JP2013044644A - Inspection and manufacturing method of semiconductor device - Google Patents

Inspection and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2013044644A
JP2013044644A JP2011182583A JP2011182583A JP2013044644A JP 2013044644 A JP2013044644 A JP 2013044644A JP 2011182583 A JP2011182583 A JP 2011182583A JP 2011182583 A JP2011182583 A JP 2011182583A JP 2013044644 A JP2013044644 A JP 2013044644A
Authority
JP
Japan
Prior art keywords
rays
ray
film
fluorescent
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011182583A
Other languages
Japanese (ja)
Other versions
JP5887760B2 (en
Inventor
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011182583A priority Critical patent/JP5887760B2/en
Publication of JP2013044644A publication Critical patent/JP2013044644A/en
Application granted granted Critical
Publication of JP5887760B2 publication Critical patent/JP5887760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inspection and manufacturing method of a semiconductor device which enable accurate detection of attachments on a sample surface.SOLUTION: The surface of a sample 11 where a reflection coating 13 and a thin film 14 are formed in order on a substrate 12 is irradiated with an incident X-ray 82a at an incident angle θ shallower than a critical angle θc of the reflection coating 13, and the irradiation of the incident X-ray 82a is used to detect a fluorescent X-ray 83 emitted from attachments 86 on the thin film 14 surface, thereby detecting the attachments 86 on the sample 11 surface.

Description

本発明は、半導体装置の検査方法及び半導体装置の製造方法に関する。   The present invention relates to a semiconductor device inspection method and a semiconductor device manufacturing method.

シリコンウエハや酸化シリコン膜等の表面の汚染の状態の検査には、全反射蛍光X線法が用いられている。この全反射蛍光X線法では、試料表面に小さな入射角でX線を照射して試料表面でX線を全反射させ、その際に試料表面の付着物質から放出される蛍光X線を検出して汚染の状態を評価する。   The total reflection fluorescent X-ray method is used for the inspection of the contamination state of the surface of a silicon wafer or a silicon oxide film. In this total reflection X-ray fluorescence method, the sample surface is irradiated with X-rays at a small incident angle to totally reflect the X-rays on the sample surface, and at that time, the fluorescent X-rays emitted from the adhered substance on the sample surface are detected. To assess the state of contamination.

しかし、従来の全反射蛍光X線法では、試料表面でX線を全反射させることが困難な場合に、付着物質の検出感度が低下する。   However, in the conventional total reflection fluorescent X-ray method, when it is difficult to totally reflect the X-rays on the sample surface, the detection sensitivity of the adhering substance is lowered.

特開平5−206240号公報JP-A-5-206240 特開平9−43171号公報Japanese Patent Laid-Open No. 9-43171

そこで、試料表面の付着物質を感度よく検出することができる半導体装置の検査方法及び半導体装置の製造方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a method for inspecting a semiconductor device and a method for manufacturing a semiconductor device that can detect a substance adhering to a sample surface with high sensitivity.

下記開示の一観点によれば、基板の上方に反射膜と薄膜とを順に形成してなる試料の表面に、前記反射膜の臨界角よりも小さい入射角でX線を照射するステップと、前記X線の照射により前記薄膜表面の付着物質から放出される蛍光X線を検出するステップと、を有する半導体装置の検査方法が提供される。   According to one aspect of the following disclosure, a surface of a sample formed by sequentially forming a reflective film and a thin film above a substrate is irradiated with X-rays at an incident angle smaller than the critical angle of the reflective film; A method for inspecting a semiconductor device, comprising: detecting fluorescent X-rays emitted from an attached substance on the surface of the thin film by X-ray irradiation.

また、別の一観点によれば、基板の上方に反射膜と薄膜とを順に形成する工程と、前記薄膜の表面に、前記反射膜の臨界角よりも小さい入射角でX線を照射する工程と、前記X線の照射により前記薄膜表面の付着物質から放出される蛍光X線を検出する工程と、を有する半導体装置の製造方法が提供される。   According to another aspect, the step of sequentially forming a reflective film and a thin film above the substrate, and the step of irradiating the surface of the thin film with X-rays at an incident angle smaller than the critical angle of the reflective film And a step of detecting fluorescent X-rays emitted from the attached substance on the surface of the thin film by the X-ray irradiation.

上記観点の半導体装置の検査方法及び半導体装置の製造方法では、試料の薄膜の下に反射膜を配置し、その反射膜の臨界角よりも小さい入射角でX線を照射する。このとき薄膜で反射できなかったX線は反射膜で全反射されるので、基板へのX線照射が阻止される。そのため、基板から付着物質の蛍光X線と重なる波長の蛍光X線が放出されて付着物質からの蛍光X線の検出感度が低下するのを防止できる。また、反射膜で全反射されたX線で薄膜表面の付着物質が更に照射されるため、付着物質の蛍光X線の放出量が増加する。これにより、試料表面の付着物質を感度よく検出できる。   In the semiconductor device inspection method and the semiconductor device manufacturing method according to the above aspect, a reflective film is disposed under the thin film of the sample, and X-rays are irradiated at an incident angle smaller than the critical angle of the reflective film. At this time, X-rays that could not be reflected by the thin film are totally reflected by the reflective film, so that X-ray irradiation to the substrate is prevented. For this reason, it is possible to prevent the detection sensitivity of the fluorescent X-rays from the attached substance from being lowered due to the emission of fluorescent X-rays having a wavelength overlapping with the fluorescent X-rays of the attached substance from the substrate. Further, since the adhering substance on the surface of the thin film is further irradiated with the X-rays totally reflected by the reflecting film, the emission amount of the fluorescent X-rays of the adhering substance increases. Thereby, the adhered substance on the sample surface can be detected with high sensitivity.

図1は、有機絶縁膜の透過電子顕微鏡像の一例を示す図である。FIG. 1 is a diagram illustrating an example of a transmission electron microscope image of an organic insulating film. 図2は、光学式のパーティクルカウンタによる図1の有機絶縁膜及び酸化シリコン膜の測定結果を表す図である。FIG. 2 is a diagram showing measurement results of the organic insulating film and the silicon oxide film of FIG. 1 using an optical particle counter. 図3は、X線の入射角と反射率との関係を表すグラフである。FIG. 3 is a graph showing the relationship between the incident angle of X-rays and the reflectance. 図4は、全反射蛍光X線法を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the total reflection fluorescent X-ray method. 図5は、Cr−Kα線に対する様々な物質の臨界角を示す表である。FIG. 5 is a table showing critical angles of various materials with respect to Cr—Kα rays. 図6は、有機絶縁膜に対して全反射蛍光X線法を適用する場合に生じる問題点を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a problem that occurs when the total reflection X-ray fluorescence method is applied to an organic insulating film. 図7は、 第1実施形態に係る半導体装置の検査方法に用いる検査装置を示す図である。FIG. 7 is a view showing an inspection apparatus used in the semiconductor device inspection method according to the first embodiment. 図8は、第1実施形態に係る半導体装置の検査方法に用いる試料の断面図である。FIG. 8 is a cross-sectional view of a sample used in the semiconductor device inspection method according to the first embodiment. 図9(a)は、第1実施形態の実験例に係る試料の断面図であり、図9(b)は図9(a)の試料の測定結果を表すグラフである。FIG. 9A is a cross-sectional view of a sample according to the experimental example of the first embodiment, and FIG. 9B is a graph showing the measurement result of the sample in FIG. 9A. 図10(a)は、比較例1に係る試料の断面図であり、図10(b)は図10(a)の試料の測定結果を表すグラフである。10A is a cross-sectional view of the sample according to Comparative Example 1, and FIG. 10B is a graph showing the measurement result of the sample in FIG. 10A. 図11は、比較例2に係るXPS(X-ray Photoelectron Spectroscopy)による測定結果を表すグラフである。FIG. 11 is a graph showing measurement results by XPS (X-ray Photoelectron Spectroscopy) according to Comparative Example 2. 図12は、第2実施形態に係る半導体装置の製造方法に用いる半導体ウエハの平面図及び断面図である。12A and 12B are a plan view and a cross-sectional view of a semiconductor wafer used in the method for manufacturing a semiconductor device according to the second embodiment. 図13は、第3実施形態に係る半導体装置の製造方法に用いる半導体ウエハの平面図及び断面図である。13A and 13B are a plan view and a cross-sectional view of a semiconductor wafer used in the method for manufacturing a semiconductor device according to the third embodiment.

以下、実施形態の説明に先立って、基礎となる予備的事項について説明する。   Prior to the description of the embodiment, preliminary items as a basis will be described.

半導体装置に用いる絶縁膜の材料としては、多孔質材料や有機材料などの材料が提案されている。このうち、感光性樹脂を用いた有機絶縁膜は露光及び現像処理でパターンを形成できることから、半導体装置の低コスト化を目指した開発が進められている。   Materials such as porous materials and organic materials have been proposed as materials for insulating films used in semiconductor devices. Among these, since the organic insulating film using the photosensitive resin can form a pattern by exposure and development processing, development aiming at cost reduction of the semiconductor device is being advanced.

有機絶縁膜を用いた半導体装置の製造プロセスでは、不良品発生を防ぐ観点から、有機絶縁膜表面の汚染の状態を検証することが望まれる。例えば、有機絶縁膜にダマシンプロセスで配線を形成する場合には、CMP(Chemical Mechanical Polishing)工程においてスラリーを用いた研磨が行われる。このCMP工程で用いたスラリーや研磨によって発生した配線材料の粒子などが有機絶縁膜の表面に残っていると、配線間のリークや有機絶縁膜間の剥離などの不具合が発生する。   In the manufacturing process of a semiconductor device using an organic insulating film, it is desired to verify the state of contamination on the surface of the organic insulating film from the viewpoint of preventing the generation of defective products. For example, when a wiring is formed on the organic insulating film by a damascene process, polishing using a slurry is performed in a CMP (Chemical Mechanical Polishing) process. If the slurry used in the CMP process or the particles of the wiring material generated by polishing remain on the surface of the organic insulating film, problems such as leakage between wirings and peeling between the organic insulating films occur.

シリコンウエハや酸化シリコン膜表面のパーティクルの検出には、付着物質による光散乱を利用した光学式のパーティクルカウンタが用いられている。そこで、有機絶縁膜表面の付着物質の検出にもパーティクルカウンタを用いることが考えられる。   For detecting particles on the surface of a silicon wafer or a silicon oxide film, an optical particle counter using light scattering by an attached substance is used. In view of this, it is conceivable to use a particle counter for the detection of the adhered substance on the surface of the organic insulating film.

図1は、有機絶縁膜の透過電子顕微鏡像の一例である。   FIG. 1 is an example of a transmission electron microscope image of an organic insulating film.

図1に示すように、半導体装置に用いられる有機絶縁膜は、必要とされる機械的強度を確保するために、有機材料のマトリクス90中にゴムなどの弾性材料を含んだラバーパーティクル91を配合する場合がある。   As shown in FIG. 1, an organic insulating film used in a semiconductor device is blended with rubber particles 91 containing an elastic material such as rubber in a matrix 90 of an organic material in order to ensure the required mechanical strength. There is a case.

このようなラバーパーティクル91を含んだ有機絶縁膜の表面は、ラバーパーティクル91に由来する多数の凹凸がある。また、表面に凹凸がない場合であっても、有機絶縁膜内に進入した光は有機絶縁膜内のパーティクルで乱反射されてしまう。したがって、パーティクルカウンタを用いて有機絶縁膜の表面を測定すると、ラバーパーティクル91が付着物質として誤って検出されてしまう。   The surface of the organic insulating film containing such rubber particles 91 has a large number of irregularities derived from the rubber particles 91. Even if there is no unevenness on the surface, the light that has entered the organic insulating film is irregularly reflected by particles in the organic insulating film. Therefore, when the surface of the organic insulating film is measured using a particle counter, the rubber particles 91 are erroneously detected as an adhering substance.

図2(a)は、光学式のパーティクルカウンタで有機絶縁膜表面を測定した結果を表し、図2(b)は、光学式のパーティクルカウンタでシリコン熱酸化膜表面を測定した結果を表している。図中の黒い点は、パーティクルカウンタで検出された、大きさが0.3μm〜1μmの付着物質の位置を表している。   FIG. 2A shows the result of measuring the surface of the organic insulating film with an optical particle counter, and FIG. 2B shows the result of measuring the surface of the silicon thermal oxide film with the optical particle counter. . The black dots in the figure represent the positions of adhered substances having a size of 0.3 μm to 1 μm detected by the particle counter.

図2(b)に示すように、シリコン熱酸化膜の場合には、ほとんど付着物質が検出されない。これに対し、図2(a)に示すように、有機絶縁膜の場合には、ラバーパーティクル91に由来する多数の凹凸が付着物質として誤って検出されていることがわかる。   As shown in FIG. 2 (b), in the case of a silicon thermal oxide film, almost no adhering substance is detected. In contrast, as shown in FIG. 2A, in the case of the organic insulating film, it can be seen that a large number of irregularities derived from the rubber particles 91 are erroneously detected as adhered substances.

このように、光学式のパーティクルカウンタでは、有機絶縁膜表面の付着物質の特定は困難である。   As described above, it is difficult for the optical particle counter to identify the adhered substance on the surface of the organic insulating film.

試料表面の付着物質を検出する別の方法として、全反射蛍光X線法がある。   There is a total reflection fluorescent X-ray method as another method for detecting the adhered substance on the sample surface.

図3は、平坦な表面を有する薄膜に対するX線の入射角θと反射率との関係の一例を示すグラフである。ここで入射角θは、薄膜表面と入射X線との成す角である。   FIG. 3 is a graph showing an example of the relationship between the incident angle θ of X-rays and the reflectance for a thin film having a flat surface. Here, the incident angle θ is an angle formed between the thin film surface and the incident X-ray.

X線の入射角θを減少させてゆくと、薄膜表面の反射率は図3の反射率曲線のように次第に増加する。そして、所定の入射角θよりも小さくなると、入射したX線が薄膜表面で全反射される。この全反射が起きる最も大きな入射角を臨界角θcと呼ぶ。   As the incident angle θ of X-rays is decreased, the reflectivity of the thin film surface gradually increases as shown in the reflectivity curve of FIG. When the incident angle becomes smaller than the predetermined incident angle θ, the incident X-rays are totally reflected on the surface of the thin film. The largest incident angle at which this total reflection occurs is called the critical angle θc.

全反射蛍光X線法は、このX線の全反射を利用して試料表面の付着物質の検出を行う。   In the total reflection fluorescent X-ray method, a substance adhering to the sample surface is detected using the total reflection of the X-ray.

図4は、全反射蛍光X線法を説明する断面図である。ここでは、上面に薄膜81が形成された基板80の表面の付着物質を検出する場合を例に説明する。   FIG. 4 is a cross-sectional view illustrating the total reflection fluorescent X-ray method. Here, a case where an adhering substance on the surface of the substrate 80 on which the thin film 81 is formed is detected will be described as an example.

図4に示すように、全反射蛍光X線法では、薄膜81の臨界角θcよりも小さい入射角θで入射X線82aを薄膜81の表面に照射し、薄膜81の表面で入射X線82aを全反射させる。このとき、薄膜81の表面に付着した付着物質86に含まれる元素が入射X線82a及び反射X線82bによって励起され、その元素特有の蛍光X線83を放出する。全反射蛍光X線法は、付着物質86に含まれる元素特有の蛍光X線83のピーク波長及びその強度を検出することで付着物質86の種類及び付着量等を特定する。   As shown in FIG. 4, in the total reflection fluorescent X-ray method, the surface of the thin film 81 is irradiated with incident X-rays 82a at an incident angle θ smaller than the critical angle θc of the thin film 81, and the incident X-rays 82a are irradiated on the surface of the thin film 81. Is totally reflected. At this time, the element contained in the adhering substance 86 attached to the surface of the thin film 81 is excited by the incident X-ray 82a and the reflected X-ray 82b, and emits the fluorescent X-ray 83 peculiar to the element. In the total reflection fluorescent X-ray method, the type and amount of the adhering substance 86 are specified by detecting the peak wavelength and the intensity of the fluorescent X-ray 83 peculiar to the element contained in the adhering substance 86.

ここで、薄膜81の臨界角θcは、薄膜81の材料に応じて変化する。   Here, the critical angle θc of the thin film 81 varies depending on the material of the thin film 81.

図5は、Cr−Kα線(5.411keV)に対する様々な材料の臨界角θcを表している。   FIG. 5 represents the critical angle θc of various materials relative to the Cr—Kα line (5.411 keV).

図5に示すように、材料の密度が増加するほど臨界角θcが増加する。このうち、有機絶縁膜は密度が1程度と低く、Cr−Kα線に対する臨界角θcは約0.21°と最も小さい。なお、臨界角θcは、X線のエネルギーが増加するほど小さくなる。例えば、タングステンW−Lβ線(9.67keV)の場合には、有機絶縁膜の臨界角θcは、約0.12°となる。   As shown in FIG. 5, the critical angle θc increases as the material density increases. Among these, the density of the organic insulating film is as low as about 1, and the critical angle θc with respect to the Cr—Kα line is as small as about 0.21 °. The critical angle θc decreases as the X-ray energy increases. For example, in the case of tungsten W-Lβ line (9.67 keV), the critical angle θc of the organic insulating film is about 0.12 °.

このように、薄膜81が有機材料の場合には、X線を全反射させるためにシリコンや酸化シリコンよりも小さい入射角θでX線を入射させる必要がある。ところが、本願発明者らの調査の結果、小さい入射角θからのX線照射が求められる有機絶縁膜では、下記の理由により、汚染の状態の評価に十分な精度が得られないことが判明した。   Thus, when the thin film 81 is an organic material, it is necessary to make the X-rays incident at an incident angle θ smaller than that of silicon or silicon oxide in order to totally reflect the X-rays. However, as a result of the investigation by the inventors of the present application, it has been found that an organic insulating film that requires X-ray irradiation from a small incident angle θ cannot obtain sufficient accuracy for evaluating the contamination state for the following reasons. .

図6(a)は、有機絶縁膜の凹凸によって生じる問題を説明する図である。   FIG. 6A is a diagram for explaining a problem caused by the unevenness of the organic insulating film.

有機絶縁膜81は、スピンコート法等で成膜されるが、スピンコート法で成膜された膜の表面には、シリコンウエハや熱酸化シリコン膜等に比べて大きな凹凸が発生する。また、図1を参照しつつ説明したように、有機絶縁膜81にラバーパーティクル91が配合されている場合には、有機絶縁膜81の表面に多数の凹凸が発生する。   The organic insulating film 81 is formed by a spin coating method or the like, but large unevenness is generated on the surface of the film formed by the spin coating method compared to a silicon wafer, a thermally oxidized silicon film, or the like. As described with reference to FIG. 1, when rubber particles 91 are blended in the organic insulating film 81, many irregularities are generated on the surface of the organic insulating film 81.

このように、表面に凹凸を有する有機絶縁膜81に臨界角θc以下の入射角θで入射X線82aを照射すると、図6(a)に示すように、一部の入射X線82aは全反射されるが、凹凸の傾斜面等に入射した入射X線82aの入射角θ2、θ3が臨界角θcを超える場合がある。有機絶縁膜81は他の材料に比べて臨界角θcが小さいため、より小さな凹凸であっても、入射角θ2、θ3が臨界角θcを超えてしまう。 As described above, when the incident X-ray 82a is irradiated to the organic insulating film 81 having the unevenness on the surface at the incident angle θ which is equal to or less than the critical angle θc, as shown in FIG. Although reflected, the incident angles θ 2 and θ 3 of the incident X-ray 82a incident on the uneven inclined surface or the like may exceed the critical angle θc. Since the organic insulating film 81 has a smaller critical angle θc than other materials, the incident angles θ 2 and θ 3 exceed the critical angle θc even with smaller irregularities.

その結果、入射X線82aの一部が薄膜81内に進入し、基板80が入射X線82aで照射されることで、基板80が励起されて蛍光X線84が放出される。この蛍光X線84のピーク波長の一部が付着物質86からの蛍光X線83のピーク波長と重なることで、蛍光X線83を用いた付着物質86の検出感度が低下してしまう。   As a result, part of the incident X-rays 82a enters the thin film 81, and the substrate 80 is irradiated with the incident X-rays 82a, whereby the substrate 80 is excited and fluorescent X-rays 84 are emitted. A part of the peak wavelength of the fluorescent X-ray 84 overlaps the peak wavelength of the fluorescent X-ray 83 from the adhering substance 86, so that the detection sensitivity of the adhering substance 86 using the fluorescent X-ray 83 is lowered.

また、有機絶縁膜81の表面が平坦であったとしても、下記のように入射X線の平行性による問題が生じる。   Further, even if the surface of the organic insulating film 81 is flat, there arises a problem due to the parallelism of incident X-rays as described below.

図6(b)は、入射X線82aのビームの平行性によって生じる問題を説明する図である。   FIG. 6B is a diagram for explaining a problem caused by the parallelism of the beam of the incident X-ray 82a.

図6(b)に示すように、入射X線82aのビームはその光軸cに完全に平行ではなく、例えば±0.05°程度のばらつきがある。したがって、入射X線82aを臨界角θcよりもさらに小さい入射角θで薄膜81に入射させても、入射X線82aの高角度側の成分が臨界角θcを超え、入射X線82aの一部が薄膜81内に進入する場合がある。この場合にも、基板80から蛍光X線84が放出され、その蛍光X線84のピーク波長の一部が付着物質86の蛍光X線83のピーク波長と重なることで、付着物質86の検出感度が低下してしまう。   As shown in FIG. 6B, the beam of the incident X-ray 82a is not completely parallel to the optical axis c and has a variation of about ± 0.05 °, for example. Therefore, even if the incident X-ray 82a is incident on the thin film 81 at an incident angle θ smaller than the critical angle θc, the high-angle component of the incident X-ray 82a exceeds the critical angle θc, and a part of the incident X-ray 82a May enter the thin film 81. Also in this case, the fluorescent X-ray 84 is emitted from the substrate 80, and a part of the peak wavelength of the fluorescent X-ray 84 overlaps the peak wavelength of the fluorescent X-ray 83 of the adhering substance 86, so that the detection sensitivity of the adhering substance 86 is detected. Will fall.

以上の理由により、薄膜81が有機材料の場合には、全反射蛍光X線法を用いても薄膜81の表面の付着物質の検出に十分な感度が得られない。このような問題は、有機絶縁膜と同様に、密度が低く表面に凹凸が多い多孔質材料の絶縁膜についても生じる。   For the reasons described above, when the thin film 81 is an organic material, sufficient sensitivity cannot be obtained for the detection of the adhered substance on the surface of the thin film 81 even if the total reflection fluorescent X-ray method is used. Similar to the organic insulating film, such a problem also occurs in an insulating film made of a porous material having a low density and a lot of irregularities on the surface.

さらに、密度が高い材料であっても、表面に凹凸があるために入射X線82aを全反射できない半導体膜や金属膜等の表面の付着物質の検出を行う場合も同様である。   Further, even when a material having a high density is used, the same applies to the case where a substance adhering to the surface such as a semiconductor film or a metal film that cannot totally reflect the incident X-rays 82a due to irregularities on the surface is detected.

本願発明者らは、上記の知見に基づき下記に説明する実施形態を着想した。   The inventors of the present application have conceived the embodiment described below based on the above findings.

(第1実施形態)
図7は、第1実施形態に係る半導体装置の検査方法に用いる検査装置の図である。
(First embodiment)
FIG. 7 is a diagram of an inspection apparatus used in the semiconductor device inspection method according to the first embodiment.

図7に示すように、検査装置10はX線82を発生させるX線源1、分光結晶2、スリット板3、試料台4及びX線検出器5を備える。このうち、X線源1は、陰極のフィラメント1aから放出された電子を陽極のターゲット1bに衝突させることでX線82を発生させる。   As shown in FIG. 7, the inspection apparatus 10 includes an X-ray source 1 that generates X-rays 82, a spectral crystal 2, a slit plate 3, a sample stage 4, and an X-ray detector 5. Among these, the X-ray source 1 generates X-rays 82 by causing electrons emitted from the cathode filament 1a to collide with the anode target 1b.

ここでは、ターゲット1bの材料としてCr(クロム)を用いるものとする。なお、ターゲット1bの材料にはCr以外にも、Ag(銀)、Cu(銅)、W(タングステン)等を用いてもよい。   Here, Cr (chromium) is used as the material of the target 1b. In addition to Cr, Ag (silver), Cu (copper), W (tungsten), or the like may be used as the material of the target 1b.

X線源1から放出されたX線82は分光結晶2に照射され、分光結晶2によりCr−Kα線よりなる入射X線82aのみが試料11の方向に反射されて、スリット板3を通過する。Cr−Kα線以外のX線82は、分光結晶2によって除去される。また、入射X線82aの開き角(高角度成分)はスリット板3によって制限される。   The X-rays 82 emitted from the X-ray source 1 are irradiated onto the spectral crystal 2, and only the incident X-rays 82 a made of Cr—Kα rays are reflected by the spectral crystal 2 toward the sample 11 and pass through the slit plate 3. . X-rays 82 other than Cr—Kα rays are removed by the spectral crystal 2. Further, the opening angle (high angle component) of the incident X-ray 82 a is limited by the slit plate 3.

なお、入射X線82aとしては、W−Lβ線を用いてもよく、さらにこれ以外にも付着物質に含まれる元素の蛍光X線のピーク波長と重ならない波長から適宜選択してもよい。   In addition, as the incident X-ray 82a, a W-Lβ ray may be used, and other than this, it may be appropriately selected from wavelengths that do not overlap with the peak wavelength of the fluorescent X-ray of the element contained in the adhered substance.

スリット板3を通過した入射X線82aは、試料台4の上に載置された試料11の表面に入射する。試料台4は、試料11の向きを変えることで、試料11に所定の入射角θでX線を入射させる。なお、試料台4の位置を上下方向に移動させることでX線の入射角θを調整してもよい。   The incident X-rays 82 a that have passed through the slit plate 3 enter the surface of the sample 11 placed on the sample table 4. The sample stage 4 changes the direction of the sample 11 so that X-rays enter the sample 11 at a predetermined incident angle θ. The X-ray incident angle θ may be adjusted by moving the position of the sample stage 4 in the vertical direction.

試料11に入射した入射X線82aの一部は試料11で反射されて反射X線82bとなる。また入射X線82aの一部は、試料11表面のパーティクルや汚染物などの付着物質に含まれる元素を励起して蛍光X線83を発生させる。   A part of the incident X-ray 82a incident on the sample 11 is reflected by the sample 11 to become a reflected X-ray 82b. Further, a part of the incident X-ray 82a excites an element contained in an adhering substance such as particles or contaminants on the surface of the sample 11 to generate fluorescent X-rays 83.

試料11の上方にはX線検出器5が配置されており、そのX線検出器5により試料11の表面の付着物質86から放出された蛍光X線83のスペクトルを検出する。   The X-ray detector 5 is disposed above the sample 11, and the spectrum of the fluorescent X-ray 83 emitted from the adhering substance 86 on the surface of the sample 11 is detected by the X-ray detector 5.

図8は、第1実施形態に係る試料11の断面図である。   FIG. 8 is a cross-sectional view of the sample 11 according to the first embodiment.

試料11は、図8に示すように、例えばシリコン単結晶等の半導体材料や有機材料等を用いた基板12と、その基板12の上に形成された反射膜13と、反射膜13の上に形成された薄膜14とを備える。なお、図示の例では基板12の上に反射膜13を形成しているが、本実施形態はこれに限定されるものではなく、基板12と反射膜13との間に、絶縁膜や、複数の配線等を設けてもよい。   As shown in FIG. 8, the sample 11 includes a substrate 12 using a semiconductor material such as a silicon single crystal or an organic material, a reflective film 13 formed on the substrate 12, and a reflective film 13. And the formed thin film 14. In the illustrated example, the reflective film 13 is formed on the substrate 12, but the present embodiment is not limited to this, and an insulating film or a plurality of layers are provided between the substrate 12 and the reflective film 13. Wiring or the like may be provided.

反射膜13は、表面が平坦に形成された膜であり、付着物質86からの蛍光X線のピーク波長と重ならない波長に蛍光X線のピーク波長を有する材料からなる。また、入射X線82aをより確実に全反射させるべく、反射膜13の材料には、薄膜14よりも密度及び臨界角θcがより大きな材料を用いることが好ましい。   The reflective film 13 is a film having a flat surface and is made of a material having a peak wavelength of fluorescent X-rays at a wavelength that does not overlap with the peak wavelength of fluorescent X-rays from the adhering substance 86. In order to more reliably reflect the incident X-rays 82a, it is preferable to use a material having a larger density and critical angle θc than that of the thin film 14 for the reflective film 13.

上記の反射膜13の材料としては、Naよりも原子番号の小さい元素を含み、且つ有機絶縁膜よりも密度が高い材料を用いることができる。Naよりも原子番号の小さい元素からはSiやAl等の検出の妨げとなる蛍光X線が放出されないためである。このような材料としては、例えば、ダイヤモンド、ダイヤモンドライクカーボン、炭素、窒化ホウ素、フッ化リチウム及びベリリウム等がある。   As the material of the reflective film 13, a material containing an element having an atomic number smaller than that of Na and having a higher density than the organic insulating film can be used. This is because fluorescent X-rays that hinder the detection of Si, Al and the like are not emitted from an element having an atomic number smaller than that of Na. Examples of such materials include diamond, diamond-like carbon, carbon, boron nitride, lithium fluoride, and beryllium.

また、Naよりも原子番号が大きい元素であっても、蛍光X線のピーク波長がSiやAl等の蛍光X線のピーク波長と重ならないCr及びTi(チタン)や、Cr及びTiの酸化物、窒化物、及びホウ化物等を反射膜13の材料として用いてもよい。   Further, even if the element has an atomic number larger than that of Na, the peak wavelength of fluorescent X-rays does not overlap with the peak wavelength of fluorescent X-rays such as Si and Al, and oxides of Cr and Ti , Nitrides, borides, and the like may be used as the material of the reflective film 13.

上記に列挙した材料の中でも、Crは密度が8.1g/cm3と有機絶縁膜よりも大きく、より大きな臨界角θcを有している。さらに、Crは結晶粒径が小さいため、スパッタ法で平坦な表面を有する反射膜13を容易に形成できるので、反射膜13の材料として好適である。 Among the materials listed above, Cr has a density of 8.1 g / cm 3 which is larger than that of the organic insulating film and has a larger critical angle θc. Furthermore, since Cr has a small crystal grain size, the reflective film 13 having a flat surface can be easily formed by sputtering, and thus is suitable as a material for the reflective film 13.

なお、SiやAlによる汚染をより高い感度で検出したい場合には、反射膜13中のSi、Al、Sn(スズ)、Co(コバルト)及びWの含有量を極力少なくすることが好ましい。これらの元素を含有していると、SiやAlの蛍光X線のピーク波長と重なる波長の蛍光X線が反射膜13から放出され、付着物質86に含まれるSiやAlからの蛍光X線の検出感度が低下するためである。   When it is desired to detect contamination due to Si or Al with higher sensitivity, it is preferable to reduce the contents of Si, Al, Sn (tin), Co (cobalt), and W in the reflective film 13 as much as possible. When these elements are contained, fluorescent X-rays having a wavelength that overlaps the peak wavelength of Si or Al fluorescent X-rays are emitted from the reflective film 13, and fluorescent X-rays from Si or Al contained in the adhered substance 86 are emitted. This is because the detection sensitivity is lowered.

上記の反射膜13の厚さは少なくとも10nm程度あればよい。全反射条件でのX線の進入深さは約10nm程度であるため、反射膜13の厚さが10nm以上あれば、基板12への入射X線82aの照射を防止でき、基板12からSiやAl等の検出の妨げとなる蛍光X線が放出されるのを防止できる。   The thickness of the reflective film 13 may be at least about 10 nm. Since the penetration depth of X-rays under the total reflection condition is about 10 nm, if the thickness of the reflective film 13 is 10 nm or more, irradiation of the incident X-rays 82a to the substrate 12 can be prevented, and Si or It is possible to prevent the emission of fluorescent X-rays that hinder the detection of Al or the like.

一方、薄膜14の材料は特に限定されないが、例えば有機材料を用いた有機絶縁膜又は多孔質材料を用いた多孔質絶縁膜とすることができる。薄膜14の材料は絶縁材料に限定されるものではなく、導電材料や半導体材料であってもよい。   On the other hand, the material of the thin film 14 is not particularly limited. For example, an organic insulating film using an organic material or a porous insulating film using a porous material can be used. The material of the thin film 14 is not limited to an insulating material, and may be a conductive material or a semiconductor material.

本実施形態では、以上のような試料11の表面に、反射膜13の臨界角θcよりも小さい入射角θで入射X線82aを入射させる。例えば、入射X線82aがCr−Kα線の場合の入射角θは、反射膜13の材料がCrであれば0.58°以下とすればよく、Tiであれば0.46°以下とすればよい。また、入射X線82aがW−Lβ線の場合の入射角θは、反射膜13の材料がCrであれば0.32°以下、Tiであれば入射角0.26°以下とすればよい。   In the present embodiment, incident X-rays 82 a are incident on the surface of the sample 11 as described above at an incident angle θ smaller than the critical angle θc of the reflective film 13. For example, the incident angle θ when the incident X-ray 82a is a Cr—Kα ray may be 0.58 ° or less if the material of the reflective film 13 is Cr, and 0.46 ° or less if Ti is Ti. That's fine. In addition, the incident angle θ when the incident X-ray 82a is a W-Lβ ray may be 0.32 ° or less if the material of the reflective film 13 is Cr, or 0.26 ° or less if Ti is Ti. .

これにより、薄膜14内に入射X線82aが進入しても、反射膜13で入射X線82aが全反射されるので、基板12への入射X線82aの照射を防ぐことができる。そのため、基板12からの蛍光X線の放出を防止でき、基板12からの蛍光X線で妨害されることなく、付着物質86の蛍光X線を検出できる。   Thereby, even if the incident X-ray 82a enters the thin film 14, the incident X-ray 82a is totally reflected by the reflective film 13, so that the irradiation of the incident X-ray 82a onto the substrate 12 can be prevented. Therefore, the emission of fluorescent X-rays from the substrate 12 can be prevented, and the fluorescent X-rays of the adhering substance 86 can be detected without being disturbed by the fluorescent X-rays from the substrate 12.

また、薄膜14の表面に付着した付着物質86は、入射X線82aだけでなく、反射膜13で全反射された反射X線82bによっても励起されるので、付着物質86から放出される蛍光X線が増加する。   Further, the adhering substance 86 adhering to the surface of the thin film 14 is excited not only by the incident X-ray 82 a but also by the reflected X-ray 82 b totally reflected by the reflecting film 13, so that the fluorescent X emitted from the adhering substance 86 is emitted. The line increases.

したがって、本実施形態の検査方法によれば、薄膜14の表面の付着物質86からの蛍光X線83を感度良く検出でき、検出された蛍光X線83のスペクトルに基づいて付着物質86に含まれる元素を高い感度で検出できる。これにより、薄膜14の表面の汚染の状態をより正確に評価できる。   Therefore, according to the inspection method of the present embodiment, the fluorescent X-ray 83 from the adhering substance 86 on the surface of the thin film 14 can be detected with high sensitivity, and is included in the adhering substance 86 based on the spectrum of the detected fluorescent X-ray 83. Elements can be detected with high sensitivity. Thereby, the state of contamination on the surface of the thin film 14 can be more accurately evaluated.

(実験例及び比較例)
以下、本願発明者らが評価を行った実験例及び比較例について説明する。
(Experimental example and comparative example)
Hereinafter, experimental examples and comparative examples evaluated by the present inventors will be described.

図9(a)は、本実施形態の実験例に係る試料の断面図であり、図9(b)は図9(a)の試料21を図7の検査装置10で測定した結果を示すグラフである。   FIG. 9A is a cross-sectional view of a sample according to an experimental example of this embodiment, and FIG. 9B is a graph showing a result of measuring the sample 21 of FIG. 9A with the inspection apparatus 10 of FIG. It is.

図9(a)に示すように、本実験例では、まずシリコンウエハ22を用意し、そのシリコンウエハ22の表面を熱酸化することにより、厚さが約100nmの酸化シリコン膜23を形成した。   As shown in FIG. 9A, in this experimental example, a silicon wafer 22 is first prepared, and the surface of the silicon wafer 22 is thermally oxidized to form a silicon oxide film 23 having a thickness of about 100 nm.

次に、その酸化シリコン膜23の上に、反射膜として厚さが約500nmのCr膜24をスパッタ法により形成した。   Next, a Cr film 24 having a thickness of about 500 nm was formed as a reflective film on the silicon oxide film 23 by sputtering.

そして、Cr膜24の上に、厚さが約5μmの感光性有機絶縁膜25(JSR製WPR5100)をスピンコート法で形成して、本実験例の試料21を得た。   Then, a photosensitive organic insulating film 25 (JSR WPR5100) having a thickness of about 5 μm was formed on the Cr film 24 by a spin coating method, and a sample 21 of this experimental example was obtained.

次に、図9(a)の試料21を測定装置10(図7参照)の試料台4の上に載置し、その試料21の表面に、Cr膜24の臨界角θcよりも小さい入射角0.09°でCr−Kα線を入射させて蛍光X線のスペクトルを測定した。   Next, the sample 21 in FIG. 9A is placed on the sample stage 4 of the measuring apparatus 10 (see FIG. 7), and the incident angle smaller than the critical angle θc of the Cr film 24 is formed on the surface of the sample 21. The spectrum of fluorescent X-rays was measured by injecting Cr-Kα rays at 0.09 °.

なお、X線源1(図7参照)のフィラメント1aとターゲット1bとの間の電圧及び電流はそれぞれ35kV及び35mAとした。また、試料21への入射X線の照射は500秒間行い、この間に試料から放出される蛍光X線を積算してスペクトルを求めた。   The voltage and current between the filament 1a and the target 1b of the X-ray source 1 (see FIG. 7) were set to 35 kV and 35 mA, respectively. The sample 21 was irradiated with incident X-rays for 500 seconds, and during this time, the fluorescent X-rays emitted from the sample were integrated to obtain a spectrum.

その結果、図9(b)に示すスペクトルが得られた。このスペクトルにおいて、S(硫黄)−Kαのピークは有機絶縁膜に含まれる硫黄(S)に由来するピークであり、Cr−Kαは入射X線82aに由来するピークである。これに対し、Cl(塩素)、K(カリウム)、Ca(カルシウム)、及びTi(チタン)は付着物質の蛍光X線によるピークである。この結果から多種類の不純物が検出されることがわかる。   As a result, the spectrum shown in FIG. 9B was obtained. In this spectrum, the peak of S (sulfur) -Kα is a peak derived from sulfur (S) contained in the organic insulating film, and Cr-Kα is a peak derived from incident X-rays 82a. On the other hand, Cl (chlorine), K (potassium), Ca (calcium), and Ti (titanium) are peaks due to fluorescent X-rays of the adhered substances. From this result, it can be seen that many kinds of impurities are detected.

また、下地の酸化シリコン膜23や基板22に含まれるSiのピークが現れておらず、クロム膜24により酸化シリコン膜23や基板22からの蛍光X線の放出が防止されていることがわかる。   In addition, the Si peak contained in the underlying silicon oxide film 23 and the substrate 22 does not appear, and it can be seen that the chromium film 24 prevents the emission of fluorescent X-rays from the silicon oxide film 23 and the substrate 22.

図9(b)の結果から求めたSi及びAlの測定限界は、ともに1×1011atoms/cm2であった。 The measurement limits of Si and Al obtained from the result of FIG. 9B were both 1 × 10 11 atoms / cm 2 .

なお、図9(a)の試料21に対して、反射膜23の臨界角θcよりも大きな入射角θでX線を照射すると、下地の酸化シリコン膜23や基板22に含まれるSiに由来するピークが表れて、Cl、K,Ca、及びTiを検出できなくなった。   When the sample 21 shown in FIG. 9A is irradiated with X-rays at an incident angle θ larger than the critical angle θc of the reflective film 23, it is derived from Si contained in the underlying silicon oxide film 23 or the substrate 22. A peak appeared and Cl, K, Ca, and Ti could not be detected.

次に、比較例について説明する。   Next, a comparative example will be described.

図10(a)は、比較例1に係る試料の断面図であり、図10(b)は図10(a)の試料26を図7の測定装置10で測定した結果を示すグラフである。   FIG. 10A is a cross-sectional view of a sample according to Comparative Example 1, and FIG. 10B is a graph showing a result of measuring the sample 26 in FIG. 10A with the measuring apparatus 10 in FIG.

図10(a)の比較例1の試料26では、図9(a)の試料21とは異なり、Cr膜24を形成せずに酸化シリコン膜23の上に感光性有機絶縁膜25を形成した。   In the sample 26 of Comparative Example 1 in FIG. 10A, unlike the sample 21 in FIG. 9A, the photosensitive organic insulating film 25 is formed on the silicon oxide film 23 without forming the Cr film 24. .

次に、試料26を検査装置10(図7参照)の試料台4の上に載置し、実験例と同じ条件で図10(a)の試料26の蛍光X線のスペクトルを測定した。その結果図10(b)に示すスペクトルが得られた。図10(b)に示すように、比較例1の試料26の蛍光X線のスペクトルには、Siに由来するピークが現れている。これは、試料26では反射膜が形成されていないため、感光性有機絶縁膜25に進入した入射X線が下地の酸化シリコン膜23や基板22に到達し、それらに含まれるSiからの蛍光X線が放出されていることを示している。   Next, the sample 26 was placed on the sample stage 4 of the inspection apparatus 10 (see FIG. 7), and the spectrum of the fluorescent X-ray of the sample 26 in FIG. 10A was measured under the same conditions as in the experimental example. As a result, the spectrum shown in FIG. 10B was obtained. As shown in FIG. 10B, a peak derived from Si appears in the fluorescent X-ray spectrum of the sample 26 of Comparative Example 1. This is because the sample 26 does not have a reflective film, so that the incident X-rays that have entered the photosensitive organic insulating film 25 reach the underlying silicon oxide film 23 and the substrate 22, and the fluorescent X from Si contained in them. A line is emitted.

このように、比較例1の場合には、蛍光X線のスペクトル中に下地の酸化シリコン膜23や基板22に含まれるSiのピークが現れる。この酸化シリコン膜23や基板22に含まれるSiの蛍光X線のピーク波長は、感光性有機絶縁膜25の表面のSiの蛍光X線のピーク波長と重なるだけでなく、Alからの蛍光X線のピーク波長と近接している。そのため、表面の付着物質に含まれるSiやAlといった元素の検出感度が低下する。   As described above, in the case of Comparative Example 1, the peak of Si contained in the underlying silicon oxide film 23 and the substrate 22 appears in the fluorescent X-ray spectrum. The peak wavelength of the fluorescent X-rays of Si contained in the silicon oxide film 23 and the substrate 22 not only overlaps the peak wavelength of the fluorescent X-rays of Si on the surface of the photosensitive organic insulating film 25 but also the fluorescent X-rays from Al. Is close to the peak wavelength. Therefore, the detection sensitivity of elements such as Si and Al contained in the adhered substance on the surface is lowered.

比較例1では、感光性有機絶縁膜25の表面に付着した付着物質中のSiの検出限界は2.4×1013atoms/cm2と実験例よりも2桁悪くなった。また、比較例1のAlの検出限界は1.7×1012atoms/cm2であり、実験例よりも1桁悪くなった。 In Comparative Example 1, the detection limit of Si in the adhered substance adhering to the surface of the photosensitive organic insulating film 25 was 2.4 × 10 13 atoms / cm 2 , which was two orders of magnitude worse than the experimental example. Moreover, the detection limit of Al in Comparative Example 1 was 1.7 × 10 12 atoms / cm 2 , which was an order of magnitude worse than the experimental example.

図11は、比較例2に係る測定結果を表すグラフである。   FIG. 11 is a graph showing measurement results according to Comparative Example 2.

比較例2では、実験例1の試料21(図9(a)参照)を用いて、試料表面に敏感な測定法として知られているXPS(X-ray photoelectron Spectroscopy)による測定を行った。図11に示すように、比較例2のXPSによる測定では、実験例では検出できないO(酸素)、F(フッ素)、C(炭素)、及びN(窒素)といった比較的原子番号の小さな元素を検出できる。しかし、Al、Si、Ca、Ti等の金属元素のピークは確認できなかった。   In Comparative Example 2, measurement by XPS (X-ray photoelectron spectroscopy), which is known as a measurement method sensitive to the sample surface, was performed using Sample 21 of Experimental Example 1 (see FIG. 9A). As shown in FIG. 11, in the measurement by XPS of Comparative Example 2, elements having relatively small atomic numbers such as O (oxygen), F (fluorine), C (carbon), and N (nitrogen) that cannot be detected in the experimental example are used. It can be detected. However, the peak of metal elements such as Al, Si, Ca, Ti, etc. could not be confirmed.

このことから、本実施形態によれば、半導体装置の製造工程で発生するAl、Si、Ca、Ti等の元素による汚染を、XPSに比べてはるかに感度良く検出できることが確認できた。   From this, it has been confirmed that according to the present embodiment, contamination by elements such as Al, Si, Ca, Ti and the like generated in the manufacturing process of the semiconductor device can be detected with much higher sensitivity than XPS.

以上のように、本実施形態に係る半導体装置の検査方法によれば、有機絶縁膜等の薄膜表面の汚染を高い感度で評価できる。   As described above, according to the method for inspecting a semiconductor device according to the present embodiment, contamination on the surface of a thin film such as an organic insulating film can be evaluated with high sensitivity.

(第2実施形態)
第2実施形態では、上記の半導体装置の検査方法を用いた半導体装置の製造方法について説明する。
(Second Embodiment)
In the second embodiment, a semiconductor device manufacturing method using the above-described semiconductor device inspection method will be described.

図12(a)は、第2実施形態に係る半導体ウエハの平面図であり、図12(b)は図12(a)の試料のI−I線に沿った断面図である。   FIG. 12A is a plan view of a semiconductor wafer according to the second embodiment, and FIG. 12B is a cross-sectional view taken along line II of the sample in FIG.

図12(a)の平面図に示すように、本実施形態の半導体ウエハ30の表面には、チップ領域31と、モニタ領域32とが設けられている。   As shown in the plan view of FIG. 12A, a chip region 31 and a monitor region 32 are provided on the surface of the semiconductor wafer 30 of the present embodiment.

図12(b)に示すように、半導体ウエハ30のチップ領域31には、例えばCPUやメモリ等の複数の半導体チップ33が半導体ウエハ30の上に貼り付けられている。この半導体チップ33の上には、複数層の有機絶縁膜35とそれらに埋め込まれたビア36及び配線37とが形成されている。このような半導体チップ33上に形成された配線37は再配線とも呼ばれ、この再配線を介して有機絶縁膜35の表面に接続端子(不図示)を形成したパッケージはWLP(Wafer Level Package)と呼ばれる。   As shown in FIG. 12B, a plurality of semiconductor chips 33 such as a CPU and a memory are attached on the semiconductor wafer 30 in the chip region 31 of the semiconductor wafer 30. On the semiconductor chip 33, a plurality of layers of organic insulating films 35, vias 36 and wirings 37 embedded therein are formed. Such a wiring 37 formed on the semiconductor chip 33 is also called a rewiring, and a package in which a connection terminal (not shown) is formed on the surface of the organic insulating film 35 through this rewiring is a WLP (Wafer Level Package). Called.

一方、モニタ領域32には、例えばCrなどの反射膜がモニタパターン34として形成されている。このモニタパターン34は、例えば矩形状のCr板を半導体ウエハ30に貼り付けて形成される。なお、モニタパターン34は、半導体ウエハ30の上にスパッタ法等でCr膜等を成膜して形成してもよい。   On the other hand, a reflection film such as Cr is formed as a monitor pattern 34 in the monitor region 32. The monitor pattern 34 is formed, for example, by attaching a rectangular Cr plate to the semiconductor wafer 30. The monitor pattern 34 may be formed by forming a Cr film or the like on the semiconductor wafer 30 by sputtering or the like.

モニタパターン34の大きさは、検査装置10による評価に十分な大きさとすればよく、例えば一辺の長さが10mm程度の正方形状とすることができる。ここでは、さらに余裕を持って、モニタパターン34の大きさを一辺の長さが20mmの正方形状とする。   The size of the monitor pattern 34 may be a size sufficient for evaluation by the inspection apparatus 10, and may be a square shape having a side length of about 10 mm, for example. Here, the size of the monitor pattern 34 is a square with a side of 20 mm with a margin.

以上のようなモニタパターン34の上には、チップ領域31に形成されたものと同一の有機絶縁膜35が形成されている。   On the monitor pattern 34 as described above, the same organic insulating film 35 as that formed in the chip region 31 is formed.

本実施形態の半導体装置の製造方法では、チップ領域31に形成されるビア36及び配線37をダマシンプロセスで形成する。このダマシンプロセスで研磨工程及び洗浄工程を行った後、半導体ウエハ30を図7の検査装置10の試料台4上に載置する。   In the manufacturing method of the semiconductor device of this embodiment, the vias 36 and the wirings 37 formed in the chip region 31 are formed by a damascene process. After performing the polishing step and the cleaning step by this damascene process, the semiconductor wafer 30 is placed on the sample stage 4 of the inspection apparatus 10 in FIG.

そして、モニタ領域32に、Crの臨界角θcよりも小さい入射角θで入射X線82aを入射させて、有機絶縁膜35の表面の付着物質からの蛍光X線を検出する。その後、検出された蛍光X線のスペクトルに基づいて、有機絶縁膜35の表面の付着物質に含まれる元素及び付着物質の量を特定する。   Then, incident X-rays 82a are made incident on the monitor region 32 at an incident angle θ smaller than the critical angle θc of Cr, and fluorescent X-rays from the adhered substance on the surface of the organic insulating film 35 are detected. Thereafter, based on the detected spectrum of fluorescent X-rays, the amount of the elements and the amount of adhering substances contained in the adhering substances on the surface of the organic insulating film 35 is specified.

その結果、モニタ領域31の有機絶縁膜35上の付着物質の量が規定値以下の場合には、その後種々のプロセスを行った後、チップ領域31に形成された半導体チップ33とモニタパターン34とを切り分けて半導体装置を完成させる。   As a result, when the amount of the adhering substance on the organic insulating film 35 in the monitor region 31 is less than the specified value, the semiconductor chip 33 and the monitor pattern 34 formed in the chip region 31 are subjected to various processes thereafter. To complete the semiconductor device.

以上のように、本実施形態の半導体装置の製造方法によれば、有機絶縁膜35の表面の付着物質を高い感度で検出できる。これにより、有機絶縁膜35表面の付着物質を一定値以下とすることができ、信頼性に優れた半導体装置を製造できる。   As described above, according to the manufacturing method of the semiconductor device of the present embodiment, the adhered substance on the surface of the organic insulating film 35 can be detected with high sensitivity. Thereby, the adhered substance on the surface of the organic insulating film 35 can be set to a certain value or less, and a semiconductor device having excellent reliability can be manufactured.

(第3実施形態)
図13(a)は、第3実施形態に係る半導体装置の製造方法に用いる半導体ウエハの平面図であり、図13(b)は図13(a)のII−II線に沿った断面図である。
(Third embodiment)
FIG. 13A is a plan view of a semiconductor wafer used in the method for manufacturing a semiconductor device according to the third embodiment, and FIG. 13B is a cross-sectional view taken along the line II-II in FIG. is there.

本実施形態に係る半導体ウエハ40は、図13(a)及び(b)に示すように、半導体ウエハ40の上面全面がCr等の反射膜41で覆われ、その反射膜41の上に有機絶縁膜42が形成されている。   In the semiconductor wafer 40 according to the present embodiment, as shown in FIGS. 13A and 13B, the entire upper surface of the semiconductor wafer 40 is covered with a reflective film 41 such as Cr, and an organic insulation is formed on the reflective film 41. A film 42 is formed.

本実施形態の半導体装置の製造方法では、半導体装置の製造ラインにおいて、所定数の半導体ウエハが処理される毎に、図13(a)及び(b)に示す半導体ウエハ40をその製造ラインに供給する。   In the semiconductor device manufacturing method of this embodiment, every time a predetermined number of semiconductor wafers are processed in the semiconductor device manufacturing line, the semiconductor wafer 40 shown in FIGS. 13A and 13B is supplied to the manufacturing line. To do.

その後、その製造ラインで処理された半導体ウエハ40を、図7の試験装置10の試料台4の上に載置する。そして、図7及び図8を参照しつつ説明した半導体装置の検査方法により、有機絶縁膜42の表面の付着物質からの蛍光X線を検出する。そして、検出された蛍光X線のスペクトルに基づいて、付着物質に含まれる元素の種類及び付着物質の量を特定し、有機絶縁膜42の表面の付着物質の量が規定値以下か否かを評価する。   Thereafter, the semiconductor wafer 40 processed in the production line is placed on the sample stage 4 of the test apparatus 10 of FIG. Then, the fluorescent X-rays from the adhered substance on the surface of the organic insulating film 42 are detected by the semiconductor device inspection method described with reference to FIGS. Then, based on the detected fluorescent X-ray spectrum, the type of the element contained in the adhering substance and the amount of the adhering substance are specified, and whether or not the amount of the adhering substance on the surface of the organic insulating film 42 is equal to or less than the specified value. evaluate.

ここで、規定値以上の付着物質が検出された場合には、付着物質に含まれる元素に基づいて付着物質の発生原因を特定するとともに、付着物質が規定値以下となるように製造ラインの管理を行う。   Here, if an adhering substance exceeding the specified value is detected, the cause of the adhering substance is identified based on the elements contained in the adhering substance, and the production line is controlled so that the adhering substance is below the specified value. I do.

このように、本実施形態の半導体装置の製造方法によれば、有機絶縁膜の表面の汚染状態に基づいた製造ラインの管理によって、信頼性に優れた半導体装置を製造できる。   Thus, according to the semiconductor device manufacturing method of the present embodiment, a semiconductor device having excellent reliability can be manufactured by managing the manufacturing line based on the contamination state of the surface of the organic insulating film.

以上の各実施形態に関し、更に以下の付記を開示する。   Regarding the above embodiments, the following additional notes are disclosed.

(付記1)基板の上方に反射膜と薄膜とを順に形成してなる試料の表面に、前記反射膜の臨界角よりも小さい入射角でX線を照射するステップと、
前記X線の照射により前記薄膜表面の付着物質から放出される蛍光X線を検出するステップと、
を有することを特徴とする半導体装置の検査方法。
(Appendix 1) A step of irradiating the surface of a sample formed by sequentially forming a reflective film and a thin film above a substrate with an incident angle smaller than the critical angle of the reflective film;
Detecting fluorescent X-rays emitted from the adhered substance on the surface of the thin film by irradiation with the X-rays;
A method for inspecting a semiconductor device, comprising:

(付記2)前記薄膜は、前記反射膜よりも密度が低い膜であることを特徴とする付記1に記載の半導体装置の検査方法。   (Additional remark 2) The said thin film is a film | membrane whose density is lower than the said reflecting film, The inspection method of the semiconductor device of Additional remark 1 characterized by the above-mentioned.

(付記3)前記反射膜の蛍光X線のピーク波長は、前記付着物質に含まれる元素の蛍光X線のピーク波長と異なることを特徴とする付記1又は2に記載の半導体装置の検査方法。   (Supplementary note 3) The method for inspecting a semiconductor device according to Supplementary note 1 or 2, wherein a peak wavelength of fluorescent X-rays of the reflective film is different from a peak wavelength of fluorescent X-rays of an element contained in the attached substance.

(付記4)前記反射膜の材料は、前記X線を発生させるX線源のターゲットと同じ材料であることを特徴とする付記1乃至3の何れか1項に記載の半導体装置の検査方法。   (Supplementary note 4) The semiconductor device inspection method according to any one of supplementary notes 1 to 3, wherein a material of the reflective film is the same material as a target of the X-ray source that generates the X-rays.

(付記5)前記薄膜の材料は、有機材料又は多孔質材料であることを特徴とする付記1乃至4の何れか1項に記載の半導体装置の検査方法。   (Supplementary note 5) The semiconductor device inspection method according to any one of supplementary notes 1 to 4, wherein the material of the thin film is an organic material or a porous material.

(付記6)前記X線はCr(クロム)のKα線であることを特徴とする付記1乃至5の何れか1項に記載の半導体装置の検査方法。   (Supplementary note 6) The method for inspecting a semiconductor device according to any one of supplementary notes 1 to 5, wherein the X-ray is a Kα ray of Cr (chromium).

(付記7)前記蛍光X線のスペクトルに基づいて、前記付着物質に含まれる元素を検出することを特徴とする付記1乃至6の何れか1項に記載の半導体装置の検査方法。   (Supplementary note 7) The semiconductor device inspection method according to any one of supplementary notes 1 to 6, wherein an element contained in the adhering substance is detected based on a spectrum of the fluorescent X-ray.

(付記8)基板の上方に、反射膜と薄膜とを順に形成する工程と、
前記薄膜の表面に、前記反射膜の臨界角よりも小さい入射角でX線を照射する工程と、
前記X線の照射により前記薄膜表面の付着物質から放出される蛍光X線を検出する工程と、
を有することを特徴とする半導体装置の製造方法。
(Appendix 8) A step of sequentially forming a reflective film and a thin film above the substrate;
Irradiating the surface of the thin film with X-rays at an incident angle smaller than the critical angle of the reflective film;
Detecting fluorescent X-rays emitted from the adhered substance on the surface of the thin film by irradiation of the X-rays;
A method for manufacturing a semiconductor device, comprising:

(付記9)前記基板は、前記薄膜で覆われた半導体チップを備え、前記反射膜は前記半導体チップの横に設けられていることを特徴とする付記8に記載の半導体装置の製造方法。   (Additional remark 9) The said board | substrate is provided with the semiconductor chip covered with the said thin film, The said reflective film is provided beside the said semiconductor chip, The manufacturing method of the semiconductor device of Additional remark 8 characterized by the above-mentioned.

(付記10)前記反射膜及び薄膜は前記基板の上面全面を覆うとともに、
半導体装置の製造ラインにおいて所定数の半導体ウエハの処理が完了する毎に前記基板を前記製造ラインに供給する工程を更に有し、
前記製造ラインで処理された前記基板の前記蛍光X線の検出結果に基づいて、前記製造ラインの管理を行うことを特徴とする付記8に記載の半導体装置の製造方法。
(Appendix 10) The reflective film and the thin film cover the entire upper surface of the substrate,
A step of supplying the substrate to the production line every time processing of a predetermined number of semiconductor wafers is completed in the production line of the semiconductor device;
9. The method of manufacturing a semiconductor device according to appendix 8, wherein the manufacturing line is managed based on a detection result of the fluorescent X-rays of the substrate processed in the manufacturing line.

1…X線源、1a…フィラメント、1b…ターゲット、2…分光結晶、3…スリット板、4…試料台、5…X線検出器、10…検査装置、11、21、26…試料、12、22、80…基板、13、24、41…反射膜、14、25、35、42、81…薄膜(有機絶縁膜)、23…酸化シリコン膜、30、40…半導体ウエハ、31…チップ領域、32…モニタ領域、33…半導体チップ、34…モニタパターン、36…ビア、37…配線、82…X線、82a…入射X線、82b…反射X線、83、84…蛍光X線、86…付着物質、90…マトリクス、91…ラバーパーティクル。   DESCRIPTION OF SYMBOLS 1 ... X-ray source, 1a ... Filament, 1b ... Target, 2 ... Spectral crystal, 3 ... Slit plate, 4 ... Sample stand, 5 ... X-ray detector, 10 ... Inspection apparatus, 11, 21, 26 ... Sample, 12 , 22, 80 ... substrate, 13, 24, 41 ... reflective film, 14, 25, 35, 42, 81 ... thin film (organic insulating film), 23 ... silicon oxide film, 30, 40 ... semiconductor wafer, 31 ... chip region , 32 ... monitor region, 33 ... semiconductor chip, 34 ... monitor pattern, 36 ... via, 37 ... wiring, 82 ... X-ray, 82a ... incident X-ray, 82b ... reflected X-ray, 83, 84 ... fluorescent X-ray, 86 ... adhesive substances, 90 ... matrix, 91 ... rubber particles.

Claims (5)

基板の上方に反射膜と薄膜とを順に形成してなる試料の表面に、前記反射膜の臨界角よりも小さい入射角でX線を照射するステップと、
前記X線の照射により前記薄膜表面の付着物質から放出される蛍光X線を検出するステップと、
を有することを特徴とする半導体装置の検査方法。
Irradiating the surface of the sample formed by sequentially forming a reflective film and a thin film above the substrate with X-rays at an incident angle smaller than the critical angle of the reflective film;
Detecting fluorescent X-rays emitted from the adhered substance on the surface of the thin film by irradiation with the X-rays;
A method for inspecting a semiconductor device, comprising:
前記薄膜は、前記反射膜よりも密度が低い膜であることを特徴とする請求項1に記載の半導体装置の検査方法。   2. The semiconductor device inspection method according to claim 1, wherein the thin film is a film having a density lower than that of the reflective film. 前記反射膜の蛍光X線のピーク波長は、前記汚染物質に含まれる元素の蛍光X線のピーク波長と異なることを特徴とする請求項1又は請求項2に記載の半導体装置の検査方法。   3. The semiconductor device inspection method according to claim 1, wherein a peak wavelength of fluorescent X-rays of the reflective film is different from a peak wavelength of fluorescent X-rays of elements contained in the contaminant. 基板の上方に、反射膜と薄膜とを順に形成する工程と、
前記薄膜の表面に、前記反射膜の臨界角よりも小さい入射角でX線を照射する工程と、
前記X線の照射により前記薄膜表面の付着物質から放出される蛍光X線を検出する工程と、
を有することを特徴とする半導体装置の製造方法。
Forming a reflective film and a thin film in order above the substrate;
Irradiating the surface of the thin film with X-rays at an incident angle smaller than the critical angle of the reflective film;
Detecting fluorescent X-rays emitted from the adhered substance on the surface of the thin film by irradiation of the X-rays;
A method for manufacturing a semiconductor device, comprising:
前記基板は、前記薄膜で覆われた半導体チップを備え、前記反射膜は前記半導体チップの横に設けられていることを特徴とする請求項4に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 4, wherein the substrate includes a semiconductor chip covered with the thin film, and the reflective film is provided beside the semiconductor chip.
JP2011182583A 2011-08-24 2011-08-24 Semiconductor device inspection method and semiconductor device manufacturing method Expired - Fee Related JP5887760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182583A JP5887760B2 (en) 2011-08-24 2011-08-24 Semiconductor device inspection method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182583A JP5887760B2 (en) 2011-08-24 2011-08-24 Semiconductor device inspection method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2013044644A true JP2013044644A (en) 2013-03-04
JP5887760B2 JP5887760B2 (en) 2016-03-16

Family

ID=48008665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182583A Expired - Fee Related JP5887760B2 (en) 2011-08-24 2011-08-24 Semiconductor device inspection method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5887760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057842A (en) * 2019-05-31 2019-07-26 苏州大学 It is a kind of for detecting the device of semiconductor material X-ray performance
WO2023145236A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Identification device that detects foreign matter and operates using fluorescence x-rays
US11971370B2 (en) 2022-01-31 2024-04-30 Canon Anelva Corporation Inspection apparatus and inspection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206240A (en) * 1992-01-30 1993-08-13 Matsushita Electron Corp Semiconductor substrate for fluorescent x-ray analysis
JPH07297245A (en) * 1994-04-27 1995-11-10 Piyuaretsukusu:Kk Sample plate for analyzing
JPH0943171A (en) * 1995-07-28 1997-02-14 Nec Corp Total reflection fluorescent x-ray analyzing wafer
JP2000055841A (en) * 1998-08-13 2000-02-25 Fujitsu Ltd X-ray analysis method
JP2004340879A (en) * 2003-05-19 2004-12-02 Tdk Corp Analyzing method and manufacturing method of display element
JP2005098923A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Method of evaluating thickness and thickness distribution of thin film
JP2006222233A (en) * 2005-02-09 2006-08-24 Fujitsu Ltd Semiconductor equipment, device formation substrate, wiring connection testing method, and manufacturing method of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206240A (en) * 1992-01-30 1993-08-13 Matsushita Electron Corp Semiconductor substrate for fluorescent x-ray analysis
JPH07297245A (en) * 1994-04-27 1995-11-10 Piyuaretsukusu:Kk Sample plate for analyzing
JPH0943171A (en) * 1995-07-28 1997-02-14 Nec Corp Total reflection fluorescent x-ray analyzing wafer
JP2000055841A (en) * 1998-08-13 2000-02-25 Fujitsu Ltd X-ray analysis method
JP2004340879A (en) * 2003-05-19 2004-12-02 Tdk Corp Analyzing method and manufacturing method of display element
JP2005098923A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Method of evaluating thickness and thickness distribution of thin film
JP2006222233A (en) * 2005-02-09 2006-08-24 Fujitsu Ltd Semiconductor equipment, device formation substrate, wiring connection testing method, and manufacturing method of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057842A (en) * 2019-05-31 2019-07-26 苏州大学 It is a kind of for detecting the device of semiconductor material X-ray performance
WO2023145236A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Identification device that detects foreign matter and operates using fluorescence x-rays
WO2023145238A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Inspection device and inspection method
WO2023145235A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Inspection device and inspection method
WO2023145101A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Inspection device and inspection method
WO2023145237A1 (en) * 2022-01-31 2023-08-03 キヤノンアネルバ株式会社 Inspection device and inspection method
US11921059B2 (en) 2022-01-31 2024-03-05 Canon Anelva Corporation Inspection apparatus and inspection method
US11927554B2 (en) 2022-01-31 2024-03-12 Canon Anelva Corporation Inspection apparatus and inspection method
US11971370B2 (en) 2022-01-31 2024-04-30 Canon Anelva Corporation Inspection apparatus and inspection method

Also Published As

Publication number Publication date
JP5887760B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
US6381303B1 (en) X-ray microanalyzer for thin films
JP5722861B2 (en) Inspection method and inspection apparatus
KR100187612B1 (en) Method of detecting the position and the content of fine foreign matter on substrates and analyzers used therefor
JP5165852B2 (en) Dishing and tilting detection using X-ray fluorescence
US6810105B2 (en) Methods and apparatus for dishing and erosion characterization
US6351516B1 (en) Detection of voids in semiconductor wafer processing
JP2007502421A (en) X-ray fluorescence system with an aperture mask for the analysis of patterned surfaces
TWI761788B (en) Device and substrate assisted x-ray leakage method for ultrathin film thickness measurement
US8460946B2 (en) Methods of processing and inspecting semiconductor substrates
KR20150130246A (en) Method for accurately determining the thickness and/or elemental composition of small features on thin-substrates using micro-xrf
US6788760B1 (en) Methods and apparatus for characterizing thin films
JP5887760B2 (en) Semiconductor device inspection method and semiconductor device manufacturing method
WO2012153462A1 (en) Method for determining film thickness of soi layer of soi wafer
JP2010236968A (en) Examining method and examining apparatus
JP2009288016A (en) Fluorescent x-ray analyzer and evaluation system of semiconductor device using it
JP4948009B2 (en) Semiconductor device manufacturing method and semiconductor device film forming apparatus
JP2009099820A (en) Inspection device, inspection method, and manufacturing method of semiconductor device
US20130089178A1 (en) X-ray inspection of bumps on a semiconductor substrate
KR20040072780A (en) Method for measuring a thickness of a thin layer
KR100694597B1 (en) Method for inspecting a defect of pattern in semiconductor device
Otte et al. Identification of foreign particles in packages of failed products by application of our modified failure analysis flow
JP3730636B2 (en) Analysis method and display element manufacturing method
JP4966160B2 (en) Film thickness measurement method
TWI399536B (en) Processes for testing a region for an analyte and a process for forming an electronic device
JP2009075018A (en) Fluorescent x-ray analysis apparatus, and fluorescent x-ray analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5887760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees