 2011-08-29 Periodically structured reflection mirror and optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186504A JP2013047763A (en) 2011-08-29 2011-08-29 Periodically structured reflection mirror and optical element using the same

Publications (1)

Publication Number Publication Date
JP2013047763A true JP2013047763A (en) 2013-03-07

Family

ID=48010785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186504A Withdrawn JP2013047763A (en) 2011-08-29 2011-08-29 Periodically structured reflection mirror and optical element using the same

Country Status (1)

Country Link
JP (1) JP2013047763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287541B2 (en) * 2013-06-12 2019-05-14 Osaka University Cell culture vessel coated with laminin fragment in dry state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287541B2 (en) * 2013-06-12 2019-05-14 Osaka University Cell culture vessel coated with laminin fragment in dry state

Similar Documents

Publication Publication Date Title
US8755118B2 (en) Planar, high NA, low loss transmitting or reflecting lenses using sub-wavelength high contrast grating
US20040258353A1 (en) System for electromagnetic field conversion
CN104090332A (en) Long-focus tight-focusing surface plasmonic lens under radially polarized beam
Zhu et al. Spatial control of photonic nanojets
Inoue et al. Cavity-resonator-integrated guided-mode resonance filter in channel waveguide
Reinhardt et al. Bandgap-confined large-mode waveguides for surface plasmon-polaritons
Jing et al. Design of highly efficient transmission gratings with deep etched triangular grooves
Dong et al. Broadband depolarized perfect Littrow diffraction with multilayer freeform metagratings
Delâge et al. Monolithically integrated asymmetric graded and step-index couplers for microphotonic waveguides
Brückner et al. Demonstration of a cavity coupler based on a resonant waveguide grating
Byrnes et al. High-quality-factor planar optical cavities with laterally stopped, slowed, or reversed light
JP2013047763A (en) Periodically structured reflection mirror and optical element using the same
Zhu et al. Polarization-controlled tunable multi-focal plasmonic lens
Yu et al. Impacts of tapered sidewall profile on subwavelength grating wideband reflectors
Zhu et al. Design of a subwavelength all-metal grating for generating azimuthally polarized beams based on modified particle swarm optimization
Fattinger The bidiffractive grating coupler
Brückner et al. Encapsulated subwavelength grating as a quasi-monolithic resonant reflector
Sun et al. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas
Komar et al. Planar focusing reflectors based on monolithic high contrast gratings: design procedure and comparison with parabolic mirrors
Tsuji et al. Integrated optic device for narrow-band reflection and guided-wave launching
Wolf et al. Direct core-selective inscription of Bragg grating structures in seven-core optical fibers by femtosecond laser pulses
Hao et al. A design method for a micron-focusing plasmonic lens based on phase modulation
Li et al. Multilayer dielectric cylindrical mirrors based on omnidirectional reflection from a one-dimensional photonic crystal
Edelmann et al. Shaping of electromagnetic fields for THz plasmonics
Litvik et al. Waveguide silicon nitride grating coupler

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104