JP2013046898A - Solid-liquid separator - Google Patents

Solid-liquid separator Download PDF

Info

Publication number
JP2013046898A
JP2013046898A JP2012080475A JP2012080475A JP2013046898A JP 2013046898 A JP2013046898 A JP 2013046898A JP 2012080475 A JP2012080475 A JP 2012080475A JP 2012080475 A JP2012080475 A JP 2012080475A JP 2013046898 A JP2013046898 A JP 2013046898A
Authority
JP
Japan
Prior art keywords
tank
water
solid
vertical baffle
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080475A
Other languages
Japanese (ja)
Other versions
JP5949059B2 (en
Inventor
Mitsuharu Terajima
光春 寺嶋
Satoru Shimizu
哲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012080475A priority Critical patent/JP5949059B2/en
Publication of JP2013046898A publication Critical patent/JP2013046898A/en
Application granted granted Critical
Publication of JP5949059B2 publication Critical patent/JP5949059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solid-liquid separator in which the floc formed in a flocculation tank is introduced into a sedimentation tank without being decomposed, and the floc is surely precipitated by the sedimentation tank.SOLUTION: The solid-liquid separator includes: a flocculation tank 15 that performs a flocculation process to a pollutant; and a sedimentation tank 30 that make the pollutant precipitate, wherein the sedimentation tank is a swirl flow type sedimentation tank in which a swirl flow is generated in the sedimentation tank by the driving force of a coagulation-treated water itself that goes into; a common use part 16 that shares a peripheral wall surface is formed at peripheral walls 3, 31 of the flocculation tank and the sedimentation tank, and a communication port 17 that communicates the flocculation tank and the sedimentation tank; a flocculation tank vertical baffle 35 that leads the treated water to the communication port is provided in the flocculation tank, and a sedimentation tank vertical baffle 36 that leads the coagulation-treated water from the communication port to the sedimentation tank is provided in the sedimentation tank; the flocculation tank vertical baffle and the sedimentation tank vertical baffle are disposed to sandwich the communication ports between them.

Description

本発明は、固液分離装置に関する。さらに詳しくは、被処理水に凝集剤を添加して汚濁物質を凝集処理し、凝集処理された凝集処理水を固液分離して汚濁物質を沈殿させて汚濁物質を分離除去する固液分離装置に関する。   The present invention relates to a solid-liquid separator. More specifically, a solid-liquid separation device that adds a flocculant to the water to be treated to agglomerate the pollutant, solid-liquid separates the agglomerated water, precipitates the pollutant, and separates and removes the pollutant About.

汚濁水を旋回流式沈殿槽に導入して固液分離する固液分離装置として、特許文献1には、渦流式固液分離装置やバースクリーン等の第1の固液分離手段で夾雑物を除去し、次いで、凝集剤添加手段で凝集剤を添加して被処理水中の汚濁物質を凝集させ、その後、渦流式固液分離装置である第2の固液分離手段で被処理水を清澄分と固形分とに分離する固液分離装置が記載されている。この固液分離装置では、凝集剤添加手段で汚濁物質を凝集してフロックを形成し、このフロック含有水を渦流式固液分離装置に導入し、固液分離する。   As a solid-liquid separation device that introduces contaminated water into a swirling flow settling tank and separates it into solid and liquid, Patent Document 1 discloses a first solid-liquid separation means such as a vortex solid-liquid separation device or a bar screen. Then, the flocculant is added by the flocculant addition means to aggregate the pollutant in the water to be treated, and then the water to be treated is clarified by the second solid-liquid separation means which is a vortex type solid-liquid separation device. And a solid-liquid separator that separates into a solid content. In this solid-liquid separator, the flocculant is aggregated by the flocculant addition means to form a floc, and this floc-containing water is introduced into the vortex-type solid-liquid separator and solid-liquid separated.

特許文献2には、円筒状の分離槽の内部に固体等を捕捉するための捕捉材を筒状に設け、被処理水を環状に流動させて固液分離するための装置に関する固液分離装置が記載されている。   Patent Document 2 discloses a solid-liquid separation apparatus relating to an apparatus for solid-liquid separation by providing a capture material for capturing solids or the like in a cylindrical separation tank in a cylindrical shape and causing water to be treated to flow in an annular shape. Is described.

非特許文献1には、沈殿槽の内部で被処理水を旋回させて流動させる沈殿槽として、内部に円筒状のスクリーンを設け、被処理水に含まれる汚濁物質をスクリーンで捕捉するスワール式沈殿槽が記載されている。   Non-Patent Document 1 discloses a swirl type precipitation in which a cylindrical screen is provided as a settling tank for swirling and flowing the water to be treated inside the settling tank, and contaminants contained in the water to be treated are captured by the screen. The tank is listed.

特開2004−209306号公報JP 2004-209306 A 特表平10−504227号公報Japanese National Patent Publication No. 10-504227

「資源環境対策」Vol.41、No.6、pp.42(2005)“Resource Environment Measures” Vol. 41, no. 6, pp. 42 (2005)

特許文献1に示された固液分離装置では、凝集処理した凝集処理水を配管等で旋回式沈殿槽に導入するため、配管等を通過する際に、形成されたフロックに抵抗や衝撃が加わり、フロックが微細な浮遊物質に分解される。微細に分解された浮遊物質は、処理水とともに旋回式沈殿槽から流出するため、処理水の水質が悪化する。   In the solid-liquid separation device disclosed in Patent Document 1, since the coagulated water is introduced into the swirl type sedimentation tank through a pipe or the like, resistance and impact are applied to the formed floc when passing through the pipe or the like. The floc is broken down into fine suspended solids. Since the finely decomposed suspended matter flows out of the swirling settling tank together with the treated water, the quality of the treated water is deteriorated.

特許文献2及び非特許文献1に示された固液分離装置では、汚濁物質を捕捉するためのスクリーンが目詰まりを起こし易く、安定して固液分離を行うことが困難である。   In the solid-liquid separation apparatus disclosed in Patent Document 2 and Non-Patent Document 1, the screen for capturing the pollutant is likely to be clogged, and it is difficult to perform solid-liquid separation stably.

本発明は、上記課題を解決するためになされたものであり、その目的は、凝集槽で形成されたフロックを分解させることなく沈殿槽に導入し、沈殿槽でフロックを効率よく沈殿させることができる固液分離装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to introduce flocs formed in a coagulation tank into a settling tank without decomposing, and to efficiently precipitate the flocs in the settling tank. An object of the present invention is to provide a solid-liquid separator that can be used.

本発明の固液分離装置は、被処理水に凝集剤を添加して汚濁物質を凝集処理する凝集槽と、該凝集槽で凝集処理された凝集処理水を固液分離して汚濁物質を沈殿させる円筒状の沈殿槽と、を備え、前記沈殿槽は、進入する凝集処理水自体の推進力で該沈殿槽の内部で旋回流を生じさせる旋回流式沈殿槽である固液分離装置において、前記凝集槽と前記沈殿槽とは、各々の中心間距離Lが下記で定義されるLmin及びLmaxに対しLmin≦L≦Lmaxの関係を満たすように互いに近接して設置されていることを特徴とするものである。   The solid-liquid separation device of the present invention is a method of precipitating pollutants by solid-liquid separation of an agglomeration tank for adding a flocculant to the water to be treated and aggregating the pollutant, and aggregating water agglomerated in the agglomeration tank In the solid-liquid separation device, which is a swirl flow settling tank that generates a swirl flow inside the settling tank with the driving force of the aggregating treated water itself entering, The coagulation tank and the settling tank are installed close to each other so that the distance L between centers thereof satisfies the relationship of Lmin ≦ L ≦ Lmax with respect to Lmin and Lmax defined below. To do.

Lmin:(R+r)×0.8、
Lmax:(R+r)×1.2と(R+r+d)のうちいずれか大きい方
ただし、
r:凝集槽半径、
R:沈殿槽半径、
d:凝集槽と沈殿槽が離間している際に凝集槽から沈殿槽に凝集処理水を連通する通液路の横幅
Lmin: (R + r) × 0.8,
Lmax: (R + r) × 1.2 or (R + r + d), whichever is larger,
r: agglomeration tank radius,
R: Settling tank radius,
d: width of the flow path for allowing the flocculated water to communicate from the flocculation tank to the settling tank when the flocculation tank and the settling tank are separated

本発明に係る固液分離装置では、凝集槽と沈殿槽とが近接している。そのため、凝集処理水に対して不必要な負荷や衝撃を与えることがないので、凝集槽で形成されたフロックを破壊させることなく沈殿槽に移動させることができる。このため、沈殿槽では、フロックが沈殿しやすい大きなフロックの状態で存在し、効率よく沈殿する。   In the solid-liquid separation device according to the present invention, the coagulation tank and the precipitation tank are close to each other. Therefore, since unnecessary load and impact are not given to the flocculated water, the floc formed in the flocculation tank can be moved to the precipitation tank without being destroyed. For this reason, in the settling tank, flocs exist in a state of large flocs that are likely to settle, and precipitate efficiently.

前記凝集槽に、該凝集槽の凝集処理水を該通液路に導く第1の縦バッフルが設けられ、前記沈殿槽に、凝集処理水を該通液路から該沈殿槽に導く第2の縦バッフルが設けられてもよい。この場合、凝集処理水は円滑に凝集槽から沈殿槽に進入し、凝集槽で形成されたフロックは過度の抵抗を受けることなく通液路を通過する。このため、凝集槽で形成されたフロックは殆ど破壊されることなくそのままの大きさを維持した状態で沈殿槽に移動し、沈殿槽で効率的に沈殿する。   The coagulation tank is provided with a first vertical baffle that guides the coagulation treatment water of the coagulation tank to the liquid flow path, and the coagulation tank has a second vertical baffle that guides the coagulation treatment water from the liquid flow path to the precipitation tank. A vertical baffle may be provided. In this case, the flocculated water smoothly enters the settling tank from the coagulation tank, and the floc formed in the coagulation tank passes through the liquid passage without receiving excessive resistance. For this reason, the floc formed in the coagulation tank moves to the settling tank in a state where the size is maintained without being almost destroyed, and is efficiently precipitated in the settling tank.

本発明では、前記凝集槽の周壁部及び前記沈殿槽の周壁部に、周壁面を共用する共用部が形成され、かつ、該共用部に、前記凝集槽と前記沈殿槽とを連通する前記通液路としての連通口を設けてもよい。このように構成すれば、凝集槽から沈殿槽に移送される際のフロックの破壊がさらに防止される。   In the present invention, a common part that shares a peripheral wall surface is formed in the peripheral wall part of the coagulation tank and the peripheral wall part of the settling tank, and the communication part that connects the coagulation tank and the settling tank to the common part. A communication port as a liquid channel may be provided. If comprised in this way, destruction of the floc at the time of transferring from a coagulation tank to a sedimentation tank is further prevented.

第1及び第2の縦バッフルを略平行とした場合、連通口に導かれる凝集処理水の進行方向と、連通口から沈殿槽に進入する凝集処理水の進行方向とを一致させることができ、凝集処理水に不必要な負荷や衝撃を与えることをより効果的に防止でき、フロックの破壊を防止することができる。   When the first and second vertical baffles are substantially parallel, the advancing direction of the agglomerated treated water guided to the communication port can coincide with the advancing direction of the agglomerated treated water entering the sedimentation tank from the communicating port, It is possible to more effectively prevent an unnecessary load or impact from being applied to the flocculated water, and to prevent breakage of the floc.

第1及び第2のバッフルを、各槽の半径方向に対して30〜60゜の交差角度にて斜交させてもよく、このようにすれば、沈殿槽の内部で凝集処理水が効率よく旋回する好適な向きで凝集処理水を沈殿槽に進入させることができる。   The first and second baffles may be obliquely crossed at an intersecting angle of 30 to 60 ° with respect to the radial direction of each tank. In this way, the agglomerated water is efficiently contained inside the settling tank. The agglomerated water can enter the settling tank in a suitable direction of swirling.

第1及び第2の縦バッフルの高さ寸法及び前記共用部から延びる長さ寸法を沈殿槽の直径の1/100〜1/10とした場合、凝集処理水を確実に凝集槽から連通口を通過させて沈殿槽に導くことができると共に、凝集処理水の進行を阻害することを防止することができる。また、形成されたフロックが第1及び第2の縦バッフルに衝突することも防止することができる。   When the height dimension of the first and second vertical baffles and the length dimension extending from the common part are set to 1/100 to 1/10 of the diameter of the sedimentation tank, the flocculated water is surely connected from the aggregation tank. While allowing it to pass through to the settling tank, it is possible to prevent the progress of the flocculated water from being inhibited. It is also possible to prevent the formed flock from colliding with the first and second vertical baffles.

前記連通口の高さ寸法を第1及び第2の縦バッフルの高さ寸法の50〜100%に形成した場合、第1の縦バッフルは、連通口の高さ方向の全ての領域に凝集処理水を導くことができ、第2の縦バッフルは、連通口から凝集槽に進入した直後の凝集処理水を、進行方向を急激に変更することなく沈殿槽内に流入させるようになる。   When the height dimension of the communication port is formed to be 50 to 100% of the height dimension of the first and second vertical baffles, the first vertical baffle is agglomerated in all regions in the height direction of the communication port. The water can be guided, and the second vertical baffle allows the flocculated water immediately after entering the flocculation tank from the communication port to flow into the settling tank without abruptly changing the traveling direction.

凝集槽には、その内部の凝集処理水を撹拌する撹拌装置を設けた場合、凝集槽に添加される凝集剤をむら無く被処理水に作用させることができ、効果的にフロックを形成できる。   When the aggregating tank is provided with a stirring device for agitating the agglomerated water inside, the aggregating agent added to the aggregating tank can be applied to the water to be treated without any unevenness, and flocs can be formed effectively.

前記撹拌装置を、第1の縦バッフルが凝集処理水を前記連通口に導く方向と逆方向に凝集処理水に旋回力を付与するよう構成した場合、連通口に導かれる凝集処理水の流速及び流量を安定させることができ、偏流なく沈殿槽に凝集処理水を進入させることができる。そのため、沈殿槽の内部で安定した旋回流を形成させることができる。   When the stirrer is configured to apply a turning force to the agglomerated treated water in a direction opposite to the direction in which the first vertical baffle guides the agglomerated treated water to the communication port, the flow rate of the agglomerated treated water guided to the communication port and The flow rate can be stabilized, and the agglomerated water can enter the settling tank without drifting. Therefore, a stable swirl flow can be formed inside the settling tank.

前記沈殿槽に、その内部に進入した凝集処理水の旋回を助勢する旋回補助装置を設け、その旋回部を第2の縦バッフルの下端よりも下側の位置に配置した構成とした場合、旋回補助装置を第2の縦バッフルに干渉させることなく沈殿槽の内部で凝集処理水を安定して旋回させることができる。   In the settling tank, a swivel assist device for assisting swirling of the agglomerated treated water that has entered the inside of the settling tank is provided, and the swirl portion is disposed at a position below the lower end of the second vertical baffle. The coagulated water can be stably swirled inside the settling tank without causing the auxiliary device to interfere with the second vertical baffle.

前記旋回補助装置を、前記沈殿槽の軸心部を上下方向に延在する回転軸と、該回転軸の下部から放射方向に延在する複数の回転アームとで構成し、前記回転アームを第2の縦バッフルの下端よりも下側に位置する構成とした場合、複数の回転アームが旋回を補助するので、好適な旋回力を凝集処理水に与えることができる。   The swivel assist device includes a rotating shaft that extends vertically in the axial center of the settling tank, and a plurality of rotating arms that extend radially from a lower portion of the rotating shaft, and the rotating arm is When it is set as the structure located below the lower end of 2 vertical baffles, since a some rotation arm assists turning, suitable turning force can be given to coagulation treated water.

本発明の第1実施形態に係る固液分離装置の横断面図である。It is a cross-sectional view of the solid-liquid separation device according to the first embodiment of the present invention. 図1のII−II断面を示す縦断面図である。It is a longitudinal cross-sectional view which shows the II-II cross section of FIG. 連通口、第1縦バッフル及び第2縦バッフルの高さ寸法の関係を示す説明図である。It is explanatory drawing which shows the relationship of the height dimension of a communicating port, a 1st vertical baffle, and a 2nd vertical baffle. 連通口に対応する位置での沈殿槽の周壁部の接線に対する第1縦バッフル及び第2縦バッフルの傾き及び共用部から延びる長さ寸法を示す説明図である。It is explanatory drawing which shows the length dimension extended from the inclination of a 1st vertical baffle and a 2nd vertical baffle with respect to the tangent of the surrounding wall part of a sedimentation tank in the position corresponding to a communicating port, and a shared part. 本発明の第2実施形態に係る固液分離装置の横断面図である。It is a cross-sectional view of the solid-liquid separation device according to the second embodiment of the present invention. 本発明の第3実施形態に係る固液分離装置の横断面図である。It is a cross-sectional view of the solid-liquid separator which concerns on 3rd Embodiment of this invention. 図6のVII−VII断面を示す縦断面図である。It is a longitudinal cross-sectional view which shows the VII-VII cross section of FIG. 本発明の第4実施形態に係る固液分離装置の横断面図である。It is a cross-sectional view of the solid-liquid separator which concerns on 4th Embodiment of this invention. 比較例1に係る固液分離装置の横断面図である。It is a cross-sectional view of the solid-liquid separation device according to Comparative Example 1. 比較例2に係る固液分離装置の横断面図である。It is a cross-sectional view of the solid-liquid separation device according to Comparative Example 2. 第5実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 5th Embodiment. 第6実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 6th Embodiment. 第7実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 7th Embodiment. 第8実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 8th Embodiment. 第9実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 9th Embodiment. 第10実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 10th Embodiment. 第11実施形態に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on 11th Embodiment. 比較例3に係る固液分離装置の構成図である。It is a block diagram of the solid-liquid separator which concerns on the comparative example 3.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜8の固液分離装置1A,1B,1C,1Dは、被処理水に凝集剤を添加して汚濁物質を凝集処理する凝集槽15,60と、この凝集槽15,60で凝集処理された凝集処理水を固液分離して汚濁物質を沈殿させる円筒状の沈殿槽30,80とを備えている。沈殿槽30,80は、凝集槽15,60から進入する凝集処理水自体の推進力で沈殿槽30,80の内部で旋回流を生じさせる旋回流式沈殿槽である。また、凝集槽15,60の周壁部3,61及び沈殿槽30,80の周壁部31,81には、周壁面を共用する共用部16,62が形成され、かつ、共用部16,62には、凝集槽15,60と沈殿槽30,80とを連通する連通口17,63が設けられている。   1-8, the solid-liquid separators 1A, 1B, 1C, and 1D are agglomeration tanks 15 and 60 for aggregating and treating pollutants by adding a flocculant to the water to be treated. Cylindrical sedimentation tanks 30 and 80 for solid-liquid separation of the agglomerated treated water and sedimenting contaminants are provided. The settling tanks 30 and 80 are swirl flow type settling tanks that generate a swirl flow inside the settling tanks 30 and 80 by the driving force of the coagulation treated water itself entering from the coagulation tanks 15 and 60. Moreover, the shared wall parts 16 and 62 which share a peripheral wall surface are formed in the surrounding wall parts 3 and 61 of the aggregation tanks 15 and 60, and the surrounding wall parts 31 and 81 of the sedimentation tanks 30 and 80, and the shared parts 16 and 62 are used. Are provided with communication ports 17 and 63 that allow the aggregation tanks 15 and 60 and the precipitation tanks 30 and 80 to communicate with each other.

凝集槽15,60の内部には、凝集槽15,60の凝集処理水を連通口17,63に導く第1の縦バッフル(以下、第1縦バッフルという。)35,70が設けられ、かつ、沈殿槽30,80の内部には、凝集処理水を連通口17,63から沈殿槽30,80に導く第2縦バッフル36,71が設けられている。そして、第1縦バッフル35,70と第2の縦バッフル(以下、第2縦バッフルという。)36,71とは、前記連通口17,63を間に挟むように配置されている。   Inside the agglomeration tanks 15, 60 are provided first vertical baffles (hereinafter referred to as first vertical baffles) 35, 70 for guiding the agglomerated treated water of the aggregation tanks 15, 60 to the communication ports 17, 63, and In the settling tanks 30 and 80, second vertical baffles 36 and 71 for guiding the agglomerated treated water from the communication ports 17 and 63 to the settling tanks 30 and 80 are provided. The first vertical baffles 35 and 70 and the second vertical baffles (hereinafter referred to as second vertical baffles) 36 and 71 are arranged so as to sandwich the communication ports 17 and 63 therebetween.

この固液分離装置1A,1B,1C,1Dを使用して被処理水を固液分離すれば、凝集槽15,60と沈殿槽30,80とが連通口17,63だけで連絡されているので、凝集槽15,60で凝集処理された凝集処理水に不必要な負荷を与えることなく沈殿槽30,80に移動させることができる。このため、凝集槽15,60から沈殿槽30,80に凝集処理水を移動させる際に、凝集槽15,60で形成されたフロックが分解されることを防止でき、フロックをそのままの状態で沈殿槽30,80に移動させることができる。その結果、汚濁物質を確実に除去した処理水を固液分離装置から送り出すという格別の効果を奏することができる。   If the water to be treated is subjected to solid-liquid separation using the solid-liquid separation devices 1A, 1B, 1C, 1D, the coagulation tanks 15, 60 and the precipitation tanks 30, 80 are communicated only with the communication ports 17, 63. Therefore, it can be made to move to the sedimentation tanks 30 and 80, without giving unnecessary load to the coagulation treated water coagulated in the coagulation tanks 15 and 60. For this reason, when the flocculated water is transferred from the flocculation tanks 15 and 60 to the settling tanks 30 and 80, it is possible to prevent the flocs formed in the flocculation tanks 15 and 60 from being decomposed, and the flocs are settled as they are. The tanks 30 and 80 can be moved. As a result, it is possible to achieve a special effect of sending out the treated water from which the contaminants have been reliably removed from the solid-liquid separator.

図1〜4の第1実施形態の固液分離装置1Aは、凝集槽15に撹拌装置20を設け、凝集槽15の内部の凝集処理水に対して、第1縦バッフル35が凝集処理水を連通口17に導く方向と同方向に凝集処理水に旋回力を付与するものである。   1-4, the solid-liquid separation device 1A of the first embodiment is provided with a stirring device 20 in the flocculation tank 15, and the first vertical baffle 35 uses the flocculated water for the flocculated water in the flocculation tank 15. A swirling force is applied to the coagulated water in the same direction as the direction leading to the communication port 17.

図5の第2実施形態の固液分離装置1Bは、第1縦バッフル35が凝集処理水を前記連通口17に導く方向と逆方向に凝集処理水に旋回力を付与するものである。   In the solid-liquid separation device 1B of the second embodiment in FIG. 5, the first vertical baffle 35 gives a swirl force to the flocculated water in the direction opposite to the direction in which the flocculated water is guided to the communication port 17.

図6,7の第3実施形態の固液分離装置1Cは、沈殿槽30に旋回補助装置40を設け、沈殿槽30の内部に進入した凝集処理水の旋回を補助するものである。   The solid-liquid separation device 1 </ b> C of the third embodiment shown in FIGS. 6 and 7 is provided with a swirl assist device 40 in the sedimentation tank 30 to assist the swirl of the coagulated treated water that has entered the sedimentation tank 30.

図8の第4実施形態の固液分離装置1Dは、混和槽50と凝集槽60とを別個独立に設け、これら混和槽50と凝集槽60とを移送配管58で連絡したものである。   In the solid-liquid separation device 1D of the fourth embodiment in FIG. 8, a mixing tank 50 and a coagulation tank 60 are provided separately and these mixing tanks 50 and the coagulation tank 60 are connected by a transfer pipe 58.

[第1実施形態(図1〜4)]
固液分離装置1Aは、無機凝集剤及びpH調整剤が添加される混和槽4、高分子凝集剤が添加される凝集槽15及びフロックを沈殿させる沈殿槽30が一体的に形成されている。混和槽4と凝集槽15とを構成する処理槽2は円筒状又は略円筒状に形成され、その周壁部3には、周壁面が存在しない欠損部3aが設けられている。一方、沈殿槽30は通常の円筒状に形成されている。
[First Embodiment (FIGS. 1 to 4)]
In the solid-liquid separator 1A, a mixing tank 4 to which an inorganic flocculant and a pH adjuster are added, a flocculant tank 15 to which a polymer flocculant is added, and a precipitation tank 30 for precipitating flocs are integrally formed. The processing tank 2 constituting the mixing tank 4 and the agglomeration tank 15 is formed in a cylindrical shape or a substantially cylindrical shape, and the peripheral wall portion 3 is provided with a defect portion 3a having no peripheral wall surface. On the other hand, the settling tank 30 is formed in a normal cylindrical shape.

処理槽2に形成された欠損部3aは沈殿槽30の周壁部31に突き合わされ、この突き合わされた欠損部3aが沈殿槽30の周壁部31に接合されて一体に形成されている。このため、欠損部3aでは、処理槽2の周壁面3と沈殿槽30の周壁面31とを共用する共用部7,16が形成されている。   The defective portion 3 a formed in the treatment tank 2 is abutted against the peripheral wall portion 31 of the sedimentation tank 30, and the abutted defective portion 3 a is joined to the peripheral wall portion 31 of the sedimentation tank 30 and integrally formed. For this reason, in the defect | deletion part 3a, the shared parts 7 and 16 which share the surrounding wall surface 3 of the processing tank 2 and the surrounding wall surface 31 of the sedimentation tank 30 are formed.

この固液分離装置1Aは、被処理水を混和槽4に導入させ、無機凝集剤を添加して被処理水を凝集させ易くすると共に、pH調整剤を添加して被処理水を中性にする。次いで被処理水を凝集槽15に導入させ、被処理水に高分子凝集処理してフロックを形成させる。その後、凝集処理された凝集処理水を沈殿槽30に進入させる。沈殿槽30では、凝集処理水に含まれる汚濁物質を沈殿させて汚濁物質を除去する。そして、汚濁物質が除去された処理水を固液分離装置1Aの外に送り出している。   This solid-liquid separation apparatus 1A introduces the water to be treated into the mixing tank 4 and adds an inorganic flocculant to facilitate the coagulation of the water to be treated, and also adds a pH adjuster to make the water to be treated neutral. To do. Next, the water to be treated is introduced into the coagulation tank 15, and the water to be treated is subjected to a polymer coagulation treatment to form a flock. Thereafter, the agglomerated water that has been agglomerated is allowed to enter the settling tank 30. In the sedimentation tank 30, the pollutant contained in the flocculated water is precipitated to remove the pollutant. And the treated water from which the pollutant substance was removed is sent out of the solid-liquid separator 1A.

<混和槽及び凝集槽>
混和槽4と凝集槽15とは一体に形成された筒状又は略筒状の処理槽2として構成されている。この処理槽2の内部には仕切板5が設けられており、仕切板5が処理槽2の内部を混和槽4と凝集槽15とに区分している。仕切板5は、共用部7,16と、処理槽2を構成する周壁部3の共用部7,16と対向する部位とを連絡するようにして設けられている。また、仕切板5には開口部6が形成されており、被処理水を混和槽4から凝集槽15に移動可能としている。
<Mixing tank and coagulation tank>
The mixing tank 4 and the agglomeration tank 15 are configured as a cylindrical or substantially cylindrical processing tank 2 formed integrally. A partition plate 5 is provided inside the processing tank 2, and the partition plate 5 divides the inside of the processing tank 2 into a mixing tank 4 and a coagulation tank 15. The partition plate 5 is provided so as to communicate between the shared portions 7 and 16 and portions facing the shared portions 7 and 16 of the peripheral wall portion 3 constituting the processing tank 2. An opening 6 is formed in the partition plate 5 so that the water to be treated can be moved from the mixing tank 4 to the aggregation tank 15.

混和槽4は、処理槽2の周壁部3、混和槽4の周壁部3と沈殿槽30の周壁部31とを共用する共用部7及び仕切板5により周囲が包囲されて構成されている。また、混和槽4の周壁部3には導入口8が設けられており、混和槽4の内部に被処理水を導入している。そして、混和槽4の底部9には導入された被処理水を撹拌する撹拌装置10が設けられている。   The mixing tank 4 is configured such that the periphery is surrounded by the peripheral wall portion 3 of the treatment tank 2, the shared portion 7 sharing the peripheral wall portion 3 of the mixing tank 4 and the peripheral wall portion 31 of the sedimentation tank 30, and the partition plate 5. An introduction port 8 is provided in the peripheral wall 3 of the mixing tank 4, and the water to be treated is introduced into the mixing tank 4. A stirring device 10 for stirring the treated water introduced is provided at the bottom 9 of the mixing tank 4.

この撹拌装置10は、混和槽4の内部に設けられた撹拌翼12と、混和槽4の底部9の外側に取り付けられ、撹拌翼12を回転駆動する駆動モータ11とから構成されている。この撹拌装置20の撹拌翼12の回転方向は、必要に応じ、時計方向又は反時計方向のいずれかに設定される。   The stirring device 10 includes a stirring blade 12 provided inside the mixing tank 4 and a drive motor 11 that is attached to the outside of the bottom 9 of the mixing tank 4 and rotationally drives the stirring blade 12. The rotation direction of the stirring blade 12 of the stirring device 20 is set to either clockwise or counterclockwise as necessary.

この混和槽4では、被処理水に無機凝集剤を添加して被処理水に含有される汚濁物質を凝集させ易くしている。添加する無機凝集剤は特に限定はなく、例えば、硫酸バンド、ポリ塩化アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第一鉄等の鉄塩等が挙げられる。   In the mixing tank 4, an inorganic flocculant is added to the water to be treated to facilitate aggregation of the pollutant contained in the water to be treated. The inorganic flocculant to be added is not particularly limited, and examples thereof include an aluminum salt such as a sulfuric acid band and polyaluminum chloride, and an iron salt such as ferric chloride and ferrous sulfate.

また、pH調整剤が添加されて被処理水が中性にされる。添加するpH調整剤も特に限定はなく、例えば、金属イオンから不溶性塩を生成させるための不溶性塩生成剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ剤を挙げることができる。また、リン酸イオンの不溶性塩生成剤としては、塩化カルシウム等のカルシウム塩や水酸化カルシウム等を挙げることができる。そして、フッ化物イオンの不溶性塩生成
剤としては、塩化カルシウム等のカルシウム塩や水酸化カルシウム等を挙げることができる。
Moreover, a to-be-processed water is made neutral by adding a pH adjuster. The pH adjuster to be added is not particularly limited, and examples of the insoluble salt generator for generating an insoluble salt from metal ions include alkaline agents such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. . Examples of the phosphate salt insoluble salt generator include calcium salts such as calcium chloride, calcium hydroxide, and the like. Examples of the fluoride ion insoluble salt generator include calcium salts such as calcium chloride, calcium hydroxide, and the like.

凝集槽15は、処理槽2の周壁部3、凝集槽15の周壁部3と沈殿槽30の周壁部31を共用する共用部16及び仕切板5により周囲が包囲されて構成されている。また、共用部16には、凝集槽15と沈殿槽30とを連通させている連通口17が形成されている。さらに、凝集槽15には、共用部16から凝集槽15の内部に向けて延びる第1縦バッフル35が連通口17の側部に設けられている。この連通口17及び第1縦バッフル35の詳細は後に説明する。   The agglomeration tank 15 is configured such that the periphery is surrounded by the peripheral wall 3 of the treatment tank 2, the shared wall 16 sharing the peripheral wall 3 of the aggregation tank 15 and the peripheral wall 31 of the sedimentation tank 30, and the partition plate 5. In addition, the common port 16 is formed with a communication port 17 that allows the aggregation tank 15 and the sedimentation tank 30 to communicate with each other. Further, the coagulation tank 15 is provided with a first vertical baffle 35 extending from the shared portion 16 toward the inside of the coagulation tank 15 at the side of the communication port 17. Details of the communication port 17 and the first vertical baffle 35 will be described later.

この凝集槽15の底部18にも、内部の被処理水を撹拌する撹拌装置20が設けられている。撹拌装置20は、凝集槽15の内部に設けられた撹拌翼22と、凝集槽15の底部18の外側に取り付けられ、撹拌翼22を回転駆動する駆動モータ21とから構成されている。この撹拌装置20の撹拌翼22の回転方向は、必要に応じ、時計方向又は反時計方向のいずれかに設定される。この第1実施形態では、第1縦バッフル35が凝集処理水を連通口17に導き易い方向である反時計方向に回転駆動させている。   A stirring device 20 for stirring the water to be treated inside is also provided at the bottom 18 of the coagulation tank 15. The agitation device 20 includes an agitation blade 22 provided inside the agglomeration tank 15 and a drive motor 21 that is attached to the outside of the bottom 18 of the agglomeration tank 15 and rotates the agitation blade 22. The rotation direction of the stirring blade 22 of the stirring device 20 is set to either clockwise or counterclockwise as necessary. In the first embodiment, the first vertical baffle 35 is driven to rotate counterclockwise, which is a direction in which the coagulated water is easily guided to the communication port 17.

この凝集槽15では、内部の凝集処理水に高分子凝集剤を添加する。高分子凝集剤は特に限定されず、例えば、アニオン系高分子凝集剤、カチオン系高分子凝集剤、両性高分子凝集剤、ノニオン系高分子凝集剤を挙げることができる。   In the coagulation tank 15, a polymer coagulant is added to the internal coagulation water. The polymer flocculant is not particularly limited, and examples thereof include an anionic polymer flocculant, a cationic polymer flocculant, an amphoteric polymer flocculant, and a nonionic polymer flocculant.

<沈殿槽>
沈殿槽30は、内部に進入された凝縮処理水を沈殿槽30の内部で旋回させる旋回流式沈殿槽30である。沈殿槽30は円筒状に形成されており、その周壁部31には処理槽2の周壁部3を共用する共用部7,16が設けられている。共用部7,16のうち、凝集槽15の周壁部3と沈澱槽30の周壁部31との共用部16には、凝集槽15と沈殿槽30とを連通する連通口17が形成されている。さらに、沈殿槽30の内部には、共用部16から沈殿槽30の内部に向けて延びる第2縦バッフル36が連通口17の側部に設けられている。なお、この連通口17及び第2縦バッフル36の詳細も後に説明する。凝集処理水はこの連通口17から処理水の内部に進入し、第2縦バッフル36によって進入方向が所定の方向に導かれる。沈殿槽30に進入した凝集処理水は、凝集処理水自体の推進力で沈殿槽30の内部を周方向に旋回する。
<Settling tank>
The settling tank 30 is a swirling flow type settling tank 30 that swirls condensed water that has entered the inside of the settling tank 30. The sedimentation tank 30 is formed in a cylindrical shape, and shared parts 7 and 16 that share the peripheral wall part 3 of the processing tank 2 are provided on the peripheral wall part 31 thereof. Of the shared parts 7 and 16, a communication port 17 that connects the aggregation tank 15 and the precipitation tank 30 is formed in the shared part 16 of the peripheral wall part 3 of the aggregation tank 15 and the peripheral wall part 31 of the precipitation tank 30. . Further, a second vertical baffle 36 extending from the shared part 16 toward the inside of the precipitation tank 30 is provided in the side part of the communication port 17 inside the precipitation tank 30. Details of the communication port 17 and the second vertical baffle 36 will be described later. Aggregated treated water enters the treated water from the communication port 17, and the approach direction is guided in a predetermined direction by the second vertical baffle 36. The agglomerated water that has entered the settling tank 30 rotates in the circumferential direction inside the settling tank 30 by the driving force of the agglomerated water itself.

一方、沈殿槽30の上部には取水トラフ38が設けられている。この取水トラフ38は、外形がリング状に形成されており、その上面が開放された溝である。取水トラフ38には、凝集処理水中の汚濁物質を沈殿させた後の上澄み液が、開放された上面から溝に流れ込まれるように構成されている。そして、取水トラフ38には沈殿槽30の外部に向けて延びる排水管39が接続されており、凝集処理水から汚濁物質が除去された処理水を外部に送り出している。   On the other hand, a water intake trough 38 is provided in the upper part of the settling tank 30. The intake trough 38 is a groove whose outer shape is formed in a ring shape and whose upper surface is open. The intake trough 38 is configured such that the supernatant liquid after the pollutant in the flocculated water is precipitated flows into the groove from the opened upper surface. A drain pipe 39 extending toward the outside of the settling tank 30 is connected to the intake trough 38, and the treated water from which the polluted substances have been removed is sent out to the outside.

<連通口、第1縦バッフル及び第2縦バッフル>
連通口17は、凝集槽15の周壁部3と沈殿槽30の周壁部31とが共用される共用部16に形成されており、凝集槽15と沈殿槽30とを連通させている。連通口17は正方形又は縦長の長方形等の矩形状に形成されている。図3に示すように、連通口17の高さ方向の寸法Hは、第1縦バッフル35及び第2縦バッフル36の高さ寸法H2の50%〜100%に形成することが好ましい。また、連通口17の面積は、この連通口17を通過させる凝集処理水の流量に応じ、凝集処理水が適切な流速で凝集槽15から沈殿槽30に進入するように形成する。凝集処理水の流速が0.01m/秒〜1m/秒となるように連通口17の面積を形成することが好ましい。
<Communication port, first vertical baffle and second vertical baffle>
The communication port 17 is formed in the shared portion 16 where the peripheral wall portion 3 of the coagulation tank 15 and the peripheral wall portion 31 of the precipitation tank 30 are shared, and allows the coagulation tank 15 and the precipitation tank 30 to communicate with each other. The communication port 17 is formed in a rectangular shape such as a square or a vertically long rectangle. As shown in FIG. 3, the dimension H in the height direction of the communication port 17 is preferably 50% to 100% of the height dimension H2 of the first vertical baffle 35 and the second vertical baffle 36. Further, the area of the communication port 17 is formed so that the coagulation treated water enters the settling tank 30 from the coagulation tank 15 at an appropriate flow rate according to the flow rate of the coagulation treated water passing through the communication port 17. The area of the communication port 17 is preferably formed so that the flow rate of the flocculated water is 0.01 m / second to 1 m / second.

この連通口17の一方の側部17aには、図4に示すように、共用部16から凝集槽15の内部に向けて延びる板状の第1縦バッフル35が設けられている。また、側部17aと対向する他方の側部17bには、共用部16から沈殿槽30の内部に向けて延びる板状の第2縦バッフル36が設けられている。第1縦バッフル35と第2縦バッフル36とは、連通口17を間に挟んで平行をなして配置されている。第1縦バッフル35は、凝集槽15の内部に位置する凝集処理水を連通口17に向けて導く。第2縦バッフル36は連通口17から沈殿槽30の内部に凝集処理水を導く。これらのバッフル35,36は、平板状であり、上下方向に延在している。   As shown in FIG. 4, a plate-like first vertical baffle 35 extending from the shared portion 16 toward the inside of the aggregation tank 15 is provided on one side portion 17 a of the communication port 17. In addition, a plate-like second vertical baffle 36 extending from the shared portion 16 toward the inside of the settling tank 30 is provided on the other side portion 17b facing the side portion 17a. The first vertical baffle 35 and the second vertical baffle 36 are arranged in parallel with the communication port 17 interposed therebetween. The first vertical baffle 35 guides the coagulated water located inside the coagulation tank 15 toward the communication port 17. The second vertical baffle 36 guides the coagulated water from the communication port 17 to the inside of the settling tank 30. These baffles 35 and 36 have a flat plate shape and extend in the vertical direction.

これらの第1縦バッフル35及び第2縦バッフル36に導かれて沈殿槽30に進入した凝集処理水は、その推進力で沈殿槽30の内部を沈殿槽30の周方向に旋回する。凝集処理水が沈殿槽30の内部で適切に旋回するためには、沈殿槽30に進入する方向が重要である。そのため、この固液分離装置1Aでは、第1縦バッフル35及び第2縦バッフル36は、沈殿槽30の周壁部31に対応する円上の連通口17の位置での接線Tに対して、斜めに傾けられて配置されている。第1縦バッフル35及び第2縦バッフル36の接線となす角度θは、10°以上、特に15°以上とりわけ30°以上であり、かつ60°以下、特に45°以下とすることが好ましい。従って、バッフル35と、半径方向の交差角度αは、80°以下、特に60°以下であり、かつ30°以上であることが好ましい。   The agglomerated water that has been guided to the first vertical baffle 35 and the second vertical baffle 36 and entered the settling tank 30 is swung in the circumferential direction of the settling tank 30 by the driving force. In order for the flocculated water to appropriately swirl inside the sedimentation tank 30, the direction of entering the sedimentation tank 30 is important. Therefore, in this solid-liquid separator 1A, the first vertical baffle 35 and the second vertical baffle 36 are oblique to the tangent T at the position of the communication port 17 on the circle corresponding to the peripheral wall portion 31 of the settling tank 30. It is tilted and arranged. The angle θ formed between the tangent lines of the first vertical baffle 35 and the second vertical baffle 36 is preferably 10 ° or more, particularly 15 ° or more, particularly 30 ° or more, and 60 ° or less, particularly 45 ° or less. Therefore, the baffle 35 and the radial crossing angle α are 80 ° or less, particularly 60 ° or less, and preferably 30 ° or more.

第1縦バッフル35は、共用部16との接続部である付け根部分と凝集槽15の内部に向けて延びている先端部分との間の長さ寸法M、及び上端と下端との間の高さ寸法Nがいずれも沈殿槽30の直径の100分の1〜10分の1の寸法に形成されている。同様に、第2縦バッフル36は、共用部16との接続部である付け根部分と沈殿槽30の内部に向けて延びている先端部分との間の長さ寸法M、及び上端と下端との間の高さ寸法Nがいずれも沈殿槽30の直径の100分の1〜10分の1の寸法に形成されている。   The first vertical baffle 35 has a length dimension M between a root portion which is a connection portion with the shared portion 16 and a tip portion extending toward the inside of the aggregation tank 15 and a height between the upper end and the lower end. All the dimensions N are formed to be 1 / 100th of the diameter of the sedimentation tank 30. Similarly, the second vertical baffle 36 has a length dimension M between a root portion which is a connection portion with the shared portion 16 and a tip portion extending toward the inside of the settling tank 30, and an upper end and a lower end. The height dimension N between them is formed to be one hundredth to one tenth of the diameter of the sedimentation tank 30.

<作用及び効果>
以上に説明した固液分離装置1Aは、以下のように作用する。
<Action and effect>
The solid-liquid separation device 1A described above operates as follows.

まず、被処理水が、混和槽4に設けられた導入口8から混和槽4に導入される。混和槽4に被処理水が導入されると、無機凝集剤が添加され、被処理水に含まれる汚濁物質が凝集され易くなる。また、pH調整剤が添加されて被処理水が中性にされる。この際、混和槽4に設けられた撹拌装置10が無機凝集剤及びpH調整剤が添加された被処理水を撹拌し、混和槽4の内部でむら無く無機凝集剤及びpH調整剤を作用させる。   First, water to be treated is introduced into the mixing tank 4 from the inlet 8 provided in the mixing tank 4. When the water to be treated is introduced into the mixing tank 4, an inorganic flocculant is added, and the pollutant contained in the water to be treated is easily aggregated. Moreover, a to-be-processed water is made neutral by adding a pH adjuster. At this time, the stirring device 10 provided in the mixing tank 4 stirs the water to be treated to which the inorganic flocculant and the pH adjuster have been added, and causes the inorganic flocculant and the pH adjuster to act uniformly within the mixing tank 4. .

混和槽4の内部には導入口8から順次に被処理水が導入されるため、混和槽4の内部に位置する被処理水には推進力が付与され、仕切板5に形成された開口部6から凝集槽15に順次に押し出されるようにして移動される。   Since the water to be treated is sequentially introduced into the mixing tank 4 from the introduction port 8, a propulsive force is applied to the water to be treated located inside the mixing tank 4, and an opening formed in the partition plate 5. 6 are sequentially pushed into the agglomeration tank 15 and moved.

次いで、凝集槽15に移動した被処理水には、凝集槽15で高分子凝集剤が添加される。この凝集槽15にも撹拌装置20が設けられているため、高分子凝集剤が添加された被処理水は撹拌され、むら無く高分子凝集剤が作用する。高分子凝集剤により凝集処理された凝集処理水には、汚濁物質が凝集されたフロックが形成される。凝集処理後の凝集処理水は、その推進力で押し出されるようにして第1縦バッフル35で連通口17に導かれる。その後、凝集処理水は、第2縦バッフル36に導かれながら連通口17から沈殿槽30に進入する。   Next, the polymer flocculant is added to the water to be treated that has moved to the aggregation tank 15 in the aggregation tank 15. Since the aggregating tank 15 is also provided with the stirring device 20, the water to be treated to which the polymer flocculant is added is stirred and the polymer flocculant acts evenly. A floc in which the pollutant is agglomerated is formed in the agglomerated water that has been agglomerated by the polymer flocculant. The agglomerated water after the agglomeration treatment is guided to the communication port 17 by the first vertical baffle 35 so as to be pushed out by the driving force. Thereafter, the flocculated water enters the sedimentation tank 30 from the communication port 17 while being guided to the second vertical baffle 36.

この際、凝集処理水は共用部16に形成された連通口17を通過するだけなので、凝集処理水に不必要な負荷や衝撃を与えることがない。そのため、凝集槽15で形成されたフロックが分解されることなく沈殿槽30に移動される。また、第1縦バッフル35と第2縦バッフル36とは平行をなして配置されているので、凝集処理水は、凝集槽垂
直バッフル35及び第2縦バッフル36によって適切な方向に進入方向が導かれて沈殿槽30に進入する。その結果、沈殿槽30に進入した凝集処理水は、沈殿槽30の内部で円滑に旋回流を形成する。さらに、第1縦バッフル35と第2縦バッフル36とを平行に配置することで、フロックが第1縦バッフル35及び第2縦バッフル36に衝突することを防止できる。
At this time, since the flocculated water only passes through the communication port 17 formed in the common part 16, no unnecessary load or impact is applied to the flocculated water. Therefore, the floc formed in the aggregation tank 15 is moved to the precipitation tank 30 without being decomposed. Further, since the first vertical baffle 35 and the second vertical baffle 36 are arranged in parallel, the agglomeration treated water is guided in an appropriate direction by the coagulation tank vertical baffle 35 and the second vertical baffle 36. As a result, it enters the settling tank 30. As a result, the coagulated water that has entered the settling tank 30 smoothly forms a swirling flow inside the settling tank 30. Further, by arranging the first vertical baffle 35 and the second vertical baffle 36 in parallel, it is possible to prevent the flock from colliding with the first vertical baffle 35 and the second vertical baffle 36.

連通口17の高さ方向の寸法Hを、図3に示すように、第1縦バッフル35及び第2縦バッフル36の高さ寸法H2の50%〜100%に形成した場合、第1縦バッフル35は、連通口17の高さ方向の全ての領域に凝集処理水を導くことができ、第2縦バッフル36は、連通口17から凝集槽に進入した直後の凝集処理水が進行方向を急激に変更することを防止できる。   When the dimension H in the height direction of the communication port 17 is formed to be 50% to 100% of the height dimension H2 of the first vertical baffle 35 and the second vertical baffle 36, as shown in FIG. 35 can guide the agglomerated water to all regions in the height direction of the communication port 17, and the second vertical baffle 36 has a rapid advancing direction of the agglomerated water just after entering the agglomeration tank from the communication port 17. Can be prevented.

また、図4に示すように、第1縦バッフル35及び第2縦バッフル36を、連通口17の位置での共用部16の接線Tに対して10度〜60度に傾けて配置すれば、沈殿槽30の内部で凝集処理水が効率よく旋回する好適な向きで凝集処理水を沈殿槽30に進入させることができる。   Further, as shown in FIG. 4, if the first vertical baffle 35 and the second vertical baffle 36 are disposed at an angle of 10 degrees to 60 degrees with respect to the tangent line T of the shared portion 16 at the position of the communication port 17, The agglomerated water can enter the sedimentation tank 30 in a suitable direction in which the agglomerated water efficiently turns inside the sedimentation tank 30.

さらに、第1縦バッフル35及び沈殿槽津意直バッフルの長さ寸法M及び高さ寸法Nを沈殿槽30の直径の100分の1〜10分の1の寸法に形成すれば、凝集処理水を確実に凝集槽15から連通口17を通過させて沈殿槽30に導くことができると共に、凝集処理水の進行を阻害することを防止することができる。また、形成されたフロックを第1縦バッフル35及び第2縦バッフル36に衝突させることも防止することができる。   Furthermore, if the length dimension M and the height dimension N of the first vertical baffle 35 and the settling tank tsushin straight baffle are formed to be 1 / 100th of the diameter of the settling tank 30, the flocculated water Can be reliably passed from the flocculation tank 15 through the communication port 17 and guided to the precipitation tank 30, and the progress of the flocculated water can be prevented from being inhibited. Further, it is possible to prevent the formed flock from colliding with the first vertical baffle 35 and the second vertical baffle 36.

この沈殿槽30では、凝集処理水が沈殿槽30の内部を周方向に旋回しながら凝集処理水より比重の大きなフロックを沈殿槽30の底部に沈殿させる。そのため、沈殿槽30の内部では、汚濁物質の除去された処理水が上部を占めることになる。   In the sedimentation tank 30, floc having a specific gravity larger than that of the agglomerated water is precipitated at the bottom of the sedimentation tank 30 while the agglomerated water swirls in the circumferential direction inside the sedimentation tank 30. Therefore, the treated water from which the pollutant is removed occupies the upper part in the settling tank 30.

汚濁物質が除去された処理水は、沈殿槽30の上部に設けられた取水トラフ38に流れ込み、その後、取水トラフ38に接続された排水管39を通り外部に送り出される。   The treated water from which the pollutants have been removed flows into a water intake trough 38 provided in the upper part of the settling tank 30, and then is sent out through a drain pipe 39 connected to the water intake trough 38.

[第2実施形態(図5)]
第2実施形態に係る固液分離装置1Bは、第1実施形態に係る固液分離装置1Aと同様に構成された装置を使用して被処理水から汚濁物質を除去する。第1実施形態と異なる点は、凝集槽15に設けられた撹拌装置20の作用である。そのため、固液分離装置1Bの説明のために参照する図5には、第1実施形態に係る固液分離装置1Aと同一の符号を付して概要のみを説明し、ここでは詳細な説明を省略する。
[Second Embodiment (FIG. 5)]
The solid-liquid separation apparatus 1B according to the second embodiment removes contaminants from the water to be treated using an apparatus configured similarly to the solid-liquid separation apparatus 1A according to the first embodiment. The difference from the first embodiment is the action of the stirring device 20 provided in the aggregation tank 15. Therefore, FIG. 5 referred to for explaining the solid-liquid separation device 1B is given the same reference numeral as that of the solid-liquid separation device 1A according to the first embodiment, and only the outline is described. Omitted.

この固液分離装置1Bは、混和槽4、凝集槽15及び沈殿槽30が一体的に形成されて構成されている。混和槽4と凝集槽15とを構成する処理槽2は円筒状又は略円筒状に形成され、その周壁部3には、周壁面が存在しない欠損部3aが設けられている。一方、沈殿槽30は通常の円筒状に形成されている。   The solid-liquid separation device 1B is configured by integrally forming a mixing tank 4, a coagulation tank 15, and a precipitation tank 30. The processing tank 2 constituting the mixing tank 4 and the agglomeration tank 15 is formed in a cylindrical shape or a substantially cylindrical shape, and the peripheral wall portion 3 is provided with a defect portion 3a having no peripheral wall surface. On the other hand, the settling tank 30 is formed in a normal cylindrical shape.

処理槽2の欠損部3aは沈殿槽30の周壁部31に突き合わされ、この欠損部3aが沈殿槽30の周壁部31に接合されて一体に形成されている。欠損部3aでは、処理槽2の周壁面3と沈殿槽30の周壁面31とを共用する共用部7,16が形成されている。   The defect part 3 a of the treatment tank 2 is abutted against the peripheral wall part 31 of the sedimentation tank 30, and the defect part 3 a is joined to the peripheral wall part 31 of the precipitation tank 30 and formed integrally. In the defect portion 3 a, shared portions 7 and 16 that share the peripheral wall surface 3 of the treatment tank 2 and the peripheral wall surface 31 of the sedimentation tank 30 are formed.

混和槽4と凝集槽15とは一体に形成された筒状又は略筒状の処理槽2として構成されている。この処理槽2はその内部に仕切板5が設けられており、この仕切板5が処理槽2の内部を混和槽4と凝集槽15とに区分している。仕切板5は、共用部7,16と、処理槽2を構成する周壁部の共用部16と対向する部位とを連絡するようにして設けられている。また、仕切板5には開口部6が形成されており、被処理水を混和槽4から凝集槽15に移動可能としている。   The mixing tank 4 and the agglomeration tank 15 are configured as a cylindrical or substantially cylindrical processing tank 2 formed integrally. The treatment tank 2 is provided with a partition plate 5 therein, and the partition plate 5 divides the inside of the treatment tank 2 into a mixing tank 4 and a coagulation tank 15. The partition plate 5 is provided so as to communicate between the shared portions 7 and 16 and a portion facing the shared portion 16 of the peripheral wall portion constituting the processing tank 2. An opening 6 is formed in the partition plate 5 so that the water to be treated can be moved from the mixing tank 4 to the aggregation tank 15.

また、凝集槽15及び沈殿槽30の双方の周壁部3,31をなす共用部16には、凝集槽15と沈殿槽30とを連通している連通口17が形成されている。この連通口17の一方の側部17aには、共用部16から凝集槽15の内部に向けて延びる板状の第1縦バッフル35が設けられている。また、側部17aと対向する他方の側部17bには共用部16から沈殿槽30の内部に向けて延びる板状の第2縦バッフル36が設けられている。第1縦バッフル35と第2縦バッフル36とは、連通口17を間に挟んで平行をなして配置されている。第1縦バッフル35は、凝集槽15の内部に位置する凝集処理水を連通口17に向けて導く一方で、第2縦バッフル36は連通口17から沈殿槽30の内部に凝集処理水を導いている。   In addition, a communication port 17 that connects the aggregation tank 15 and the sedimentation tank 30 is formed in the common part 16 that forms the peripheral wall portions 3 and 31 of both the aggregation tank 15 and the sedimentation tank 30. A plate-like first vertical baffle 35 extending from the shared portion 16 toward the inside of the aggregation tank 15 is provided on one side portion 17 a of the communication port 17. In addition, a plate-like second vertical baffle 36 extending from the shared portion 16 toward the inside of the settling tank 30 is provided on the other side portion 17b facing the side portion 17a. The first vertical baffle 35 and the second vertical baffle 36 are arranged in parallel with the communication port 17 interposed therebetween. The first vertical baffle 35 guides the coagulated treated water located inside the coagulation tank 15 toward the communication port 17, while the second vertical baffle 36 guides the coagulated treated water from the communication port 17 to the inside of the precipitation tank 30. ing.

沈殿槽30は、内部に進入させた凝集処理水を周方向に旋回させつつフロックを沈殿させる旋回流式沈殿槽30である。沈殿槽30の上部には、リング状の取水トラフ38が設けられている。取水トラフ38には沈殿槽30の外部に向けて延びる排水管39が接続されており、凝集処理水から汚濁物質が除去された処理水を外部に送り出している。   The sedimentation tank 30 is a swirl flow type sedimentation tank 30 that precipitates flocs while swirling coagulated water that has entered the interior in the circumferential direction. A ring-shaped water intake trough 38 is provided at the top of the settling tank 30. A drainage pipe 39 extending toward the outside of the settling tank 30 is connected to the water intake trough 38, and the treated water from which the polluted substances have been removed is sent out to the outside.

この固液分離装置1Aは、被処理水を混和槽4に導入させ、無機凝集剤を添加して被処理水を凝集させ易くすると共に、pH調整剤を添加して被処理水を中性にする。次いで被処理水を凝集槽15に導入させ、被処理水に高分子凝集処理してフロックを形成させる。その後、凝集処理された凝集処理した凝集処理水を沈殿槽30に進入させる。沈殿槽30では、凝集処理水に含まれる汚濁物質を沈殿させて汚濁物質を除去する。そして、汚濁物質が除去された処理水を固液分離装置1Aの外に送り出している。   This solid-liquid separation apparatus 1A introduces the water to be treated into the mixing tank 4 and adds an inorganic flocculant to facilitate the coagulation of the water to be treated, and also adds a pH adjuster to make the water to be treated neutral. To do. Next, the water to be treated is introduced into the coagulation tank 15, and the water to be treated is subjected to a polymer coagulation treatment to form a flock. Thereafter, the agglomerated water that has been agglomerated is allowed to enter the settling tank 30. In the sedimentation tank 30, the pollutant contained in the flocculated water is precipitated to remove the pollutant. And the treated water from which the pollutant substance was removed is sent out of the solid-liquid separator 1A.

<撹拌装置>
この固液分離装置1Aの特徴は、凝集槽15に設けられた撹拌装置20が、第1縦バッフル35が凝集処理水を連通口17に導く方向と逆方向に凝集処理水に旋回力を付与して凝集処理水を撹拌する点にある。
<Agitator>
A feature of this solid-liquid separation device 1A is that the stirring device 20 provided in the coagulation tank 15 gives a swirl force to the coagulated water in the direction opposite to the direction in which the first vertical baffle 35 guides the coagulated water to the communication port 17. Thus, the agglomerated water is stirred.

凝集槽15の内部の凝集処理水は、図5に示した状態では、第1縦バッフル35によって凝集槽15の内部における右側から連通口17に導かれる。これに対し、撹拌装置20が備える回転羽根は、第1縦バッフル35が凝集処理水を導く方向とは逆方向である時計回りに回転される。このように、撹拌装置20の回転羽根を回転させることで、連通口17を通過する凝集処理水の流速を均一にすることができる。そのため、連通口17から沈殿槽30に進入した凝集処理水の流れを安定させ、沈殿槽30の内部で好適な旋回流を形成させることができる。
In the state shown in FIG. 5, the agglomerated water in the agglomeration tank 15 is guided from the right side inside the agglomeration tank 15 to the communication port 17 by the first vertical baffle 35. On the other hand, the rotary blade provided in the stirring device 20 is rotated in the clockwise direction, which is the direction opposite to the direction in which the first vertical baffle 35 guides the coagulated water. In this way, by rotating the rotating blades of the stirring device 20, the flow rate of the coagulated treated water passing through the communication port 17 can be made uniform. Therefore, it is possible to stabilize the flow of the agglomerated treated water that has entered the sedimentation tank 30 from the communication port 17 and form a suitable swirl flow inside the sedimentation tank 30.

撹拌装置20の回転翼22は、その先端の速度が1m/秒〜5m/秒となるように回転させることが好ましい。   It is preferable to rotate the rotary blade 22 of the stirring device 20 so that the tip speed is 1 m / second to 5 m / second.

[第3実施形態(図6,7)]
図6及び図7に示す第3実施形態に係る固液分離装置1Cの基本的な構成は、第1実施形態に係る固液分離装置1A及び第2実施形態に係る固液分離装置1Bと同様である。そのため、図6及び図7には、第1実施形態及び第2実施形態に係る固液分離装置1A,1Bと同一の符号を付して概要のみを説明し、ここでは詳細な説明を省略する。
[Third Embodiment (FIGS. 6 and 7)]
The basic configuration of the solid-liquid separator 1C according to the third embodiment shown in FIGS. 6 and 7 is the same as that of the solid-liquid separator 1A according to the first embodiment and the solid-liquid separator 1B according to the second embodiment. It is. Therefore, in FIGS. 6 and 7, the same reference numerals as those of the solid-liquid separators 1A and 1B according to the first embodiment and the second embodiment are attached, and only the outline is described. Detailed description is omitted here. .

この固液分離装置1Cも、混和槽4、凝集槽15及び沈殿槽30が一体的に形成されている。混和槽4と凝集槽15とを構成する処理槽2は、円筒状又は略円筒状に形成され、その周壁部3には、周壁面が存在しない欠損部3aが設けられている。一方、沈殿槽30は通常の円筒状に形成されている。   In this solid-liquid separator 1C, the mixing tank 4, the coagulation tank 15, and the precipitation tank 30 are integrally formed. The processing tank 2 constituting the mixing tank 4 and the agglomeration tank 15 is formed in a cylindrical shape or a substantially cylindrical shape, and the peripheral wall portion 3 is provided with a defect portion 3a having no peripheral wall surface. On the other hand, the settling tank 30 is formed in a normal cylindrical shape.

処理槽2の欠損部3aは、沈殿槽30の周壁部31に突き合わされ、欠損部3aが沈殿槽30の周壁部31に接合されて一体に形成される。欠損部3aでは、処理槽2の周壁部3と沈殿槽30の周壁部31とを共用する共用部7,16が形成されている。   The defect part 3 a of the treatment tank 2 is abutted against the peripheral wall part 31 of the precipitation tank 30, and the defect part 3 a is joined to the peripheral wall part 31 of the precipitation tank 30 and formed integrally. In the defect part 3 a, shared parts 7 and 16 that share the peripheral wall part 3 of the treatment tank 2 and the peripheral wall part 31 of the sedimentation tank 30 are formed.

混和槽4と凝集槽15とは一体に形成された筒状又は略筒状の処理槽2として構成されている。この処理槽2はその内部に仕切板5が設けられており、この仕切板5が処理槽2の内部を混和槽4と凝集槽15とに区分している。仕切板5は、共用部7,16と、処理槽2の周壁部3の共用部7,16と対向する部位とを連絡するようにして設けられている。また、仕切板5には開口部6が形成されており、被処理水を混和槽4から凝集槽15に移動可能としている。   The mixing tank 4 and the agglomeration tank 15 are configured as a cylindrical or substantially cylindrical processing tank 2 formed integrally. The treatment tank 2 is provided with a partition plate 5 therein, and the partition plate 5 divides the inside of the treatment tank 2 into a mixing tank 4 and a coagulation tank 15. The partition plate 5 is provided so as to communicate between the shared portions 7 and 16 and portions facing the shared portions 7 and 16 of the peripheral wall portion 3 of the processing tank 2. An opening 6 is formed in the partition plate 5 so that the water to be treated can be moved from the mixing tank 4 to the aggregation tank 15.

凝集槽15及び沈殿槽30の双方の周壁部3,31をなす共用部16には、凝集槽15と沈殿槽30とを連通する連通口17が形成されている。この連通口17の一方の側部17aには、共用部16から凝集槽15の内部に向けて延びる板状の第1縦バッフル35が設けられている。また、側部17aと対向する他方の側部17bには共用部16から沈殿槽30の内部に向けて延びる板状の第2縦バッフル36が設けられている。これらの第1縦バッフル35と第2縦バッフル36とは、連通口17を間に挟んで平行をなして配置されている。第1縦バッフル35は、凝集槽15の内部に位置する凝集処理水を連通口17に向けて導く一方で、第2縦バッフル36は連通口17から沈殿槽30の内部に凝集処理水を導いている。   A communication port 17 that communicates the flocculation tank 15 and the settling tank 30 is formed in the shared portion 16 that forms the peripheral wall portions 3 and 31 of both the flocculation tank 15 and the settling tank 30. A plate-like first vertical baffle 35 extending from the shared portion 16 toward the inside of the aggregation tank 15 is provided on one side portion 17 a of the communication port 17. In addition, a plate-like second vertical baffle 36 extending from the shared portion 16 toward the inside of the settling tank 30 is provided on the other side portion 17b facing the side portion 17a. The first vertical baffle 35 and the second vertical baffle 36 are arranged in parallel with the communication port 17 interposed therebetween. The first vertical baffle 35 guides the coagulated treated water located inside the coagulation tank 15 toward the communication port 17, while the second vertical baffle 36 guides the coagulated treated water from the communication port 17 to the inside of the precipitation tank 30. ing.

沈殿槽30は、内部に進入させた凝集処理水を周方向に旋回させつつフロックを沈殿させる旋回流式沈殿槽30である。沈殿槽30の上部には、リング状の取水トラフ38が設けられている。取水トラフ38には沈殿槽30の外部に向けて延びる排水管39が接続されており、凝集処理水から汚濁物質が除去された処理水を外部に送り出している。   The sedimentation tank 30 is a swirl flow type sedimentation tank 30 that precipitates flocs while swirling coagulated water that has entered the interior in the circumferential direction. A ring-shaped water intake trough 38 is provided at the top of the settling tank 30. A drainage pipe 39 extending toward the outside of the settling tank 30 is connected to the water intake trough 38, and the treated water from which the polluted substances have been removed is sent out to the outside.

この固液分離装置1Cは、被処理水を混和槽4に導入させ、無機凝集剤を添加して被処理水を凝集させ易くしている。また、pH調整剤を添加して被処理水を中性にする。次いで被処理水を凝集槽15に導入させ、被処理水に高分子凝集処理してフロックを形成させる。その後、凝集処理された凝集処理した凝集処理水を沈殿槽30に進入させる。沈殿槽30では、凝集処理水に含まれる汚濁物質を沈殿させて汚濁物質を除去する。そして、汚濁物質が除去された処理水を固液分離装置1Cの外に送り出している。   In this solid-liquid separator 1C, the water to be treated is introduced into the mixing tank 4 and an inorganic flocculant is added to facilitate the aggregation of the water to be treated. Moreover, a to-be-processed water is made neutral by adding a pH adjuster. Next, the water to be treated is introduced into the coagulation tank 15, and the water to be treated is subjected to a polymer coagulation treatment to form a flock. Thereafter, the agglomerated water that has been agglomerated is allowed to enter the settling tank 30. In the sedimentation tank 30, the pollutant contained in the flocculated water is precipitated to remove the pollutant. And the treated water from which the pollutant was removed is sent out of the solid-liquid separator 1C.

<旋回補助装置>
この第3実施形態に係る固液分離装置1Aの特徴は、沈殿槽30の内部に進入した凝集処理水の旋回を補助する旋回補助装置40が、第2縦バッフル36の下端よりも下側の位置に配置されている点にある。
<Turning assist device>
A feature of the solid-liquid separation device 1A according to the third embodiment is that the turning auxiliary device 40 that assists the turning of the coagulated water that has entered the settling tank 30 is located below the lower end of the second vertical baffle 36. It is in the point arranged at the position.

旋回補助装置40は、沈殿槽30の底面18の中心部に取りつけられた回転駆動部41と、回転駆動部41から上方に向けて延び、回転駆動部41によって回転される回転軸42と、回転軸42から沈殿槽30の周壁部31に向けて放射状に延びる複数の回転アーム43とから構成されている。回転駆動部41は、回転軸42を、凝集処理水自体の推進力で凝集処理水が旋回する方向と同方向に回転させる。また、全ての回転アーム43は、第2縦バッフル36の下端よりも下側に位置している。   The turning assist device 40 includes a rotation drive unit 41 attached to the center of the bottom surface 18 of the settling tank 30, a rotation shaft 42 extending upward from the rotation drive unit 41, and rotated by the rotation drive unit 41. A plurality of rotating arms 43 extending radially from the shaft 42 toward the peripheral wall portion 31 of the settling tank 30 are configured. The rotation drive unit 41 rotates the rotation shaft 42 in the same direction as the direction in which the coagulated water is swung by the propulsive force of the coagulated water itself. All the rotating arms 43 are positioned below the lower end of the second vertical baffle 36.

回転アーム43の形状は特に限定されず、丸棒、角棒又は板材を使用することができるが、その数は4本〜8本設けることが好ましい。各回転アーム43の長さは、沈殿槽30の半径の60%以上、100%未満の寸法に形成することが好ましい。これに対し、回転アーム43の縦断面積は、沈殿槽30の縦断面積に対して0.002%〜0.2%となるように構成することが好ましい。具体的には、縦断面積が5cm〜500cmに形成するとよい。 The shape of the rotating arm 43 is not particularly limited, and a round bar, a square bar, or a plate material can be used, but the number is preferably 4 to 8. It is preferable that the length of each rotating arm 43 is formed to be 60% or more and less than 100% of the radius of the settling tank 30. On the other hand, the vertical cross-sectional area of the rotary arm 43 is preferably configured to be 0.002% to 0.2% with respect to the vertical cross-sectional area of the settling tank 30. Specifically, it is preferable vertical area is formed in 5cm 2 ~500cm 2.

この旋回補助装置40は、沈殿槽30に進入された凝集処理水自体の推進力で凝集処理水が旋回する方向と同方向に回転アーム43を回転させて、凝集処理水の旋回を補助する。凝集処理水が沈殿槽30の内部で好適に旋回するためには、回転アーム43の先端部が1m/秒〜5m/秒の速度で移動するように回転駆動させることが好ましい。   The turning assist device 40 assists the turning of the coagulated water by rotating the rotation arm 43 in the same direction as the direction in which the coagulated water is turned by the propulsive force of the coagulated water itself that has entered the settling tank 30. In order for the agglomerated water to appropriately rotate inside the sedimentation tank 30, it is preferable that the tip of the rotary arm 43 is rotationally driven so as to move at a speed of 1 m / second to 5 m / second.

なお、沈殿槽30の底部に沈殿した汚濁物質を集泥するには、集泥レーキが一般に使用されるが、この旋回補助装置40の回転アーム43を集泥レーキのレーキアームとして機能させることもできる。   In order to collect mud collected in the bottom of the sedimentation tank 30, a mud collecting rake is generally used. However, the rotary arm 43 of the swivel assist device 40 can also function as a rake arm for the mud collecting rake. .

[第4実施形態(図8)]
この固液分離装置1Dは、無機凝集剤及びpH調整剤が添加される混和槽50と、高分子凝集剤が添加される凝集槽60と、汚濁物質を沈殿させる沈殿槽80とから構成されている。混和槽50は、凝集層及び沈殿槽80とは独立して設けられており、凝集槽60と移送配管58で接続されている。一方、凝集槽60と沈殿槽80とは一体的に構成されている。
[Fourth Embodiment (FIG. 8)]
This solid-liquid separation device 1D includes a mixing tank 50 to which an inorganic flocculant and a pH adjuster are added, a flocculant tank 60 to which a polymer flocculant is added, and a precipitation tank 80 for precipitating pollutants. Yes. The mixing tank 50 is provided independently of the aggregation layer and precipitation tank 80, and is connected to the aggregation tank 60 by a transfer pipe 58. On the other hand, the aggregation tank 60 and the sedimentation tank 80 are integrally configured.

<混和槽>
混和槽50は、外形が円筒状に形成されている。混和槽50の周壁部52には、内部に被処理水を導入させる導入口51と、凝集槽60に被処理水を移送する移送配管58が設けられている。また、混和槽50には、内部の被処理水を撹拌する撹拌装置55が設けられている。
<Mixing tank>
The mixing tank 50 has a cylindrical outer shape. The peripheral wall 52 of the mixing tank 50 is provided with an introduction port 51 for introducing the water to be treated therein and a transfer pipe 58 for transferring the water to be treated to the coagulation tank 60. In addition, the mixing tank 50 is provided with a stirring device 55 for stirring the water to be treated.

<凝集槽及び沈殿槽>
凝集槽60は、外形が円筒状又は略円筒状に形成されており、周壁部61の一部には周壁面の存在したい欠損部61aが設けられている。一方、沈殿槽80は、その外形が円筒状に形成されている。凝集槽60は、欠損部61aが沈殿槽80の周壁部81に突き合わされており、付き合わされた欠損部61aが沈殿槽80の周壁部81に接合されて沈殿槽80と一体的に構成されている。欠損部61aでは、凝集槽60の周壁部61と沈殿槽80の周壁部81とが共用さる共用部62が形成されている。
<Coagulation tank and sedimentation tank>
The agglomeration tank 60 is formed in a cylindrical shape or a substantially cylindrical shape. A part of the peripheral wall portion 61 is provided with a defect portion 61a where a peripheral wall surface is desired to exist. On the other hand, the outer shape of the sedimentation tank 80 is formed in a cylindrical shape. In the agglomeration tank 60, the defect 61 a is abutted against the peripheral wall 81 of the sedimentation tank 80, and the associated defect 61 a is joined to the peripheral wall 81 of the sedimentation tank 80 to be integrated with the sedimentation tank 80. Yes. In the defect portion 61 a, a shared portion 62 is formed in which the peripheral wall portion 61 of the aggregation tank 60 and the peripheral wall portion 81 of the sedimentation tank 80 are shared.

凝集槽60の周壁部61には移送配管58が接続されており、この移送配管58を介して混和槽50から被処理水が送り込まれる。また、凝集槽60には撹拌装置65設けられており、内部の被処理水を撹拌している。そして、共用部62には凝集槽60と沈殿槽80とを連通している連通口63が形成されている。この連通口63は、凝集槽60で凝集処理された凝集処理水を凝集槽60から沈殿槽80に進入させる。さらに、凝集槽60には、共用部62から凝集槽60の内部に向けて延びる第1縦バッフル70が連通口63の側部に設けられている。   A transfer pipe 58 is connected to the peripheral wall portion 61 of the aggregation tank 60, and water to be treated is fed from the mixing tank 50 through the transfer pipe 58. Further, the agglomeration tank 60 is provided with a stirring device 65 to stir the water to be treated. The common part 62 is formed with a communication port 63 that allows the aggregation tank 60 and the sedimentation tank 80 to communicate with each other. The communication port 63 allows the agglomerated water that has been agglomerated in the agglomeration tank 60 to enter the settling tank 80 from the agglomeration tank 60. Further, the coagulation tank 60 is provided with a first vertical baffle 70 extending from the shared portion 62 toward the inside of the coagulation tank 60 at the side of the communication port 63.

沈殿槽80は、内部に進入された凝集処理水を旋回させつつ汚濁物質を沈殿させる旋回流式沈殿槽80である。沈殿槽80は円筒状に形成されており、その周壁部81には凝集槽60の周壁部61を共用する共用部62が設けられている。この共用部62には凝集槽60と沈殿槽80とを連通する連通口63が形成されている。さらに、沈殿槽80の内部には、共用部62から沈殿槽80の内部に向けて延びる第2縦バッフル71が連通口63の側部に設けられている。凝集処理水は、この連通口63から沈殿槽80の内部に進入し、沈殿槽80垂直バッフルによりその進入方向が所定の方向に導かれる。沈殿槽80に進入した凝集処理水は、凝集処理水自体の推進力で沈殿槽80の内部を周方向に旋回する。   The sedimentation tank 80 is a swirl type sedimentation tank 80 that precipitates pollutants while swirling the coagulated water that has entered the interior. The sedimentation tank 80 is formed in a cylindrical shape, and a shared part 62 sharing the peripheral wall part 61 of the aggregation tank 60 is provided on the peripheral wall part 81 thereof. The shared portion 62 is formed with a communication port 63 that allows the aggregation tank 60 and the sedimentation tank 80 to communicate with each other. Further, a second vertical baffle 71 extending from the shared portion 62 toward the inside of the sedimentation tank 80 is provided inside the sedimentation tank 80 at the side of the communication port 63. The agglomerated water enters the inside of the sedimentation tank 80 from the communication port 63, and the entrance direction thereof is guided in a predetermined direction by the sedimentation tank 80 vertical baffle. The agglomerated water that has entered the settling tank 80 rotates in the circumferential direction inside the settling tank 80 by the propulsive force of the agglomerated water itself.

一方、沈殿槽80の上部にはリング状の取水トラフ83が設けられている。取水トラフ83には、凝集処理水中の汚濁物質を沈殿させた後の上澄み液が、開放された上面から流れ込まれるように構成されている。そして、取水トラフ83には沈殿槽80の外部に向けて延びる排水管84が接続されており、凝集処理水から汚濁物質が除去された処理水を外部に送り出している。   On the other hand, a ring-shaped water intake trough 83 is provided in the upper part of the settling tank 80. The intake trough 83 is configured such that the supernatant liquid after the pollutant in the flocculated water is precipitated flows from the opened upper surface. A drain pipe 84 extending toward the outside of the sedimentation tank 80 is connected to the intake trough 83, and the treated water from which the polluted substances have been removed is sent out to the outside.

<連通口、第1縦バッフル及び第2縦バッフル>
連通口63は、凝集槽60の周壁部と沈殿槽80の周壁部とが共用される共用部62に形成されており、凝集槽60と沈殿槽80とを連通させている。連通口63は正方形又は縦長の長方形等の矩形状に形成されている。
<Communication port, first vertical baffle and second vertical baffle>
The communication port 63 is formed in a shared portion 62 where the peripheral wall portion of the coagulation tank 60 and the peripheral wall portion of the sedimentation tank 80 are shared, and allows the aggregation tank 60 and the sedimentation tank 80 to communicate with each other. The communication port 63 is formed in a rectangular shape such as a square or a vertically long rectangle.

第1縦バッフル70は板状に形成されており、連通口63の一方の側部にて、共用部62から凝集槽60の内部に向けて延びるようにして設けられている。また、第2縦バッフル71も板状に形成されており、他方の側部にて、共用部62から沈殿槽80の内部に向けて延びるようにして設けられている。これら第1縦バッフル70と第2縦バッフル71とは、連通口63を間に挟んで平行をなして配置されている。第1縦バッフル70は、凝集槽60の内部に位置する凝集処理水を連通口63に向けて導く一方で、第2縦バッフル71は連通口63から沈殿槽80の内部に凝集処理水を導いている。   The first vertical baffle 70 is formed in a plate shape and is provided on one side of the communication port 63 so as to extend from the shared portion 62 toward the inside of the aggregation tank 60. Moreover, the 2nd vertical baffle 71 is also formed in plate shape, and it is provided so that it may extend toward the inside of the sedimentation tank 80 from the shared part 62 in the other side part. The first vertical baffle 70 and the second vertical baffle 71 are arranged in parallel with the communication port 63 interposed therebetween. The first vertical baffle 70 guides the coagulated treated water located inside the coagulation tank 60 toward the communication port 63, while the second vertical baffle 71 guides the coagulated treated water from the communication port 63 to the inside of the precipitation tank 80. ing.

なお、この連通口63、第1縦バッフル71及び第2縦バッフル71の構成の詳細は、第1〜第3実施形態の固液分離装置1A,1B,1Cの連通口17、第1縦バッフル35及び第2縦バッフル36の構成と同様である。   The details of the configuration of the communication port 63, the first vertical baffle 71, and the second vertical baffle 71 are the communication port 17, the first vertical baffle of the solid-liquid separators 1A, 1B, and 1C of the first to third embodiments. 35 and the second vertical baffle 36.

固液分離装置1Dをこの第4実施形態のように、混和槽50を独立させて構成しても、凝集槽60及び沈殿槽80の双方の周壁部61,81を共用する共用部62を設け、共用部62に連通口63を形成しているので、凝集処理水が凝集槽60から沈殿槽80に移動する際に凝集槽60で形成されたフロックは分解されることがない。   Even if the solid-liquid separation device 1D is configured with the mixing tank 50 independent as in the fourth embodiment, a shared portion 62 that shares the peripheral wall portions 61 and 81 of both the aggregation tank 60 and the sedimentation tank 80 is provided. Since the communication port 63 is formed in the common part 62, the floc formed in the coagulation tank 60 is not decomposed when the coagulation treatment water moves from the coagulation tank 60 to the settling tank 80.

[第5実施形態]
図11は、第5実施形態に係る固液分離装置90Aの構成図であり、(a)図は平面図、(b)図は縦断面図、(c)は第1縦バッフル付近の斜視図、(d)図は第2縦バッフル付近の斜視図である。
[Fifth Embodiment]
11A and 11B are configuration diagrams of a solid-liquid separator 90A according to the fifth embodiment, in which FIG. 11A is a plan view, FIG. 11B is a longitudinal sectional view, and FIG. 11C is a perspective view near the first vertical baffle. (D) is a perspective view of the vicinity of the second vertical baffle.

この固液分離装置90Aでは、被処理水(原水)は、原水配管91において無機凝集剤が添加された後、混和槽92に流入し、pH調整剤添加手段92bからpH調整剤が添加され、撹拌装置92aで撹拌される。この無機凝集剤、pH調整剤としては前述のもの等を用いることができる。なお、pH計92cで検出されるpHが所定範囲となるようにpH調整剤が添加される。   In this solid-liquid separator 90A, the water to be treated (raw water) flows into the mixing tank 92 after the inorganic flocculant is added in the raw water pipe 91, and the pH adjuster is added from the pH adjuster adding means 92b. It stirs with the stirring apparatus 92a. As the inorganic flocculant and pH adjuster, those described above can be used. A pH adjuster is added so that the pH detected by the pH meter 92c falls within a predetermined range.

混和槽92内の液は、移送配管93において高分子凝集剤(例えばアニオン性高分子凝集剤)が添加され、凝集槽94の好ましくは下部に移送される。   The liquid in the mixing tank 92 is added with a polymer flocculant (for example, an anionic polymer flocculant) in the transfer pipe 93 and is preferably transferred to the lower part of the flocculent tank 94.

この凝集槽94には撹拌装置94aが設けられ、液がゆっくりと撹拌され、フロックが成長する。   The agglomeration tank 94 is provided with a stirring device 94a, and the liquid is slowly stirred to grow a floc.

凝集槽94の側周壁面には第1縦バッフル95が設けられている。この第1縦バッフル95は、水平断面が略々コ字形のものであり、凝集槽94の側周壁面に連なる1対のサイド板95a,95aと、該サイド板95a,95a同士を橋絡する正面板95bとを有している。この実施形態では、第1縦バッフル95の底面部に底板95cが設けられており、第1縦バッフル95と凝集槽94の側周壁面との間に上開で有底の略角筒形のスペースが形成されている。凝集槽94内の液は、第1縦バッフル95の上端を越流して該スペースに流入し、該スペース下部の該側周壁面に開口する通液路96(移送配管)を介して沈殿槽97に移送され、汚泥の沈降分離処理が行われる。処理水(上澄水)はこの沈殿槽97内の上部に設けられた処理水取出トラフ97aから取り出され、沈殿した汚泥は沈殿槽97の底部から取り出される。   A first vertical baffle 95 is provided on the side wall surface of the aggregation tank 94. The first vertical baffle 95 has a substantially U-shaped horizontal cross section, and bridges a pair of side plates 95a and 95a connected to the side wall surface of the aggregation tank 94 and the side plates 95a and 95a. And a front plate 95b. In this embodiment, a bottom plate 95 c is provided on the bottom surface portion of the first vertical baffle 95, and the bottom plate 95 c has a substantially square cylindrical shape with an open top and a bottom between the first vertical baffle 95 and the side wall surface of the aggregation tank 94. A space is formed. The liquid in the coagulation tank 94 flows over the upper end of the first vertical baffle 95 and flows into the space, and then passes through the liquid passage 96 (transfer pipe) that opens to the side wall surface at the lower part of the space. The sludge is settled and separated. The treated water (supernatant water) is taken out from the treated water take-out trough 97 a provided in the upper part of the settling tank 97, and the precipitated sludge is taken out from the bottom of the settling tank 97.

前記通液路96は、この沈殿槽97の側周壁面に開口している。この通液路96の開口部に対面するように第2縦バッフル98が設けられている。この第2縦バッフル98は、側周壁面に連なり、板面を上下方向とした正面板98aと、該正面板98aの下端と側周壁面との間に設けられた底板98bと、正面板98aの上端と側周壁面との間に設けられた天井板98cとを有している。正面板98aは、沈殿槽97の半径方向に対し斜交する方向に延在している。   The liquid passage 96 is open to the side wall surface of the settling tank 97. A second vertical baffle 98 is provided so as to face the opening of the liquid passage 96. The second vertical baffle 98 is connected to the side wall surface and has a front plate 98a whose plate surface is in the vertical direction, a bottom plate 98b provided between the lower end of the front plate 98a and the side wall surface, and a front plate 98a. The ceiling board 98c provided between the upper end and the side wall surface. The front plate 98 a extends in a direction oblique to the radial direction of the settling tank 97.

なお、正面板98aと沈殿槽97の半径方向との交差角度は好ましくは30゜〜60゜特に好ましくは40〜50゜である。   The crossing angle between the front plate 98a and the radial direction of the settling tank 97 is preferably 30 ° to 60 °, particularly preferably 40 ° to 50 °.

底板98b及び天井板98cは略三角形状である。正面板98aの側周壁面と反対側の側端辺と側周壁面との間は開放部98dとなっている。通液路96からの液がこの開放部98dから沈殿槽97内に側周壁面に沿うように略々接線方向に流出し、緩やかに旋回し、この間に沈殿処理が行われる。   The bottom plate 98b and the ceiling plate 98c are substantially triangular. An open portion 98d is provided between the side edge of the front plate 98a opposite to the side wall surface and the side wall surface. The liquid from the liquid flow path 96 flows out in the tangential direction along the side wall surface into the settling tank 97 from the open portion 98d, and turns gently, during which precipitation is performed.

この実施形態では、混和槽92、凝集槽94及び沈殿槽97はいずれも円筒容器状であり、相互間に適宜の間隔があいている。   In this embodiment, the mixing tank 92, the agglomeration tank 94, and the settling tank 97 are all cylindrical, and are appropriately spaced from each other.

凝集槽94の半径をrとし、沈殿槽97の半径をRとし、両者間の通液路96の水平幅をdとした場合、凝集槽94と沈殿槽97との中心間距離Lは次式を満たす。   When the radius of the coagulation tank 94 is r, the radius of the precipitation tank 97 is R, and the horizontal width of the liquid passage 96 between the two is d, the center distance L between the coagulation tank 94 and the precipitation tank 97 is Meet.

Lmin≦L≦Lmax
ただし、Lmin=(R+r)×0.8である。Lmaxは、(R+r)×1.2と(R+r+d)との大きい方である。
Lmin ≦ L ≦ Lmax
However, Lmin = (R + r) × 0.8. Lmax is the larger of (R + r) × 1.2 and (R + r + d).

このように構成された固液分離装置においては、凝集槽94と沈殿槽97とが近接しており、凝集槽94から沈殿槽97に移送されている間にフロックが損壊することが防止される。また、この実施形態では、沈殿槽97の半径方向に斜交する正面板98aを有した第2縦バッフル98が沈殿槽97に設けられており、凝集処理液が沈殿槽97内の略接線方向にスムーズに流れるので、フロックの損壊が防止される。   In the solid-liquid separation apparatus configured as described above, the coagulation tank 94 and the settling tank 97 are close to each other, and the floc is prevented from being damaged while being transferred from the coagulation tank 94 to the settling tank 97. . Further, in this embodiment, the second vertical baffle 98 having the front plate 98 a obliquely intersecting with the radial direction of the settling tank 97 is provided in the settling tank 97, and the aggregating treatment liquid is in a substantially tangential direction in the settling tank 97. Flow smoothly, preventing damage to the floc.

さらに、通液路96からの凝集処理水が短絡的にトラフ97aに流れることが防止され、沈殿分離が十分に行われる。   Further, the agglomerated water from the liquid passage 96 is prevented from flowing into the trough 97a in a short circuit, and the precipitation separation is sufficiently performed.

[第6実施形態]
図11の第5実施形態では、第1縦バッフル95は、その上端が凝集槽94内の水面近くまで延在するものとなっているが、図12の第6実施形態の固液分離装置90Bでは、第1縦バッフル95Bが凝集槽94の水深の中間付近となっている。
[Sixth Embodiment]
In the fifth embodiment of FIG. 11, the upper end of the first vertical baffle 95 extends to the vicinity of the water surface in the coagulation tank 94, but the solid-liquid separation device 90B of the sixth embodiment of FIG. Then, the first vertical baffle 95 </ b> B is in the vicinity of the middle of the water depth of the aggregation tank 94.

第6実施形態のその他の構成は第5実施形態と同一であり、同一符号は同一部分を示している。   The other structure of 6th Embodiment is the same as 5th Embodiment, and the same code | symbol has shown the identical part.

この第6実施形態のように、凝集槽94の第1バッフル95Bの上端を凝集槽94の水深の中間付近とすることによって、凝集槽水面から空気を巻き込むことで凝集ペレットが破壊してしまうことを良好に防ぐことができ、SSの流出率を低く抑えることができる。バッフルの上端から水面までの距離は凝集槽水深の20%〜70%あるいは200mm〜2000mmより好ましくは500mm〜1000mmである。   As in the sixth embodiment, by setting the upper end of the first baffle 95B of the coagulation tank 94 near the middle of the water depth of the coagulation tank 94, the coagulation pellets are destroyed by entraining air from the water surface of the coagulation tank 94. Can be prevented well, and the outflow rate of SS can be kept low. The distance from the upper end of the baffle to the water surface is 20% to 70% of the water depth of the coagulation tank, or 200 mm to 2000 mm, more preferably 500 mm to 1000 mm.

[第7実施形態]
図13に示す第7実施形態の固液分離装置90Cは、第6実施形態において凝集槽94と沈殿槽97との中心間距離Lを第6実施形態よりも小さくしたものである。その他の構成は第6実施形態と同一であり、同一符号は同一部分を示している。
[Seventh Embodiment]
A solid-liquid separation device 90C of the seventh embodiment shown in FIG. 13 is such that the center-to-center distance L between the aggregation tank 94 and the sedimentation tank 97 is smaller than that of the sixth embodiment. Other configurations are the same as those of the sixth embodiment, and the same reference numerals indicate the same parts.

このように凝集槽94と旋回流式沈殿槽97とをさらに近接して設置することにより、フロックの崩壊を防ぎ、SSの流出率を低くすることができる。   Thus, by installing the coagulation tank 94 and the swirling flow type precipitation tank 97 closer to each other, it is possible to prevent the flocs from collapsing and to reduce the SS outflow rate.

[第8実施形態]
図14に示す第8実施形態の固液分離装置90Dでは、凝集槽94の第1縦バッフル95Dの構成が第5〜第7実施形態の第1縦バッフル95,95Bと異なっている。
[Eighth Embodiment]
In the solid-liquid separator 90D of the eighth embodiment shown in FIG. 14, the configuration of the first vertical baffle 95D of the coagulation tank 94 is different from the first vertical baffles 95, 95B of the fifth to seventh embodiments.

この第1縦バッフル95Dは、凝集槽95の側周壁面に連なる正面板95hと、底板95kとで構成されている。正面板95hは、平板状であり、一方の側辺95’が凝集槽95の側周壁面に連なり、他方の側辺95’’は該側周壁面から離隔している。正面板95hは凝集槽95の半径方向に対し交差角度α=30〜60゜(好ましくは40〜50゜)に斜交している。   The first vertical baffle 95D is composed of a front plate 95h and a bottom plate 95k that are continuous with the side wall surface of the aggregation tank 95. The front plate 95h has a flat plate shape, and one side 95 'is connected to the side circumferential wall surface of the aggregation tank 95, and the other side 95' is separated from the side circumferential wall surface. The front plate 95h crosses at an intersecting angle α = 30 to 60 ° (preferably 40 to 50 °) with respect to the radial direction of the aggregation tank 95.

該正面板95hの一方の側辺95’から他方の側辺95’’に向う方向は、撹拌装置94aにより形成される凝集槽94内の液の旋回方向となっている。通液路96の開口は、該一方の側辺95’側に位置している。従って、凝集槽94内を旋回する水は、正面板95hの側辺95’’を回り込み、旋回方向と反対方向に流れて通液路96に流入する。   The direction from one side 95 'of the front plate 95h to the other side 95 "is the direction of swirling of the liquid in the coagulation tank 94 formed by the stirring device 94a. The opening of the liquid passage 96 is located on the one side 95 'side. Therefore, the water swirling in the coagulation tank 94 flows around the side 95 </ b> ″ of the front plate 95 h, flows in the direction opposite to the swirling direction, and flows into the liquid passage 96.

正面板95hは、第2縦バッフル98の正面板98aと略平行である(αがほぼ等しい)ことが好ましい。なお、ほぼ等しいとは両正面板の角度αの差異が±5゜以内特に±3゜以内であることをいう。   The front plate 95h is preferably substantially parallel to the front plate 98a of the second vertical baffle 98 (α is substantially equal). Note that “substantially equal” means that the difference in angle α between both front plates is within ± 5 °, particularly within ± 3 °.

縦バッフルの正面板95h、98a同士を略平行とすることにより、フロックの崩壊を防ぎ、SSの流出を低く抑えることができる。このとき、凝集槽94の槽壁と沈殿槽97の槽壁の間隔はできるだけ小さいことが好ましく、該間隔は通液路96の開口の幅d以下とする。   By making the front plates 95h and 98a of the vertical baffle substantially parallel to each other, it is possible to prevent the flocs from collapsing and to suppress the SS outflow. At this time, the distance between the tank wall of the aggregation tank 94 and the tank wall of the settling tank 97 is preferably as small as possible, and the distance is equal to or less than the width d of the opening of the liquid passage 96.

第1縦バッフル95Dの上端は凝集槽94の上下方向中間付近となっている。   The upper end of the first vertical baffle 95 </ b> D is near the middle in the vertical direction of the aggregation tank 94.

第8実施形態のその他の構成は第7実施形態と同一であり、同一符号は同一部分を示している。   The other structure of 8th Embodiment is the same as 7th Embodiment, and the same code | symbol has shown the identical part.

[第9実施形態]
図15に示す第9実施形態に係る固液分離装置90Eは、第8実施形態の固液分離装置90Dにおいて、沈殿槽97に旋回補助装置99を設けたものである。この旋回補助装置99は、沈殿槽97の軸心部に上下方向に配置された回転軸99aと、該回転軸99aを回転させるモータ97bと、回転軸99aの下端から放射方向に延設された旋回部としてのアーム99cとを有している。このアーム99cは、周方向に間隔をおいて複数本設けられている。該アーム95cは、第2縦バッフル98よりも下位に配置されている。
[Ninth Embodiment]
A solid-liquid separation device 90E according to the ninth embodiment shown in FIG. 15 is obtained by providing a swivel assist device 99 in the settling tank 97 in the solid-liquid separation device 90D of the eighth embodiment. The swivel assist device 99 is extended in a radial direction from a rotary shaft 99a arranged in the vertical direction at the axial center of the settling tank 97, a motor 97b for rotating the rotary shaft 99a, and a lower end of the rotary shaft 99a. And an arm 99c as a turning portion. A plurality of arms 99c are provided at intervals in the circumferential direction. The arm 95c is disposed below the second vertical baffle 98.

第9実施形態のその他の構成は第8実施形態と同一であり、同一符号は同一部分を示している。   The other structure of 9th Embodiment is the same as that of 8th Embodiment, and the same code | symbol has shown the identical part.

この実施の形態では、通液路96よりも下側に、回転方向が凝集槽処理水の流入方向と同方向となるアーム99cを設け、沈殿槽全体の水を緩やかに回転させることにより、流入水の回転力を補助し、さらに良好な旋回流式沈殿槽処理性能を実現できる。アームの本数は、4本から8本が好ましく、長さは沈殿槽半径の60%から99%までが好ましい。アームの断面の形状は丸型または方形とすることができる。断面積は5cmから500cmまたは沈殿槽の面積の0.002%から0.2%が好ましい。アーム99cの高さは、沈殿槽底から縦バッフル98の間とする。アーム99cの先端部速度は、0.02m/secから5m/secが好ましい。 In this embodiment, an arm 99c whose rotation direction is the same as the inflow direction of the coagulation tank treated water is provided below the liquid passage 96, and the inflow is performed by gently rotating the water in the entire precipitation tank. Assisting the rotational force of water, it is possible to achieve better swirl type sedimentation tank treatment performance. The number of arms is preferably 4 to 8, and the length is preferably 60% to 99% of the settling tank radius. The cross-sectional shape of the arm can be round or square. The cross-sectional area is preferably 5 cm 2 to 500 cm 2 or 0.002% to 0.2% of the area of the precipitation tank. The height of the arm 99c is between the bottom of the settling tank and the vertical baffle 98. The tip speed of the arm 99c is preferably 0.02 m / sec to 5 m / sec.

[第10実施形態]
図16に示す第10実施形態の固液分離装置90Fにおいては、第9実施形態においてアーム99cの下側にレーキ板99dを設けたものである。レーキ板99dによって集泥された汚泥は沈殿槽97の底部のピット97pに導かれて排出される。
[Tenth embodiment]
In the solid-liquid separation device 90F of the tenth embodiment shown in FIG. 16, a rake plate 99d is provided on the lower side of the arm 99c in the ninth embodiment. The sludge collected by the rake plate 99d is guided to the pit 97p at the bottom of the settling tank 97 and discharged.

[第11実施形態]
図17に示す第11実施形態の固液分離装置90Gは、図14の第8実施形態において第1縦バッフル95Gを水面近くまで立ち上がるようにしたものである。
[Eleventh embodiment]
A solid-liquid separator 90G of the eleventh embodiment shown in FIG. 17 is configured such that the first vertical baffle 95G rises to near the water surface in the eighth embodiment of FIG.

その他の構成は図14の第8実施形態と同一であり、同一符号は同一部分を示している。   Other configurations are the same as those of the eighth embodiment shown in FIG. 14, and the same reference numerals denote the same parts.

上記固液分離装置90A〜90Gにおいて、凝集槽94のG値は10(1/s)〜100(1/s)が好ましい。凝集槽94の撹拌翼の先端部速度は、0.05m/secから2m/secが好ましい。各第1及び第2縦バッフルの大きさは、横幅及び高さ共に沈殿槽97の直径の1/100〜1/10が好ましい。凝集槽94と沈殿槽97の側周壁における通液路96の開口の形状は方形とすることが好ましい。通液路96の開口の高さは各縦バッフル高さの50%から100%が好ましい。   In the solid-liquid separators 90A to 90G, the G value of the aggregation tank 94 is preferably 10 (1 / s) to 100 (1 / s). The tip speed of the stirring blade of the coagulation tank 94 is preferably 0.05 m / sec to 2 m / sec. As for the magnitude | size of each 1st and 2nd vertical baffle, 1/100-1/10 of the diameter of the sedimentation tank 97 are preferable in both width and height. The shape of the opening of the liquid passage 96 in the side peripheral walls of the aggregation tank 94 and the precipitation tank 97 is preferably square. The height of the opening of the liquid passage 96 is preferably 50% to 100% of the height of each vertical baffle.

通液路96の開口面積は、通水量に基づき、平均流速が0.01m/secから1m/secになるようにすることが好ましい。通液路96の開口部横幅は通液路96の開口面積を通液路開口高さで除して決定することができる。   The opening area of the liquid flow path 96 is preferably such that the average flow rate is from 0.01 m / sec to 1 m / sec based on the amount of water flow. The lateral width of the opening of the liquid passage 96 can be determined by dividing the opening area of the liquid passage 96 by the height of the liquid passage opening.

図18は後述の比較例に係る固液分離装置90Hを示すものであり、第1縦バッフル95Hを前記図11の第1縦バッフル95と同様形状のものとし、通液路96を凝集槽94の上部としている。沈殿槽97Hは横流式角型沈殿槽であり、縦板97bと底板97cで形成される流入部に対し通液路96からの液が流入し、該流入部の下部の開口97dから液が沈殿槽97H内に流入する。トラフ97fは該流入部と反対側の槽壁上部に設けられている。その他の構成は固液分離装置90Aと同一であり、同一符号は同一部分を示している。   FIG. 18 shows a solid-liquid separation device 90H according to a comparative example to be described later. The first vertical baffle 95H has the same shape as the first vertical baffle 95 of FIG. And the top. The settling tank 97H is a cross-flow type square settling tank, and the liquid from the liquid passage 96 flows into the inflow portion formed by the vertical plate 97b and the bottom plate 97c, and the liquid is precipitated from the opening 97d below the inflow portion. It flows into the tank 97H. The trough 97f is provided in the tank wall upper part on the opposite side to this inflow part. Other configurations are the same as those of the solid-liquid separator 90A, and the same reference numerals indicate the same parts.

以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明は、以下の実施例に何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

[実施例1]
実施例1では、第1実施形態に係る固液分離装置1Aを使用して固液分離処理を行った。固液分離処理の対象となる被処理水は、カオリンが300mg/L含まれた工業用水を使用した。
[Example 1]
In Example 1, the solid-liquid separation process was performed using the solid-liquid separation apparatus 1A according to the first embodiment. Industrial water containing 300 mg / L of kaolin was used as water to be treated for solid-liquid separation treatment.

まず、混和槽4で、被処理水にポリ塩化アルミニウム(PAC)を無機凝集剤として添加して凝集処理し、水酸化ナトリウム25%溶液をpH調整剤として添加して中性にした。ポリ塩化アルミニウム(PAC)の添加量は、200mg/L(as 10%(PAC)溶液)とした。次いで、凝集槽15で、被処理水にPA301を高分子凝集剤として3mg/L添加して汚濁物質を凝集させた。汚濁物質を凝集させる際、凝集槽15では、撹拌装置20の撹拌翼22の回転方向を第1縦バッフル35が凝集処理水を連通口17に導く方向と同方向に回転させて撹拌した。その後、凝集処理水を沈殿槽30に進入させ、フロックを沈殿槽で沈殿させて除去した。   First, in the mixing tank 4, polyaluminum chloride (PAC) was added to the water to be treated as an inorganic flocculant for aggregation treatment, and a 25% sodium hydroxide solution was added as a pH adjuster to make it neutral. The amount of polyaluminum chloride (PAC) added was 200 mg / L (as 10% (PAC) solution). Subsequently, 3 mg / L of PA301 as a polymer flocculant was added to the water to be treated in the agglomeration tank 15 to agglomerate the pollutants. When coagulating the pollutant, in the coagulation tank 15, the rotation direction of the stirring blade 22 of the stirring device 20 was rotated in the same direction as the direction in which the first vertical baffle 35 led the coagulated water to the communication port 17 and stirred. Thereafter, the agglomerated water was allowed to enter the settling tank 30, and the floc was precipitated and removed in the settling tank.

フロックが除去された後の処理水の浮遊物質の濃度(SS濃度)を測定したところ、浮遊物質の濃度(SS濃度)の測定結果は23mg/Lであった。   When the concentration of suspended matter (SS concentration) in the treated water after floc was removed was measured, the measurement result of the suspended matter concentration (SS concentration) was 23 mg / L.

[実施例2]
実施例2では、第2実施形態に係る固液分離装置1Bを使用して固液分離処理を行った。この実施例2では、凝集槽15に設けられている撹拌装置20の撹拌翼22を第1縦バッフル35が凝集処理水を連通口17に導く方向とは逆方向に回転させて撹拌した。ただし、処理の対象となる被処理水並びに、添加した無機凝集剤、pH調整剤及び高分子凝集剤は実施例1と同様である。このようにして固液分離を行ったところ、実施例2では浮遊物質の濃度(SS濃度)の測定結果は16mg/Lであった。
[Example 2]
In Example 2, the solid-liquid separation process was performed using the solid-liquid separation apparatus 1B according to the second embodiment. In Example 2, the stirring blade 22 of the stirring device 20 provided in the coagulation tank 15 was stirred by rotating it in the direction opposite to the direction in which the first vertical baffle 35 led the coagulated treated water to the communication port 17. However, the water to be treated and the added inorganic flocculant, pH adjuster and polymer flocculant are the same as in Example 1. When solid-liquid separation was performed in this way, in Example 2, the measurement result of the suspended solid concentration (SS concentration) was 16 mg / L.

撹拌翼22を第1縦バッフル35が凝集処理水を連通口17に導く方向とは逆方向に回転させる固液分離装置1Bを使用した実施例2の測定結果と、撹拌翼22を第1縦バッフル35が凝集処理水を連通口17に導く方向と同方向に回転させる固液分離装置1Aを使用した実施例1の測定結果とを比較すると、実施例2では測定結果は、16mg/Lであり、測定結果は23mg/Lであった実施例1よりも良好な測定結果を得た。このことから、第1縦バッフル35が凝集処理水を連通口17に導く方向とは逆方向に凝集処理水に旋回力を付与するように凝集槽15で撹拌装置20の回転翼22を回転させると、より効果的に浮遊物質を除去することができる。   The measurement results of Example 2 using the solid-liquid separator 1B in which the first vertical baffle 35 rotates the stirring blade 22 in the direction opposite to the direction in which the agglomerated treated water is guided to the communication port 17, and the stirring blade 22 in the first vertical baffle When the measurement result of Example 1 using the solid-liquid separator 1A in which the baffle 35 rotates the coagulated treated water to the communication port 17 in the same direction is compared, the measurement result in Example 2 is 16 mg / L. There was a measurement result better than Example 1 which was 23 mg / L. For this reason, the rotary blades 22 of the agitator 20 are rotated in the coagulation tank 15 so that the first vertical baffle 35 imparts a turning force to the coagulated water in the direction opposite to the direction in which the coagulated water is guided to the communication port 17. As a result, suspended solids can be more effectively removed.

[実施例3]
実施例3では、第3実施形態に係る固液分離装置1Cを使用して固液分離処理を行った。この実施例3では、実施例2の場合と同様に、凝集槽15に設けられている撹拌装置20の撹拌翼22を第1縦バッフル35が凝集処理水を連通口17に導く方向とは逆方向に回転させて撹拌した。また、沈殿槽30では、旋回補助装置40によって凝集処理水が旋回することを補助した。ただし、処理の対象となる被処理水並びに、添加した無機凝集剤、pH調整剤及び高分子凝集剤は実施例1及び実施例2と同様である。このようにして固液分離を行ったところ、実施例3では浮遊物質の濃度(SS濃度)の測定結果は9mg/Lであった。
[Example 3]
In Example 3, the solid-liquid separation process was performed using the solid-liquid separator 1C according to the third embodiment. In the third embodiment, as in the case of the second embodiment, the first longitudinal baffle 35 is opposite to the direction in which the first vertical baffle 35 guides the agglomerated water to the communication port 17 in the agitation device 20 provided in the agglomeration tank 15. Rotated in the direction and stirred. Further, in the sedimentation tank 30, the swirl assist device 40 assists in swirling the agglomerated water. However, the water to be treated and the added inorganic flocculant, pH adjuster and polymer flocculant are the same as in Example 1 and Example 2. When solid-liquid separation was performed in this way, in Example 3, the measurement result of the suspended solid concentration (SS concentration) was 9 mg / L.

沈殿槽30に設けられた旋回補助装置40で凝集処理水の旋回を補助する固液分離装置1Cを使用した実施例3の測定結果と、旋回補助装置40を設けずに、凝集処理水の推進力だけで旋回させる固液分離装置1Bを使用した実施例2の測定結果とを比較すると、実施例3の測定結果は9mg/Lであり、測定結果が16mg/Lであった実施例2の場合よりも良好な測定結果を得た。この結果から明らかなように、沈殿槽30に旋回補助装置40を設け、沈殿槽30での凝集処理水の旋回を補助すれば、さらに効果的に浮遊物質を除去することができる。   The measurement result of Example 3 using the solid-liquid separation device 1C that assists the swirling of the flocculated water in the swirl assist device 40 provided in the settling tank 30 and the promotion of the flocculated water without the swirling assist device 40 being provided. When compared with the measurement result of Example 2 using the solid-liquid separation device 1B swirled only by force, the measurement result of Example 3 is 9 mg / L, and the measurement result of Example 2 was 16 mg / L. The measurement result better than the case was obtained. As is clear from this result, if the swirl assist device 40 is provided in the sedimentation tank 30 to assist the swirl of the agglomerated treated water in the sedimentation tank 30, the suspended solids can be removed more effectively.

[実施例4]
実施例4では、第4実施形態に係る固液分離装置を使用して固液分離処理1Dを行った。この実施例4で使用した固液分離装置1Dは、凝集槽60と沈殿槽80とが一体的に構成されている一方で、混和槽50は凝集槽60及び沈殿槽80とは独立して設けられている。混和槽50と凝集槽60とは、移送配管58で相互に連絡されている一方で、凝集槽60と沈殿槽80とは、両者の共用部62に設けられた連通口63で相互に連絡されている。また、凝集槽60では、第1縦バッフル70が凝集処理水を連通口63へ導く方向とは逆方向に撹拌装置65の撹拌翼67を回転させて撹拌している。ただし、処理の対象となる被処理水並びに、添加した無機凝集剤、pH調整剤及び高分子凝集剤は実施例1と同様である。このようにして固液分離したところ、実施例4では浮遊物質の濃度(SS濃度)の測定結果は17mg/Lであった。
[Example 4]
In Example 4, the solid-liquid separation process 1D was performed using the solid-liquid separation apparatus according to the fourth embodiment. In the solid-liquid separation device 1D used in the fourth embodiment, the coagulation tank 60 and the precipitation tank 80 are integrally configured, while the mixing tank 50 is provided independently of the coagulation tank 60 and the precipitation tank 80. It has been. The mixing tank 50 and the coagulation tank 60 are connected to each other by a transfer pipe 58, while the coagulation tank 60 and the settling tank 80 are connected to each other through a communication port 63 provided in the common part 62 of both. ing. Further, in the agglomeration tank 60, the first vertical baffle 70 is agitated by rotating the agitation blade 67 of the agitator 65 in the direction opposite to the direction in which the agglomerated treated water is guided to the communication port 63. However, the water to be treated and the added inorganic flocculant, pH adjuster and polymer flocculant are the same as in Example 1. When solid-liquid separation was performed in this manner, in Example 4, the measurement result of the suspended solid concentration (SS concentration) was 17 mg / L.

混和槽50と凝集槽60とを別体とし、両者を移送配管58で連絡した固液分離装置1Dを使用した実施例4の測定結果と、混和槽4と凝集槽15とを一体的に形成し、混和槽4と凝集槽15を仕切板で区分けし、かつ、混和槽4と凝集槽15とを仕切板5の開口部6で相互に連絡して構成した固液分離装置1Bを使用した実施例2とを比較すると、実施例4の測定結果は17mg/Lであり、測定結果が16mg/Lである実施例2とほとんど差異がない。このことから明らかなように、混和槽50を凝集槽60と独立して設け、混和槽50と凝集槽60とを移送配管58で連絡させたとしても、凝集槽60と沈殿槽80とを連通口63で連通させる構成を採用すれば、凝集槽60で形成されたフロックが分解されることなく沈殿槽80に移動され、フロックを効果的に沈殿させることができる。   The measurement result of Example 4 using the solid-liquid separation device 1D in which the mixing tank 50 and the coagulation tank 60 are separated and communicated by a transfer pipe 58, and the mixing tank 4 and the coagulation tank 15 are integrally formed. The mixing tank 4 and the agglomeration tank 15 were separated by a partition plate, and the solid-liquid separation apparatus 1B constituted by connecting the mixing tank 4 and the aggregation tank 15 to each other through the opening 6 of the partition plate 5 was used. When compared with Example 2, the measurement result of Example 4 is 17 mg / L, and there is almost no difference from Example 2 where the measurement result is 16 mg / L. As is clear from this, even if the mixing tank 50 is provided independently of the coagulation tank 60 and the mixing tank 50 and the coagulation tank 60 are connected by the transfer pipe 58, the coagulation tank 60 and the precipitation tank 80 are communicated. If the structure connected by the opening | mouth 63 is employ | adopted, the floc formed in the aggregation tank 60 will be moved to the sedimentation tank 80, without being decomposed | disassembled, and a floc can be precipitated effectively.

[比較例1]
比較例1では、図9に示す固液分離装置100を使用して固液分離処理を行った。固液分離装置100は、混和槽101、凝集槽110及び沈殿槽120が相互に独立して設けられている。混和槽101と凝集槽110とは移送配管108で連絡されていると共に、凝集槽110と沈殿槽120とが移送配管118で連絡されている。
[Comparative Example 1]
In Comparative Example 1, the solid-liquid separation process was performed using the solid-liquid separation apparatus 100 shown in FIG. In the solid-liquid separation apparatus 100, a mixing tank 101, a coagulation tank 110, and a precipitation tank 120 are provided independently of each other. The mixing tank 101 and the coagulation tank 110 are connected with each other by a transfer pipe 108, and the coagulation tank 110 and the settling tank 120 are connected by a transfer pipe 118.

混和槽101は、外形が円筒状に形成され、その周壁部103には導入口102と移送配管108が設けられている。また、混和槽101には撹拌装置105が設けられている。   The mixing tank 101 is formed in a cylindrical shape, and an introduction port 102 and a transfer pipe 108 are provided in the peripheral wall portion 103 thereof. In addition, the mixing tank 101 is provided with a stirring device 105.

凝集槽110は、外形が円筒状に形成され、その周壁部113には、被処理水を混和槽101から凝集槽110に移送する移送配管108と、凝集処理水を凝集槽110から沈殿槽120に移送する移送配管118が取り付けられている。また、混和槽101には撹拌装置115が設けられている。撹拌装置115は、図9に示す状態で、撹拌翼116を反時計方向に回転させており、内部の凝集処理水が移送配管118に導かれる方向と同方向に旋回力を付与している。   The outer shape of the agglomeration tank 110 is formed in a cylindrical shape, and the peripheral wall 113 has a transfer pipe 108 for transferring the water to be treated from the mixing tank 101 to the agglomeration tank 110, and the agglomeration treated water from the agglomeration tank 110 to the precipitation tank 120. A transfer pipe 118 is attached to the pipe. The mixing tank 101 is provided with a stirring device 115. In the state shown in FIG. 9, the stirring device 115 rotates the stirring blade 116 in the counterclockwise direction, and applies a turning force in the same direction as the direction in which the agglomerated treated water is guided to the transfer pipe 118.

沈殿槽120は、内部に進入された凝集処理水を旋回させつつフロックを沈殿させる旋回流式沈殿槽である。沈殿槽120は、外形が円筒状に形成されており、その周壁部121には、凝集処理水を凝集槽110から沈殿槽120に移送する移送配管118が取り付けられている。この移送配管118は、移送配管118が取り付けられている部位での周壁部121の接線に対して斜めに傾けられて取り付けられており、沈殿槽120の内部に進入される凝集処理水を沈殿槽120の内部で旋回させている。   The sedimentation tank 120 is a swirl type sedimentation tank that precipitates flocs while swirling the coagulated water that has entered the interior. The outer shape of the sedimentation tank 120 is formed in a cylindrical shape, and a transfer pipe 118 that transports the coagulated water from the aggregation tank 110 to the precipitation tank 120 is attached to the peripheral wall portion 121 thereof. The transfer pipe 118 is attached obliquely with respect to the tangential line of the peripheral wall 121 at the portion where the transfer pipe 118 is attached, and the agglomerated treated water entering the settling tank 120 is set in the settling tank. It is made to turn inside 120.

そして、沈殿槽120の上部には、取水トラフ125と取水トラフ125に接続された排出管126が設けられており、沈殿槽120の上澄み液を取水トラフ125に流し込ませ、処理水を排出管126から外部に送り出している。   An upper portion of the sedimentation tank 120 is provided with a water intake trough 125 and a discharge pipe 126 connected to the water intake trough 125. The supernatant liquid of the precipitation tank 120 is caused to flow into the water trough 125, and the treated water is discharged into the discharge pipe 126. From outside.

この比較例1に係る固液分離装置100を使用して浮遊物質の濃度(SS濃度)した際の、処理の対象となる被処理水並びに、添加した無機凝集剤、pH調整剤及び高分子凝集剤は、実施例1と同様である。   When the concentration of suspended solids (SS concentration) is obtained using the solid-liquid separation device 100 according to Comparative Example 1, the water to be treated and the added inorganic flocculant, pH adjuster, and polymer flocculant The agent is the same as in Example 1.

この比較例1では、浮遊物質の濃度(SS濃度)の測定結果は51mg/Lであった。この測定結果から明らかなように、凝集槽110と沈殿槽120とを移送配管118で連絡して固液分離装置100を構成すると、本発明に係る固液分離装置1A,1B,1C,1Dのように凝集槽15,60の周壁部3,61と沈殿槽30,80の周壁部31,81とに共用部16,62を設け、共用部16,62に連通口17,63を形成した場合に比べ、汚濁物質の除去効率が低いことが分かる。   In Comparative Example 1, the measurement result of the suspended matter concentration (SS concentration) was 51 mg / L. As is apparent from this measurement result, when the solid-liquid separation device 100 is configured by connecting the agglomeration tank 110 and the sedimentation tank 120 through the transfer pipe 118, the solid-liquid separation apparatuses 1A, 1B, 1C, and 1D according to the present invention are configured. When the shared parts 16 and 62 are provided in the peripheral wall parts 3 and 61 of the aggregation tanks 15 and 60 and the peripheral wall parts 31 and 81 of the sedimentation tanks 30 and 80, and the communication ports 17 and 63 are formed in the shared parts 16 and 62 It can be seen that the removal efficiency of pollutants is lower than

[比較例2]
比較例2では、図10に示す固液分離装置130を使用して固液分離処理を行った。固液分離装置130は、その全体構成が、本発明の第1〜第3実施形態に係る固液分離装置1A,1B,1Cと同様に、無機凝集剤及びpH調整剤が添加される混和槽133、高分子凝集剤が添加される凝集槽150及びフロックを沈殿させる沈殿槽170が一体的に形成されている。混和槽133と凝集槽150とからなる処理槽131は、その周壁部132に形成された欠損部132aが沈殿槽170の周壁部171に突き合わされ、この突き合わされた欠損部132aが沈殿槽170の周壁部171に接合されて一体に形成されている。このため、欠損部132aでは、処理槽131の周壁部132と沈殿槽170の周壁部171とを共用する共用部137,138が形成されている。
[Comparative Example 2]
In Comparative Example 2, the solid-liquid separation process was performed using the solid-liquid separator 130 shown in FIG. The solid-liquid separation device 130 has an overall configuration similar to the solid-liquid separation devices 1A, 1B, 1C according to the first to third embodiments of the present invention, and a mixing tank to which an inorganic flocculant and a pH adjuster are added. 133, a coagulation tank 150 to which a polymer coagulant is added and a precipitation tank 170 for precipitating flocs are integrally formed. In the treatment tank 131 composed of the mixing tank 133 and the agglomeration tank 150, the defective portion 132 a formed in the peripheral wall portion 132 is abutted against the peripheral wall portion 171 of the sedimentation tank 170, and the abutted defective portion 132 a is It is joined to the peripheral wall part 171 and formed integrally. For this reason, in the defect | deletion part 132a, the shared parts 137 and 138 which share the surrounding wall part 132 of the processing tank 131 and the surrounding wall part 171 of the sedimentation tank 170 are formed.

処理槽131にはその内部に仕切板135が設けられており、この仕切板135が処理槽131の内部を混和槽133と凝集槽150とに区分している。仕切板135には開口部136が形成されており、被処理水を混和槽133から凝集槽150に移動可能としている。また、混和槽133と凝集槽150とには被処理水を撹拌する撹拌装置140,155がそれぞれ設けられている。   The processing tank 131 is provided with a partition plate 135 therein, and the partition plate 135 divides the inside of the processing tank 131 into a mixing tank 133 and a coagulation tank 150. An opening 136 is formed in the partition plate 135 so that the water to be treated can be moved from the mixing tank 133 to the aggregation tank 150. Further, the mixing tank 133 and the coagulation tank 150 are respectively provided with stirring devices 140 and 155 for stirring the water to be treated.

凝集槽150の周壁部131と沈殿槽170の周壁部171との共用部138には凝集槽150と沈殿槽170とを連通する連通口160が形成されている。凝集槽150で凝集処理された凝集処理水はこの連通口160を通過して沈殿槽170に進入する。なお、凝集槽150に設けられた撹拌装置155は、凝集処理水が、凝集処理水自体の推進力で連通口160に向かう方向とは逆向方向に回転翼156を回転させている。   A common port 138 between the peripheral wall 131 of the coagulation tank 150 and the peripheral wall 171 of the sedimentation tank 170 is formed with a communication port 160 that communicates the coagulation tank 150 and the sedimentation tank 170. The coagulated water that has been coagulated in the coagulation tank 150 passes through the communication port 160 and enters the precipitation tank 170. The agitation device 155 provided in the flocculation tank 150 rotates the rotating blade 156 in the direction opposite to the direction toward the communication port 160 by the propulsive force of the flocculated water.

本発明に係る固液分離装置1A,1B,1C,1Dとの差異は、凝集槽150には第1縦バッフルは設けられておらず、沈殿槽170にのみ第2縦バッフル165が設けられている点である。   The difference from the solid-liquid separators 1A, 1B, 1C, and 1D according to the present invention is that the coagulation tank 150 is not provided with the first vertical baffle, and only the sedimentation tank 170 is provided with the second vertical baffle 165. It is a point.

この比較例2に係る固液分離装置130を使用して浮遊物質の濃度(SS濃度)した際の、処理の対象となる被処理水並びに、添加した無機凝集剤、pH調整剤及び高分子凝集剤は、実施例1と同様である。   When the suspended solid concentration (SS concentration) is obtained using the solid-liquid separation device 130 according to Comparative Example 2, the water to be treated, the added inorganic flocculant, the pH adjuster, and the polymer flocculant The agent is the same as in Example 1.

この比較例2では、浮遊物質の濃度(SS濃度)の測定結果は38mg/Lであった。この測定結果から明らかなように、沈殿槽170にのみ垂直バッフルを設けても、凝集槽150に垂直バッフルを設けなければ、沈殿槽170で良好な旋回流を形成させることができず、汚濁物質の除去効率が低いことが分かる。   In Comparative Example 2, the measurement result of the suspended matter concentration (SS concentration) was 38 mg / L. As is clear from this measurement result, even if a vertical baffle is provided only in the sedimentation tank 170, a good swirl flow cannot be formed in the sedimentation tank 170 unless a vertical baffle is provided in the coagulation tank 150. It can be seen that the removal efficiency is low.

以上の実施例1〜実施例4の測定結果、及び比較例1,2の測定結果を表1に示す。   Table 1 shows the measurement results of Examples 1 to 4 and Comparative Examples 1 and 2.

Figure 2013046898
Figure 2013046898

表1に示すように、浮遊物質の濃度(SS濃度)が最も高い実施例1の場合でも、浮遊物質の濃度(SS濃度)は23mg/Lしかない。これに対し、比較例1の測定結果は、浮遊物質の濃度(SS濃度)が51mg/Lであった。この数値を比較すると、実施例1の測定結果は、比較例1の測定結果の約45%と、浮遊物質の濃度(SS濃度)は半分以下である。また、実施例1の測定結果と、比較例2の測定結果とを比較しても、実施例1の測定結果は、比較例2の測定結果の約60%の浮遊物質の濃度(SS濃度)に抑えられている。   As shown in Table 1, even in Example 1 in which the suspended matter concentration (SS concentration) is the highest, the suspended matter concentration (SS concentration) is only 23 mg / L. In contrast, in the measurement result of Comparative Example 1, the suspended solid concentration (SS concentration) was 51 mg / L. Comparing this numerical value, the measurement result of Example 1 is about 45% of the measurement result of Comparative Example 1, and the concentration of suspended solids (SS concentration) is less than half. Even if the measurement result of Example 1 is compared with the measurement result of Comparative Example 2, the measurement result of Example 1 is about 60% of the suspended solid concentration (SS concentration) of the measurement result of Comparative Example 2. Is suppressed.

この測定結果から分かるように、凝集槽の周壁部と沈殿槽の周壁部とを共用する共用部を設け、この共用部に凝集槽と沈殿槽とを連通する連通口を形成し、かつ、凝集槽及び沈殿槽のいずれにも垂直バッフルを設け、凝集処理水を垂直バッフルで適切に導いて連通口から沈殿槽に進入させると、汚濁物質を効果的に除去することができる。   As can be seen from this measurement result, a common part that shares the peripheral wall part of the coagulation tank and the peripheral wall part of the sedimentation tank is provided, a communication port that communicates the coagulation tank and the sedimentation tank is formed in this common part, and If a vertical baffle is provided in both the tank and the settling tank, and the coagulated water is appropriately guided by the vertical baffle and enters the settling tank through the communication port, the pollutant can be effectively removed.

[実施例5〜11、比較例3]
有機排水の生物処理水(SS濃度300mg/L)を原水とし、図11〜17(実施例5〜11)、図18(比較例3)の固液分離装置により固液分離処理を行った。混和槽に添加する無機凝集剤は、PAC(添加量200mg/Las10%溶液)とし、中和剤として水酸化ナトリウム25%溶液を用いて、中性にした。凝集槽では高分子凝集剤を3mg/L加えた。
[Examples 5 to 11, Comparative Example 3]
Biologically treated water (SS concentration 300 mg / L) of organic wastewater was used as raw water, and solid-liquid separation processing was performed by the solid-liquid separation device of FIGS. 11 to 17 (Examples 5 to 11) and FIG. 18 (Comparative Example 3). The inorganic flocculant added to the mixing tank was PAC (added amount 200 mg / Las 10% solution) and neutralized with a 25% sodium hydroxide solution as a neutralizing agent. In the coagulation tank, 3 mg / L of polymer coagulant was added.

実施例5〜11及び比較例3の処理水SS濃度を表2に示す.   Table 2 shows the treated water SS concentrations of Examples 5 to 11 and Comparative Example 3.

Figure 2013046898
Figure 2013046898

表2の通り、本発明の装置によると、処理水に流出するSS濃度を低くすることができる。   As shown in Table 2, according to the apparatus of the present invention, the SS concentration flowing out into the treated water can be lowered.

1A,1B,1C,1D,90A〜90H 固液分離装置
2 処理槽
3 周壁部
4,50,92 混和槽
5 仕切板
6 開口部
7 共用部
8,51 導入口
10,55 撹拌装置
12,57 撹拌翼
15,60,94 凝集槽
16,62 共用部
17,63 連通口
20,65 撹拌装置
22,67 撹拌翼
30,80,97 沈殿槽
31,81 周壁部
35,70,95,95B,95D,95G,95H 第1縦バッフル
36,71,98 第2縦バッフル
38,83,97a 取水トラフ
39,84 排水管
40,99 旋回補助装置
43 回転アーム
1A, 1B, 1C, 1D, 90A to 90H Solid-liquid separator 2 Processing tank 3 Peripheral wall part 4, 50, 92 Mixing tank 5 Partition plate 6 Opening part 7 Common part 8,51 Inlet port 10,55 Stirrer 12,57 Stirring blade 15, 60, 94 Coagulation tank 16, 62 Common part 17, 63 Communication port 20, 65 Stirring device 22, 67 Stirring blade 30, 80, 97 Sedimentation tank 31, 81 Peripheral wall 35, 70, 95, 95B, 95D , 95G, 95H First vertical baffle 36, 71, 98 Second vertical baffle 38, 83, 97a Intake trough 39, 84 Drain pipe 40, 99 Turning assist device 43 Rotating arm

Claims (10)

被処理水に凝集剤を添加して汚濁物質を凝集処理する凝集槽と、
該凝集槽で凝集処理された凝集処理水を固液分離して汚濁物質を沈殿させる円筒状の沈殿槽と、を備え、
前記沈殿槽は、進入する凝集処理水自体の推進力で該沈殿槽の内部で旋回流を生じさせる旋回流式沈殿槽である固液分離装置において、
前記凝集槽と前記沈殿槽とは、各々の中心間距離Lが下記で定義されるLmin及びLmaxに対しLmin≦L≦Lmaxの関係を満たすように互いに近接して設置されていることを特徴とする固液分離装置。
Lmin:(R+r)×0.8、
Lmax:(R+r)×1.2と(R+r+d)のうちいずれか大きい方
ただし、
r:凝集槽半径、
R:沈殿槽半径、
d:凝集槽と沈殿槽が離間している際に凝集槽から沈殿槽に凝集処理水を連通する通液路の横幅
A coagulation tank for coagulating the pollutant by adding a coagulant to the water to be treated;
A cylindrical sedimentation tank that solid-liquid separates the agglomerated water that has been agglomerated in the agglomeration tank to precipitate pollutants, and
In the solid-liquid separation device, which is a swirl flow settling tank in which a swirling flow is generated inside the settling tank by the driving force of the aggregating treated water itself entering,
The coagulation tank and the settling tank are installed close to each other so that the distance L between centers thereof satisfies the relationship of Lmin ≦ L ≦ Lmax with respect to Lmin and Lmax defined below. Solid-liquid separation device.
Lmin: (R + r) × 0.8,
Lmax: (R + r) × 1.2 or (R + r + d), whichever is larger,
r: agglomeration tank radius,
R: Settling tank radius,
d: width of the flow path for allowing the flocculated water to communicate from the flocculation tank to the settling tank when the flocculation tank and the settling tank are separated
前記凝集処理水を前記沈殿槽に進入させるように通液路が設けられており、
前記凝集槽には、該凝集槽の凝集処理水を該通液路に導く第1の縦バッフルが設けられ、
前記沈殿槽には、凝集処理水を該通液路から該沈殿槽内に導く第2の縦バッフルが設けられていることを特徴とする請求項1に記載の固液分離装置。
A liquid passage is provided to allow the agglomerated water to enter the settling tank,
The coagulation tank is provided with a first vertical baffle for guiding the coagulation treated water of the coagulation tank to the liquid flow path,
The solid-liquid separation device according to claim 1, wherein the sedimentation tank is provided with a second vertical baffle that guides the coagulated treated water from the liquid flow path into the sedimentation tank.
前記第1の縦バッフルは前記凝集槽の半径方向に対して交差角度30〜60゜の斜交方向に延在しており、前記第2の縦バッフルは前記沈殿槽の半径方向に対して交差角度30〜60゜の斜交方向に延在していることを特徴とする固液分離装置。   The first vertical baffle extends in an oblique direction with an intersecting angle of 30 to 60 ° with respect to the radial direction of the coagulation tank, and the second vertical baffle intersects with the radial direction of the settling tank. A solid-liquid separator characterized by extending in an oblique direction with an angle of 30 to 60 °. 前記第1の縦バッフルと前記第2の縦バッフルとが略平行となっていることを特徴とする請求項2又は3に記載の固液分離装置。   The solid-liquid separator according to claim 2 or 3, wherein the first vertical baffle and the second vertical baffle are substantially parallel to each other. 前記凝集槽の周壁部及び前記沈殿槽の周壁部には、周壁面を共用する共用部が形成され、該共用部には、前記通液路として前記凝集槽と前記沈殿槽とを連通する連通口が設けられており、
前記第1の縦バッフルは該連通口の一方の側縁部に連なっており、
前記第2の縦バッフルは該連通口の他方の側縁部に連なっていることを特徴とする請求項2ないし4のいずれか1項に記載の固液分離装置。
A common part that shares a peripheral wall surface is formed in the peripheral wall part of the coagulation tank and the peripheral wall part of the precipitation tank, and the common part communicates with the coagulation tank and the precipitation tank as the liquid flow path. There is a mouth,
The first vertical baffle is continuous with one side edge of the communication port,
5. The solid-liquid separator according to claim 2, wherein the second vertical baffle is continuous with the other side edge of the communication port. 6.
前記第1の縦バッフルの高さ寸法及び前記共用部から延びる長さ寸法、並びに前記第2の縦バッフルの高さ寸法及び前記共用部から延びる長さ寸法は、前記沈殿槽の直径の1/100〜1/10であることを特徴とする請求項5に記載の固液分離装置。   The height dimension of the first vertical baffle and the length dimension extending from the common part, and the height dimension of the second vertical baffle and the length dimension extending from the common part are 1 / diameter of the diameter of the settling tank. It is 100-1 / 10, The solid-liquid separation apparatus of Claim 5 characterized by the above-mentioned. 前記通液路の高さ寸法が前記第1及び第2の縦バッフルの高さ寸法の50〜100%であることを特徴とする請求項2ないし6のいずれか1項に記載の固液分離装置。   7. The solid-liquid separation according to claim 2, wherein a height dimension of the liquid passage is 50 to 100% of a height dimension of the first and second vertical baffles. apparatus. 前記凝集槽に、その内部の凝集処理水を旋回させる撹拌装置が設けられており、
該旋回方向は、該第1の縦バッフルが凝集処理水を前記通液路に導く方向と逆方向であることを特徴とする請求項2ないし7のいずれか1項に記載の固液分離装置。
The agglomeration tank is provided with a stirring device for swirling the agglomerated water inside,
The solid-liquid separation device according to any one of claims 2 to 7, wherein the swirling direction is a direction opposite to a direction in which the first vertical baffle guides the coagulated treated water to the liquid passage. .
前記沈殿槽には、その内部に進入した凝集処理水を旋回する方向に助勢するための旋回補助装置が設けられており、
該旋回補助装置は、該第2の縦バッフルの下端よりも下位に配置された旋回部を有することを特徴とする請求項2ないし8のいずれか1項に記載の固液分離装置。
The settling tank is provided with a turning auxiliary device for assisting in the direction of turning the coagulated treated water that has entered the inside of the settling tank,
The solid-liquid separation device according to any one of claims 2 to 8, wherein the swivel assist device has a swivel portion disposed below the lower end of the second vertical baffle.
前記旋回補助装置は、前記沈殿槽の軸心部を上下方向に延在する回転軸と、該回転軸の下部から放射方向に延在された、前記旋回部としての複数の回転アームとを有することを特徴とする請求項9に記載の固液分離装置。   The swivel assist device includes a rotating shaft that extends in the vertical direction in the axial center of the settling tank, and a plurality of rotating arms that serve as the swiveling portion that extend in a radial direction from a lower portion of the rotating shaft. The solid-liquid separator according to claim 9.
JP2012080475A 2011-07-28 2012-03-30 Solid-liquid separator Active JP5949059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080475A JP5949059B2 (en) 2011-07-28 2012-03-30 Solid-liquid separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011166024 2011-07-28
JP2011166024 2011-07-28
JP2012080475A JP5949059B2 (en) 2011-07-28 2012-03-30 Solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2013046898A true JP2013046898A (en) 2013-03-07
JP5949059B2 JP5949059B2 (en) 2016-07-06

Family

ID=48010240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080475A Active JP5949059B2 (en) 2011-07-28 2012-03-30 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP5949059B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089025A (en) * 2017-11-15 2019-06-13 日本ソリッド株式会社 Water intake method of precipitator
CN110342608A (en) * 2019-05-27 2019-10-18 安徽理工大学 A kind of compound concentration and settlement device of cyclone classification formula
CN115804985A (en) * 2023-02-06 2023-03-17 山西众智检测科技有限公司 Environment-friendly laboratory sewage filtration purification treatment facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847606A (en) * 1994-05-02 1996-02-20 Omnium De Traitement & De Valorisation Otv Method and apparatus for treating untreated liquid flow
JP2002126406A (en) * 2000-10-25 2002-05-08 Kurita Water Ind Ltd Flocculation and settling device
JP2009240942A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Coagulation-separation method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847606A (en) * 1994-05-02 1996-02-20 Omnium De Traitement & De Valorisation Otv Method and apparatus for treating untreated liquid flow
JP2002126406A (en) * 2000-10-25 2002-05-08 Kurita Water Ind Ltd Flocculation and settling device
JP2009240942A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Coagulation-separation method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089025A (en) * 2017-11-15 2019-06-13 日本ソリッド株式会社 Water intake method of precipitator
CN110342608A (en) * 2019-05-27 2019-10-18 安徽理工大学 A kind of compound concentration and settlement device of cyclone classification formula
CN110342608B (en) * 2019-05-27 2022-03-08 安徽理工大学 Cyclone grading type composite concentration sedimentation device
CN115804985A (en) * 2023-02-06 2023-03-17 山西众智检测科技有限公司 Environment-friendly laboratory sewage filtration purification treatment facility
CN115804985B (en) * 2023-02-06 2023-04-14 山西众智检测科技有限公司 Environment-friendly laboratory sewage filtration purification treatment facility

Also Published As

Publication number Publication date
JP5949059B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP2004512937A (en) Method and apparatus for treating water and sewage
KR20170125795A (en) Method for treating scrubber effluent, and apparatus for treating scrubber effluent
TW200906736A (en) Fluorine-containing wastewater treating apparatus and treating method
JP5949059B2 (en) Solid-liquid separator
CN210419614U (en) Efficient sewage sedimentation system with magnetic medium
CN207986877U (en) A kind of settler of processing household sewage
JP3958301B2 (en) Polluted water treatment equipment
CN209442776U (en) A kind of secondary clarifier effluent canal and secondary settling tank and sewage disposal system
KR101014870B1 (en) Advanced wastewater treatment apparatus
JP2008149256A (en) Sludge flocculation tank and sludge concentration apparatus equipped with it
JP2002052302A (en) Liquid processing device
KR200417005Y1 (en) Cohesion mixing device having screen tank
CN106630286A (en) Wastewater treatment device and method
JP2003080267A (en) Treatment equipment for muddy water outflowed during tunnel construction
JP2005007311A (en) Multitank continuous purifying facility for dirty and turbid water
JP3552848B2 (en) Dredged solid-liquid separation soil improvement method
CN210419615U (en) Magnetic powder sludge separation structure and sewage sedimentation system
CN212403721U (en) Desulfurization wastewater treatment system
KR20180049975A (en) High-rate Water Treatment Method and Equipment using Mixed Mineral As Weighting Agent
JPS5851912A (en) Coagulation of dispersed and suspended particle
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
CN218025753U (en) Magnetic resin coagulating sedimentation degree of depth water purification device
CN211921134U (en) Chlorinated polyether resin mother liquor wastewater treatment system
CN219136577U (en) High-efficiency pretreatment system for evaporation pond wastewater
CN113072175B (en) Chemical precipitation and biological treatment coupling synergistic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150