JP2013045794A - Film resistance value measuring method - Google Patents

Film resistance value measuring method Download PDF

Info

Publication number
JP2013045794A
JP2013045794A JP2011180387A JP2011180387A JP2013045794A JP 2013045794 A JP2013045794 A JP 2013045794A JP 2011180387 A JP2011180387 A JP 2011180387A JP 2011180387 A JP2011180387 A JP 2011180387A JP 2013045794 A JP2013045794 A JP 2013045794A
Authority
JP
Japan
Prior art keywords
resistance value
film
oxide semiconductor
semiconductor film
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011180387A
Other languages
Japanese (ja)
Inventor
Manabu Gibo
学 宜保
Yuichi Oishi
祐一 大石
Makoto Arai
新井  真
Yusuke Moru
裕介 毛留
Fumihiko Omura
文彦 大村
Kazuhiro Yamamuro
和弘 山室
Mitsuru Yahagi
充 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011180387A priority Critical patent/JP2013045794A/en
Publication of JP2013045794A publication Critical patent/JP2013045794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film resistance value measuring method capable of efficiently measuring a resistance value of an oxide semiconductor film in a substrate surface just after film formation.SOLUTION: A film resistance value measuring method includes: a process in which an oxide semiconductor film is formed by depositing an object W to be measured on a substrate surface and the oxide semiconductor film is locally heated just after the film formation; and a process in which a resistance value is measured in the heated area using a probe 6 for measuring the resistance value. As the oxide semiconductor film, for example, a transparent oxide semiconductor film made of an In-Ga-Zn-O-based material can be used.

Description

本発明は、膜抵抗値測定方法に関し、より詳しくは、基板表面に成膜した透明な酸化物半導体膜の膜厚や膜質を管理するために、成膜直後の酸化物半導体膜の抵抗値を効率よく測定するためのものに関する。   The present invention relates to a film resistance value measuring method, and more specifically, in order to manage the film thickness and film quality of a transparent oxide semiconductor film formed on a substrate surface, the resistance value of the oxide semiconductor film immediately after film formation is determined. It relates to a thing for measuring efficiently.

透明酸化物半導体は、電子移動度が大きく、優れた電気特性を持つことが知られており、その中でも、インジウム、ガリウム、亜鉛、酸素を構成元素とするIn−Ga−Zn−O系材料(以下、「IGZO」という)からなる非晶質IGZO膜は、その電子移動度がアモルファスシリコンの電子移動度より高く、この非晶質IGZO膜をチャンネル層に用いた電界効果型のトランジスタはオンオフ比が高い等の電気的特性を有する。このため、近年では、TFTや発光デバイス等(半導体装置)への応用が進められている。   Transparent oxide semiconductors are known to have high electron mobility and excellent electrical properties. Among them, an In—Ga—Zn—O-based material containing indium, gallium, zinc, and oxygen as constituent elements (among others) Hereinafter, an amorphous IGZO film made of “IGZO” has an electron mobility higher than that of amorphous silicon, and a field effect transistor using this amorphous IGZO film as a channel layer has an on / off ratio. Have high electrical characteristics. For this reason, in recent years, application to TFTs, light emitting devices, etc. (semiconductor devices) has been promoted.

ここで、非晶質IGZO膜の形成には、量産性等を考慮すると、酸素ガスを導入した反応性スパッタリング法を用いることが適している。このスパッタリング法により非晶質IGZO膜を成膜する際、酸素分圧が僅か(数%)変化しただけで、キャリア濃度が数桁のレベルで変化し、再現性よく一定キャリア濃度を得ることが難しいことが知られている。また、後工程で非晶質IGZO膜が加熱されると、キャリア濃度等の電気的特性が更に大きく変化する(電気的特性の耐熱性が低い)。   Here, for the formation of the amorphous IGZO film, it is suitable to use a reactive sputtering method into which oxygen gas is introduced in consideration of mass productivity. When an amorphous IGZO film is formed by this sputtering method, the carrier concentration changes by several orders of magnitude even if the oxygen partial pressure changes only slightly (several percent), and a constant carrier concentration can be obtained with good reproducibility. It is known to be difficult. In addition, when the amorphous IGZO film is heated in a later step, the electrical characteristics such as the carrier concentration further change (the heat resistance of the electrical characteristics is low).

そこで、成膜後に熱処理が加えられても膜の電気的特性が殆ど変化しないように、スパッタリング法で成膜したIGZO膜を所定温度でアニールすることが特許文献1で知られている。具体的には、反応性スパッタリングにて、ガラス基板等の基板表面に非晶質IGZO膜を形成した後、当該ガラス基板を加熱炉に収納する。そして、加熱炉内を真空引きした後、ガラス基板を加熱する。この場合、アニール温度は200〜500℃、好ましくは250℃〜350℃の範囲の温度で加熱する。これにより、非晶質IGZO膜の抵抗値が基板面内で略均一の所定値に揃うようになる。   Thus, Patent Document 1 discloses that an IGZO film formed by a sputtering method is annealed at a predetermined temperature so that the electrical characteristics of the film hardly change even if heat treatment is applied after the film formation. Specifically, after an amorphous IGZO film is formed on the surface of a substrate such as a glass substrate by reactive sputtering, the glass substrate is accommodated in a heating furnace. And after evacuating the inside of a heating furnace, a glass substrate is heated. In this case, the annealing temperature is 200 to 500 ° C, preferably 250 ° C to 350 ° C. As a result, the resistance values of the amorphous IGZO film are aligned to a substantially uniform predetermined value within the substrate surface.

ところで、スパッタリング法で非晶質IGZO膜を成膜すると、成膜直後の非晶質IGZO膜の抵抗値(1E+16Ω/□以上)は、ITOやIZO等の他の透明導電膜と比較して非常に高く、四端子法や二端子法等にて抵抗値の測定を行う従来の抵抗値測定用プローブでは成膜直後の非晶質IGZO膜の抵抗値を測定できないことが知られている。これは、成膜時にプラズマ光が照射されることで非晶質IGZO膜が光劣化している等の理由によるものと考えられている。一方で、基板面内における成膜直後の非晶質IGZO膜の抵抗値が測定できれば、成膜時における非晶質IGZO膜の膜厚や膜質を管理して製品歩留まりを向上できる等、有利となる。   By the way, when an amorphous IGZO film is formed by sputtering, the resistance value (1E + 16Ω / □ or more) of the amorphous IGZO film immediately after the film formation is much higher than that of other transparent conductive films such as ITO and IZO. It is known that the resistance value of an amorphous IGZO film immediately after film formation cannot be measured with a conventional resistance value measurement probe that measures the resistance value by the four-terminal method or the two-terminal method. This is considered to be due to the reason that the amorphous IGZO film is photo-degraded by being irradiated with plasma light during film formation. On the other hand, if the resistance value of the amorphous IGZO film immediately after film formation in the substrate surface can be measured, the film yield and the film quality of the amorphous IGZO film at the time of film formation can be controlled, which is advantageous. Become.

特開2010−238770号公報JP 2010-238770 A

本発明は、上記点に鑑み、成膜直後の基板面内における酸化物半導体膜の抵抗値を効率よく測定することができる膜抵抗値測定方法を提供することをその課題とするものである。   In view of the above points, an object of the present invention is to provide a film resistance value measuring method capable of efficiently measuring the resistance value of an oxide semiconductor film in a substrate surface immediately after film formation.

上記課題を解決するために、本発明は、測定対象物を基板表面に成膜した酸化物半導体膜とし、成膜直後の酸化物半導体膜を局所的に加熱する工程と、この加熱した領域で抵抗値測定用プロープを用いて抵抗値を測定する工程と、を含むことを特徴とする。   In order to solve the above-described problems, the present invention provides an oxide semiconductor film formed on a substrate surface as a measurement object, and a step of locally heating the oxide semiconductor film immediately after the film formation and the heated region. And measuring a resistance value using a resistance value measuring probe.

本発明によれば、酸化物半導体膜を局所的に加熱するため、当該加熱箇所では、その抵抗値が従来の抵抗値測定用プローブにて抵抗値を測定する範囲まで低下する。そして、加熱により抵抗値が低下した範囲を、上記プローブにて抵抗値を測定し、この局所的な加熱と当該加熱箇所の測定との操作を基板面内全面に亘って繰り返すことで、基板表面に成膜した酸化物半導体膜の抵抗値をその全面に亘って測定する。この場合、酸化物半導体膜が成膜された基板を加熱炉に収納してアニールする上記従来例とは異なり、成膜条件等の相違に基づく膜厚や膜質変化を抵抗値の変化から捉えることが可能になる。その結果、酸化物半導体膜の抵抗値を効率よく測定して成膜時における酸化物半導体膜の膜厚や膜質を管理することができる。なお、加熱温度は、100〜250℃の範囲内の温度とすれば、効果的に抵抗値の変化を確実に捉えることが可能になる。本発明において、酸化物半導体膜として、例えばIn−Ga−Zn−O系材料からなる透明酸化物半導体膜を用いることができる。   According to the present invention, since the oxide semiconductor film is locally heated, the resistance value is reduced to a range in which the resistance value is measured with a conventional resistance value measurement probe at the heated portion. Then, the resistance value is measured in the range where the resistance value is reduced by the heating, and the operation of the local heating and the measurement of the heating location is repeated over the entire surface of the substrate, thereby the substrate surface. The resistance value of the oxide semiconductor film formed in the step is measured over the entire surface. In this case, unlike the conventional example in which the substrate on which the oxide semiconductor film is formed is stored in a heating furnace and annealed, changes in film thickness and film quality based on differences in film formation conditions are captured from changes in resistance value. Is possible. As a result, the resistance value of the oxide semiconductor film can be efficiently measured, and the film thickness and film quality of the oxide semiconductor film during film formation can be managed. In addition, if heating temperature shall be the temperature in the range of 100-250 degreeC, it will become possible to catch the change of resistance value reliably reliably. In the present invention, a transparent oxide semiconductor film made of, for example, an In—Ga—Zn—O-based material can be used as the oxide semiconductor film.

本発明においては、透明酸化物半導体膜を上記範囲の温度に短時間で効果的に加熱するには、前記透明酸化物半導体膜の局所的な加熱を、温風を吹き付け行うか、または、ランプヒータを用いて行うことが好ましい。また、酸化物半導体膜の局所的な加熱を、不活性ガス雰囲気または大気中で行うようにすればよい。   In the present invention, in order to effectively heat the transparent oxide semiconductor film to a temperature within the above range in a short time, the transparent oxide semiconductor film is locally heated by blowing hot air or a lamp. It is preferable to use a heater. In addition, local heating of the oxide semiconductor film may be performed in an inert gas atmosphere or air.

本発明を適用して酸化物半導体膜の抵抗値測定を実施できる測定装置の模式的な斜視図。1 is a schematic perspective view of a measuring apparatus that can measure the resistance value of an oxide semiconductor film by applying the present invention. 発明実験の結果を示すグラフ。The graph which shows the result of invention experiment.

以下、図面を参照して、測定対象物Wを基板表面にスパッタリングにより成膜したIn−Ga−Zn−O系材料からなる透明酸化物半導体膜とし、成膜直後の透明酸化物半導体膜の抵抗値(Rs)を測定する本発明の実施形態の膜抵抗値測定方法を説明する。   Hereinafter, with reference to the drawings, the object to be measured W is a transparent oxide semiconductor film made of an In—Ga—Zn—O-based material formed by sputtering on the substrate surface, and the resistance of the transparent oxide semiconductor film immediately after film formation is described below. The film resistance value measuring method of the embodiment of the present invention for measuring the value (Rs) will be described.

図1には、本実施形態の膜抵抗値測定方法を実施することができる測定装置の一例が示されている。測定装置は、床面に設置される脚体1aで水平に支持されたベースプレート1を備え、このベースプレート1上には、透明酸化物半導体膜を成膜した側を上にして測定対象物Wが位置決め保持されるようになっている。また、ベースプレート1には、このベースプレート1に載置される測定対象物Wを跨ぐようにして配置した門型フレーム2を備える。門型フレーム2は、互いに直交する水平2方向をX軸方向及びY軸方向として、ベースプレート1上に固定したX軸方向に長手の左右一対のガイドレール3L、3Rに図示省略のスライダを介して移動自在に支持され、ベースプレート1に対して門型フレーム2がX軸方向に相対移動されるようになっている。   FIG. 1 shows an example of a measuring apparatus that can implement the film resistance value measuring method of the present embodiment. The measuring apparatus includes a base plate 1 that is horizontally supported by legs 1a installed on the floor surface. On the base plate 1, a measuring object W is placed with the transparent oxide semiconductor film formed side up. Positioning is held. Further, the base plate 1 is provided with a portal frame 2 arranged so as to straddle the measurement object W placed on the base plate 1. The portal frame 2 has two horizontal horizontal directions orthogonal to each other as an X-axis direction and a Y-axis direction, and a pair of left and right guide rails 3L and 3R which are fixed on the base plate 1 and which are long in the X-axis direction. The portal frame 2 is supported so as to be movable, and is moved relative to the base plate 1 in the X-axis direction.

門型フレーム2は、スライダを介して立設したY軸方向両側のコラム21、21と、両コラム21、21の上端間に横設したY軸方向に長手のビーム22とから構成される。ビーム22のX軸方向の片面には、図示省略のリニアモータを介してY軸方向に移動自在にY軸ステージ4が支持され、Y軸方向に往復動できるようになっている。Y軸ステージ4には、上下方向にのびる左右一対のガイドレール5L、5Rに図示省略のスライダを介して移動自在に支持されるホルダ5が設けられ、ホルダ5が測定対象物Wに対して上下動するようになっている。   The portal frame 2 is composed of columns 21 and 21 on both sides in the Y-axis direction that are erected through a slider, and a beam 22 that is long in the Y-axis direction and is provided between the upper ends of both columns 21 and 21. On one side of the beam 22 in the X-axis direction, a Y-axis stage 4 is supported so as to be movable in the Y-axis direction via a linear motor (not shown) so as to reciprocate in the Y-axis direction. The Y-axis stage 4 is provided with a holder 5 that is supported by a pair of left and right guide rails 5L and 5R that extend in the vertical direction via a slider (not shown). It comes to move.

ホルダ5には、抵抗値測定用のプローブ6と、温風噴射用のノズル7とがY軸方向に所定間隔を存して設けられている。抵抗値測定用のプローブ6としては、2つのリング状電極で構成された所謂二重リング法によるものが利用でき、内側のリング電極と外側のリング電極の間に電圧を印加し、流れる電流を電流計で測定し、この測定電流から抵抗値が求められる。測定対象物の裏面には、ガード電極を設置しコントローラ側へ直接取り込み、測定対象物の裏面へ流れた電流をグランドに落とすことにより、測定精度を高める。なお、抵抗値の測定方法は上記のものに限定されるものではなく、例えば、所謂四端子法あるいは二端子法によるプローブをY軸ステージに設けてもよい。   The holder 5 is provided with a resistance measurement probe 6 and a hot air jet nozzle 7 at a predetermined interval in the Y-axis direction. As the probe 6 for measuring the resistance value, a so-called double ring method composed of two ring electrodes can be used. A voltage is applied between the inner ring electrode and the outer ring electrode, and the flowing current is measured. Measured with an ammeter, the resistance value is determined from this measured current. On the back surface of the measurement object, a guard electrode is installed and directly taken into the controller side, and the current flowing to the back surface of the measurement object is dropped to the ground to improve the measurement accuracy. Note that the method of measuring the resistance value is not limited to the above, and for example, a probe by a so-called four-terminal method or two-terminal method may be provided on the Y-axis stage.

他方、ノズル7のノズル端は所定面積で矩形の輪郭を有し、このノズル端がZ軸方向下側を指向(測定対象物Wと対向)するように設置されている。ノズル7にはまた、加熱機構付きの送付ファン等の図外の気流発生装置に接続された送風ダクト(図示せず)が接続されている。そして、気流発生装置で発生させた温風が送風ダクトを介してノズル7に供給され、ノズル端に対向する測定対象物Wの面にのみ温風が吹き付けられて加熱されるようになっている。なお、ノズル7先端の開口の直径は、抵抗値の変化を捉えられるように50〜100mmの範囲であることが好ましい。また、測定対象物Wの所定範囲にのみ吹き付ける気体として通常大気が用いられるが、アルゴン、窒素などの不活性ガスを用いてもよい。   On the other hand, the nozzle end of the nozzle 7 has a rectangular outline with a predetermined area, and the nozzle end is disposed so as to be directed downward (opposite the measurement object W) in the Z-axis direction. The nozzle 7 is also connected to a blower duct (not shown) connected to an airflow generator (not shown) such as a sending fan with a heating mechanism. The hot air generated by the airflow generator is supplied to the nozzle 7 through the air duct, and the hot air is blown and heated only on the surface of the measurement object W facing the nozzle end. . The diameter of the opening at the tip of the nozzle 7 is preferably in the range of 50 to 100 mm so that a change in resistance value can be captured. Further, although the atmospheric air is usually used as a gas to be blown only on a predetermined range of the measurement object W, an inert gas such as argon or nitrogen may be used.

以下に、上記測定装置を用いた、In−Ga−Zn−O系材料からなる透明酸化物半導体膜の膜抵抗値測定方法を説明する。先ず、ガラス基板やシリコンウエハ等の基板表面に、酸素ガスを導入した公知の反応性スパッタリング法により非晶質IGZO膜を成膜する。なお、成膜用のスパッタリング装置やその成膜条件としては公知のものが利用できるため、ここでは詳細な説明を省略する。   Hereinafter, a method for measuring a film resistance value of a transparent oxide semiconductor film made of an In—Ga—Zn—O-based material using the above measurement apparatus will be described. First, an amorphous IGZO film is formed on a substrate surface such as a glass substrate or a silicon wafer by a known reactive sputtering method in which oxygen gas is introduced. In addition, since a well-known thing can be utilized as the sputtering apparatus for film-forming and its film-forming conditions, detailed description is abbreviate | omitted here.

基板表面に非晶質IGZO膜が所定の膜厚で成膜されると、この基板(測定対象物W)をスパッタリング装置の真空チャンバから取り出し、測定装置のベースプレート1上に位置決め保持させる。この場合、門型フレーム2は、測定対象物WからX方向に離間した退避位置にあり、Y軸ステージ4もまた退避位置にある。   When the amorphous IGZO film is formed on the surface of the substrate with a predetermined film thickness, the substrate (measurement object W) is taken out from the vacuum chamber of the sputtering apparatus, and positioned and held on the base plate 1 of the measurement apparatus. In this case, the portal frame 2 is in a retracted position separated from the measurement object W in the X direction, and the Y-axis stage 4 is also in the retracted position.

次に、門型フレーム2をX軸方向に移動し、Y軸ステージ4に設けたノズル7のノズル端が測定対象物WのX軸方向及びY軸方向の隅部の直上に位置させる(図1中、右側の上端)。この状態で、温風噴射用のノズル7から測定対象物Wに対して局所的に温風を所定時間吹き付ける。この場合、測定対象物Wが100〜250℃の範囲内の温度に加熱される。測定対象物Wの温度が100℃より低いと、抵抗が高いままで測定ができないという不具合があり、他方で、250℃を超えると、熱処理の雰囲気と反応して酸化物半導体の構造緩和が起こり、成膜条件等の相違に基づく抵抗値の変化を捉えることができなくなるという不具合が生じる。   Next, the portal frame 2 is moved in the X-axis direction, and the nozzle end of the nozzle 7 provided on the Y-axis stage 4 is positioned immediately above the corners of the measurement object W in the X-axis direction and the Y-axis direction (see FIG. 1 and the upper right side). In this state, hot air is blown locally from the nozzle 7 for jetting hot air to the measuring object W for a predetermined time. In this case, the measuring object W is heated to a temperature in the range of 100 to 250 ° C. If the temperature of the object to be measured W is lower than 100 ° C., there is a problem that the measurement cannot be performed because the resistance remains high. On the other hand, if the temperature exceeds 250 ° C., the structure of the oxide semiconductor is relaxed by reacting with the heat treatment atmosphere. As a result, there arises a problem that it becomes impossible to detect a change in resistance value based on a difference in film forming conditions.

測定対象物Wが所定温度に加熱されると、Y軸ステージ4を他側に向けて所定1ピッチ分だけ移動する(つまり、プローブ6が、加熱した範囲の直上に位置するように移動する)。そして、Y軸ステージ4を下動し、プローブ6を測定対象物に当接させて、当該範囲内の抵抗値が測定される。このとき、温風噴射用のノズル7から測定対象物Wのうち、Y軸方向に1ピッチ分ずれた所定範囲に対して局所的に温風を所定時間吹き付け、次の測定準備を行うようにしてもよい。次に、Y軸方向に所定ピッチ毎に抵抗値を測定した後、門型フレーム2をX軸方向に所定間隔移動し、上記同様、Y軸方向に抵抗値を測定していく。そして、上記操作を繰り返し、測定対象物Wの全面に亘って抵抗値が測定される。   When the measuring object W is heated to a predetermined temperature, the Y-axis stage 4 is moved by a predetermined pitch toward the other side (that is, the probe 6 is moved so as to be positioned immediately above the heated range). . Then, the Y-axis stage 4 is moved downward, the probe 6 is brought into contact with the measurement object, and the resistance value within the range is measured. At this time, hot air is locally blown for a predetermined time in a predetermined range shifted by one pitch in the Y-axis direction from the measurement target W from the hot air injection nozzle 7 to prepare for the next measurement. May be. Next, after measuring the resistance value at predetermined pitches in the Y-axis direction, the portal frame 2 is moved by a predetermined distance in the X-axis direction, and the resistance value is measured in the Y-axis direction as described above. Then, the above operation is repeated, and the resistance value is measured over the entire surface of the measuring object W.

以上によれば、非晶質IGZO膜(透明酸化物半導体膜)を局所的に加熱するため、当該加熱箇所は、抵抗値が従来のプローブにて抵抗値を測定する範囲まで低下する。そして、加熱により抵抗値が低下した範囲をプローブ6にて抵抗値を測定し、この操作を基板面内全面に亘って繰り返すことで、測定対象物W表面に成膜した非晶質IGZO膜の抵抗値がその全面に亘って測定される。この場合、非晶質IGZO膜が成膜された基板を加熱炉に収納してアニールする上記従来例とは異なり、成膜条件等の相違に基づく膜厚や膜質変化を抵抗値の変化から捉えることが可能になる。その結果、酸化物半導体膜の抵抗値を効率よく測定して成膜時における酸化物半導体膜の膜厚や膜質を管理することができる。   According to the above, since the amorphous IGZO film (transparent oxide semiconductor film) is locally heated, the heating point is lowered to a range where the resistance value is measured with a conventional probe. And the resistance value is measured with the probe 6 in the range where the resistance value has decreased due to heating, and this operation is repeated over the entire surface of the substrate, whereby the amorphous IGZO film formed on the surface of the measuring object W is measured. The resistance value is measured over the entire surface. In this case, unlike the conventional example in which the substrate on which the amorphous IGZO film is formed is stored in a heating furnace and annealed, changes in film thickness and film quality based on differences in film formation conditions and the like are captured from changes in resistance value. It becomes possible. As a result, the resistance value of the oxide semiconductor film can be efficiently measured, and the film thickness and film quality of the oxide semiconductor film during film formation can be managed.

以上の効果を確認するために次の実験を行った。先ず、基板としてシリコンウエハを用い、酸素ガスを導入した反応性スパッタリングよりこのシリコンウエハ表面に厚さ50nmの非晶質IGZO膜を成膜した。この場合、ターゲットへの投入電力や成膜時の圧力等のスパッタ条件は、成膜時の酸素分圧以外を同一とし、3枚のシリコンウエハに対して成膜した(試料1:酸素分圧0.02Pa、試料2:酸素分圧:0.15Pa、試料3:酸素分圧0.3Pa)。   The following experiment was conducted to confirm the above effects. First, a silicon wafer was used as a substrate, and an amorphous IGZO film having a thickness of 50 nm was formed on the surface of the silicon wafer by reactive sputtering in which oxygen gas was introduced. In this case, the sputtering conditions such as the input power to the target and the pressure at the time of film formation were the same except for the oxygen partial pressure at the time of film formation, and the film was formed on three silicon wafers (Sample 1: Oxygen partial pressure). 0.02 Pa, Sample 2: Oxygen partial pressure: 0.15 Pa, Sample 3: Oxygen partial pressure 0.3 Pa).

次に、非晶質IGZO膜成膜直後のシリコンウエハを上記測定装置に移送し、抵抗値を測定した。この場合、温風を発生する気流発生装置の消費電力を500〜3000Wとし、シリコンウエハを局所的に200℃に加熱することとし、また、プローブ6としては二重リング法による公知のものを用いた。   Next, the silicon wafer immediately after the formation of the amorphous IGZO film was transferred to the measurement apparatus, and the resistance value was measured. In this case, the power consumption of the air flow generator for generating warm air is set to 500 to 3000 W, the silicon wafer is locally heated to 200 ° C., and a known probe 6 using a double ring method is used. It was.

図2は、上記条件で抵抗値を測定したときのグラフである。なお、加熱することなく、上記プローブ6で抵抗値を測定しようとしたところ、いずれの試料1〜3もその抵抗値を測定することはできなかった。他方で、温風を吹き付けて加熱すれば、上記プローブ6にて抵抗値の測定ができ、また、成膜条件の違いで(シート)抵抗値(Ω/□)が変化していることが確認された。これにより、本発明を適用して、非晶質IGZO膜の抵抗値を効率よく測定して成膜時における非晶質IGZO膜の膜厚や膜質を管理できることが判る。   FIG. 2 is a graph when the resistance value is measured under the above conditions. In addition, when it was going to measure resistance value with the said probe 6 without heating, none of the samples 1-3 could measure the resistance value. On the other hand, if heated by blowing warm air, the resistance value can be measured with the probe 6 and it is confirmed that the (sheet) resistance value (Ω / □) changes due to the difference in film formation conditions. It was done. Thus, it can be seen that the present invention can be applied to efficiently measure the resistance value of the amorphous IGZO film and manage the film thickness and quality of the amorphous IGZO film during film formation.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上記実施形態では、温風にて非晶質IGZO膜を局所的に加熱するものを例に説明したが、これに限定されるものではなく、ランプヒータ等を用いて加熱することができる。また、上記実施形態では、大気中で抵抗値を測定するものを例に説明したが、例えば、ベースプレート及びこれに設けられる各部品を気密容器内に収納し、抵抗値測定時に、気密容器内を不活性ガス雰囲気とすることができる。これによれば、温風処理による酸化還元反応を低減させ、構造緩和による抵抗値の変化を抑制できるという利点がある。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. In the above-described embodiment, the case where the amorphous IGZO film is locally heated with warm air has been described as an example. However, the present invention is not limited to this and can be heated using a lamp heater or the like. In the above-described embodiment, the example in which the resistance value is measured in the atmosphere has been described as an example.For example, the base plate and each component provided in the base plate are housed in an airtight container, and the inside of the airtight container is measured when the resistance value is measured. It can be an inert gas atmosphere. According to this, there is an advantage that the oxidation-reduction reaction due to the hot air treatment can be reduced and the change in the resistance value due to the structure relaxation can be suppressed.

6…抵抗値測定用プローブ、7…温風吹き付けノズル(加熱手段)、W…測定対象物(基板表面に非晶質IGZO膜を成膜したもの)。   6 ... Resistance value measuring probe, 7 ... Hot air blowing nozzle (heating means), W ... Measurement object (a film in which an amorphous IGZO film is formed on the substrate surface).

Claims (4)

測定対象物を基板表面に成膜した酸化物半導体膜とし、成膜直後の酸化物半導体膜を局所的に加熱する工程と、
この加熱した領域で抵抗値測定用プロープを用いて抵抗値を測定する工程と、を含むことを特徴とする膜抵抗測定方法。
The measurement object is an oxide semiconductor film formed on the substrate surface, and the oxide semiconductor film immediately after film formation is locally heated;
And measuring a resistance value using a resistance value measurement probe in the heated region.
前記酸化物半導体膜の局所的な加熱を、温風を吹き付けて行うことを特徴とする請求項1記載の膜抵抗値測定方法。   The film resistance value measuring method according to claim 1, wherein the local heating of the oxide semiconductor film is performed by blowing hot air. 前記酸化物半導体膜の局所的な加熱を、ランプヒータにより行うことを特徴とする請求項1記載の膜抵抗値測定方法。   2. The film resistance value measuring method according to claim 1, wherein the local heating of the oxide semiconductor film is performed by a lamp heater. 前記酸化物半導体膜の局所的な加熱を、不活性ガス雰囲気または大気中で行うことを特徴とする請求項1〜3のいずれか1項に記載の膜抵抗値測定方法。   The film resistance value measuring method according to claim 1, wherein the oxide semiconductor film is locally heated in an inert gas atmosphere or air.
JP2011180387A 2011-08-22 2011-08-22 Film resistance value measuring method Pending JP2013045794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180387A JP2013045794A (en) 2011-08-22 2011-08-22 Film resistance value measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180387A JP2013045794A (en) 2011-08-22 2011-08-22 Film resistance value measuring method

Publications (1)

Publication Number Publication Date
JP2013045794A true JP2013045794A (en) 2013-03-04

Family

ID=48009495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180387A Pending JP2013045794A (en) 2011-08-22 2011-08-22 Film resistance value measuring method

Country Status (1)

Country Link
JP (1) JP2013045794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574723B1 (en) 2014-07-09 2015-12-04 박성윤 Double-side test probe station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116964A (en) * 1997-06-27 1999-01-22 Micronics Japan Co Ltd Prober
JPH11101840A (en) * 1997-09-26 1999-04-13 Kanagawa Acad Of Sci & Technol Heating system
JP2002055146A (en) * 2000-08-10 2002-02-20 Hitachi Ltd Method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116964A (en) * 1997-06-27 1999-01-22 Micronics Japan Co Ltd Prober
JPH11101840A (en) * 1997-09-26 1999-04-13 Kanagawa Acad Of Sci & Technol Heating system
JP2002055146A (en) * 2000-08-10 2002-02-20 Hitachi Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574723B1 (en) 2014-07-09 2015-12-04 박성윤 Double-side test probe station

Similar Documents

Publication Publication Date Title
KR101132706B1 (en) Method for growing graphene layer
JP5718072B2 (en) Thin film transistor oxide for semiconductor layer and sputtering target, and thin film transistor
CN103354241A (en) Laminated structure having oxide semiconductor thin film layer, method for manufacturing laminated structure, thin film transistor, and display device
US8084278B2 (en) Method of manufacturing silicon carbide semiconductor device
JP2016195285A (en) Method for providing lateral thermal processing of thin films on low-temperature substrates
TWI552233B (en) An oxide semiconductor thin film, and a thin film of the oxide semiconductor the quality evaluation method of the laminated body having the protective film on the surface of the film, and the quality management method of the oxide semiconductor thin film
JPWO2005027208A1 (en) Impurity introduction control method and impurity introduction apparatus
JP6178733B2 (en) Laminated structure, manufacturing method thereof, and thin film transistor
JP2007158314A (en) Method for pretreating epitaxial layer, method for evaluating epitaxial layer, and apparatus for evaluating epitaxial layer
Li et al. Performance improvement of oxide thin-film transistors with a two-step-annealing method
TWI476393B (en) Quality evaluation method of target assembly used for forming thin film for semiconductor layer of thin film transistor
WO2014112215A1 (en) Pressure resistance measuring apparatus and pressure resistance measuring method
JP2015032655A (en) Thin film transistor
JP2013045794A (en) Film resistance value measuring method
TWI486466B (en) An oxide thin film, a thin film transistor, and a display device for a semiconductor layer of a thin film transistor
US20150114821A1 (en) Method for Modifying Properties of Graphene
JP4894351B2 (en) Semiconductor substrate evaluation method
Sun et al. Individual SnO2 nanowire transistors fabricated by the gold microwire mask method
JP2008544945A (en) Oxygen-sensitive silicon layer and method for obtaining the silicon layer
JP6176110B2 (en) Hydrotreating method
Wu et al. Study of in-situ hydrogen plasma treatment on InGaZnO with atmospheric pressure-plasma enhanced chemical vapor deposition
JP4950532B2 (en) Circuit board wiring repair method and apparatus
JP2009259960A (en) Method of detecting heavy metal in semiconductor substrate
CN105762090A (en) Method of monitoring graphene surface molecule adsorption process
US20170103895A1 (en) Laser irradiation apparatus and laser irradiation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322