JP2013044616A - Partial discharge position locating method and partial discharge position locating device - Google Patents

Partial discharge position locating method and partial discharge position locating device Download PDF

Info

Publication number
JP2013044616A
JP2013044616A JP2011182035A JP2011182035A JP2013044616A JP 2013044616 A JP2013044616 A JP 2013044616A JP 2011182035 A JP2011182035 A JP 2011182035A JP 2011182035 A JP2011182035 A JP 2011182035A JP 2013044616 A JP2013044616 A JP 2013044616A
Authority
JP
Japan
Prior art keywords
winding
discharge source
discharge
arrival time
partial discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011182035A
Other languages
Japanese (ja)
Other versions
JP5866680B2 (en
Inventor
Masahiro Kosako
雅裕 小迫
Masayuki Hikita
政幸 匹田
Hidenobu Koide
英延 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Fuji Electric Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Fuji Electric Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2011182035A priority Critical patent/JP5866680B2/en
Publication of JP2013044616A publication Critical patent/JP2013044616A/en
Application granted granted Critical
Publication of JP5866680B2 publication Critical patent/JP5866680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of a partial discharge position locating operation in a case a position of a partial discharge source of a stationary winding apparatus is inside the winding.SOLUTION: When at least one AE sensor is mounted on a tank wall of an oil-immersed transformer and also the position of the partial discharge source is located based on an AE signal output from the AE sensor by using a partial discharge current flowing through a neutral grounding line as a trigger, a decision is executed whether the discharge source is positioned inside the winding or on outer circumferential surface part of the winding by performing at least one decision among a first decision performed by whether a rise time α of a direct arrival wave of the AE signal is larger than a set value α* or not, and a second decision performed by whether a first wave of the direct arrival wave of the AE signal is a low frequency component or not, and a third decision same as the second decision based on such a waveform that the AE signal is subject to wavelet transformation. Based on these decision, at least three AE sensors are mounted and the position of the discharge source is located by obtaining a propagation distance from the discharge source to each AE sensor by changing a propagation speed of the discharge sound according to different propagation medium, when the discharge source exists inside the winding, based on an arrival time of the direct arrival wave of the AE signal to be output from each AE sensor and a delay of the arrival time of the high frequency component.

Description

本発明は、部分放電位置標定方法及び部分放電位置標定装置に係り、特に変圧器などの巻線を有する静止巻線機器の部分放電位置の標定精度を向上させる技術に関する。   The present invention relates to a partial discharge position locating method and a partial discharge position locating apparatus, and more particularly to a technique for improving the localization accuracy of a partial discharge position of a stationary winding device having a winding such as a transformer.

電気機器の絶縁劣化診断は、絶縁破壊の前駆現象として発生する部分放電(PD:Partial Discharge)を測定することが最も適切である。部分放電の検出は、部分放電が発生する電磁波を検出して部分放電を検出する方法(特許文献1)、あるいは電気機器の電流に重畳して流れる特有の電流に基づいて部分放電を検出する方法(特許文献2)などが提案されている。しかし、特許文献1に記載の電磁波を検出する方法によれば、診断対象機器に予め電磁波を受信するアンテナを組み込む必要がある。したがって、正常時は不要なアンテナを予め設備し、かつ保守しなければならないという問題がある。この点、特許文献2に記載の技術によれば、診断対象機器の電流に重畳して流れる部分放電電流成分は、一般に、クランプ型の電流検出器を診断対象機器の接地線に装着して検出できるから、診断対象機器に格別な設備を設ける必要はない。しかし、同文献の場合は、部分放電が発生した位置を標定することはできないという問題がある。   It is most appropriate for the insulation deterioration diagnosis of electrical equipment to measure a partial discharge (PD) generated as a precursor of dielectric breakdown. The partial discharge is detected by detecting a partial discharge by detecting an electromagnetic wave generated by the partial discharge (Patent Document 1), or by detecting a partial discharge based on a specific current that flows superimposed on the current of the electric device. (Patent Document 2) has been proposed. However, according to the method for detecting an electromagnetic wave described in Patent Document 1, it is necessary to incorporate an antenna for receiving the electromagnetic wave in advance in the diagnosis target device. Therefore, there is a problem that an unnecessary antenna must be installed and maintained in advance during normal operation. In this regard, according to the technique described in Patent Document 2, the partial discharge current component that flows while being superimposed on the current of the diagnosis target device is generally detected by mounting a clamp-type current detector on the ground line of the diagnosis target device. Therefore, it is not necessary to provide special equipment for the diagnosis target device. However, in the case of this document, there is a problem that the position where the partial discharge occurs cannot be determined.

これに対し、複数の音響センサ(以下、AEセンサという。)を用いて部分放電及びその放電源を特定することが提案されている(特許文献3)。同文献によれば、診断対象である変圧器のタンク外壁に3個以上のAEセンサを取り付け、各AEセンサから出力される部分放電音を電気信号に変換した音響信号(以下、AE信号という。)をウェーブレット変換し、その変換信号に基づいて部分放電の発生及びその放電源の位置を特定することが記載されている。すなわち、変圧器の中性点の接地線に流れる部分放電信号を高周波CTで検知した最初の信号をトリガ信号として、その後に各AEセンサにより検出される部分放電信号を連続して記録する。そして、各AEセンサの部分放電信号にウェーブレット変換を施し、トリガ信号を起点とする経過時間に対応させて、部分放電信号の周波数成分の変化を表す変換信号を生成する。次いで、生成されたウェーブレット変換信号のパターンに基づいて、トリガ信号を起点として放電源からの直達波が各AEセンサに達した到達時間を求め、各AEセンサの到達時間と音波の伝搬速度から放電源と各AEセンサ間の距離を推定し、その距離を半径とする球面の交点を放電源として特定するようにしている。   On the other hand, it has been proposed to specify a partial discharge and its discharge source using a plurality of acoustic sensors (hereinafter referred to as AE sensors) (Patent Document 3). According to this document, an acoustic signal (hereinafter referred to as an AE signal) in which three or more AE sensors are attached to a tank outer wall of a transformer to be diagnosed and partial discharge sound output from each AE sensor is converted into an electrical signal. ), And the generation of partial discharge and the position of the discharge source are specified based on the converted signal. That is, a partial discharge signal detected by each AE sensor is continuously recorded with the first signal obtained by detecting the partial discharge signal flowing through the neutral ground line of the transformer with the high frequency CT as a trigger signal. Then, the wavelet transform is performed on the partial discharge signal of each AE sensor, and a converted signal representing a change in the frequency component of the partial discharge signal is generated in correspondence with the elapsed time starting from the trigger signal. Next, based on the pattern of the generated wavelet transform signal, the arrival time at which the direct wave from the discharge source reaches each AE sensor is determined from the trigger signal as the starting point, and is released from the arrival time of each AE sensor and the propagation speed of the sound wave. The distance between the power source and each AE sensor is estimated, and the intersection of the spherical surfaces having the radius as the distance is specified as the discharge source.

特開2009−25020号公報JP 2009-25020 A 特開平11−326429号公報JP 11-326429 A 特開2007−292700号公報JP 2007-292700 A

しかしながら、特許文献3に記載の方法では、部分放電音の伝搬速度を一律に設定しているので、放電源と各AEセンサ間に異なる伝搬媒質が存在する構造の場合、距離の推定に誤差が含まれるという問題がある。すなわち、診断対象が巻線機器の場合、一般に、鉄心に巻回された巻線を金属製の容器に収容した構造を有する。この場合、巻線と容器の間の空間には、油、空気、絶縁ガスなどの絶縁材が充填されるから、巻線部に発生した音が放電源から各AEセンサに到達するまでに、部分放電音の伝搬速度が異なる巻線部と絶縁材を通ることになる。したがって、一律に設定した伝搬速度と伝搬時間とに基づいて推定する距離は誤差を含むため、放電源の位置標定の精度が低下することになる。   However, in the method described in Patent Document 3, since the propagation speed of the partial discharge sound is set uniformly, in the case of a structure in which different propagation media exist between the discharge source and each AE sensor, there is an error in estimation of the distance. There is a problem of being included. That is, when the object to be diagnosed is a winding device, it generally has a structure in which a winding wound around an iron core is housed in a metal container. In this case, since the space between the winding and the container is filled with an insulating material such as oil, air, and insulating gas, until the sound generated in the winding reaches each AE sensor from the discharge source. It passes through the winding part and the insulating material having different propagation speeds of the partial discharge sound. Therefore, the distance estimated based on the uniformly set propagation speed and propagation time includes an error, so that the accuracy of the position determination of the discharge source is reduced.

本発明が解決しようとする第1の課題は、巻線を備えた静止巻線機器の部分放電源の位置が巻線内部か巻線外周面部かを標定できるようにすることにある。
また、本発明が解決しようとする第2の課題は、第1の課題に加えて、部分放電源の位置が巻線内部の場合の部分放電位置標定の精度を向上させることにある。
A first problem to be solved by the present invention is to be able to determine whether the position of a partial discharge source of a stationary winding device having a winding is the inside of the winding or the outer peripheral surface of the winding.
In addition to the first problem, the second problem to be solved by the present invention is to improve the accuracy of partial discharge position determination when the position of the partial discharge power source is inside the winding.

上記第1の課題を解決するため、本発明の部分放電位置標定方法は、静止巻線機器の外壁に少なくとも1個のAEセンサを装着するとともに、前記静止巻線機器の部分放電を検出する部分放電検出器を装着し、前記部分放電検出器の検出信号をトリガとして前記各AEセンサから出力されるAE信号を演算処理装置に入力し、前記AE信号を記録するとともに、前記AE信号に基づいて演算処理により前記静止巻線機器の部分放電源の位置を標定する部分放電位置標定方法において、前記静止巻線機器の部分放電源の位置を標定する前記演算処理は、第1と第2と第3の判定処理の少なくとも1つの判定処理を備え、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定することを特徴とする。   In order to solve the first problem, a partial discharge position locating method according to the present invention is a part in which at least one AE sensor is mounted on an outer wall of a static winding device and a partial discharge of the static winding device is detected. A discharge detector is mounted, and an AE signal output from each of the AE sensors is input to an arithmetic processing unit using a detection signal of the partial discharge detector as a trigger, and the AE signal is recorded and based on the AE signal. In the partial discharge position locating method for locating the position of the partial discharge power source of the stationary winding device by calculation processing, the calculation processing for locating the position of the partial discharge power source of the stationary winding device includes first, second and second And determining whether the discharge source is located inside the winding of the stationary winding device or on the outer peripheral surface of the winding.

第1判定処理は、前記AE信号の直達波の立ち上り時間αを計測し、前記立ち上り時間αが設定値α*以上か否かを比較して前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する。ここで、立ち上り時間αとは、AE信号の直達波の第1波のゼロクロス点からピークまでの時間をいう。したがって、第1波が低周波成分のときはαが長く、第1波が高周波成分を含むときはαが短くなる。
第2判定処理は、前記AE信号の直達波の到達後の低周波成分と高周波成分を識別し、前記低周波成分の到達時間に対する前記高周波成分の到達時間遅れ(以下、高周波成分の到達時間遅れ又は単に到達時間遅れと略称する。)Δtを計測し、前記到達時間遅れΔtが設定値Δts以上か否かに基づいて、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する。
第3判定処理は、前記AE信号をウェーブレット変換して得られる変換波形データに基づいて、前記到達時間遅れΔtを求め、前記到達時間遅れΔtが設定値Δts以上か否かに基づいて、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する。
In the first determination process, the rising time α of the direct wave of the AE signal is measured, and whether or not the rising time α is equal to or greater than a set value α * is determined so that the discharge source is within the winding of the stationary winding device. Or whether it is located on the outer peripheral surface of the winding. Here, the rise time α is the time from the zero cross point to the peak of the first wave of the direct wave of the AE signal. Therefore, α is long when the first wave is a low-frequency component, and α is short when the first wave includes a high-frequency component.
The second determination process identifies a low frequency component and a high frequency component after arrival of the direct wave of the AE signal, and delays the arrival time of the high frequency component relative to the arrival time of the low frequency component (hereinafter, arrival time delay of the high frequency component). (Or simply abbreviated as arrival time delay)) Δt is measured, and based on whether the arrival time delay Δt is equal to or greater than a set value Δts, the discharge source is either inside the winding of the stationary winding device or the outer periphery of the winding. It is determined whether it is located in.
The third determination process obtains the arrival time delay Δt based on the converted waveform data obtained by wavelet transforming the AE signal, and determines whether the arrival time delay Δt is equal to or greater than a set value Δts. It is determined whether the power source is located inside the winding of the stationary winding device or on the outer peripheral surface of the winding.

このようにして、1個のAEセンサによりAE信号を検出して前記第1乃至第3判定処理の少なくとも1つを実行することにより、前記放電源の位置が巻線内部か巻線外周面部かの判定を行うことができる。そして、判定結果に基づいて、前記部分放電検出器の検出信号が入力されてから前記AE信号の直達波が前記各AEセンサに到達するまでの到達時間Tと、前記巻線内の設定音速と、前記巻線と前記外壁との間に設けられた絶縁材の設定音速とに基づいて、前記各AEセンサから前記放電源までの距離を演算して前記放電源の位置を標定する。なお、放電源の位置を標定する場合は、静止巻線機器の外壁に少なくとも3個のAEセンサを装着する必要がある。   In this way, by detecting at least one of the first to third determination processes by detecting an AE signal by one AE sensor, whether the position of the discharge source is inside the winding or the outer peripheral surface of the winding. Can be determined. Then, based on the determination result, the arrival time T from when the detection signal of the partial discharge detector is input until the direct wave of the AE signal reaches each AE sensor, the set sound speed in the winding, The position of the discharge source is determined by calculating the distance from each AE sensor to the discharge source based on the set sound speed of the insulating material provided between the winding and the outer wall. In order to locate the position of the discharge source, it is necessary to mount at least three AE sensors on the outer wall of the stationary winding device.

上述したように、静止巻線機器の部分放電は、巻線内部で起こる部分放電と、巻線の外周表面又はそれに近い巻線内部(以下、巻線の外周表面部と総称する。)で起こる場合に大きく分けることができる。巻線の外周表面部で発生する部分放電音は、巻線の外周に充填されている油、空気、絶縁ガスなどの絶縁材だけを伝搬してAEセンサに到達するから、その到達時間と絶縁材の音速とにより、誤差なく放電源の位置を標定することができる。   As described above, the partial discharge of the static winding device is caused by the partial discharge occurring inside the winding and the outer peripheral surface of the winding or the vicinity of the winding (hereinafter collectively referred to as the outer peripheral surface of the winding). It can be roughly divided into cases. The partial discharge sound generated on the outer peripheral surface of the winding propagates only through the insulating material such as oil, air, and insulating gas filled in the outer periphery of the winding and reaches the AE sensor. Depending on the sound speed of the material, the position of the discharge source can be determined without error.

しかし、巻線内部で発生した部分放電音は、巻線内部を伝搬して巻線の外周表面部に達し、さらに絶縁材を伝搬してAEセンサに到達する。本発明者らの研究によると、音速(伝搬速度)は、伝搬媒質及び周波数によって異なることが判明した。したがって、単に、巻線内部で発生した部分放電音の到達時間を計測しても、部分放電音の伝搬経路中の伝搬媒質が異なれば、放電源の位置を精度よく標定することはできない。   However, the partial discharge sound generated inside the winding propagates inside the winding to reach the outer peripheral surface of the winding, and further propagates through the insulating material to reach the AE sensor. According to the study by the present inventors, it has been found that the speed of sound (propagation speed) varies depending on the propagation medium and frequency. Therefore, even if the arrival time of the partial discharge sound generated inside the winding is simply measured, if the propagation medium in the propagation path of the partial discharge sound is different, the position of the discharge source cannot be accurately determined.

そこで、油入変圧器の部分放電の伝搬をシミュレーションにより解析したところ、部分放電発生音の巻線内部の音速は周波数によって大きな違いがあり、低周波(例えば30kHz)は、高周波(例えば300kHz)に比べて巻線内部の音速が速いことを知見した。つまり、部分放電発生後、AEセンサに到達する直達波は低周波成分が多く、高周波成分は遅れて到達する。この高周波成分の到達時間遅れΔtは、部分放電発生音の巻線内部の伝搬距離に相関する。したがって、AE信号の周波数成分を識別して高周波成分の到達時間遅れΔtを計測し、巻線内部中の音速データを周波数成分に対応して解析し、予めデータテーブルなどに設定しておくことにより、放電源から巻線外周表面までの伝搬距離Lcを推定することができる。   Therefore, when the propagation of the partial discharge of the oil-filled transformer is analyzed by simulation, the sound speed inside the winding of the partial discharge generated sound varies greatly depending on the frequency, and the low frequency (for example, 30 kHz) is changed to the high frequency (for example, 300 kHz). It was found that the speed of sound inside the winding was faster than that. That is, the direct wave that reaches the AE sensor after the partial discharge occurs has many low-frequency components, and the high-frequency components arrive after a delay. The arrival time delay Δt of the high frequency component correlates with the propagation distance inside the winding of the partial discharge generated sound. Therefore, by identifying the frequency component of the AE signal, measuring the arrival time delay Δt of the high frequency component, analyzing the sound velocity data in the winding corresponding to the frequency component, and setting it in a data table or the like in advance. The propagation distance Lc from the discharge source to the outer peripheral surface of the winding can be estimated.

また、トリガ信号を起点としてAEセンサに到達する直達波の低周波成分の第1波の到達時間Tは、放電源からAEセンサまでの伝搬距離Lに相関し、伝搬距離Lは巻線内部の伝搬距離Lcと絶縁材である油中の伝搬距離Loの和になる。なお、解析結果によれば、低周波成分の音速Vは巻線部と絶縁材でほぼ同じであり、かつ絶縁材中の高周波成分の音速VHOと大差がないことが分かった。そこで、後述する解析データに基づいて、低周波成分の音速Vを設定音速VLS=VHO(例えば1400m/s)としても誤差は少ない。つまり、巻線部と絶縁材中の低周波成分の設定音速VLSを予めデータテーブルなどに設定しておき、到達時間Tと設定音速VLSから、放電源からAEセンサまでの伝搬距離Lを推定できる。そして、先に求めた放電源から巻線外周表面までの伝搬距離Lcを引くことにより、絶縁材中の伝搬距離Loを分離して求めることができる。 The arrival time T of the first wave of the low frequency component of the direct wave reaching the AE sensor with the trigger signal as the starting point is correlated with the propagation distance L from the discharge source to the AE sensor, and the propagation distance L This is the sum of the propagation distance Lc and the propagation distance Lo in oil, which is an insulating material. According to the analysis results, it was found that the sound speed V L of the low frequency component is almost the same between the winding portion and the insulating material, and that there is no great difference from the sound speed V HO of the high frequency component in the insulating material. Therefore, there is little error even if the sound speed V L of the low frequency component is set to the set sound speed V LS = V HO (for example, 1400 m / s) based on analysis data described later. That is, the set sound velocity V LS of the low frequency component in the winding portion and the insulating material is set in advance in a data table or the like, and the propagation distance L from the discharge source to the AE sensor is determined from the arrival time T and the set sound velocity V LS. Can be estimated. Then, by subtracting the propagation distance Lc from the previously determined discharge source to the outer surface of the winding, the propagation distance Lo in the insulating material can be obtained separately.

ここで、第1判定処理の具体的態様は、前記直達波の立ち上り時間αが前記設定値α*以上のとき前記放電源が前記静止巻線機器の巻線内部に位置し、前記直達波の立ち上り時間αが設定値α*未満のとき前記放電源が前記静止巻線機器の巻線の外周面部に位置するものと判定することができる。また、第2又は第3判定処理の具体的態様は、前記到達時間遅れΔtが設定値Δts以下のとき前記放電源が前記静止巻線機器の巻線の外周面部に位置し、前記到達時間遅れΔtが前記設定値Δtsを越えたとき前記放電源が前記静止巻線機器の巻線内部に位置するものと判定することができる。   Here, a specific aspect of the first determination process is that when the rising time α of the direct wave is greater than or equal to the set value α *, the discharge source is located inside the winding of the stationary winding device, and the direct wave When the rise time α is less than the set value α *, it can be determined that the discharge source is located on the outer peripheral surface of the winding of the stationary winding device. Further, a specific aspect of the second or third determination process is that when the arrival time delay Δt is equal to or less than a set value Δts, the discharge source is located on the outer peripheral surface of the winding of the stationary winding device, and the arrival time delay When Δt exceeds the set value Δts, it can be determined that the discharge source is located inside the winding of the stationary winding device.

さらに、位置標定処理の具体的な態様は、前記放電源が前記静止巻線機器の巻線外周面部に位置する場合は、前記到達時間Tと、前記巻線と前記静止巻線機器の外壁との間に設けられた絶縁材の設定音速に基づいて前記各AEセンサから前記放電源までの距離を演算して前記放電源の位置を標定することができる。
また、前記放電源が前記静止巻線機器の巻線内部に位置する場合は、上述したように、AE信号の高周波成分の到達時間遅れΔtを計測し、予めデータテーブルなどに設定された巻線内部の低周波成分の設定音速VLSを乗算することにより、放電源から巻線外周表面までの伝搬距離Lcを推定する。また、トリガ信号を起点としてAEセンサに到達する直達波の低周波成分の第1波の到達時間Tは、放電源からAEセンサまでの伝搬距離L(=Lc+Lo)に相関する。そこで、到達時間Tをデータテーブルなどに設定された低周波成分の設定音速VLSを乗算することにより、放電源からAEセンサまでの伝搬距離Lを推定する。そして、先に求めた放電源から巻線外周表面までの伝搬距離Lcを引いて、絶縁材中の伝搬距離Loを求める。
Further, a specific aspect of the positioning process is that when the discharge source is located on a winding outer peripheral surface portion of the stationary winding device, the arrival time T, the winding and the outer wall of the stationary winding device, The position of the discharge source can be determined by calculating the distance from each AE sensor to the discharge source based on the set sound speed of the insulating material provided between the two.
When the discharge source is located inside the winding of the stationary winding device, as described above, the arrival time delay Δt of the high frequency component of the AE signal is measured, and the winding set in advance in the data table or the like By multiplying the set sound velocity V LS of the internal low frequency component, the propagation distance Lc from the discharge source to the outer peripheral surface of the winding is estimated. The arrival time T of the first wave of the low frequency component of the direct wave that reaches the AE sensor with the trigger signal as a starting point correlates with the propagation distance L (= Lc + Lo) from the discharge source to the AE sensor. Therefore, the propagation distance L from the discharge source to the AE sensor is estimated by multiplying the arrival time T by the set sound velocity V LS of the low frequency component set in the data table or the like. Then, a propagation distance Lc from the previously determined discharge source to the outer peripheral surface of the winding is subtracted to obtain a propagation distance Lo in the insulating material.

このようにして求めた絶縁材中の伝搬距離Loを各AEセンサを中心として巻線外周表面の位置を求める。この位置は、巻線外周表面が円筒状であることから、長円形になる。ここで、部分放電音の伝搬経路は直線であるから、放電源の位置は各AEセンサと巻線外周表面に描いた長円を結んで形成される長円錐の延長線上にあることになる。そこで、この長円錐の延長線上に伝搬距離Lcを延長した長円形を描き、各AEセンサの長円形の交点が求める放電源の位置となる。   The position of the outer peripheral surface of the winding is obtained with the propagation distance Lo in the insulating material obtained in this way as the center of each AE sensor. This position is oval because the outer circumferential surface of the winding is cylindrical. Here, since the propagation path of the partial discharge sound is a straight line, the position of the discharge source is on the extended line of the long cone formed by connecting each AE sensor and an ellipse drawn on the outer peripheral surface of the winding. Therefore, an ellipse extending the propagation distance Lc is drawn on the extended line of the long cone, and the intersection of the ellipses of each AE sensor is the position of the discharge source to be obtained.

なお、前記位置標定処理において、前記放電源が前記静止巻線機器の巻線外周面部に位置する場合には、さらにスネルの法則を適用して前記放電源の位置の合理性を確認することができる。ここで、合理性とは、標定された放電源の位置と前記AEセンサとを結ぶ油中の伝搬経路と、前記AEセンサが取り付けられた外壁内面とのなす音波の入射角が予め設定された範囲内でないときは、前記AEセンサの取り付け位置が不適切であるから、位置を変更して再度標定をやり直す。   In the location determination process, when the discharge source is located on the outer peripheral surface of the winding of the stationary winding device, the rationality of the position of the discharge source can be confirmed by further applying Snell's law. it can. Here, the rationality is that the incident angle of the sound wave formed by the propagation path in oil connecting the position of the determined discharge source and the AE sensor and the inner surface of the outer wall to which the AE sensor is attached is set in advance. If it is not within the range, the mounting position of the AE sensor is inappropriate, so the position is changed and the orientation is performed again.

以上、本発明を油入変圧器を例に説明したが、本発明はこれに限られるものではなく、ガス絶縁変圧器にも適用でき、さらに巻線を備えたリアクトルや分路リアクトル等の静止巻線機器の部分放電の位置標定に適用できることは言うまでもない。また、本発明の部分放電位置標定方法を実施する部分放電位置標定装置は、着脱式のAEセンサと、着脱式の部分放電検出器と、可搬式のパソコンなどを用いて構成することができる。したがって、本発明の部分放電位置標定装置を診断対象の静止巻線機器に常時設置しておく必要はなく、必要な時に装着して部分放電診断及び部分放電位置標定を簡便に、かつ精度よく行うことができる。   As described above, the present invention has been described by taking an oil-filled transformer as an example. However, the present invention is not limited to this, and can be applied to a gas-insulated transformer. Further, a stationary reactor such as a reactor having a winding or a shunt reactor is provided. Needless to say, the present invention can be applied to position location of partial discharge of a winding device. Moreover, the partial discharge position locating apparatus that implements the partial discharge position locating method of the present invention can be configured using a detachable AE sensor, a detachable partial discharge detector, a portable personal computer, and the like. Therefore, it is not necessary to always install the partial discharge position locating apparatus of the present invention in the stationary winding device to be diagnosed, and it is installed when necessary to perform partial discharge diagnosis and partial discharge position determination easily and accurately. be able to.

本発明によれば、巻線を備えた静止巻線機器の部分放電源の位置をAEセンサを用いて標定するとともに、その標定精度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, while locating the position of the partial discharge source of the static winding apparatus provided with the coil | winding using an AE sensor, the positioning precision can be improved.

本発明の一実施形態の部分放電位置標定方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the partial discharge position location method of one Embodiment of this invention. 本発明の部分放電位置標定方法を適用した一実施形態の部分放電位置標定装置のブロック構成図である。It is a block block diagram of the partial discharge position location apparatus of one Embodiment to which the partial discharge position location method of this invention is applied. 本発明の一実施形態の部分放電位置標定方法を適用する一例の油入変圧器の断面構成を示す図である。It is a figure which shows the cross-sectional structure of an example of an oil-filled transformer which applies the partial discharge position location method of one Embodiment of this invention. 油入変圧器の巻線最外周表面部(タップ巻線外側)すなわち油中側で部分放電が発生した場合のAE信号の波形図及びウェーブレット変換信号の波形図を示す図である。It is a figure which shows the waveform figure of the AE signal and the waveform figure of a wavelet transformation signal when partial discharge generate | occur | produces in the winding outermost periphery surface part (tap winding outer side), ie, oil side, of an oil-filled transformer. 油入変圧器の1次巻線の外周表面部で部分放電が発生した場合のAE信号の波形図及びウェーブレット変換信号の波形図を示す図である。It is a figure which shows the waveform figure of the AE signal when the partial discharge generate | occur | produces in the outer peripheral surface part of the primary winding of an oil-filled transformer, and the waveform figure of a wavelet transform signal. 油入変圧器の2次巻線の外周表面部で部分放電が発生した場合のAE信号の波形図及びウェーブレット変換信号の波形図を示す図である。It is a figure which shows the waveform diagram of the AE signal when the partial discharge generate | occur | produces in the outer peripheral surface part of the secondary winding of an oil-filled transformer, and the waveform diagram of a wavelet transform signal. 油入変圧器の3次巻線の外周表面部で部分放電が発生した場合のAE信号の波形図及びウェーブレット変換信号の波形図を示す図である。It is a figure which shows the waveform diagram of the AE signal when the partial discharge generate | occur | produces in the outer peripheral surface part of the tertiary winding of an oil-filled transformer, and the waveform diagram of a wavelet transform signal. 油入変圧器の3次巻線の内面部(鉄心側)で部分放電が発生した場合のAE信号の波形図及びウェーブレット変換信号の波形図を示す図である。It is a figure which shows the waveform figure of the AE signal when the partial discharge generate | occur | produces in the inner surface part (iron core side) of the tertiary winding of an oil-filled transformer, and the waveform figure of a wavelet transformation signal. 油入変圧器のタンク壁から垂直距離にある放電源の音がAEセンサに到達する到達時間との解析結果を示す線図である。It is a diagram which shows the analysis result with the arrival time when the sound of the discharge source in the perpendicular distance from the tank wall of the oil-filled transformer reaches the AE sensor. 部分放電位置標定の一例を説明する図である。It is a figure explaining an example of partial discharge position location. 部分放電位置標定の一例を説明する図である。It is a figure explaining an example of partial discharge position location. スメルの法則を適用して標定の妥当性を評価する一例を説明する図である。It is a figure explaining an example which applies the Semel's law and evaluates the validity of orientation.

以下、本発明の部分放電位置標定方法の一実施形態を図面を参照しながら説明する。図1は本発明の一実施形態の部分放電位置標定方法を油入変圧器の部分放電位置標定に適用した場合のフローチャートであり、図2は図1の一実施形態の部分放電位置標定方法を実施する装置の全体構成図である。図2に示すように、本実施形態の部分放電位置標定装置は、静止巻線機器である油入変圧器1の外壁であるタンク壁2に着脱自在に装着可能な少なくとも3個のAEセンサ11A,B,Cを備えている。また、油入変圧器1の中性点接地線3に着脱自在にクランプされた高周波変流器12を備えている。高周波変流器12は、接地線3に流れる部分放電電流を検出する部分放電検出器である。AEセンサ11A,B,Cは、油入変圧器1の内部で発生する部分放電の発生音を電気信号のAE信号に変換する。AEセンサ11A,B,Cから出力されるAE信号は、それぞれアンプ13によって増幅処理されて演算処理装置を構成するパソコン15に入力されている。また、高周波変流器12の出力である部分放電検出信号は、部分放電位置標定方法を開始するトリガ信号としてパソコン15に入力されている。また、パソコン15は、周知のように、中央演算処理装置であるCPU、記憶装置、液晶表示装置、キーボードやマウスなどの入力装置を備えて構成されている。   Hereinafter, an embodiment of a partial discharge position locating method of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart when the partial discharge position locating method of one embodiment of the present invention is applied to the partial discharge position locating of an oil-filled transformer, and FIG. 2 shows the partial discharge position locating method of one embodiment of FIG. It is a whole block diagram of the apparatus to implement. As shown in FIG. 2, the partial discharge position locating device of the present embodiment has at least three AE sensors 11A that can be detachably attached to a tank wall 2 that is an outer wall of an oil-filled transformer 1 that is a stationary winding device. , B, C. In addition, a high-frequency current transformer 12 that is detachably clamped to the neutral point grounding wire 3 of the oil-filled transformer 1 is provided. The high-frequency current transformer 12 is a partial discharge detector that detects a partial discharge current flowing through the ground wire 3. The AE sensors 11A, 11B, and 11C convert partial sound generated in the oil-filled transformer 1 into an AE signal that is an electrical signal. The AE signals output from the AE sensors 11A, 11B, and 11C are amplified by the amplifier 13 and input to the personal computer 15 constituting the arithmetic processing unit. The partial discharge detection signal that is the output of the high-frequency current transformer 12 is input to the personal computer 15 as a trigger signal for starting the partial discharge position locating method. As is well known, the personal computer 15 includes a central processing unit such as a CPU, a storage device, a liquid crystal display device, and input devices such as a keyboard and a mouse.

図3に、油入変圧器1の内部構造の断面図を示す。同図は、1相の巻線部の軸方向中央部の軸心からタンク壁2までの断面構造を示している。図示のように、巻線部の中心側から鉄心31,3次巻線32,2次巻線33,1次巻線34、タップ巻線35が、それぞれ絶縁油層36を介して配置されている。タップ巻線35の外周表面からタンク壁2の内表面の間には、絶縁油37が充填されている。また、タンク壁2の外表面にAEセンサ11が取り付けられている。また、説明の都合上、図中○印により、放電源38の位置を仮定している。   FIG. 3 shows a cross-sectional view of the internal structure of the oil-filled transformer 1. The figure shows a cross-sectional structure from the axial center of the central portion in the axial direction of the winding portion of one phase to the tank wall 2. As shown in the figure, an iron core 31, a tertiary winding 32, a secondary winding 33, a primary winding 34, and a tap winding 35 are arranged from the center side of the winding portion via an insulating oil layer 36, respectively. . An insulating oil 37 is filled between the outer peripheral surface of the tap winding 35 and the inner surface of the tank wall 2. An AE sensor 11 is attached to the outer surface of the tank wall 2. For convenience of explanation, the position of the discharge source 38 is assumed by a circle in the figure.

このように構成される実施形態の部分放電位置標定装置を用いて部分放電の位置を標定する手順について、図1に示したフローチャートに沿って説明する。まず、図2のように、部分放電位置標定装置を設置してパソコン15を立ち上げて部分放電の位置標定処理を開始する。
(ステップS1)
高周波変流器12からトリガ信号が入力されるとステップS2以降の処理が行われる。
(ステップS2、S3)
各AEセンサ11(A〜C)からAE信号を取得する。AE信号が取得されない場合、又は信号強度が不十分な場合は、十分な強度のAE信号が取得されるまで、各AEセンサ11(A〜C)の取り付け位置を変更する。
The procedure for locating the partial discharge using the partial discharge position locating device of the embodiment configured as described above will be described along the flowchart shown in FIG. First, as shown in FIG. 2, the partial discharge position locator is installed, the personal computer 15 is started up, and the partial discharge position locating process is started.
(Step S1)
When a trigger signal is input from the high-frequency current transformer 12, the processing after step S2 is performed.
(Steps S2, S3)
An AE signal is acquired from each AE sensor 11 (A to C). When the AE signal is not acquired or when the signal intensity is insufficient, the attachment position of each AE sensor 11 (A to C) is changed until an AE signal with sufficient intensity is acquired.

(ステップS4)
設定された閾値を超える強度のAE信号が取得されたら、パソコン15内のメモリに、例えば、図4の上部に示すようなAE信号の波形を記録する。なお、この波形データはディジタル変換された波形データである。
(ステップS5)
ここで、静止巻線機器である油入変圧器1の部分放電は、巻線内部で起こる部分放電と、巻線の外周表面部で起こる場合に大きく分けることができる。そこで、ステップS5では、取得したAE信号の波形データに基づいて、部分放電の放電源38がタップ巻線35よりも内部か、タップ巻線35よりも外部かを判断する。この判定は、AE信号の直達波の第1波の立ち上り時間αを計測して行う(第1判定処理)。すなわち、本発明の原理は、巻線内部で部分放電が発生した場合は、AE信号の高周波成分が遅れて伝搬されることに基づいている。したがって、直達波の第1波の立ち上り時間αを計測すると、第1波に高周波成分が含まれていれば、立ち上り時間αは短くなる。一方、第1波に高周波成分が含まれていなければ、立ち上り時間αは長くなる。そこで、立ち上り時間の設定値α*(例えば、6μsec)を設定しておき、α≧α*であれば低周波成分が多いことから、放電源38が巻線内部に位置することになる。一方、α<α*であれば放電源38はタップ巻線35の外周表面部に位置すると推定できる。
(Step S4)
When an AE signal having an intensity exceeding a set threshold value is acquired, for example, the waveform of the AE signal as shown in the upper part of FIG. Note that this waveform data is digitally converted waveform data.
(Step S5)
Here, the partial discharge of the oil-filled transformer 1 that is a stationary winding device can be broadly divided into a partial discharge that occurs inside the winding and a case that occurs on the outer peripheral surface of the winding. Therefore, in step S5, it is determined whether the partial discharge discharge source 38 is inside the tap winding 35 or outside the tap winding 35 based on the acquired waveform data of the AE signal. This determination is performed by measuring the rise time α of the first wave of the direct wave of the AE signal (first determination process). That is, the principle of the present invention is based on the fact that when a partial discharge occurs inside the winding, the high-frequency component of the AE signal is propagated with a delay. Therefore, when the rise time α of the first wave of the direct wave is measured, the rise time α is shortened if the first wave contains a high-frequency component. On the other hand, if the first wave does not contain a high frequency component, the rise time α is long. Therefore, a set value α * (for example, 6 μsec) of the rise time is set, and if α ≧ α *, there are many low-frequency components, so that the discharge source 38 is located inside the winding. On the other hand, if α <α *, it can be estimated that the discharge source 38 is located on the outer peripheral surface portion of the tap winding 35.

ちなみに、図4のAE信号波形は、放電源38がタップ巻線35の外周表面部に位置する例である。また、図5は1次巻線34の外周表面部に位置する例、図6は2次巻線33の外周表面部に位置する例、図7は3次巻線32の外周表面部に位置する例、図8は鉄心31の表面部に位置する例を、それぞれ示している。ステップS5の判定は、第1判定処理により、AE信号の直達波の第1波の立ち上り時間αの大小で放電源38が、巻線内部に位置するか、あるいはタップ巻線35の外周表面部(油中)に位置するかを識別した。これに代えて、第2判定処理により、図4〜図8に示したAE信号の波形図に基づいて、同様な判断をすることができる。   Incidentally, the AE signal waveform in FIG. 4 is an example in which the discharge source 38 is located on the outer peripheral surface portion of the tap winding 35. 5 is an example located on the outer peripheral surface portion of the primary winding 34, FIG. 6 is an example located on the outer peripheral surface portion of the secondary winding 33, and FIG. FIG. 8 shows an example in which the surface of the iron core 31 is located. In step S5, the first determination process determines whether the discharge source 38 is positioned inside the winding with the magnitude of the rise time α of the first wave of the direct wave of the AE signal, or the outer peripheral surface portion of the tap winding 35. It was identified whether it is located (in oil). Instead, the same determination can be made based on the waveform diagram of the AE signal shown in FIGS. 4 to 8 by the second determination process.

第2判定処理は、AE信号の直達波の到達後の低周波成分と高周波成分を識別し、到達時間遅れΔtを計測する。すなわち、図4〜図8に示すように、トリガ信号が入力された時刻T=0から、AE信号の直達波の第1波が到達する到達時間をTとする。そして、第1波の立ち上りの時間範囲Aを経て時間範囲Bに移行し、さらに時間範囲Cに移る。特に、時間範囲AとBを対比すると、図4の場合はそれほど顕著ではないが、他の図5〜図8の例では時間範囲Aでは低周波成分が多く高周波成分は殆ど識別できない。このことは、時間範囲Aでは高周波成分の伝搬が遅れていることを示している。この到達時間遅れΔtは、高周波成分が巻線部において伝搬が遅れることを示しているから、到達時間遅れΔtは巻線部の伝搬距離に相関する。そこで、到達時間遅れΔtが予め設定した設定値Δts以上か否かに基づいて、放電源38が巻線内部かタップ巻線の外周面部に位置するかを判定することができる。   In the second determination process, the low frequency component and the high frequency component after arrival of the direct wave of the AE signal are identified, and the arrival time delay Δt is measured. That is, as shown in FIGS. 4 to 8, let T be the arrival time at which the first wave of the direct wave of the AE signal arrives from time T = 0 when the trigger signal is input. Then, the first wave rises to the time range B through the time range A at which the first wave rises, and further shifts to the time range C. In particular, when comparing the time ranges A and B, the case of FIG. 4 is not so remarkable, but in the other examples of FIGS. 5 to 8, there are many low frequency components in the time range A and almost no high frequency components can be identified. This indicates that in the time range A, the propagation of the high frequency component is delayed. Since this arrival time delay Δt indicates that the high frequency component is delayed in the winding portion, the arrival time delay Δt correlates with the propagation distance of the winding portion. Therefore, based on whether the arrival time delay Δt is greater than or equal to a preset set value Δts, it can be determined whether the discharge source 38 is located inside the winding or on the outer peripheral surface of the tap winding.

なお、第1判定処理又は第2判定処理に代えて、後述するウェーブレット変換処理をした変換波形図に基づいて判定する第3判定処理を用いることができる。さらに、第1乃至第3判定処理の2つ又は3つを行って判定することにより、放電源38が巻線内部か油中かの判別の信頼性を向上することができる。   In addition, it can replace with a 1st determination process or a 2nd determination process, and can use the 3rd determination process determined based on the conversion waveform diagram which performed the wavelet transformation process mentioned later. Further, by performing the determination by performing two or three of the first to third determination processes, it is possible to improve the reliability of determining whether the discharge source 38 is in the winding or in the oil.

上述したステップS5の判定によって、放電源38が巻線内部に位置するか、あるいはタップ巻線35の外周表面部(油中)に位置するかを識別できる。この識別の結果に合わせて、複合絶縁放電位置の標定処理開始S10か、油中放電位置の標定処理開始S20に移行する。   Whether the discharge source 38 is located inside the winding or the outer peripheral surface portion (in oil) of the tap winding 35 can be identified by the determination in step S5 described above. In accordance with the result of this identification, the process shifts to the composite insulation discharge position orientation process start S10 or the oil discharge position orientation process start S20.

[放電源の位置が巻線部内部に位置する場合]
(ステップS11)
ここで、放電源38の位置が、巻線部の軸方向の巻線部中心部か、巻線上下部かを判別する。この判別は、AE信号の強度及び周波数成分の違いに基づいて行う。AE信号の強度は、複数の巻線を経由する多重複合絶縁を伝搬すると減衰が大であるから、AE信号の強度の低下がみられるときは、多重複合絶縁経由と判別する。一方、軸方向の油中を伝搬の場合は減衰が小である。また、巻線部を伝搬しないで巻線の上部又は下部を伝搬する場合は、少数の複合絶縁を伝搬することになり、この場合は減衰が小である。したがって、多重複合絶縁を伝搬した場合は、AE信号の周波数特性を観察すると、線間ギャップによるピーク周波数成分がAE信号の周波数特性に表れるから、多重複合絶縁経由であると判別でき、放電源38が巻線の中心部に位置すると判別する。これに対して、少数の複合絶縁を伝搬した場合は、ブロードな周波数特性が表れるから、少数複合絶縁経由であると判別でき、放電源38の位置が巻線の上部又は下部に位置すると判別する。ステップS11の判定で、放電源38の位置が巻線部中心であると判別された場合はステップS12に移行し、巻線上下部と判別された場合はステップS15に移行する。
[When the position of the discharge source is located inside the winding part]
(Step S11)
Here, it is determined whether the position of the discharge source 38 is the central portion of the winding portion in the axial direction of the winding portion or the upper and lower portions of the winding. This determination is made based on the difference in the intensity and frequency component of the AE signal. The intensity of the AE signal is greatly attenuated when propagating through multiple composite insulations passing through a plurality of windings. Therefore, when the strength of the AE signal is reduced, it is determined that the AE signal is through multiple composite insulations. On the other hand, the attenuation is small when propagating through axial oil. Further, when propagating through the upper or lower portion of the winding without propagating through the winding portion, a small number of composite insulations are propagated, and in this case, the attenuation is small. Therefore, when propagating through the multiple composite insulation, when the frequency characteristics of the AE signal are observed, the peak frequency component due to the gap between the lines appears in the frequency characteristics of the AE signal. Is located at the center of the winding. On the other hand, when a small number of composite insulations are propagated, broad frequency characteristics appear, so that it can be judged that they are via a few composite insulations, and it is judged that the position of the discharge source 38 is located above or below the winding. . If it is determined in step S11 that the position of the discharge source 38 is at the center of the winding portion, the process proceeds to step S12. If it is determined that the position is the upper and lower portions of the winding, the process proceeds to step S15.

[放電源の位置が巻線中心部に位置する場合]
(ステップS12)
ここでは、AE信号に周知のウェーブレット変換を施す。ウェーブレット変換して得られる変換波形データは、図4〜図8の下部に示したものになる。すなわち、ウェーブレット変換で得られる変換波形データは、経過時間軸と、周波数分布と、AE信号強度の情報を備えた波形データである。図4〜図8の下部の波形データにおいて、横軸は経過時間、縦軸は周波数成分、AE信号強度は濃淡で表される。例えば、図5〜図8において長円41で囲った部分は、高周波成分(例えば、100kHz以上)がAEセンサに到達していない時間帯であることが分かる。この点は、それらの図の上部に示したAE信号の波形図と対応している。
[When the discharge source is located in the center of the winding]
(Step S12)
Here, a known wavelet transform is performed on the AE signal. The converted waveform data obtained by the wavelet transform is as shown in the lower part of FIGS. That is, the converted waveform data obtained by the wavelet transform is waveform data including information on the elapsed time axis, frequency distribution, and AE signal intensity. 4 to 8, the horizontal axis represents elapsed time, the vertical axis represents frequency components, and the AE signal intensity is represented by shading. For example, in FIGS. 5 to 8, it can be seen that a portion surrounded by an ellipse 41 is a time zone in which a high-frequency component (for example, 100 kHz or more) does not reach the AE sensor. This point corresponds to the waveform diagram of the AE signal shown in the upper part of these drawings.

(ステップS13)
ステップS12でウェーブレット変換して得られる変換波形データに基づいて、AE信号の高周波成分の到達時間遅れΔtを求める。なお、到達時間遅れΔtを求めれば、上述したようにステップS5の判定に適用できる。つまり、到達時間遅れΔtが設定値Δts以上か否かに基づいて、放電源38が巻線内部か巻線外周面部に位置するかを判定することができる。
(Step S13)
Based on the converted waveform data obtained by the wavelet transform in step S12, the arrival time delay Δt of the high frequency component of the AE signal is obtained. If the arrival time delay Δt is obtained, it can be applied to the determination in step S5 as described above. That is, based on whether the arrival time delay Δt is greater than or equal to the set value Δts, it can be determined whether the discharge source 38 is located inside the winding or the outer peripheral surface of the winding.

(ステップS14)
ここでは、ステップS13で求めた高周波成分の到達時間遅れΔtに基づいて放電源38の位置標定をする。まず、トリガ信号が入力されてからAE信号の直達波が各AEセンサ11A〜11Cに到達するまでの到達時間Tを計測する。次に、巻線内の設定音速と、絶縁材である油中の設定音速とに基づいて、各AEセンサ11A〜11Cから放電源38までの距離を演算して放電源の位置を標定する。
(Step S14)
Here, the position of the discharge source 38 is determined based on the arrival time delay Δt of the high frequency component obtained in step S13. First, the arrival time T from when the trigger signal is input until the direct wave of the AE signal reaches each of the AE sensors 11A to 11C is measured. Next, based on the set sound speed in the winding and the set sound speed in oil as an insulating material, the distance from each AE sensor 11A to 11C to the discharge power source 38 is calculated to determine the position of the discharge power source.

図9に、油入変圧器1の部分放電の伝搬をシミュレーションにより解析して得られた音速データを示す。同図は、横軸がタンク壁2から油入変圧器1の中心部に至る垂直距離を示し、縦軸が放電源38からの放電音の到達時間(T)を示している。図において、◇印は低周波(30kHz)の実測値であり、□印は高周波(300kHz)の実測値である。図中の線52は放電音の油中及び巻線中の音速データ(ほぼ1400m/s)である。図中の線53は、放電音の低周波の巻線中における音速データであり、図中の線54は、放電音の高周波の巻線中における音速データである。このように、部分放電発生音の巻線内部の音速は周波数によって大きな違いがある。この音速の違いを利用して、到達時間遅れΔtは、部分放電発生音の巻線内部の伝搬距離に相関することになる。そこで、図9に示すように、巻線内部中の音速データを周波数成分に対応して解析し、予めデータテーブルなどに設定しておくことにより、放電源から巻線外周表面までの伝搬距離Lwを推定することができる。   FIG. 9 shows sound velocity data obtained by analyzing propagation of partial discharge of the oil-filled transformer 1 by simulation. In the figure, the horizontal axis indicates the vertical distance from the tank wall 2 to the center of the oil-filled transformer 1, and the vertical axis indicates the arrival time (T) of the discharge sound from the discharge source 38. In the figure, the ◇ marks are measured values of low frequency (30 kHz), and the □ marks are measured values of high frequency (300 kHz). The line 52 in the figure is the sound speed data (approximately 1400 m / s) in the oil and winding of the discharge sound. A line 53 in the figure is sound speed data in the low frequency winding of the discharge sound, and a line 54 in the figure is sound speed data in the high frequency winding of the discharge sound. Thus, the sound speed inside the winding of the partial discharge generated sound varies greatly depending on the frequency. Using this difference in sound speed, the arrival time delay Δt correlates with the propagation distance inside the winding of the partial discharge generated sound. Therefore, as shown in FIG. 9, the sound velocity data in the inside of the winding is analyzed corresponding to the frequency component, and set in a data table or the like in advance, so that the propagation distance Lw from the discharge source to the outer circumferential surface of the winding is obtained. Can be estimated.

以下、具体的に説明する。トリガ信号を起点としてAEセンサ11A〜11Cに到達する直達波の低周波成分の第1波の到達時間Tは、放電源からAEセンサ11A〜11Cまでの伝搬距離L(=Lc+Lo)に相関する。ここで、Lcは巻線内部の伝搬距離、Loは油中の伝搬距離である。また、図9の音速データによれば、低周波成分の音速は、巻線内部と油中でほぼ同一値(例えば1400m/s)である。低周波成分の音速を設定音速VLSとすると、放電源38からAEセンサ11A〜11Cまでの伝搬距離Lを下式(1)により推定できる。
L=Lc+Lo=T×VLS (1)
ところで、巻線内部の伝搬距離Lcは、到達時間遅れΔtに相関する。そこで、伝搬距離Lcは低周波の設定音速VLSにより、次式(2)で求めることができる。
Lc=Δt×VLS (2)
式(1)と(2)から、油中の伝搬距離Loは、次式(3)で求まる。
Lo=L−Lc=T×Vc−Δt×VLS (3)
This will be specifically described below. The arrival time T of the first wave of the low-frequency component of the direct wave that reaches the AE sensors 11A to 11C starting from the trigger signal is correlated with the propagation distance L (= Lc + Lo) from the discharge source to the AE sensors 11A to 11C. Here, Lc is a propagation distance inside the winding, and Lo is a propagation distance in oil. Further, according to the sound speed data of FIG. 9, the sound speed of the low frequency component is substantially the same value (for example, 1400 m / s) in the winding and in the oil. Assuming that the sound speed of the low frequency component is the set sound speed V LS , the propagation distance L from the discharge source 38 to the AE sensors 11A to 11C can be estimated by the following equation (1).
L = Lc + Lo = T × V LS (1)
Incidentally, the propagation distance Lc inside the winding correlates with the arrival time delay Δt. Therefore, the propagation distance Lc can be obtained by the following expression (2) from the low-frequency set sound speed VLS .
Lc = Δt × V LS (2)
From the equations (1) and (2), the propagation distance Lo in oil is obtained by the following equation (3).
Lo = L−Lc = T × Vc−Δt × V LS (3)

このようにして、各AEセンサ11A〜11Cについて、油中の伝搬距離Lo〜Loを求め、AEセンサ11A〜11Cを中心としてタップ巻線の外周表面までの距離Lo〜Loの位置を求める。図10、図11に示すように、タップ巻線の外周表面は円筒状であるから、各距離Lo〜Loの位置はそれぞれ長円56A,56B・・・の上に位置することになる。ここで、図10はAEセンサ11A,Bから放電源までのAE信号の伝搬経路を油入変圧器1の側面から見た模式図である。また、図11の左図は、図10においてAEセンサ11A,B側から見た放電源の標定位置の候補を示す模式図であり、右図はAEセンサ11A,Bから放電源までのAE信号の伝搬経路を油入変圧器1の巻線の上面から見た模式図である。 Thus, for each AE sensor 11 A- 11 C, determine the propagation distance Lo A ~Lo C in oil, at a distance Lo A ~Lo C until the outer peripheral surface of tap winding around the AE sensor 11 A- 11 C Ask for. As shown in FIGS. 10 and 11, since the outer peripheral surface of the tap winding is cylindrical, the positions of the distances Lo A to Lo C are located on the ellipses 56A, 56B,. . Here, FIG. 10 is a schematic view of the propagation path of the AE signal from the AE sensors 11 </ b> A and 11 </ b> B to the discharge source as viewed from the side of the oil-filled transformer 1. Further, the left diagram of FIG. 11 is a schematic diagram showing candidates for the location of the discharge source viewed from the AE sensors 11A and 11B in FIG. 10, and the right diagram shows the AE signal from the AE sensors 11A and 11B to the discharge source. It is the schematic diagram which looked at the propagation path of No. from the upper surface of the coil | winding of the oil-filled transformer.

ところで、部分放電音の伝搬経路は直線であるから、放電源38の位置は各AEセンサ11A〜11Cと巻線外周表面に描いた長円56A,56B・・・を結んで形成される長円錐の延長線上にある。そこで、この長円錐の延長線上に伝搬距離LcA,LcB・・・を延長した長円57A,57B・・・を描き、各AEセンサ11A〜11C同士の長円57A,57B・・・の交点を求める。少なくとも3個のAEセンサ11A〜11Cの長円57A,57B、57Cの交点58を求めれば、その交点58が巻線内部の放電源38の位置として標定することができる。このようにして、巻線内部の放電源38の位置を標定して処理を終了する。   By the way, since the propagation path of the partial discharge sound is a straight line, the position of the discharge source 38 is a long cone formed by connecting the AE sensors 11A to 11C and the ellipses 56A, 56B. It is on the extension line. Therefore, the ellipses 57A, 57B,..., Extending the propagation distances LcA, LcB,... Are drawn on the extended line of the long cone, and the intersection points of the ellipses 57A, 57B,. Ask. If the intersection 58 of the ellipses 57A, 57B and 57C of at least three AE sensors 11A to 11C is obtained, the intersection 58 can be determined as the position of the discharge source 38 inside the winding. In this way, the position of the discharge source 38 inside the winding is determined and the process is terminated.

[放電源の位置が巻線部の上又は下部に位置する場合]
(ステップS15)
ステップS11の判断で、放電源38の位置が巻線部の上又は下部に位置すると判断された場合は、ステップS15において、AE信号の強度及び到達時間Tを確認する。
(ステップS16)
ステップS15の判断を支援するために、放電源38が巻線部の上又は下部に位置する場合は、ステップS3に戻り、巻線部の上又は下部から十分な強度のAE信号が得られるように、AEセンサ11A〜11Cの位置を変更し、ステップS2〜S11の処理を繰り返す。
(ステップS17)
ここにおいて、AE信号の強度及び到達時間遅れΔtを求めて、巻線単位すなわち3次巻線32、2次巻線33、1次巻線34、タップ巻線35のどの部位で部分放電が発生したかを判別する。
(ステップS18)
巻線単位でどの巻線の上下部で部分放電が発生したかを判別した結果に基づいて、上記の式(1)〜(3)に基づいて、同様の処理により巻線上下部の位置標定を行って放電源38の位置を標定して、終了する。
[When the position of the discharge source is above or below the winding part]
(Step S15)
If it is determined in step S11 that the position of the discharge source 38 is located above or below the winding portion, the strength of the AE signal and the arrival time T are confirmed in step S15.
(Step S16)
If the discharge source 38 is located above or below the winding part to support the determination at step S15, the process returns to step S3 so that a sufficiently strong AE signal can be obtained from above or below the winding part. In addition, the positions of the AE sensors 11A to 11C are changed, and the processes of steps S2 to S11 are repeated.
(Step S17)
Here, the intensity of the AE signal and the arrival time delay Δt are obtained, and partial discharge occurs in any part of the winding unit, that is, the tertiary winding 32, the secondary winding 33, the primary winding 34, and the tap winding 35. Determine if you did.
(Step S18)
Based on the results of determining which upper and lower portions of the windings are generated in units of windings, the position of the upper and lower portions of the windings is determined by the same processing based on the above formulas (1) to (3). Then, the position of the discharge source 38 is determined and the process is terminated.

[放電源が巻線の外周面部(油中)に位置する場合]
ステップS5の判別で、タップ巻線35の巻線外周表面部に放電源38が位置すると判別した場合は、ステップ20に進んで、ステップS21〜S23の処理を行って油中放電源位置標定を行う。
(ステップS21)
ここで、AE信号にウェーブレット変換を施してウェーブレット変換波形信号を生成する。
(ステップS22)
そして、ウェーブレット変換波形信号に基づいて、トリガ信号が入力されてから放電音が各AEセンサ11A〜11Cに達する到達時間Tを計測する。
(ステップS23)
到達時間Tは、発生源38から油中のみを伝搬して各AEセンサ11A〜11Cの到達した時間であるから、油中の設定音速Vo(=VLS)に基づいて、次式(4)により各AEセンサ11A〜11Cから放電源38までの伝搬距離Lo(LoA〜LoC)をそれぞれ求める。
Lo=T×Vo (4)
そして、求めた伝搬距離Lo(LoA〜LoC)に基づいて、図10で説明した手順で、タップ巻線35の巻線外周表面部の放電源38の位置を標定して終了する。
[When the discharge source is located on the outer peripheral surface of the winding (in oil)]
If it is determined in step S5 that the discharge power source 38 is located on the outer peripheral surface portion of the tap winding 35, the process proceeds to step 20, and the processing in steps S21 to S23 is performed to determine the position of the discharge source in oil. Do.
(Step S21)
Here, wavelet transformation is performed on the AE signal to generate a wavelet transformation waveform signal.
(Step S22)
Based on the wavelet transform waveform signal, the arrival time T at which the discharge sound reaches the AE sensors 11A to 11C after the trigger signal is input is measured.
(Step S23)
The arrival time T is a time when only the AE sensors 11A to 11C reach the oil source 38 from the generation source 38, and therefore, based on the set sound velocity Vo (= V LS ) in the oil, the following equation (4) Thus, the propagation distance Lo (LoA to LoC) from each of the AE sensors 11A to 11C to the discharge source 38 is obtained.
Lo = T × Vo (4)
Then, based on the obtained propagation distance Lo (LoA to LoC), the position of the discharge source 38 on the outer peripheral surface portion of the tap winding 35 is determined by the procedure described in FIG.

(ステップS24)
ステップS24は、適宜選択する付加的な処理であり、ステップS23の放電源38の位置標定が妥当か否かを、スメルの法則を利用して判断する処理である。すなわち、図12に示すように、油中の伝搬距離Loが求まると、AEセンサ11の位置との関係から、タップ巻線の外周表面の放電源の位置が決まり、これにより放電音の伝搬経路Rが決まる。この伝搬経路RとAEセンサ11が取り付けられたタンク壁2の内面とがなす立体角である音波の入射角θiが決まる。この入射角θiがタンク壁2の材質(鉄)により決まる透過率Tにより、全反射する場合は、放電音がAEセンサ11に入射しない。したがって、AEセンサ11の位置を入射角θiが予め設定された範囲θi*内に収まる位置に変更して、再度、放電源の位置標定を実施する。つまり、図12において、伝搬経路Rの場合は透過角θtで透過率Tにより放電音の一部がタンク壁2を透過してAEセンサ11に入射する。しかし、伝搬経路Rの場合は放電音がタンク壁2の内面で全反射し、タンク壁2を透過しないから、AEセンサ11には放電音が入射しない。
(Step S24)
Step S24 is an additional process to be selected as appropriate, and is a process for determining whether or not the position location of the discharge source 38 in step S23 is appropriate using Semel's law. That is, as shown in FIG. 12, when the propagation distance Lo in oil is obtained, the position of the discharge source on the outer peripheral surface of the tap winding is determined from the relationship with the position of the AE sensor 11, and thereby the propagation path of the discharge sound R is determined. An incident angle θi of a sound wave that is a solid angle formed by the propagation path R and the inner surface of the tank wall 2 to which the AE sensor 11 is attached is determined. When the incident angle θi is totally reflected by the transmittance T determined by the material (iron) of the tank wall 2, the discharge sound does not enter the AE sensor 11. Therefore, the position of the AE sensor 11 is changed to a position where the incident angle θi falls within the preset range θi *, and the position determination of the discharge source is performed again. That is, in the case of the propagation path R 1 in FIG. 12, a part of the discharge sound is transmitted through the tank wall 2 and incident on the AE sensor 11 due to the transmittance T at the transmission angle θt. However, in the case of the propagation path R 2 , the discharge sound is totally reflected on the inner surface of the tank wall 2 and does not pass through the tank wall 2, so that the discharge sound does not enter the AE sensor 11.

以上、本発明の一実施形態の部分放電位置標定方法を説明したが、本発明はこれに限られるものではない。例えば、図1の実施形態では、ウェーブレット変換波形に基づいて、到達時間T、到達時間遅れΔtを計測する例を示したが、これに代えて、第2の判定処理で説明したAE信号の波形から直接、到達時間T、到達時間遅れΔtを計測できる。したがって、ステップS12のウェーブレット変換を省略し、ステップS13でAE信号の波形から到達時間T、到達時間遅れΔtを求めて、ステップS14の標定処理を行うことができる。   The partial discharge position locating method according to the embodiment of the present invention has been described above, but the present invention is not limited to this. For example, in the embodiment of FIG. 1, an example in which the arrival time T and the arrival time delay Δt are measured based on the wavelet transform waveform is shown, but instead, the waveform of the AE signal described in the second determination process The arrival time T and the arrival time delay Δt can be measured directly. Therefore, the wavelet transform in step S12 can be omitted, the arrival time T and the arrival time delay Δt can be obtained from the waveform of the AE signal in step S13, and the orientation process in step S14 can be performed.

また、上記実施形態では、本発明を油入変圧器に適用した例に基づいて説明したが、本発明はこれに限られるものではなく、ガス絶縁変圧器にも適用できる。さらに、巻線を備えたリアクトルなどの静止巻線機器の部分放電の位置標定に適用できることは言うまでもない。   Moreover, although the said embodiment demonstrated based on the example which applied this invention to the oil-filled transformer, this invention is not restricted to this, It can apply also to a gas insulation transformer. Furthermore, it goes without saying that the present invention can be applied to position determination of partial discharge of a stationary winding device such as a reactor having a winding.

また、上記実施形態の部分放電位置標定装置は、着脱式のAEセンサと、着脱式の部分放電検出器と、可搬式のパソコンなどを用いて構成することができるから、診断対象の静止巻線機器に常時装着しておく必要はなく、必要な時に装着して部分放電診断及び部分放電位置標定を簡便に行うことができる。   In addition, since the partial discharge position locating device of the above embodiment can be configured using a detachable AE sensor, a detachable partial discharge detector, a portable personal computer, etc., the stationary winding to be diagnosed It is not necessary to always attach to the device, and it is possible to easily perform partial discharge diagnosis and partial discharge position determination by attaching it when necessary.

1 油入変圧器
2 タンク壁
3 中性点接地線
11(11A〜11C) AEセンサ
12 高周波変流器
13 アンプ
15 パソコン
DESCRIPTION OF SYMBOLS 1 Oil-filled transformer 2 Tank wall 3 Neutral point ground line 11 (11A-11C) AE sensor 12 High frequency current transformer 13 Amplifier 15 Personal computer

Claims (6)

静止巻線機器の外壁に少なくとも1個の音響センサを装着するとともに、前記静止巻線機器の部分放電を検出する部分放電検出器を装着し、前記部分放電検出器の検出信号をトリガとして前記各音響センサから出力される音響信号を演算処理装置に入力し、前記音響信号を記録するとともに、前記音響信号に基づいて演算処理により前記静止巻線機器の部分放電源の位置を標定する部分放電位置標定方法において、
前記静止巻線機器の部分放電源の位置を標定する前記演算処理は、
前記音響信号の直達波の立ち上り時間αを計測し、前記立ち上り時間αが設定値α*以上か否かを比較して前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する第1判定処理と、
前記音響信号の直達波の到達後の低周波成分と高周波成分を識別し、前記低周波成分の到達時間に対する前記高周波成分の到達時間遅れΔtを計測し、前記到達時間遅れΔtが設定値Δts以上か否かに基づいて、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する第2判定処理と、
前記音響信号をウェーブレット変換して得られる変換波形データに基づいて、前記音響信号の低周波成分の到達時間に対する高周波成分の到達時間遅れΔtを求め、前記到達時間遅れΔtが設定値Δts以上か否かに基づいて、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する第3判定処理の少なくとも1つの判定処理を備えてなることを特徴とする部分放電位置標定方法。
At least one acoustic sensor is mounted on the outer wall of the stationary winding device, and a partial discharge detector for detecting a partial discharge of the stationary winding device is mounted. A partial discharge position for inputting an acoustic signal output from an acoustic sensor to an arithmetic processing unit, recording the acoustic signal, and locating a position of a partial discharge power source of the stationary winding device by arithmetic processing based on the acoustic signal In the orientation method,
The calculation processing for locating the partial discharge power source of the stationary winding device is:
Measure the rise time α of the direct wave of the acoustic signal, compare whether the rise time α is greater than or equal to a set value α *, and the discharge source is in the winding of the stationary winding device or the outer peripheral surface of the winding A first determination process for determining whether or not it is located;
The low frequency component and the high frequency component after arrival of the direct wave of the acoustic signal are identified, the arrival time delay Δt of the high frequency component with respect to the arrival time of the low frequency component is measured, and the arrival time delay Δt is equal to or greater than a set value Δts. A second determination process for determining whether the discharge source is located inside the winding of the stationary winding device or on the outer peripheral surface of the winding, based on whether or not
Based on the converted waveform data obtained by wavelet transform of the acoustic signal, the arrival time delay Δt of the high frequency component with respect to the arrival time of the low frequency component of the acoustic signal is obtained, and whether the arrival time delay Δt is equal to or greater than a set value Δts. And at least one determination process of a third determination process for determining whether the discharge source is located in the winding or the outer peripheral surface of the stationary winding device. Discharge location method.
前記第1乃至第3判定処理の少なくとも1つを実行して得られる前記放電源の位置が巻線内部か巻線外周面部かの判定結果に基づいて、前記静止巻線機器の外壁に少なくとも3個の前記音響センサを装着し、前記部分放電検出器の検出信号が入力されてから前記各音響センサから出力される前記各音響信号の直達波が前記各音響センサに到達するまでのそれぞれの到達時間Tと、前記巻線内の設定音速と、前記巻線と前記外壁との間に設けられた絶縁材の設定音速とに基づいて、前記各音響センサから前記放電源までの距離を演算して前記放電源の位置を標定する位置標定処理を備えることを特徴とする請求項1に記載の部分放電位置標定方法。   Based on the determination result of whether the position of the discharge source obtained by executing at least one of the first to third determination processes is the inside of the winding or the outer peripheral surface of the winding, at least 3 on the outer wall of the stationary winding device Each of the acoustic sensors is mounted, and the arrival of the direct waves of the acoustic signals output from the acoustic sensors after the detection signals of the partial discharge detectors are input to the acoustic sensors. Based on the time T, the set sound speed in the winding, and the set sound speed of the insulating material provided between the winding and the outer wall, the distance from each acoustic sensor to the discharge source is calculated. The partial discharge position locating method according to claim 1, further comprising a position locating process for locating the position of the discharge source. 前記第1判定処理は、前記立ち上り時間αが前記設定値α*以上のとき前記放電源が前記静止巻線機器の巻線内部に位置し、前記立ち上り時間αが設定値α*未満のとき前記放電源が前記静止巻線機器の巻線の外周面部に位置するものと判定し、
前記第2又は第3判定処理は、前記到達時間遅れΔtが設定値Δts以下のとき前記放電源が前記静止巻線機器の巻線の外周面部に位置し、前記到達時間遅れΔtが前記第設定値Δtsを越えたとき前記放電源が前記静止巻線機器の巻線内部に位置するものと判定し、
前記位置標定処理は、前記放電源が前記静止巻線機器の巻線外周面部に位置する場合は、前記各到達時間Tと、前記巻線と前記静止巻線機器の外壁との間に設けられた絶縁材の設定音速に基づいて前記各音響センサから前記放電源までの距離を演算して前記放電源の位置を標定し、
前記放電源が前記静止巻線機器の巻線内部に位置する場合は、前記各到達時間遅れΔtと、巻線内部中の設定音速VLSとから、前記放電源から巻線外周表面までの各伝搬距離Lcを推定し、前記各到達時間Tと設定音速VLSから前記放電源から前記各音響センサまでのそれぞれの伝搬距離Lを推定し、前記各伝搬距離Lから前記各伝搬距離Lcを差し引いて絶縁材中の各伝搬距離Loを分離して求め、前記各伝搬距離LoとLcに基づいて、前記放電源の位置を標定することを特徴とする請求項1又は2に記載の部分放電位置標定方法。
In the first determination process, when the rise time α is equal to or greater than the set value α *, the discharge source is located inside the winding of the stationary winding device, and when the rise time α is less than the set value α *, Determine that the discharge source is located on the outer peripheral surface of the winding of the stationary winding device,
In the second or third determination process, when the arrival time delay Δt is equal to or less than a set value Δts, the discharge source is positioned on an outer peripheral surface portion of the winding of the stationary winding device, and the arrival time delay Δt is set to the first setting. When the value Δts is exceeded, it is determined that the discharge source is located inside the winding of the stationary winding device,
The positioning process is provided between each of the arrival times T and between the winding and the outer wall of the stationary winding device when the discharge source is located on the outer peripheral surface of the stationary winding device. Calculate the distance from each acoustic sensor to the discharge source based on the set sound speed of the insulating material to determine the position of the discharge source,
When the discharge source is located inside the winding of the stationary winding device, each of the arrival time delay Δt and the set sound velocity V LS inside the winding from the discharge source to the outer peripheral surface of the winding. the propagation distance Lc estimated, the estimate of the respective propagation distance L from the discharge source from the set sound velocity V LS with each arrival time T until the respective acoustic sensors, subtracting the respective propagation distance Lc from said respective propagation distance L 3. The partial discharge position according to claim 1, wherein each propagation distance Lo in the insulating material is obtained separately, and the position of the discharge source is determined based on each propagation distance Lo and Lc. Orientation method.
前記位置標定処理は、前記放電源が前記静止巻線機器の巻線外周面部に位置する場合、さらにスネルの法則を適用して前記放電源の位置の合理性を確認することを特徴とする請求項1乃至3のいずれか1項に記載の部分放電位置標定方法。   The positioning process is characterized in that when the discharge source is located on a winding outer peripheral surface portion of the stationary winding device, the rationality of the position of the discharge source is further confirmed by applying Snell's law. Item 4. The partial discharge position locating method according to any one of Items 1 to 3. 静止巻線機器の外壁に装着される少なくとも3個の音響センサと、前記静止巻線機器の中性点の接地線にクランプされる部分放電を検出する高周波変流器と、前記各音響センサから出力される音響信号と前記高周波変流器の出力信号がトリガ信号として入力される演算処理装置とを備え、前記演算処理装置は前記トリガ信号に基づいて前記音響信号を記憶部に記録するとともに、前記トリガ信号と前記音響信号に基づいて前記静止巻線機器の部分放電源の位置を標定する演算処理部を有してなる部分放電位置標定装置において、
前記演算処理装置は、前記音響信号の直達波の立ち上り時間αを計測し、前記立ち上り時間αが設定値α*以上か否かを比較して前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する第1処理部と、
前記音響信号の直達波の到達後の低周波成分と高周波成分を識別し、前記低周波成分の到達時間に対する前記高周波成分の到達時間遅れΔtを計測し、前記到達時間遅れΔtが設定値Δts以上か否かに基づいて、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する第2処理部と、
前記音響信号をウェーブレット変換して得られる変換波形データに基づいて、前記音響信号の低周波成分の到達時間に対する高周波成分の到達時間遅れΔtを求め、前記到達時間遅れΔtが設定値Δts以上か否かに基づいて、前記放電源が前記静止巻線機器の巻線内部か巻線外周面部に位置するかを判定する第3処理部の少なくとも1つの処理部を備え、
前記第1乃至第3処理部の少なくとも1つを実行して得られる前記放電源の位置が巻線内部か巻線外周面部かの判定結果に基づいて、前記トリガ信号が入力されてから前記音響信号の直達波が前記各音響センサに到達するまでの到達時間Tと、前記巻線内の設定音速と、前記巻線と前記外壁との間に設けられた絶縁材の設定音速とに基づいて、前記各音響センサから前記放電源までの距離を演算して前記放電源の位置を標定する位置標定処理部を備えることを特徴とする部分放電位置標定装置。
From at least three acoustic sensors mounted on the outer wall of a stationary winding device, a high-frequency current transformer for detecting a partial discharge clamped to a neutral ground wire of the stationary winding device, and each acoustic sensor An arithmetic processing device that receives an output acoustic signal and an output signal of the high-frequency current transformer as a trigger signal, and the arithmetic processing device records the acoustic signal in a storage unit based on the trigger signal; In the partial discharge position locating device having a calculation processing unit for locating the position of the partial discharge power source of the stationary winding device based on the trigger signal and the acoustic signal,
The arithmetic processing unit measures the rise time α of the direct wave of the acoustic signal, and compares the rise time α with a set value α * or more to determine whether the discharge source is inside the winding of the stationary winding device. A first processing unit for determining whether the coil is located on the outer peripheral surface of the winding;
The low frequency component and the high frequency component after arrival of the direct wave of the acoustic signal are identified, the arrival time delay Δt of the high frequency component with respect to the arrival time of the low frequency component is measured, and the arrival time delay Δt is equal to or greater than a set value Δts. A second processing unit for determining whether the discharge source is located in a winding of the stationary winding device or a winding outer peripheral surface based on whether or not
Based on the converted waveform data obtained by wavelet transform of the acoustic signal, the arrival time delay Δt of the high frequency component with respect to the arrival time of the low frequency component of the acoustic signal is obtained, and whether the arrival time delay Δt is equal to or greater than a set value Δts. And at least one processing unit of a third processing unit for determining whether the discharge source is located in the winding or the outer peripheral surface of the stationary winding device,
Based on a determination result of whether the position of the discharge source obtained by executing at least one of the first to third processing units is inside the winding or the outer peripheral surface of the winding, the sound is generated after the trigger signal is input. Based on the arrival time T until the direct wave of the signal reaches each acoustic sensor, the set sound speed in the winding, and the set sound speed of the insulating material provided between the winding and the outer wall A partial discharge position locating apparatus comprising: a position locating processing unit that calculates a distance from each acoustic sensor to the discharge source to determine a position of the discharge source.
前記第1判定処理は、前記立ち上り時間αが前記設定値α*以上のとき前記放電源が前記静止巻線機器の巻線内部に位置し、前記立ち上り時間αが設定値α*未満のとき前記放電源が前記静止巻線機器の巻線の外周面部に位置するものと判定し、
前記第2又は第3判定処理は、前記到達時間遅れΔtが設定値Δts以下のとき前記放電源が前記静止巻線機器の巻線の外周面部に位置し、前記到達時間遅れΔtが前記第設定値Δtsを越えたとき前記放電源が前記静止巻線機器の巻線内部に位置するものと判定し、
前記位置標定処理部は、前記放電源が前記静止巻線機器の巻線外周面部に位置する場合は、前記到達時間Tと、前記巻線と前記静止巻線機器の外壁との間に設けられた絶縁材の設定音速に基づいて前記各音響センサから前記放電源までの距離を演算して前記放電源の位置を標定し、
前記放電源が前記静止巻線機器の巻線内部に位置する場合は、前記到達時間遅れΔtと、巻線内部中の設定音速VLSとから、前記放電源から巻線外周表面までの伝搬距離Lcを推定し、前記到達時間Tと設定音速VLSから前記放電源から前記音響センサまでの伝搬距離Lを推定し、前記伝搬距離Lから前記伝搬距離Lcを差し引いて絶縁材中の伝搬距離Loを分離して求め、前記伝搬距離LoとLcに基づいて、前記放電源の位置を標定することを特徴とする請求項5に記載の部分放電位置標定装置。
In the first determination process, when the rise time α is equal to or greater than the set value α *, the discharge source is located inside the winding of the stationary winding device, and when the rise time α is less than the set value α *, Determine that the discharge source is located on the outer peripheral surface of the winding of the stationary winding device,
In the second or third determination process, when the arrival time delay Δt is equal to or less than a set value Δts, the discharge source is positioned on an outer peripheral surface portion of the winding of the stationary winding device, and the arrival time delay Δt is set to the first setting. When the value Δts is exceeded, it is determined that the discharge source is located inside the winding of the stationary winding device,
The position location processing unit is provided between the arrival time T and the winding and the outer wall of the stationary winding device when the discharge source is located on a winding outer peripheral surface portion of the stationary winding device. Calculate the distance from each acoustic sensor to the discharge source based on the set sound speed of the insulating material to determine the position of the discharge source,
When the discharge source is located inside the winding of the stationary winding device, the propagation distance from the discharge source to the outer peripheral surface of the winding from the arrival time delay Δt and the set sound velocity V LS inside the winding Lc is estimated, the propagation distance L from the discharge source to the acoustic sensor is estimated from the arrival time T and the set sound speed V LS, and the propagation distance Lc in the insulating material is subtracted from the propagation distance L. The partial discharge position locating device according to claim 5, wherein the position of the discharge source is determined based on the propagation distances Lo and Lc.
JP2011182035A 2011-08-23 2011-08-23 Partial discharge position locating method and partial discharge position locating apparatus Active JP5866680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182035A JP5866680B2 (en) 2011-08-23 2011-08-23 Partial discharge position locating method and partial discharge position locating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182035A JP5866680B2 (en) 2011-08-23 2011-08-23 Partial discharge position locating method and partial discharge position locating apparatus

Publications (2)

Publication Number Publication Date
JP2013044616A true JP2013044616A (en) 2013-03-04
JP5866680B2 JP5866680B2 (en) 2016-02-17

Family

ID=48008642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182035A Active JP5866680B2 (en) 2011-08-23 2011-08-23 Partial discharge position locating method and partial discharge position locating apparatus

Country Status (1)

Country Link
JP (1) JP5866680B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675611A (en) * 2013-09-29 2014-03-26 广州供电局有限公司 Collection point positioning method and system in partial discharge detection for tubular insulating bus
CN106990303A (en) * 2017-03-15 2017-07-28 国家电网公司 A kind of Diagnosis Method of Transformer Faults
CN108226725A (en) * 2017-12-29 2018-06-29 国网北京市电力公司 Local discharge signal detection method and device
CN108872777A (en) * 2018-05-31 2018-11-23 浙江大学 Winding in Power Transformer state evaluating method based on improved system delay Order- reduction
EP3410131A1 (en) * 2017-05-09 2018-12-05 Siemens Aktiengesellschaft Method and apparatus for the localisation of an electric discharge in an electrical installation
CN112763868A (en) * 2020-12-26 2021-05-07 广东电网有限责任公司电力科学研究院 Local discharge source positioning method and system based on immune particle swarm
CN112816835A (en) * 2020-12-28 2021-05-18 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Partial discharge positioning method based on electroacoustic combined detection signal propagation delay compensation
CN114325274A (en) * 2022-01-10 2022-04-12 西南交通大学 Converter transformer valve side sleeve partial discharge detection system and method
CN116484270A (en) * 2023-06-25 2023-07-25 广东电网有限责任公司珠海供电局 Partial discharge identification method and related device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449984A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Partial discharge diagnosing device for transformer
JPH01145585A (en) * 1987-12-01 1989-06-07 Mitsubishi Electric Corp Locating method of position generating partial discharge
JPH02159580A (en) * 1988-12-13 1990-06-19 Toshiba Corp Detecting method of abnormality of gas-insulated device
JP2002090413A (en) * 2000-09-18 2002-03-27 Toshiba Corp Diagnostic apparatus for insulation abnormality of high- voltage device
JP2002131366A (en) * 2000-10-20 2002-05-09 Toshiba Corp Internal partial discharge monitoring device for high voltage apparatus
JP2007292700A (en) * 2006-04-27 2007-11-08 Toshiba Corp Partial discharge position specifying method of stationary induction apparatus
US20100079148A1 (en) * 2008-09-30 2010-04-01 Korea Electric Power Corporation Uhf partial discharge and its location measuring device for high-voltage power devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449984A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Partial discharge diagnosing device for transformer
JPH01145585A (en) * 1987-12-01 1989-06-07 Mitsubishi Electric Corp Locating method of position generating partial discharge
JPH02159580A (en) * 1988-12-13 1990-06-19 Toshiba Corp Detecting method of abnormality of gas-insulated device
JP2002090413A (en) * 2000-09-18 2002-03-27 Toshiba Corp Diagnostic apparatus for insulation abnormality of high- voltage device
JP2002131366A (en) * 2000-10-20 2002-05-09 Toshiba Corp Internal partial discharge monitoring device for high voltage apparatus
JP2007292700A (en) * 2006-04-27 2007-11-08 Toshiba Corp Partial discharge position specifying method of stationary induction apparatus
US20100079148A1 (en) * 2008-09-30 2010-04-01 Korea Electric Power Corporation Uhf partial discharge and its location measuring device for high-voltage power devices

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675611A (en) * 2013-09-29 2014-03-26 广州供电局有限公司 Collection point positioning method and system in partial discharge detection for tubular insulating bus
CN106990303A (en) * 2017-03-15 2017-07-28 国家电网公司 A kind of Diagnosis Method of Transformer Faults
EP3410131A1 (en) * 2017-05-09 2018-12-05 Siemens Aktiengesellschaft Method and apparatus for the localisation of an electric discharge in an electrical installation
CN108226725A (en) * 2017-12-29 2018-06-29 国网北京市电力公司 Local discharge signal detection method and device
CN108226725B (en) * 2017-12-29 2020-04-24 国网北京市电力公司 Partial discharge signal detection method and device
CN108872777A (en) * 2018-05-31 2018-11-23 浙江大学 Winding in Power Transformer state evaluating method based on improved system delay Order- reduction
CN112763868A (en) * 2020-12-26 2021-05-07 广东电网有限责任公司电力科学研究院 Local discharge source positioning method and system based on immune particle swarm
CN112816835A (en) * 2020-12-28 2021-05-18 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Partial discharge positioning method based on electroacoustic combined detection signal propagation delay compensation
CN112816835B (en) * 2020-12-28 2022-07-01 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Partial discharge positioning method based on electroacoustic combined detection signal propagation delay compensation
CN114325274A (en) * 2022-01-10 2022-04-12 西南交通大学 Converter transformer valve side sleeve partial discharge detection system and method
CN116484270A (en) * 2023-06-25 2023-07-25 广东电网有限责任公司珠海供电局 Partial discharge identification method and related device

Also Published As

Publication number Publication date
JP5866680B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5866680B2 (en) Partial discharge position locating method and partial discharge position locating apparatus
JP5306802B2 (en) Discharge and discharge position measurement device for ultra-high frequency parts of high-voltage power equipment
US20170082769A1 (en) Detection method and detection device of buried metal
JP5410827B2 (en) Electromagnetic wave source determination method and apparatus
US11125725B2 (en) Methods and devices for inspection of pipelines
WO2016158289A1 (en) Method and device for sensing buried metal using synchronous detection method
JP6469388B2 (en) Electric field strength calculation program, electric field strength calculation device, and electric field strength calculation method
JP6242155B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
CN109540053B (en) Single-coil-based method for quickly measuring thickness of metal base material and surface non-metal coating
Hoek et al. Localizing partial discharge in power transformers by combining acoustic and different electrical methods
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
CN209117805U (en) A kind of positioning system of Partial Discharge Sources in electrical equipment
JP2009068914A (en) Inner state measuring instrument, inner state measuring method, program and computer readable storage medium
Hoek et al. Acoustic localisation of partial discharge in power transformers
JP3488579B2 (en) Water leak position detecting method and water leak position detecting device
JP2019109160A (en) Method and apparatus for measuring metal buried depth
Hoek et al. Time-based partial discharge localization in power transformers by combining acoustic and different electrical methods
JP2018059804A (en) Calibration device for nondestructive inspection measurement system, and nondestructive inspection measurement method
JP2013185891A (en) Device and method for ultrasonic flow metering
WO2017127829A1 (en) Excitation and sensing systems and methods for detecting corrosion under insulation
KR20150083593A (en) Apparatus and method for detecting position of buried pipes
US9038472B2 (en) Testing method using guided wave
KR20170105338A (en) Method for estimating location of noise source within watercraft
EP3322977B1 (en) Material inspection using eddy currents
JP6437866B2 (en) Method for setting transmission signal for detection of buried metal and detection device using this setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5866680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250