JP2013044585A - Microorganism inspection device and inspection method - Google Patents

Microorganism inspection device and inspection method Download PDF

Info

Publication number
JP2013044585A
JP2013044585A JP2011181227A JP2011181227A JP2013044585A JP 2013044585 A JP2013044585 A JP 2013044585A JP 2011181227 A JP2011181227 A JP 2011181227A JP 2011181227 A JP2011181227 A JP 2011181227A JP 2013044585 A JP2013044585 A JP 2013044585A
Authority
JP
Japan
Prior art keywords
detection
microorganism
flow path
container
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011181227A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sasaki
康彦 佐々木
Hideki Nakamoto
英樹 中本
Yusuke Watanabe
裕介 渡邊
Mitsuo Takei
三雄 武井
Hisao Saito
久雄 斉藤
Atsushi Ishikawa
淳 石川
Hiroshi Takenaka
啓 竹中
Masahiro Kurihara
昌宏 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2011181227A priority Critical patent/JP2013044585A/en
Publication of JP2013044585A publication Critical patent/JP2013044585A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microorganism inspection device and inspection method capable of confirming a viable cell count is correctly measured by fluorescent flow cytometry.SOLUTION: For a flow state of a detection liquid or a position state of optical detection, information is obtained by various sensors even while measuring the viable cell count to recognize a measurement state. For instance, normal flow and abnormal flow (a cause of abnormality such as leakage of fluid and clogging of a flow path) are recognized by obtaining information from a flow rate sensor (differential pressure meter) and information on a bacteria count frequency distribution from a photodetector as the flow state of the detection liquid, a normal detection position and an abnormal detection position (positional deviation) are recognized by obtaining information from the photodetector as the position state of the optical detection, and the measurement state (whether it is normal or abnormal, and the cause when it is abnormal) is recognized from the information of the flow state and the position state.

Description

本発明は微生物検査装置及び検査方法にかかり、特に、微生物検査チップを用い、蛍光サイトメトリー法により生菌数を計測する微生物検査装置及び検査方法に関する。   The present invention relates to a microorganism testing apparatus and a testing method, and more particularly to a microorganism testing apparatus and a testing method for measuring the number of viable bacteria by a fluorescence cytometry method using a microorganism testing chip.

生菌数計測を行う微生物検査装置として、蛍光フローサイトメトリー法を用いたものがある。蛍光フローサイトメトリー法は、蛍光色素によって染色した検体を含む流体が、小さな径の流路を通過するとき、検体を一個ずつ直接計測する粒子計測方法である。   Some microbiological testing devices that measure the number of viable bacteria use a fluorescent flow cytometry method. The fluorescence flow cytometry method is a particle measuring method in which a fluid containing a specimen stained with a fluorescent dye directly measures the specimen one by one when passing through a small diameter channel.

蛍光フローサイトメトリー法を用いた微生物検査装置では、低価格化を実現し、洗浄の手間を省略するために、検体の個数の測定を行う流路部分(検出流路)をディスポーザブルなチップ(検査チップ)によって形成することが提案されている。検査チップを用いた微生物検査装置では、検査チップを検査装置本体に装着する毎に、検出流路の位置合わせ、即ち、励起光と検出器の焦点に検査チップの検出流路の位置を合わせる作業を行うことになる。このような微生物検査装置としては、例えば、特許文献1や2に記載のものがある。   In microbiological testing equipment using the fluorescence flow cytometry method, a disposable chip (testing channel) that can be used to measure the number of specimens (detection channel) in order to reduce costs and eliminate the hassle of washing. It has been proposed to form by chip. In the microbe inspection apparatus using the inspection chip, every time the inspection chip is mounted on the inspection apparatus body, the detection channel is aligned, that is, the detection channel is aligned with the excitation light and the focus of the detector. Will do. As such a microbe inspection apparatus, there exist a thing of patent documents 1 and 2, for example.

尚、蛍光フローサイトメトリー法ではないが、生化学反応カートリッジ内の微細な流路の詰まりなどを検知する技術として、特許文献3に記載のものがある。特許文献3では、流路の検査を、生化学反応の製造時の出荷前検査として行うことの他に、生化学反応カートリッジを用いて生化学反応を行う際の直前の検査として行うことも記載されている。   In addition, although it is not a fluorescence flow cytometry method, there exists a thing of patent document 3 as a technique which detects clogging of the fine flow path in a biochemical reaction cartridge. Patent Document 3 also describes that the flow path is inspected as a test immediately before the biochemical reaction is performed using the biochemical reaction cartridge in addition to the pre-shipment inspection at the time of manufacturing the biochemical reaction. Has been.

特開2010−256278号公報JP 2010-256278 A 特開2009−281753号公報JP 2009-281753 A 特開2008−139096号公報JP 2008-139096 A

蛍光フローサイトメトリー法で生菌数計測を不具合無く行うためには、検出流路が光学検出に適した場所に位置し、かつ、検体液が検出流路内を流動していることが不可欠である。特に、検出流路を含んだ検査チップを着脱して計測する微生物検査装置の場合は、検査チップを検査装置に装着する毎に検査チップ(検出流路)の位置状態を認識して計測状態を把握することが重要となる。   In order to perform viable counts without failure using the fluorescence flow cytometry method, it is essential that the detection channel is located in a location suitable for optical detection, and that the sample fluid flows in the detection channel. is there. In particular, in the case of a microbiological test apparatus that detaches and measures a test chip including a detection channel, every time the test chip is attached to the test apparatus, the position state of the test chip (detection channel) is recognized and the measurement state is changed. It is important to understand.

特許文献1や2には、分析チップ(検査チップ)を検査装置に取り付けた際に高精度に位置合わせする手法が記載されている。しかし、計測開始後には、分析チップと光学検出装置との位置状態を継続して把握することはなされていない。   Patent Documents 1 and 2 describe a method of aligning with high accuracy when an analysis chip (inspection chip) is attached to an inspection apparatus. However, after the measurement is started, the position state of the analysis chip and the optical detection device is not continuously grasped.

また、特許文献3では、生化学反応カートリッジを用いて生化学反応を行う際の直前の生化学反応カートリッジの検査として流路の検査を行うことが記載されているが、生化学反応を行っている際は流動状態を把握することはなされていない。   Further, Patent Document 3 describes that a flow path is inspected as an inspection of a biochemical reaction cartridge immediately before a biochemical reaction is performed using the biochemical reaction cartridge. It is not possible to grasp the current state when

即ち、特許文献1などに記載されているように、従来、微生物検査装置などでは、検査などの開始前に位置状態や流路の状態が正常であることを認識するにとどまっている。即ち、従来は、検査などを開始した後は位置状態や流動状態を継続して把握するようにはなっていない。   That is, as described in Patent Document 1 and the like, conventionally, a microorganism testing apparatus or the like only recognizes that the position state and the flow path state are normal before the start of the testing. That is, conventionally, after starting the inspection, the position state and the flow state are not continuously grasped.

しかし、例え、検査開始前に高精度に位置合わせ作業などをしていても、何等かの原因で計測中の位置状態や流動状態が正常な状態にない場合があり得る。生菌数がある程度検出されていれば、検出流路が正常な位置にあり、また、流動状態も正常であると推測できる。しかし、生菌が検出されていない(または、生菌数が少ししか計測されていない)ときに、それが真に生菌(微生物)がない(または、少ない)ことに起因するものか、或いは、検査チップを含む微生物検査装置側に何等かの問題があることに起因するものか判別することは、微生物検査装置における生菌数計測の結果をより高信頼性のものとするために重要であると言える。   However, even if the alignment operation or the like is performed with high accuracy before the start of the inspection, there may be a case where the position state or the flow state being measured is not in a normal state for some reason. If the number of viable bacteria is detected to some extent, it can be estimated that the detection flow path is in a normal position and the flow state is also normal. However, when viable bacteria are not detected (or the viable count is only slightly measured), it is due to the fact that there are no (or few) viable bacteria (microorganisms), or It is important to determine whether there is any problem on the microbe inspection device including the test chip in order to make the result of viable cell count measurement in the microbe test device more reliable. It can be said that there is.

本発明の目的は、蛍光フローサイトメトリー法で生菌数計測が正しく行われていることを確認可能な微生物検査装置及び検査方法を提供することである。   An object of the present invention is to provide a microorganism testing apparatus and a testing method capable of confirming that the viable count is correctly performed by the fluorescence flow cytometry method.

また、本発明の他の目的は、蛍光フローサイトメトリー法による生菌数計測において計測が正しく行われていないと判断されるときに、その原因を推定することが可能な微生物検査装置及び検査方法を提供することである。   Another object of the present invention is to provide a microorganism testing apparatus and a testing method capable of estimating the cause when it is determined that measurement is not correctly performed in viable count by fluorescent flow cytometry. Is to provide.

上記目的を達成するために、本発明は、検出液の流動状態または光学検出の位置状態について生菌数計測中も各々のセンサー(検出器)で情報を得て計測状態を把握するようにしたものである。   In order to achieve the above object, the present invention obtains information from each sensor (detector) during measurement of the number of viable bacteria about the flow state of detection liquid or the position state of optical detection, and grasps the measurement state. Is.

例えば、本発明では、検出液の流動状態として流量センサー(差圧計)から情報と菌数頻度分布の情報を得て正常な流動、異常な流動(流体の漏れ、流路の詰まり等の異常の原因)を認識し、光学検出の位置状態として光検出器から情報を得て正常な検出位置、異常な検出位置(位置ずれ)を認識し、流動状態と位置状態の情報から計測状態(正常か異常か、異常な場合はその原因)を把握できるようしたものである。   For example, in the present invention, the flow state of the detection liquid is obtained from a flow sensor (differential pressure gauge) and information on the bacterial count frequency distribution, and normal flow, abnormal flow (fluid leakage, flow path clogging, etc.) Cause), obtain information from the optical detector as the optical detection position status, recognize the normal detection position and abnormal detection position (positional deviation), and measure the measurement status (normal or not) from the flow status and position status information. It is possible to grasp the abnormality or the cause if it is abnormal).

本発明によれば、蛍光フローサイトメトリー法で生菌数計測が正しく行われていることが確認可能となる。   According to the present invention, it is possible to confirm that the viable count is correctly performed by the fluorescence flow cytometry method.

また、本発明によれば、蛍光フローサイトメトリー法による生菌数計測において計測が正しく行われていないと判断されるときに、その原因を推定することが可能となる。   In addition, according to the present invention, it is possible to estimate the cause when it is determined that the measurement is not performed correctly in the viable cell count measurement by the fluorescence flow cytometry method.

本発明の一実施例に係る微生物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the microorganisms testing apparatus which concerns on one Example of this invention. 図1に示す微生物検査装置における微生物検査チップの概略構成を示す図である。It is a figure which shows schematic structure of the microbe inspection chip | tip in the microbe inspection apparatus shown in FIG. 図1に示す微生物検査装置の微生物検出チップにおける本体と微生物検出部の接合部の断面図である。It is sectional drawing of the junction part of the main body and microbe detection part in the microbe detection chip | tip of the microbe inspection apparatus shown in FIG. 図3Aに示す微生物検出部の分解構造を示す斜視図である。It is a perspective view which shows the decomposition | disassembly structure of the microorganisms detection part shown to FIG. 3A. 図1に示す微生物検査装置の圧力供給装置の他の構成例を示す図である。It is a figure which shows the other structural example of the pressure supply apparatus of the microbe test | inspection apparatus shown in FIG. 図1に示す微生物検査装置を用いた微生物検査方法の一実施例を説明する図である。It is a figure explaining one Example of the microorganisms testing method using the microorganisms testing apparatus shown in FIG. 図1に示す微生物検査装置において計測状態が正常の場合の流動状態と位置状態を示す図である。It is a figure which shows the flow state and position state when a measurement state is normal in the microbe inspection apparatus shown in FIG. 図1に示す微生物検査装置において計測状態が位置ずれしている場合の流動状態と位置状態を示す図である。It is a figure which shows the flow state and position state in case the measurement state has shifted | deviated in the microorganisms testing apparatus shown in FIG. 図1に示す微生物検査装置において計測状態が流体の漏れが発生している場合の流動状態と位置状態を示す図である。FIG. 2 is a diagram showing a flow state and a position state when a fluid leakage occurs in the measurement state in the microorganism testing apparatus shown in FIG. 1. 図1に示す微生物検査装置において計測状態が位置ずれと流体の漏れが発生している場合の流動状態と位置状態を示す図である。FIG. 2 is a diagram showing a flow state and a position state when a measurement state is misaligned and a fluid leak occurs in the microorganism testing apparatus shown in FIG. 1. 図1に示す微生物検査装置において計測状態が流路の詰まりが発生している場合の流動状態と位置状態を示す図である。It is a figure which shows the flow state and position state when the measurement state has clogged the flow path in the microbe inspection apparatus shown in FIG. 計測状態が正常の場合の菌数ヒストグラムについて説明を示す図である。It is a figure which shows description about the bacteria count histogram in case a measurement state is normal. 計測状態が詰まりの場合の菌数ヒストグラムについて説明を示す図である。It is a figure which shows description about a microbe count histogram in case a measurement state is clogged. 流動状態及び位置状態と計測状態(正常か異常か、異常な場合はその原因)との関係について説明する図である。It is a figure explaining the relationship between a flow state and a position state, and a measurement state (it is normal or abnormal, or the cause when abnormal).

以下、図面を参照して、本発明の実施の形態を説明する。なお、後述する実施の形態は一例であって、各実施の形態同士の組み合わせ、公知又は周知の技術との組み合わせや置換による他の態様も可能である。   Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiments described later are merely examples, and combinations of the embodiments, combinations with known or well-known techniques, and other modes by replacement are possible.

また、本明細書において、微生物検査装置及び検査方法とは、細胞や微生物の検査装置及び検査方法を意味し、微生物のみの検査装置及び検査方法に限定されるものではない。また、本明細書及び特許請求の範囲において、「細胞または微生物」と表記しないで、単に「微生物」と表記するが「細胞」も含まれるものとする。
(A)微生物検査装置の全体構成例
図1に、本発明の一実施例に係る微生物検査装置1の構成図を示す。微生物検査装置1は、微生物検査チップ10、検出装置11、圧力供給装置14、システム装置18、出力装置19、X−Y可動ステージ125から構成されている。
In the present specification, the microorganism testing apparatus and the testing method mean a testing apparatus and testing method for cells and microorganisms, and are not limited to a testing apparatus and testing method using only microorganisms. Further, in the present specification and claims, “cells or microorganisms” are not expressed, but “microorganisms” are simply described, but “cells” are also included.
(A) Overall Configuration Example of Microorganism Testing Apparatus FIG. 1 is a configuration diagram of a microorganism testing apparatus 1 according to an embodiment of the present invention. The microorganism testing apparatus 1 includes a microorganism testing chip 10, a detection device 11, a pressure supply device 14, a system device 18, an output device 19, and an XY movable stage 125.

微生物検査チップ10は、検体や試薬を内部に保持し、微生物計測に必要な工程を行うための機構を内部に備えている。X−Y可動ステージ125は、微生物検査チップ10を保持し、微生物検査チップ10の位置を調整する。微生物検査チップ10は、基本的には一度限りの使用であり、検査毎に、X−Y可動ステージ125に装着して位置調整が行われ、検査終了後にX−Y可動ステージ125から取り外される。検出装置11は微生物検査チップ10内の微生物に励起光を照射し、微生物からの散乱光及び蛍光を電気信号に変換する。圧力供給装置14は微生物計測に必要な工程を行うために、微生物検査チップ10と連結したチップ連結管1441〜1444を介して、微生物検査チップ10内の検体や試薬の搬送を制御する。システム装置(制御装置)18は微生物検査装置1の各構成要素(検出装置11、圧力供給装置14、出力装置19、X−Y可動ステージ125)に接続し、圧力供給装置14に対する制御信号の出力と、検出装置11から入力される電気信号に対する信号処理を実行する。出力装置19はシステム装置18における電気信号の処理により得られた計測結果を表示する。
(B)微生物検査チップの構成例
微生物検査チップ10の詳細を説明する。図2に微生物検査チップ10の構成例である平面図を示す。微生物検査チップ10は、液体の検体1511を保持するための検体容器151と、検体中の微生物を染色するための染色液(試薬液)1521を保持する微生物染色液容器152と、検体と染色液を混合し反応させた検出液を保持する検出液容器155と、検出装置11の励起光源111より励起光113を照射し、微生物の蛍光を観測するための微生物検出用流路173を内部に備えた微生物検出部17と、微生物検出用流路173を通過した検体1511と染色液1521の混合液である検出液を廃棄するための検出液廃棄容器156を備えている。この明細書においては、検体の流れに沿って検体容器151の側を上流側、微生物検出用流路173の側を下流側と定義する。
The microbe inspection chip 10 has a mechanism for holding a specimen and a reagent therein and performing a process necessary for microbe measurement. The XY movable stage 125 holds the microorganism testing chip 10 and adjusts the position of the microorganism testing chip 10. The microbe inspection chip 10 is basically used only once, and is attached to the XY movable stage 125 for each inspection, position adjustment is performed, and is removed from the XY movable stage 125 after the inspection is completed. The detection device 11 irradiates microorganisms in the microorganism test chip 10 with excitation light, and converts scattered light and fluorescence from the microorganisms into electrical signals. The pressure supply device 14 controls the transport of the specimen and the reagent in the microbe test chip 10 via the chip connection tubes 1441 to 1444 connected to the microbe test chip 10 in order to perform the steps necessary for microbe measurement. The system device (control device) 18 is connected to each component (detection device 11, pressure supply device 14, output device 19, XY movable stage 125) of the microorganism testing device 1, and outputs a control signal to the pressure supply device 14. And the signal processing with respect to the electric signal input from the detection apparatus 11 is performed. The output device 19 displays the measurement result obtained by processing the electrical signal in the system device 18.
(B) Example of Microbe Test Chip Configuration Details of the microbe test chip 10 will be described. FIG. 2 is a plan view showing a configuration example of the microorganism testing chip 10. The microbe inspection chip 10 includes a specimen container 151 for holding a liquid specimen 1511, a microorganism staining liquid container 152 for holding a staining liquid (reagent liquid) 1521 for staining microorganisms in the specimen, a specimen and a staining liquid. A detection liquid container 155 for holding a detection liquid mixed and reacted, and a microorganism detection flow path 173 for irradiating the excitation light 113 from the excitation light source 111 of the detection apparatus 11 and observing the fluorescence of the microorganism are provided inside. And a detection liquid disposal container 156 for discarding a detection liquid that is a mixed liquid of the specimen 1511 and the staining liquid 1521 that have passed through the microorganism detection flow path 173. In this specification, the specimen container 151 side is defined as the upstream side and the microorganism detection flow path 173 side is defined as the downstream side along the specimen flow.

さらに、微生物検査チップ10は、検体容器151、微生物染色液容器152、検出液容器155、微生物検出用流路173を連結し、検体1511や混合液が流動する溶液用流路1571〜1574と、圧力供給装置14のチップ連結管1441〜1444と接続される通気口1591〜1594と、通気口1591〜1594と各容器(151,152,155,156)を接続する通気用流路1581〜1584を備えている。   Furthermore, the microorganism testing chip 10 connects the sample container 151, the microorganism staining liquid container 152, the detection liquid container 155, and the microorganism detection flow path 173, and the solution flow paths 1571 to 1574 through which the sample 1511 and the mixed liquid flow, Ventilation holes 1591 to 1594 connected to the chip connecting pipes 1441 to 1444 of the pressure supply device 14, and ventilation channels 1581 to 1584 for connecting the ventilation holes 1591 to 1594 and the containers (151, 152, 155, 156). I have.

溶液用流路1571〜1574、通気口1591〜1594及び通気用流路1581〜1584は連結する容器の名称から、検体容器−微生物染色液容器間流路1571、微生物染色液容器−検出液容器間流路1572、検出液容器−微生物検出用流路間流路1573、微生物検出用流路−検出液廃棄容器間流路1574、検体容器通気口1591、微生物染色液容器通気口1592、検出液容器通気口1593、検出液廃棄容器通気口1594、検体容器通気流路1581、微生物染色液容器通気流路1582、検出液容器通気流路1583、検出液廃棄容器通気流路1584とする。   The solution flow paths 1571 to 1574, the vents 1591 to 1594, and the ventilation flow paths 1581 to 1584 are derived from the names of the containers to be connected, and the flow path 1571 between the specimen container and the microorganism staining solution container, and between the microorganism staining solution container and the detection solution container. A flow path 1572, a flow path 1573 between the detection liquid container and the microorganism detection flow path, a flow path 1574 between the flow path for microorganism detection and the detection liquid waste container, the specimen container vent 1591, the vent hole 1592 of the microorganism staining liquid container, and the detection liquid container A vent 1593, a detection liquid waste container vent 1594, a specimen container vent flow path 1581, a microorganism staining liquid container vent flow path 1582, a detection liquid container vent flow path 1583, and a detection liquid waste container vent flow path 1584.

また、検体容器−微生物染色液容器間流路1571の検体容器151側には、検体中に含まれる食品残渣を取り除くためのフィルタである食品残渣除去部160を設けている。   Further, a food residue removal unit 160 that is a filter for removing food residues contained in the sample is provided on the sample container 151 side of the flow channel 1571 between the sample container and the microorganism staining solution container.

検体容器151と、食品残渣除去部160と、微生物染色液容器152と、検出液容器155と、微生物検出用流路173と、検出液廃棄容器156は、溶液用流路1571〜1574により直列に連結されている。   The sample container 151, the food residue removal unit 160, the microorganism staining liquid container 152, the detection liquid container 155, the microorganism detection flow path 173, and the detection liquid waste container 156 are connected in series by the solution flow paths 1571 to 1574. It is connected.

図2の場合、溶液用流路1571〜1574の深さ及び流路幅は例えば10μm〜1mm、通気用流路1581〜1584の深さ及び流路幅は例えば10μm〜1mmの範囲で形成され、溶液用流路1571〜1574の断面積は通気用流路1581〜1584の断面積より大きくなるように形成される。   In the case of FIG. 2, the depth and the channel width of the solution channels 1571 to 1574 are, for example, 10 μm to 1 mm, and the depth and the channel width of the ventilation channels 1581 to 1584 are, for example, in the range of 10 μm to 1 mm. The cross-sectional area of the solution flow paths 1571 to 1574 is formed to be larger than the cross-sectional area of the ventilation flow paths 1581 to 1584.

検体容器151の体積は、検体1511の体積より大きい。微生物染色液容器152の体積は、検体1511と微生物染色液1521の合計体積より大きい。検出液容器155の体積は、検体1511、微生物染色液1521の合計体積より大きい。また、検体容器−微生物染色液容器間流路1571の最高点は、検体容器151中の検体1511の水位より高くなるように形成される。これと同様に、微生物染色液容器−検出液容器間流路1572の最高点は、検体1511と微生物染色液1521の混合液の水位より高くなるように形成される。さらに、検出液容器−微生物検出用流路間流路1573の最高点は、検体1511、微生物染色液1521からなる検出液(混合液)の水位より高くなるように形成される。   The volume of the sample container 151 is larger than the volume of the sample 1511. The volume of the microorganism staining solution container 152 is larger than the total volume of the specimen 1511 and the microorganism staining solution 1521. The volume of the detection liquid container 155 is larger than the total volume of the specimen 1511 and the microorganism staining liquid 1521. Further, the highest point of the flow path 1571 between the specimen container and the microorganism staining solution container is formed to be higher than the water level of the specimen 1511 in the specimen container 151. Similarly, the highest point of the channel 1572 between the microorganism staining solution container and the detection solution container is formed so as to be higher than the water level of the mixed solution of the specimen 1511 and the microorganism staining solution 1521. Further, the highest point of the detection liquid container-microorganism detection flow path 1573 is formed to be higher than the water level of the detection liquid (mixed liquid) composed of the specimen 1511 and the microorganism staining liquid 1521.

微生物染色液1521は、微生物検査チップ10内に前もって封入されている。検体1511は、検査前に通気口1591から検体容器151に注入する。   The microorganism staining liquid 1521 is enclosed in the microorganism testing chip 10 in advance. The specimen 1511 is injected into the specimen container 151 from the vent 1591 before the examination.

微生物検査チップの構成例としては、特開2008−157829号公報に記載されているような他の構成例でも良い。例えば、微生物染色液容器152で検体と染色液を混合、反応させて、そのまま検出液を保持するようにし、検出液容器155を省略しても良い。また、複数の染色液を用いる場合、複数の染色液を同一の微生物染色液容器に保持しないで、微生物染色液容器を複数設け、第一の染色液による染色が完了後に、第二の染色液を保持する微生物染色液容器に混合液を流動させ、第二の染色液と混合、反応させて、最終的な検出液とするようにしても良い。
(C)微生物検査チップの微生物検出部の構造例
図3A及び図3Bを用い、微生物検査チップ10のうち微生物検出部17の構造を説明する。図3Aは、微生物検査チップ10の本体15と微生物検出部17の接合部の断面図を示す。図3Bは、微生物検出部17の分解斜視図を示す。本実施例で用いる微生物検出部は特許文献1に詳述されている。
As a configuration example of the microbe inspection chip, another configuration example as described in JP 2008-157829 A may be used. For example, the detection liquid container 155 may be omitted by mixing and reacting the specimen and the staining liquid in the microbial staining liquid container 152 so as to hold the detection liquid as it is. In addition, when using a plurality of staining solutions, a plurality of microorganism staining solution containers are provided without holding the plurality of staining solutions in the same microorganism staining solution container, and after the staining with the first staining solution is completed, the second staining solution The liquid mixture may be flowed into a microorganism staining liquid container that holds the liquid, and mixed and reacted with the second staining liquid to form a final detection liquid.
(C) Structural Example of Microbe Detection Unit of Microbe Test Chip The structure of the microbe detection unit 17 in the microbe test chip 10 will be described with reference to FIGS. 3A and 3B. FIG. 3A shows a cross-sectional view of a joint portion between the main body 15 of the microbe inspection chip 10 and the microbe detection unit 17. FIG. 3B shows an exploded perspective view of the microorganism detection unit 17. The microorganism detection unit used in this embodiment is described in detail in Patent Document 1.

本体15と微生物検出部17はそれぞれ別工程で作製され、それぞれを接合する。まず、微生物検出部17の製造方法を説明する。微生物検出部17はカバー部材171と流路部材172からなり、両者は共に薄い平板からなる。流路部材172には溝1731が形成されており、この溝1731の両端には貫通孔1741、1751が形成されている。溝1731が形成された面が張り合わせ面となるように、カバー部材171と流路部材172を張り合わせる。この貼り合わせにより微生物検出部17が形成される。流路部材172の溝1731とカバー部材171によって微生物検出用流路173が構成される。流路部材172の貫通孔1741、1751によって、微生物検出用流路入口174と微生物検出用流路出口175が構成される。   The main body 15 and the microorganism detection unit 17 are produced in separate steps, and are joined together. First, the manufacturing method of the microorganism detection part 17 is demonstrated. The microorganism detection unit 17 includes a cover member 171 and a flow path member 172, both of which are formed of a thin flat plate. A groove 1731 is formed in the flow path member 172, and through holes 1741 and 1751 are formed at both ends of the groove 1731. The cover member 171 and the flow path member 172 are bonded together so that the surface on which the groove 1731 is formed becomes the bonded surface. The microorganism detection part 17 is formed by this bonding. A microbe detection flow path 173 is configured by the groove 1731 of the flow path member 172 and the cover member 171. The through holes 1741 and 1751 of the flow path member 172 constitute a microorganism detection flow path inlet 174 and a microorganism detection flow path outlet 175.

一方、本体15に形成された検出液容器−微生物検出用流路間流路1573は、その下端にて流路方向を変更し、本体15の表面に開口を形成している。同様に、微生物検出用流路−検出液廃棄容器間流路1574は、その上端にて流路方向を変更し、本体15の表面に開口を形成している。検出液容器−微生物検出用流路間流路1573の開口は、微生物検出用流路入口174に接続され、微生物検出用流路−検出液廃棄容器間流路1574の開口は、微生物検出用流路出口175に接続されている。   On the other hand, the flow path 1573 between the detection liquid container and the microorganism detection flow path formed in the main body 15 changes the flow path direction at the lower end to form an opening on the surface of the main body 15. Similarly, the flow path 1574 between the microorganism detection flow path and the detection liquid disposal container changes the flow path direction at the upper end to form an opening on the surface of the main body 15. The opening of the detection liquid container-microorganism detection flow path 1573 is connected to the microorganism detection flow path inlet 174, and the opening of the microbe detection flow path-detection liquid waste container flow path 1574 is the flow for detecting microorganisms. It is connected to the road exit 175.

本体15には検出用窓枠部161が形成されている。検出用窓枠部161は、貫通孔、又は、貫通溝である。検出用窓枠部161は、検出液容器−微生物検出用流路間流路1573の開口と微生物検出用流路−検出液廃棄容器間流路1574の開口の間に形成されている。製造された微生物検出部17は、前述したように、本体15に装着される。図3Aに示すように、本体15の検出用窓枠部161の上に微生物検出用流路173が配置されるように、微生物検出部17を装着する。   A detection window frame 161 is formed on the main body 15. The detection window frame portion 161 is a through hole or a through groove. The detection window frame 161 is formed between the opening of the flow path 1573 between the detection liquid container and the microorganism detection flow path and the opening of the flow path 1574 between the flow path for microorganism detection and the detection liquid disposal container. The manufactured microorganism detection unit 17 is attached to the main body 15 as described above. As shown in FIG. 3A, the microorganism detection unit 17 is mounted so that the microorganism detection flow path 173 is disposed on the detection window frame 161 of the main body 15.

本実施例の場合、微生物検出用流路173の背後に、本体15の貫通孔又は貫通溝である検出用窓枠部161が設けられる。従って、励起光113は、微生物検出部17のみを照射し、本体15を照射しない。このため、背景光の増加の原因となる本体15からの反射光や自家蛍光は発生しない。微生物検出用流路173を通過した励起光113が、本体15に照射されないためには、検出用窓枠部161を構成する貫通孔の断面は、励起光113の放射方向に沿って増加することが好ましい。   In the case of the present embodiment, a detection window frame portion 161 that is a through hole or a through groove of the main body 15 is provided behind the microorganism detection flow path 173. Therefore, the excitation light 113 irradiates only the microorganism detection unit 17 and does not irradiate the main body 15. For this reason, the reflected light from the main body 15 and autofluorescence that cause an increase in background light are not generated. In order that the excitation light 113 that has passed through the microorganism detection flow path 173 is not irradiated to the main body 15, the cross-section of the through-hole constituting the detection window frame portion 161 increases along the radiation direction of the excitation light 113. Is preferred.

カバー部材171の厚さは、例えば0.01μm〜1mmとする。流路部材172の厚さは、例えば0.01μm〜1mmとする。微生物検出用流路173の断面形状は、例えば正方形、長方形、台形に形成する。微生物検出用流路173の断面寸法は、大きいほど圧力損失は小さくなるが、微生物を一個ずつ流すためには小さいほうが良い。微生物検出用流路173の断面の一辺は、例えば1μm〜1mmが好ましく、長さは例えば0.01mm〜10mmが好ましい。微生物検出用流路173に照射する励起光113の光軸は、微生物検出用流路173の方向ベクトルに対して垂直になる。   The thickness of the cover member 171 is, for example, 0.01 μm to 1 mm. The thickness of the flow path member 172 is, for example, 0.01 μm to 1 mm. The cross-sectional shape of the microorganism detection flow path 173 is formed in, for example, a square, a rectangle, or a trapezoid. The larger the cross-sectional dimension of the microorganism detection channel 173 is, the smaller the pressure loss is. However, it is preferable that the microorganism is flowed one by one. One side of the cross section of the microorganism detection flow path 173 is preferably 1 μm to 1 mm, for example, and the length is preferably 0.01 mm to 10 mm, for example. The optical axis of the excitation light 113 applied to the microorganism detection channel 173 is perpendicular to the direction vector of the microorganism detection channel 173.

微生物検出部17を構成する材料について説明する。微生物検査チップ10はディスポーザブルである。すなわち、使用後、微生物検出部17は本体15と共に廃棄する。そのため、微生物検出部17に用いる材料は、安価でなければならない。微生物検出部17に用いる材料は、蛍光計測に好適なように、光学特性に優れている必要がある。すなわち、自家蛍光が低く、光透過性、面精度、屈折率などに優れていることが望ましい。微生物からの蛍光の検出を阻害しないためには、微生物検出部17自身が発生する自家蛍光量が、微生物からの蛍光量に比べて十分小さいことが好ましい。   The material which comprises the microorganisms detection part 17 is demonstrated. The microorganism testing chip 10 is disposable. That is, after use, the microorganism detection unit 17 is discarded together with the main body 15. Therefore, the material used for the microorganism detection unit 17 must be inexpensive. The material used for the microorganism detection unit 17 needs to be excellent in optical characteristics so as to be suitable for fluorescence measurement. That is, it is desirable that the autofluorescence is low and the light transmittance, surface accuracy, refractive index and the like are excellent. In order not to inhibit detection of fluorescence from microorganisms, it is preferable that the amount of autofluorescence generated by the microorganism detection unit 17 itself be sufficiently smaller than the amount of fluorescence from microorganisms.

微生物検出部17の表面に、曲面、凹凸等が存在すると、表面における光の屈折、又は、乱反射により微生物計測用流路173に照射される励起光113の光量が変動する。そのため、検出される蛍光量も変動し、計測精度が低下する。そのため、微生物検出部17の表面は、所望の平面度を有する必要がある。微生物検出部17は、凹凸が0.1mm以下の平面度を有することが好ましい。   If a curved surface, unevenness, or the like exists on the surface of the microorganism detection unit 17, the light amount of the excitation light 113 irradiated on the microorganism measurement flow path 173 varies due to light refraction or irregular reflection on the surface. For this reason, the amount of fluorescence detected also fluctuates, and the measurement accuracy decreases. Therefore, the surface of the microorganism detection unit 17 needs to have a desired flatness. The microorganism detecting unit 17 preferably has a flatness with an unevenness of 0.1 mm or less.

このような条件を考慮すると、微生物検出部17に用いる材料には、ガラス、石英、ポリメタクリル酸メチルエステル(PMMA)、ポリジメチルシロキサン(PDMS)、シクロオレフィンポリマー(COP)、ポリエチレンテレフタラート、ポリカーボネイト等が考えられる。微生物検出部17は、これらの物質から選択された1種類以上の物質から形成される。   Considering such conditions, the materials used for the microorganism detection unit 17 include glass, quartz, polymethacrylic acid methyl ester (PMMA), polydimethylsiloxane (PDMS), cycloolefin polymer (COP), polyethylene terephthalate, and polycarbonate. Etc. are considered. The microorganism detection unit 17 is formed of one or more kinds of substances selected from these substances.

カバー部材171は単なる平板であるが、流路部材172は平板に溝及び貫通孔を形成したものである。従って、流路部材172は、微細加工が容易で、且つ、加工費が安価な材料によって形成される。ガラス、及び、石英は、光学特性が優れているが、微細加工が容易でない。すなわち、微細加工を行うと、加工費が高くなる。   The cover member 171 is a simple flat plate, but the flow path member 172 is formed by forming a groove and a through hole in the flat plate. Therefore, the flow path member 172 is formed of a material that is easy to be finely processed and that has a low processing cost. Glass and quartz have excellent optical properties but are not easily processed finely. That is, processing costs increase when microfabrication is performed.

そこで、この形態例の場合、カバー部材171をガラス又は石英によって構成し、流路部材172をポリメタクリル酸メチルエステル、ポリジメチルシロキサン、シクロオレフィンポリマー、ポリエチレンテレフタラート、ポリカーボネイトによって構成する。なお好ましくは、流路部材172をポリジメチルシロキサンによって構成する。この場合、カバー部材171と流路部材172の接合には、ポリジメチルシロキサンの自己接着性を利用する。   Therefore, in the case of this embodiment, the cover member 171 is made of glass or quartz, and the flow path member 172 is made of polymethacrylic acid methyl ester, polydimethylsiloxane, cycloolefin polymer, polyethylene terephthalate, and polycarbonate. Preferably, the flow path member 172 is made of polydimethylsiloxane. In this case, the self-adhesiveness of polydimethylsiloxane is used for joining the cover member 171 and the flow path member 172.

微生物検出部17の自家蛍光量は、材料ばかりでなく、微生物検出部の厚さ寸法にも依存する。自家蛍光量を少なくするには、微生物検出部の厚さ寸法を小さくすれば良い。微生物検出部17の厚さが小さいほど、微生物検出部17から発生する自家蛍光量は少なくなる。しかしながら、カバー部材171及び流路部材172の厚さ寸法を小さくすると、製造が困難になり、平面度が悪化する。必要な平面度を保ち、微生物の蛍光の検出を阻害しないように自家蛍光量を抑制するには、これらの部品の厚さ寸法は、所定の範囲に制限するする必要がある。   The amount of autofluorescence of the microorganism detection unit 17 depends not only on the material but also on the thickness dimension of the microorganism detection unit. In order to reduce the amount of autofluorescence, the thickness dimension of the microorganism detection unit may be reduced. The smaller the thickness of the microorganism detection unit 17, the smaller the amount of autofluorescence generated from the microorganism detection unit 17. However, if the thickness dimensions of the cover member 171 and the flow path member 172 are reduced, manufacturing becomes difficult and flatness deteriorates. In order to maintain the necessary flatness and suppress the amount of autofluorescence so as not to hinder the detection of fluorescence of microorganisms, the thickness dimensions of these parts must be limited to a predetermined range.

ガラス、石英、ポリジメチルシロキサンの自家蛍光量はほぼ同等である。そこで、カバー部材171をガラス又は石英によって製造する場合、その厚さは、例えば0.05mm以上1mm以下が好ましい。流路部材172を、ポリジメチルシロキサンによって製造する場合、その厚さは例えば0.1mm以上1mm以下が好ましい。   The autofluorescence amounts of glass, quartz and polydimethylsiloxane are almost the same. Therefore, when the cover member 171 is made of glass or quartz, the thickness is preferably 0.05 mm or more and 1 mm or less, for example. When the flow path member 172 is manufactured from polydimethylsiloxane, the thickness is preferably 0.1 mm or more and 1 mm or less, for example.

また、カバー部材171及び流路部材172を、シクロオレフィンポリマー、ポリメタクリル酸メチルエステル、ポリエチレンテレフタラート、又は、ポリカーボネイトによって製造しても良い。この場合、ガラス、又は、石英によってカバー部材171を製造し、ポリジメチルシロキサンによって流路部材172を製造する場合より、単位体積当たりの自家蛍光量が約3倍以上増加する。そのため、カバー部材171及び流路部材172の厚さは例えば0.01mm以上0.3mm以下が好ましい。
(D)圧力供給装置の構成例
圧力供給装置14の詳細を説明する。圧力供給装置14は、レギュレータ1411付のエアポンプ141を有する。エアポンプ141は、チップ連結管1441〜1444によって微生物検査チップ10の各通気口1591〜1594と接続されている。チップ連結管1441〜1444には、バルブ1421〜1424がそれぞれ設けられている。バルブ1421〜1424を開閉することにより、微生物検査チップ10内の各容器に所定の圧力の気体を供給し、又は、微生物検査チップ10内の各容器を大気開放する。この圧力の制御により、微生物検査チップ10内における検体や試薬の搬送を実現する。この圧力の制御による、微生物検査チップ10内における検体や試薬の搬送は、特開2008−157829号公報に詳述されている。
Further, the cover member 171 and the flow path member 172 may be made of cycloolefin polymer, polymethacrylic acid methyl ester, polyethylene terephthalate, or polycarbonate. In this case, the amount of autofluorescence per unit volume is increased about three times or more than when the cover member 171 is manufactured from glass or quartz and the flow path member 172 is manufactured from polydimethylsiloxane. Therefore, the thickness of the cover member 171 and the flow path member 172 is preferably 0.01 mm or more and 0.3 mm or less, for example.
(D) Configuration Example of Pressure Supply Device Details of the pressure supply device 14 will be described. The pressure supply device 14 includes an air pump 141 with a regulator 1411. The air pump 141 is connected to the vent holes 1591 to 1594 of the microorganism testing chip 10 by chip connecting pipes 1441 to 1444. Valves 1421 to 1424 are provided in the chip connection tubes 1441 to 1444, respectively. By opening and closing the valves 1421 to 1424, a gas having a predetermined pressure is supplied to each container in the microorganism testing chip 10, or each container in the microorganism testing chip 10 is opened to the atmosphere. By controlling this pressure, the transport of the specimen and the reagent in the microorganism testing chip 10 is realized. The conveyance of the specimen and the reagent in the microorganism testing chip 10 by controlling the pressure is described in detail in Japanese Patent Application Laid-Open No. 2008-157829.

なお、バルブ1424と検出液容器155を接続するチップ連結管1444には流量センサー1412を接続しており、バルブ1424から検出液容器155へ流入する空気の流れにより発生するチップ連結管1444内の差圧を測定して流動状態の情報とする。   A flow rate sensor 1412 is connected to the chip connection pipe 1444 connecting the valve 1424 and the detection liquid container 155, and the difference in the chip connection pipe 1444 generated by the flow of air flowing from the valve 1424 to the detection liquid container 155. The pressure is measured and used as flow state information.

また、図4に示すように、流量センサーは差圧計1413であっても良い。この場合、差圧を発生しやすくするために流路抵抗1414を配置し、その両端の差圧を測定すると空気漏れなどのより微量の流量を測定できる。
(E)検出装置の構成例
検出装置11は、励起光源111と、散乱光検出部と、蛍光検出部とで構成される。このうち、散乱光検出部は、微生物検出用流路173を通過する微生物からの散乱光124を検出するための散乱光検出器123と、励起光源111からの励起光113が散乱光検出器123に直接入射することを防ぐための遮光板122とから構成される。一方、蛍光検出部は、微生物検出用流路173を通過する微生物からの蛍光121を集光し、平行光にする対物レンズ114と、励起光113を微生物検出部17の方向に反射する一方で蛍光121は透過するダイクロイックミラー112と、蛍光121を通過するバンドパスフィルタ117と、平行光を集光させるための集光レンズ118と、迷光をカットするための空間フィルタとして用いるピンホール119と、バンドパスフィルタ117を通過した光を検出する光検出器120とで構成される。なお、照射部及び検出部は、互いの焦点が重なるように配置されている。
Further, as shown in FIG. 4, the flow sensor may be a differential pressure gauge 1413. In this case, if a flow path resistance 1414 is arranged to facilitate the generation of a differential pressure and the differential pressure at both ends thereof is measured, a smaller amount of flow such as air leakage can be measured.
(E) Configuration Example of Detection Device The detection device 11 includes an excitation light source 111, a scattered light detection unit, and a fluorescence detection unit. Among these, the scattered light detection unit includes the scattered light detector 123 for detecting the scattered light 124 from the microorganisms passing through the microorganism detection flow path 173 and the excitation light 113 from the excitation light source 111. It is comprised from the light-shielding plate 122 for preventing that it injects directly. On the other hand, the fluorescence detection unit condenses the fluorescence 121 from the microorganisms passing through the microorganism detection flow path 173 and reflects the excitation light 113 in the direction of the microorganism detection unit 17 while collimating the objective lens 114. The fluorescent light 121 is transmitted through a dichroic mirror 112, a bandpass filter 117 that passes through the fluorescent light 121, a condensing lens 118 for condensing parallel light, a pinhole 119 used as a spatial filter for cutting stray light, It is comprised with the photodetector 120 which detects the light which passed the band pass filter 117. FIG. In addition, the irradiation part and the detection part are arrange | positioned so that a mutual focus may overlap.

測定を開始する前(検出液を微生物検出用流路に流す前)に微生物検出用流路173を励起光の焦点の位置に調整する。この位置合わせ工程について説明する。検出装置11の励起光源111から出力された励起光113を微生物検出用流路173に照射し、微生物検出用流路173から生じる散乱光の光量と微生物検出部17から生じる蛍光の光量をそれぞれ検出することにより、X−Yステージ125の可動位置と各光量との関係をプロファイルとして取得する。また、検出装置11は、取得されたプロファイルに基づいてX−Y可動ステージ125を可動制御し、微生物検査チップ10(具体的には、微生物検出用流路173)を検出に適した位置に合わせる。即ち、散乱光検出部で検出される散乱光の光量が最大となる微生物検出用流路の位置を励起光の光軸と一致させ、蛍光検出部で検出される蛍光量が最大となる微生物検出用流路の位置に励起光の焦点を一致させる。この位置合わせについては特許文献1に詳述されている。位置合わせについては、他の方法、例えば、特許文献2に記載の方法を用いても良い。この場合、微生物検査チップに位置合わせ用試薬等の保持容器や溶液用流路、通気用流路等を設ける。   Before starting the measurement (before flowing the detection liquid into the microorganism detection channel), the microorganism detection channel 173 is adjusted to the position of the focal point of the excitation light. This positioning process will be described. Excitation light 113 output from the excitation light source 111 of the detection device 11 is irradiated to the microorganism detection channel 173 to detect the amount of scattered light generated from the microorganism detection channel 173 and the amount of fluorescence generated from the microorganism detection unit 17, respectively. By doing so, the relationship between the movable position of the XY stage 125 and each light quantity is acquired as a profile. In addition, the detection device 11 controls the XY movable stage 125 based on the acquired profile, and adjusts the microorganism testing chip 10 (specifically, the microorganism detection flow path 173) to a position suitable for detection. . That is, the position of the microorganism detection flow path where the amount of scattered light detected by the scattered light detection unit is maximized matches the optical axis of the excitation light, and the microorganism detection by which the fluorescence amount detected by the fluorescence detection unit is maximized The focus of the excitation light is made to coincide with the position of the flow path. This alignment is described in detail in Patent Document 1. For alignment, another method, for example, the method described in Patent Document 2 may be used. In this case, a holding container such as an alignment reagent, a solution flow path, a ventilation flow path, and the like are provided on the microorganism testing chip.

測定開始後は、微生物検出用流路に検体1511と染色液1521から成る検体液が流れることで検体液が発生する蛍光を光検出器120で検出することにより、位置状態の情報とする。
(F)計測方法(検査方法)
以下、本実施例に係る微生物検査装置1を用いて、食品由来の検体中の生菌数を計測する場合の計測方法を説明する。図5に、微生物検査チップ10を用いた生菌数計測の工程をフローチャートで示す。
After the measurement is started, the photo-detector 120 detects fluorescence generated by the sample liquid consisting of the sample 1511 and the staining liquid 1521 flowing through the microorganism detection flow path, thereby obtaining the position state information.
(F) Measurement method (inspection method)
Hereinafter, a measurement method in the case of measuring the number of viable bacteria in a food-derived specimen using the microorganism testing apparatus 1 according to the present embodiment will be described. FIG. 5 is a flowchart showing the process of measuring the number of viable bacteria using the microorganism testing chip 10.

X−Y可動ステージ125への微生物検査チップ10の装着前に、通気口1591から検体容器151に検体1511を注入する(S901)。ここで使用した検体1511は、検査する食品に対し質量比10倍の生理食塩水を加え、ストマッキング処理を行ったものである。
Prior to mounting the microorganism testing chip 10 on the XY movable stage 125, the sample 1511 is injected into the sample container 151 from the vent 1591 (S901). The specimen 1511 used here is obtained by adding a physiological saline having a mass ratio of 10 times to the food to be examined and performing a stomaching process.

次に、微生物検査チップ10を微生物検査装置のX−Y可動ステージ125に装着する(S902)。   Next, the microbe inspection chip 10 is mounted on the XY movable stage 125 of the microbe inspection apparatus (S902).

微生物検査チップ10をX−Y可動ステージ125に装着後の測定工程は、検体から食品残渣を取り除いて検体中の微生物を染色する前処理工程(S903〜S905)と、微生物検査チップ10の位置合わせを行う位置合わせ工程(S907)と、生菌数を実際に測定する生菌数計測工程(S908)から構成される。   The measurement process after the microbe inspection chip 10 is mounted on the XY movable stage 125 includes a pretreatment process (S903 to S905) in which food residues are removed from the specimen and the microorganisms in the specimen are stained, and the microbe inspection chip 10 is aligned. The positioning step (S907) is performed, and the viable cell count measurement step (S908) that actually measures the viable cell count.

位置合わせ工程(S907)と前処理工程(S903〜S905)は独立した工程であるため並列して行うことができ、両工程が終了した段階で生菌数計測工程(S908)を行う。続いて各工程について説明する。   Since the alignment step (S907) and the pretreatment steps (S903 to S905) are independent steps, they can be performed in parallel, and the viable cell count measurement step (S908) is performed when both steps are completed. Next, each step will be described.

前処理工程では、まず、検体1511が微生物染色液容器152に移動される(S903)。検体容器通気口1591を介して検体容器151に対して圧力供給装置14の圧力を加え、検体容器151内の気圧を上げる。同時に、微生物染色液容器通気口1592を介して微生物染色液容器152の内圧を大気圧に開放する。気圧差により、検体1511は、微生物染色液容器152に入り、微生物染色液1521と混合される。検体1511が微生物染色液容器152に流動する際に、検体1511に含まれる食品残渣が食品残渣除去部160によって取り除かれる。   In the pretreatment step, first, the specimen 1511 is moved to the microorganism staining solution container 152 (S903). The pressure of the pressure supply device 14 is applied to the sample container 151 through the sample container vent 1591 to increase the pressure in the sample container 151. At the same time, the internal pressure of the microorganism staining solution container 152 is released to atmospheric pressure through the microorganism staining solution container vent 1592. Due to the pressure difference, the specimen 1511 enters the microorganism staining solution container 152 and is mixed with the microorganism staining solution 1521. When the specimen 1511 flows into the microorganism staining liquid container 152, the food residue contained in the specimen 1511 is removed by the food residue removing unit 160.

食品残渣が取り除かれた検体1511は微生物染色液容器152において染色液1521と混合される。本実施例における染色液は、死菌を染色するための死菌染色液と全菌を染色するための全菌染色液の混合液であり、死菌染色液には、例えば、死微生物用シアニン系蛍光色素(終濃度:0.01mM〜10mM)、PI(プロピディウムイオダイド)(0.1mg/ml〜20mg/ml)、EB(エチジウムイオダイド)(0.1mg/ml〜20mg/ml)を使用し、全菌染色液には、例えば、全微生物用シアニン系蛍光色素(0.1mM〜10mM)、LDS751(0.1mg/ml〜20mg/ml)、DAPI(4'、6−ヂアミジン−2'−フェニルインドール)(0.1mg/ml〜20mg/ml)、HOECHST33258(0.1mg/ml〜20mg/ml)、HOECHST34580(0.1mg/ml〜20mg/ml)などを使用する。溶媒にはDMSO(ジメチルスルオキシド)、エタノール類、水などを使用する。   The specimen 1511 from which the food residue has been removed is mixed with the staining solution 1521 in the microorganism staining solution container 152. The staining solution in the present example is a mixed solution of a dead bacteria staining solution for staining dead bacteria and a whole bacteria staining solution for staining whole bacteria. Examples of the dead bacteria staining solution include cyanine for dead microorganisms. Fluorescent dye (final concentration: 0.01 mM to 10 mM), PI (propidium iodide) (0.1 mg / ml to 20 mg / ml), EB (ethidium iodide) (0.1 mg / ml to 20 mg / ml) In the whole bacterial stain, for example, cyanine-based fluorescent dye (0.1 mM to 10 mM) for all microorganisms, LDS751 (0.1 mg / ml to 20 mg / ml), DAPI (4 ′, 6-diamidine) -2'-phenylindole) (0.1 mg / ml to 20 mg / ml), HOECHST33258 (0.1 mg / ml to 20 mg / ml), HOECHST34580 (0.1 mg / ml to 20 mg / ml). To use. DMSO (dimethyl sulfoxide), ethanols, water, etc. are used as the solvent.

微生物染色液容器152における検体1511と染色液1521との混合には、バブリングにより混合を促進する(S904)。バブリングは、例えば、検出液容器通気口1593を介して圧力供給装置14の圧力を検出液容器155に加え、また、微生物染色液容器通気口1592を介して微生物染色液容器152を大気開放する。空気は、検出液容器155から微生物染色液容器−検出液容器間流路1572を通って、検体1511と染色液1521の混合液を保持する微生物染色液容器152の下方から流入して、気泡となり、混合液の下から上まで上昇する際に混合液を撹拌し、混合を促進する。   The mixing of the specimen 1511 and the staining solution 1521 in the microorganism staining solution container 152 is promoted by bubbling (S904). In the bubbling, for example, the pressure of the pressure supply device 14 is applied to the detection liquid container 155 via the detection liquid container vent 1593, and the microorganism staining liquid container 152 is opened to the atmosphere via the microorganism staining liquid container ventilation hole 1592. Air flows from the detection liquid container 155 through the microorganism staining liquid container-detection liquid container flow path 1572 and flows from below the microorganism staining liquid container 152 holding the mixed liquid of the specimen 1511 and the staining liquid 1521 to become bubbles. When the mixture rises from the bottom to the top, the mixture is stirred to promote mixing.

検体1511中の死菌は、死菌染色液(ここではPI(ピーク波長532nm)を使用する。)と全菌染色液(ここではLDS751を(ピーク波長710nm)使用する。)により染色され、一方、検体1511中の生菌は全菌染色液のみにより染色される。   Dead bacteria in the specimen 1511 are stained with a dead bacteria stain (here, PI (peak wavelength: 532 nm) is used) and a whole bacteria stain (here, LDS751 (peak wavelength: 710 nm) is used), while The living bacteria in the specimen 1511 are stained only with the whole bacteria staining solution.

二液の混合液の水位は、微生物染色液容器152と検出液容器155を連結する微生物染色液容器−検出液容器間流路1572の最高点を越えず、さらに微生物染色液容器152中に入っている空気は、微生物染色液容器通気口1592を介して外部に放出される。微生物染色液容器152の気圧は大気圧と等しいため、二液の混合液は検出液容器155に押し出されず、混合液を反応に必要な時間中(例えば30分〜1時間程度)、微生物染色液容器152に保持することができる。   The water level of the liquid mixture of the two liquids does not exceed the highest point of the flow path 1572 between the microorganism staining liquid container and the detection liquid container that connects the microorganism staining liquid container 152 and the detection liquid container 155, and further enters the microorganism staining liquid container 152. The discharged air is discharged to the outside through the microorganism staining liquid container vent 1592. Since the atmospheric pressure of the microorganism staining liquid container 152 is equal to the atmospheric pressure, the two-liquid mixture is not pushed out to the detection liquid container 155, and the microorganism staining liquid is used during the time required for the reaction (for example, about 30 minutes to 1 hour). It can be held in the container 152.

このとき、混合液の検出液容器155への流入を防ぐ目的で、各通気口1593〜1594に対して圧力供給装置14からの圧力を加え、検体容器151の気圧より低い範囲まで検出液容器155と検出液廃液容器156の気圧を上げても良い。   At this time, in order to prevent the mixed liquid from flowing into the detection liquid container 155, the pressure from the pressure supply device 14 is applied to each of the vents 1593 to 1594 to detect the detection liquid container 155 to a range lower than the pressure of the specimen container 151. The pressure of the detection liquid waste liquid container 156 may be increased.

なお、染色中は、微生物検査チップ10の温度を一定に保つことにより、温度変化による染色の影響を小さくすることが望ましい。   During dyeing, it is desirable to keep the temperature of the microorganism testing chip 10 constant so as to reduce the influence of staining due to temperature changes.

次に、検体1511と染色液1521から成る検出液(混合液)を、検出液容器155に移動させる(S905)。   Next, the detection liquid (mixed liquid) composed of the specimen 1511 and the staining liquid 1521 is moved to the detection liquid container 155 (S905).

これらの前処理工程と並行して実行される微生物検査チップ10の位置合わせは、上述したように、微生物検出用流路173を励起光の焦点の位置に調整するものである。   As described above, the alignment of the microorganism testing chip 10 executed in parallel with these pretreatment steps is to adjust the microorganism detection flow path 173 to the position of the focal point of the excitation light.

以上の動作が終了すると、検体1511と微生物染色液1521からなる検出液が微生物検出用流路173に移動され、検体中の生菌を蛍光フローサイトメトリー法により計測する。(S908)。図1に示すように、紙面垂直方向より、励起光113が照射される。このため、微生物を染色した色素からの蛍光と、微生物による散乱光が生じる。検出装置11は、生菌については全菌染色液の蛍光のみを検出し、死菌については全菌染色液と死菌染色液の蛍光を検出する。このため、生菌と死菌の判別が可能になる。また、散乱光の光量は菌体の大きさにより変わるため、菌体の大きさの判別も可能になる。尚、図1では一つの光検出器120が図示されているが複数の染色液(死菌染色液と全菌染色液)を用いる場合には、それぞれの染色液からの蛍光のピーク波長に対応して光検出器等が設けられる。すなわち、蛍光分離用ダイクロイックミラーや、短波長バンドパスフィルタ、長波長バンドパスフィルタ、短波長用光検出器、長波長用光検出器等が設けられる。これらの構成は、例えば、特開2008−157829号公報や、特許文献1、特許文献2などに詳述されている。
(G)計測状態の把握
計測状態を把握するために流動状態と位置状態の情報認識について図6〜図12を用いて説明する。なお、本実施例では、流量センサーは図4で示す差圧計1413を用いている。
When the above operation is completed, the detection liquid composed of the specimen 1511 and the microorganism staining liquid 1521 is moved to the microorganism detection flow path 173, and viable bacteria in the specimen are measured by the fluorescence flow cytometry method. (S908). As shown in FIG. 1, the excitation light 113 is irradiated from the direction perpendicular to the paper surface. For this reason, the fluorescence from the pigment | dye which dye | stained microorganisms and the scattered light by microorganisms arise. The detection device 11 detects only the fluorescence of the whole bacterial stain for live bacteria, and detects the fluorescence of the whole bacterial stain and the dead bacterial stain for dead bacteria. For this reason, it becomes possible to distinguish between live bacteria and dead bacteria. In addition, since the amount of scattered light varies depending on the size of the microbial cell, the size of the microbial cell can also be determined. In FIG. 1, one photodetector 120 is shown. However, when a plurality of staining solutions (dead bacteria staining solution and whole bacteria staining solution) are used, it corresponds to the peak wavelength of fluorescence from each staining solution. Thus, a photodetector or the like is provided. That is, a dichroic mirror for fluorescence separation, a short wavelength bandpass filter, a long wavelength bandpass filter, a short wavelength photodetector, a long wavelength photodetector, and the like are provided. These configurations are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-157829, Patent Document 1, Patent Document 2, and the like.
(G) Grasp of measurement state Information recognition of a flow state and a position state in order to grasp a measurement state will be described with reference to FIGS. In this embodiment, the differential pressure gauge 1413 shown in FIG. 4 is used as the flow rate sensor.

図6は計測状態が正常な場合を示している。すなわち、微生物検出用流路173に検出液が所定量の流量で流れ(図中の長矢印で表現)、かつ、励起光113が微生物検出用流路173に照射している状態である。このとき、微生物検出用流路173に流れる検出液の流量は微量のため、検出液容器−微生物検出用流路間流路1573に、検出液容器155や検出液容器通気流路1583、検出液容器通気口1593を介して接続している差圧計1413は低い値を示す。また、検出液が励起光113に照射されて蛍光を発して光検出器120が検出し、蛍光強度は高い値を示す。このように、計測状態が正常の場合は、差圧値が低く、かつ、蛍光強度が強くなる。   FIG. 6 shows a case where the measurement state is normal. That is, the detection liquid flows through the microorganism detection flow path 173 at a predetermined flow rate (represented by a long arrow in the figure), and the microorganism detection flow path 173 is irradiated with the excitation light 113. At this time, since the flow rate of the detection liquid flowing through the microorganism detection flow path 173 is very small, the detection liquid container 155, the detection liquid container vent flow path 1583, and the detection liquid are added to the flow path 1573 between the detection liquid container and the microorganism detection flow path. The differential pressure gauge 1413 connected through the container vent 1593 shows a low value. Further, the detection liquid is irradiated with the excitation light 113 to emit fluorescence, and the photodetector 120 detects the fluorescence, and the fluorescence intensity shows a high value. Thus, when the measurement state is normal, the differential pressure value is low and the fluorescence intensity is high.

図7は位置ずれが発生している計測状態を示している。すなわち、微生物検出用流路173に検出液1551が所定量の流量で流れ(図中の長矢印で表現)、かつ、励起光113が微生物検出用流路173に照射していない状態である。このとき、微生物検出用流路173に流れる検出液1551の流量は微量のため、検出液容器−微生物検出用流路間流路1573に接続している差圧計1413は低い値を示す。また、検出液1551が励起光113に照射されないため蛍光を発せず、光検出器120が蛍光を検出しない。このため、蛍光強度は低い値を示す。このように、計測状態が位置ずれの場合は、差圧値が低く、かつ、蛍光強度が弱くなる。   FIG. 7 shows a measurement state in which a positional deviation has occurred. That is, the detection liquid 1551 flows through the microorganism detection flow path 173 at a predetermined flow rate (represented by a long arrow in the figure), and the excitation light 113 is not irradiated to the microorganism detection flow path 173. At this time, since the flow rate of the detection liquid 1551 flowing through the microorganism detection flow path 173 is very small, the differential pressure gauge 1413 connected to the flow path 1573 between the detection liquid container and the microorganism detection flow path shows a low value. Further, since the detection liquid 1551 is not irradiated with the excitation light 113, fluorescence is not emitted, and the photodetector 120 does not detect fluorescence. For this reason, the fluorescence intensity shows a low value. Thus, when the measurement state is misalignment, the differential pressure value is low and the fluorescence intensity is weak.

図8は流体の漏れが発生している計測状態を示す。すなわち、微生物検出用流路173に検出液1551が所定の流量で流れず(図中の短矢印で表現)、かつ、励起光113が微生物検出用流路173に照射している状態である。このとき、チップ連結管1444と検出液容器通気口1593の接続部で空気が漏れているため、検出液容器−微生物検出用流路間流路1573に接続している差圧計1413は高い値を示す。また、検出液1551が励起光113に照射されて蛍光を発して光検出器120が検出し、蛍光強度は高い値を示す。このように、流体の漏れが発生している計測状態の場合は、差圧値が高く、かつ、蛍光強度が強くなる。   FIG. 8 shows a measurement state in which fluid leakage has occurred. That is, the detection liquid 1551 does not flow through the microorganism detection flow path 173 at a predetermined flow rate (expressed by a short arrow in the figure), and the microorganism detection flow path 173 is irradiated with the excitation light 113. At this time, since air leaks at the connection portion between the chip connecting tube 1444 and the detection liquid container vent 1593, the differential pressure gauge 1413 connected to the flow path 1573 between the detection liquid container and the microorganism detection flow path has a high value. Show. Further, the detection liquid 1551 is irradiated with the excitation light 113 to emit fluorescence, and the photodetector 120 detects the fluorescence, and the fluorescence intensity shows a high value. Thus, in the measurement state in which fluid leakage occurs, the differential pressure value is high and the fluorescence intensity is strong.

図9は位置ずれと流体の漏れが発生している計測状態を示している。すなわち、微生物検出用流路173に検出液1551が所定の流量で流れず(図中の短矢印で表現)、かつ、励起光113が微生物検出用流路173に照射していない状態である。このとき、チップ連結管1444と検出容器通気口1593の接続部で空気が漏れているため、検出液容器−微生物検出用流路間流路1573に接続している差圧計1413は高い値を示す。また、検出液1551が励起光113に照射されないため蛍光を発しない。光検出器120が蛍光を検出しないため、蛍光強度は低い値を示す。このように、位置ずれと流体の漏れが発生する計測状態の場合は、差圧値が高く、かつ、蛍光強度が弱くなる。   FIG. 9 shows a measurement state in which misalignment and fluid leakage occur. That is, the detection liquid 1551 does not flow through the microorganism detection flow path 173 at a predetermined flow rate (represented by a short arrow in the figure), and the excitation light 113 is not irradiated to the microorganism detection flow path 173. At this time, since air leaks at the connection portion between the chip connecting pipe 1444 and the detection container vent 1593, the differential pressure gauge 1413 connected to the detection liquid container-microorganism detection flow path 1573 shows a high value. . Further, since the detection liquid 1551 is not irradiated with the excitation light 113, fluorescence is not emitted. Since the photodetector 120 does not detect fluorescence, the fluorescence intensity shows a low value. As described above, in the measurement state in which positional deviation and fluid leakage occur, the differential pressure value is high and the fluorescence intensity is weak.

図10は流路に詰まりが発生している計測状態を示している。すなわち、微生物検出用流路173に詰まり1552が発生しているため検出液1551が滞留し(図中の無矢印で表現)、かつ、励起光113が微生物検出用流路173に照射している状態である。このとき、微生物検出用流路173の検出液1551は停滞しているため、検出液容器−微生物検出用流路間流路1573に接続している差圧計1413は低い値を示す。また、検出液1551が励起光113に照射されて蛍光を発して光検出器120が蛍光を検出し、蛍光強度は高い値を示す。このように、流路に詰まりが発生しているものの励起光113が微生物検出用流路173に照射している計測状態では、計測状態が正常の場合と同様に、差圧値が低く、かつ、蛍光強度が強くなる。   FIG. 10 shows a measurement state in which the flow path is clogged. That is, since the clogging 1552 is generated in the microorganism detection flow path 173, the detection liquid 1551 stays (represented by a non-shown arrow in the drawing), and the microorganism detection flow path 173 is irradiated with the excitation light 113. State. At this time, since the detection liquid 1551 in the microorganism detection flow path 173 is stagnant, the differential pressure gauge 1413 connected to the detection liquid container-microorganism detection flow path 1573 shows a low value. Further, the detection liquid 1551 is irradiated with the excitation light 113 to emit fluorescence, and the photodetector 120 detects the fluorescence, and the fluorescence intensity shows a high value. In this way, in the measurement state where the excitation light 113 irradiates the microorganism detection flow path 173, although the clogging has occurred in the flow path, the differential pressure value is low as in the case where the measurement state is normal, and , The fluorescence intensity increases.

ここで、図6の計測状態が正常の場合と、図10の計測状態は流路に詰まりが発生している状態の場合は、ともに、差圧値が低く、かつ、蛍光強度が強い状態となる。これらの計測状態を区別して、計測状態を特定するには、光検出器120が検出する菌数頻度(検出数頻度)の分布から判断する。計測状態が正常の場合は、菌数の頻度分布は図11Aのように一様となり、計測状態が流路に詰まりを発生している場合は、菌数の頻度分布は図11Bのようにむらになる。すなわち、詰まりが発生し、検出液1551が滞留している場合には、ある程度の時間が経過すると菌数が計測されなくなる。   Here, both when the measurement state of FIG. 6 is normal and when the measurement state of FIG. 10 is a state in which the flow path is clogged, the differential pressure value is low and the fluorescence intensity is strong. Become. In order to distinguish between these measurement states and specify the measurement state, the determination is made from the distribution of the number of bacteria detected by the photodetector 120 (the number of detection frequencies). When the measurement state is normal, the frequency distribution of the number of bacteria is uniform as shown in FIG. 11A, and when the measurement state is clogged in the flow path, the frequency distribution of the number of bacteria is uneven as shown in FIG. 11B. become. That is, when clogging occurs and the detection liquid 1551 stays, the number of bacteria is not measured after a certain amount of time has passed.

以上の各計測状態と位置状態及び流動状態との関係を纏めると図12の通りとなる。このように、微生物検査チップの位置合わせを実施した後も、引続き、生菌数の計測中に、検出液の流動状態として流量センサー(差圧計)から情報と、微生物検出用流路と励起光の光学的な位置状態として光検出器からの情報と得るようにして、計測状態を把握することが可能となる。また、光検出器からの蛍光強度について菌数頻度分布の情報を得るようにすることにより空気漏れ以外の異常も認識することができる。   FIG. 12 shows a summary of the relationship between each measurement state, the position state, and the flow state. As described above, even after the microorganism test chip is aligned, information from the flow sensor (differential pressure gauge), the flow path for detecting the microorganism, and the excitation light as the flow state of the detection solution during the measurement of the number of viable bacteria. It is possible to grasp the measurement state by obtaining information from the photodetector as the optical position state. In addition, abnormalities other than air leakage can be recognized by obtaining information on the bacterial count frequency distribution for the fluorescence intensity from the photodetector.

計測状態と位置状態及び流動状態は、出力装置19に表示するようにしても良い。すなわち、生菌数の計測結果を出力する際に、流量センサー(差圧計)から得られる流動状態の情報と光検出器から得られる蛍光強度の強弱の情報を併せて出力する。または、生菌数の計測結果を出力する際に、流量センサー(差圧計)から得られる流動状態の情報と光検出器から得られる蛍光強度の強弱の情報から図12に示す関係に基づき、計測結果が正常な動作に基づくものであるか、即ち、異常がないかを判断して、計測状態が正常か異常かも併せて出力する。また、異常と判断される場合、図12に示す関係に基づき、微生物検査装置の異常原因を推定し、その原因を出力する。または、微生物の検出信号がない又は所定値よりも小さい場合、流量センサー(差圧計)から得られる流動情報又は光検出器から得られる蛍光強度の強弱の情報に基づき微生物検査装置に異常がないか判断し、その結果を出力するようにしても良い。   The measurement state, the position state, and the flow state may be displayed on the output device 19. That is, when outputting the measurement result of the viable count, information on the flow state obtained from the flow sensor (differential pressure gauge) and information on the intensity of the fluorescence intensity obtained from the photodetector are output together. Alternatively, when outputting the measurement result of the viable count, measurement is performed based on the relationship shown in FIG. 12 from information on the flow state obtained from the flow sensor (differential pressure gauge) and information on the intensity of the fluorescence intensity obtained from the photodetector. It is determined whether the result is based on normal operation, that is, there is no abnormality, and whether the measurement state is normal or abnormal is also output. If it is determined that there is an abnormality, the cause of the abnormality of the microorganism testing apparatus is estimated based on the relationship shown in FIG. 12, and the cause is output. Or, if there is no microorganism detection signal or smaller than the predetermined value, is there any abnormality in the microorganism testing device based on flow information obtained from the flow sensor (differential pressure gauge) or information on the intensity of the fluorescence intensity obtained from the photodetector It is also possible to judge and output the result.

上述の実施例によれば、流量センサー(差圧計)から得られる流動状態の情報と光検出器から得られる菌数頻度分布の情報とに基づき、検出液の流動状態として正常な流動、異常な流動(流体の漏れ、流路の詰まり)を認識することができ、光検出器から得られる蛍光強度の強弱の情報に基づき光学検出の位置状態として正常な検出位置、異常な検出位置(位置ずれ)を認識することができ、流動状態と位置状態から計測状態として正常か異常かを把握することができる。特に、検出液に微生物が少ない場合に、それが微生物検査装置側に何らかの異常があることに基づく計測結果なのか、正常な計測状態での計測結果であるかを把握することが可能になる。   According to the above-described embodiment, based on the flow state information obtained from the flow rate sensor (differential pressure gauge) and the bacterial count frequency distribution information obtained from the photodetector, normal flow and abnormal as the flow state of the detection liquid It can recognize the flow (fluid leakage, clogging of the flow path), and the normal detection position and abnormal detection position (positional deviation) as the optical detection position status based on the intensity of fluorescence intensity obtained from the photodetector ) And can determine whether the measurement state is normal or abnormal from the flow state and the position state. In particular, when there are few microorganisms in the detection solution, it is possible to grasp whether the result is a measurement result based on the presence of some abnormality on the microorganism testing apparatus side or a measurement result in a normal measurement state.

尚、上述の実施例では、流動状態と位置状態の両方について判断しているが、何れか一方の判断をする場合にも適用可能である。   In the above-described embodiment, both the flow state and the position state are determined. However, the present invention can be applied to the case where either one is determined.

1…微生物検査装置、10…微生物検査チップ、11…検出装置、14…圧力供給装置、17…微生物検出部、18…システム装置、19…出力装置、111…励起光源、112…ダイクロイックミラー、113…励起光、114…対物レンズ、119…ピンホール、120…光検出器、121…蛍光、124…散乱光、125…X−Y可動ステージ、141…エアポンプ、1411…レギュレータ、1412…流量センサー、1413…差圧計、1414…流路抵抗、151…検体容器、1511…検体、152…微生物染色液容器、1521…染色液、155…検出液容器、1551…検出液、156…検出液廃棄容器、1571〜1574…溶液用流路、1581〜1584…通気用流路、1591〜1594…通気口、161…検出用窓部、173…微生物検出用流路。   DESCRIPTION OF SYMBOLS 1 ... Microorganism test apparatus, 10 ... Microorganism test chip, 11 ... Detection apparatus, 14 ... Pressure supply apparatus, 17 ... Microbe detection part, 18 ... System apparatus, 19 ... Output apparatus, 111 ... Excitation light source, 112 ... Dichroic mirror, 113 ... excitation light, 114 ... objective lens, 119 ... pinhole, 120 ... photodetector, 121 ... fluorescence, 124 ... scattered light, 125 ... XY movable stage, 141 ... air pump, 1411 ... regulator, 1412 ... flow rate sensor, 1413 ... Differential pressure gauge, 1414 ... Flow path resistance, 151 ... Sample container, 1511 ... Sample, 152 ... Microbe staining solution container, 1521 ... Staining solution, 155 ... Detection solution container, 1551 ... Detection solution, 156 ... Detection solution waste container, 1571-1574 ... Solution channel, 1581-1584 ... Ventilation channel, 1591-1594 ... Vent, 161 ... Detection Window portion, 173 ... microorganism detection flow path.

Claims (10)

検体が保持される検体容器、試薬液が保持される試薬液容器、微生物検出用流路、前記検体容器と前記試薬液容器及び前記試薬液容器と前記微生物検出用流路をそれぞれ接続する流路を備えた微生物検査チップと、
前記微生物検査チップを保持すると共に前記微生物検査チップを移動させるステージと、
前記微生物検査チップと接続され、前記検体を前記検体容器から前記試薬液容器に搬送し、前記検体と前記試薬液からなる検出液を前記試薬液容器から前記微生物検出用流路に搬送する圧力を供給する圧力供給装置と、
前記微生物検出用流路に励起光を照射する光源、前記微生物検出用流路を流れる前記検出液からの蛍光を検出して電気信号に変換する光検出器を有する検出装置と、
前記圧力供給装置と前記微生物検査チップとの間に配置された流量センサーと、
前記圧力供給装置、前記検出装置及び前記流量センサーと接続し、前記圧力供給装置に制御信号の出力と前記検出装置及び前記流量センサーからの電気信号を処理する制御装置と、
前記制御装置で処理された検出結果を表示する出力装置とを有し、
前記制御装置は、前記流量センサーからの電気信号に基づき前記微生物検査チップと前記圧力供給装置との間における漏れの有無を判定し、前記光検出器からの電気信号に基づき蛍光強度の強弱を判定して前記微生物検出用流路の位置状態を判定し、前記出力装置に前記漏れの有無と前記位置状態を出力することを特徴とする微生物検査装置。
Sample container for holding sample, reagent liquid container for holding reagent liquid, flow path for microorganism detection, flow path for connecting the sample container and the reagent liquid container, and the reagent liquid container and the flow path for microorganism detection, respectively A microbe testing chip comprising:
A stage for holding the microorganism testing chip and moving the microorganism testing chip;
A pressure connected to the microorganism testing chip, for transporting the specimen from the specimen container to the reagent liquid container, and transporting a detection liquid comprising the specimen and the reagent liquid from the reagent liquid container to the microorganism detection flow path; A pressure supply device for supplying,
A light source for irradiating the microorganism detection flow path with excitation light, a detection device having a photodetector for detecting fluorescence from the detection liquid flowing in the microorganism detection flow path and converting it into an electrical signal;
A flow sensor disposed between the pressure supply device and the microorganism testing chip;
A control device that is connected to the pressure supply device, the detection device, and the flow rate sensor, outputs a control signal to the pressure supply device, and processes an electrical signal from the detection device and the flow rate sensor;
An output device for displaying a detection result processed by the control device;
The control device determines the presence or absence of leakage between the microorganism testing chip and the pressure supply device based on an electrical signal from the flow sensor, and determines the intensity of fluorescence based on the electrical signal from the photodetector. And determining the position state of the microbe detection flow path, and outputting the presence / absence of the leak and the position state to the output device.
検体が保持される検体容器、試薬液が保持される試薬液容器、微生物検出用流路、前記検体容器と前記試薬液容器及び前記試薬液容器と前記微生物検出用流路をそれぞれ接続する流路を備えた微生物検査チップと、
前記微生物検査チップを保持すると共に前記微生物検査チップを移動させるステージと、
前記微生物検査チップと接続され、前記検体を前記検体容器から前記試薬液容器に搬送し、前記検体と前記試薬液からなる検出液を前記試薬液容器から前記微生物検出用流路に搬送する圧力を供給する圧力供給装置と、
前記微生物検出用流路に励起光を照射する光源、前記微生物検出用流路を流れる前記検出液からの蛍光を検出して電気信号に変換する光検出器を有する検出装置と、
前記圧力供給装置及び前記検出装置と接続し、前記圧力供給装置に制御信号の出力と前記検出装置からの電気信号を処理する制御装置と、
前記制御装置で処理された検出結果を表示する出力装置とを有し、
前記制御装置は、前記光検出器からの電気信号に基づき蛍光強度の強弱を判定して前記微生物検出用流路の位置状態を判定し、前記出力装置に前記位置状態を出力することを特徴とする微生物検査装置。
Sample container for holding sample, reagent liquid container for holding reagent liquid, flow path for microorganism detection, flow path for connecting the sample container and the reagent liquid container, and the reagent liquid container and the flow path for microorganism detection, respectively A microbe testing chip comprising:
A stage for holding the microorganism testing chip and moving the microorganism testing chip;
A pressure connected to the microorganism testing chip, for transporting the specimen from the specimen container to the reagent liquid container, and transporting a detection liquid comprising the specimen and the reagent liquid from the reagent liquid container to the microorganism detection flow path; A pressure supply device for supplying,
A light source for irradiating the microorganism detection flow path with excitation light, a detection device having a photodetector for detecting fluorescence from the detection liquid flowing in the microorganism detection flow path and converting it into an electrical signal;
A control device connected to the pressure supply device and the detection device, and processing the output of a control signal to the pressure supply device and an electric signal from the detection device;
An output device for displaying a detection result processed by the control device;
The control device determines the position state of the microbe detection flow path by determining the intensity of fluorescence intensity based on an electric signal from the photodetector, and outputs the position state to the output device. Microbiological testing device.
検体が保持される検体容器、試薬液が保持される試薬液容器、微生物検出用流路、前記検体容器と前記試薬液容器及び前記試薬液容器と前記微生物検出用流路をそれぞれ接続する流路を備えた微生物検査チップと、
前記微生物検査チップを保持すると共に前記微生物検査チップを移動させるステージと、
前記微生物検査チップと接続され、前記検体を前記検体容器から前記試薬液容器に搬送し、前記検体と前記試薬液からなる検出液を前記試薬液容器から前記微生物検出用流路に搬送する圧力を供給する圧力供給装置と、
前記微生物検出用流路に励起光を照射する光源、前記微生物検出用流路を流れる前記検出液からの蛍光を検出して電気信号に変換する光検出器を有する検出装置と、
前記圧力供給装置と前記微生物検査チップとの間に配置された流量センサーと、
前記圧力供給装置、前記検出装置及び前記流量センサーと接続し、前記圧力供給装置に制御信号の出力と前記検出装置及び前記流量センサーからの電気信号を処理する制御装置と、
前記制御装置で処理された検出結果を表示する出力装置とを有し、
前記制御装置は、前記流量センサーからの電気信号に基づき前記微生物検査チップと前記圧力供給装置との間における漏れの有無を判定し、前記出力装置に前記漏れの有無を出力することを特徴とする微生物検査装置。
Sample container for holding sample, reagent liquid container for holding reagent liquid, flow path for microorganism detection, flow path for connecting the sample container and the reagent liquid container, and the reagent liquid container and the flow path for microorganism detection, respectively A microbe testing chip comprising:
A stage for holding the microorganism testing chip and moving the microorganism testing chip;
A pressure connected to the microorganism testing chip, for transporting the specimen from the specimen container to the reagent liquid container, and transporting a detection liquid comprising the specimen and the reagent liquid from the reagent liquid container to the microorganism detection flow path; A pressure supply device for supplying,
A light source for irradiating the microorganism detection flow path with excitation light, a detection device having a photodetector for detecting fluorescence from the detection liquid flowing in the microorganism detection flow path and converting it into an electrical signal;
A flow sensor disposed between the pressure supply device and the microorganism testing chip;
A control device that is connected to the pressure supply device, the detection device, and the flow rate sensor, outputs a control signal to the pressure supply device, and processes an electrical signal from the detection device and the flow rate sensor;
An output device for displaying a detection result processed by the control device;
The control device determines whether or not there is a leak between the microorganism testing chip and the pressure supply device based on an electrical signal from the flow sensor, and outputs the presence or absence of the leak to the output device. Microbiological testing device.
請求項1又は3において、前記流量センサーは、差圧計であることを特徴とする微生物検査装置。   4. The microorganism testing apparatus according to claim 1, wherein the flow sensor is a differential pressure gauge. 請求項4において、前記差圧計は前記圧力供給装置と前記微生物検査チップとの間に設けた流路抵抗の両端の差圧を測定することを特徴とする微生物検査装置。   5. The microorganism testing apparatus according to claim 4, wherein the differential pressure gauge measures a differential pressure at both ends of a channel resistance provided between the pressure supply device and the microorganism testing chip. 請求項1〜3の何れかにおいて、前記制御装置は、前記光検出器からの検出数頻度分布の情報に基づき微生物検査チップ内での流動状態を判定し、前記出力装置に前記流動状態を出力することを特徴とする微生物検査装置。   4. The control device according to claim 1, wherein the control device determines a flow state in the microbe test chip based on information on a detection frequency distribution from the photodetector, and outputs the flow state to the output device. A microorganism testing apparatus characterized by: 検体が保持される検体容器、試薬液が保持される試薬液容器、微生物検出用流路、前記検体容器と前記試薬液容器及び前記試薬液容器と前記微生物検出用流路をそれぞれ接続する流路を備えた微生物検査チップと、前記微生物検査チップを保持すると共に前記微生物検査チップを移動させるステージと、前記微生物検査チップと接続され、前記検体を前記検体容器から前記試薬液容器に搬送し、前記検体を前記試薬液からなる検出液を前記試薬液容器から前記微生物検出用流路に搬送する圧力を供給する圧力供給装置と、前記微生物検出用流路に励起光を照射する光源、前記微生物検出用流路を流れる前記検出液からの蛍光を検出して電気信号に変換する光検出器を有する検出装置と、前記圧力供給装置及び前記検出装置と接続し、前記圧力供給装置に制御信号の出力と前記検出装置からの電気信号を処理する制御装置と、前記圧力供給装置と前記微生物検査チップとの間に配置された流量センサーと有する微生物検査装置を用いた微生物検査方法であって、
前記微生物検査チップを前記ステージの所定箇所に装着するステップ、
前記微生物検査チップと前記検出装置との位置合わせをするステップ、
前記圧力供給装置から圧力を供給し、前記検出液を前記微生物検査チップ内で流動させ、前記検出液が前記微生物検出用流路を流動する際に前記光源から励起光を照射し、前記光検出器により蛍光を検出して電気信号に変換して出力するステップとを有し、
前記蛍光を検出して電気信号に変換して出力する際に、前記流量センサーから得られる流量情報及び/又は前記光検出器から得られる蛍光強度の強弱の情報を併せて出力することを特徴とする微生物検査方法。
Sample container for holding sample, reagent liquid container for holding reagent liquid, flow path for microorganism detection, flow path for connecting the sample container and the reagent liquid container, and the reagent liquid container and the flow path for microorganism detection, respectively A microbe test chip comprising: a stage for holding the microbe test chip and moving the microbe test chip; connected to the microbe test chip; transporting the sample from the sample container to the reagent solution container; A pressure supply device for supplying a pressure for conveying a detection liquid comprising the reagent liquid from the reagent liquid container to the microorganism detection flow path; a light source for irradiating the microorganism detection flow path with excitation light; and the microorganism detection A detection device having a photodetector for detecting fluorescence from the detection liquid flowing through the flow path and converting it into an electrical signal; and the pressure supply device and the detection device, and the pressure Microbiological testing using a microbiological testing device having a control device for processing a control signal output and an electrical signal from the detection device, and a flow rate sensor disposed between the pressure supply device and the microbiological testing chip. A method,
Attaching the microbe testing chip to a predetermined portion of the stage;
Aligning the microorganism testing chip and the detection device;
Pressure is supplied from the pressure supply device, the detection liquid is caused to flow in the microorganism testing chip, and when the detection liquid flows in the microorganism detection flow path, excitation light is emitted from the light source, and the light detection is performed. Detecting fluorescence with a vessel, converting it into an electrical signal and outputting it,
When the fluorescence is detected and converted into an electrical signal and output, the flow rate information obtained from the flow sensor and / or the intensity information of the fluorescence intensity obtained from the photodetector are output together. Microbial testing method.
検体が保持される検体容器、試薬液が保持される試薬液容器、微生物検出用流路、前記検体容器と前記試薬液容器及び前記試薬液容器と前記微生物検出用流路をそれぞれ連絡する流路を備えた微生物検査チップと、前記微生物検査チップを保持すると共に前記微生物検査チップを移動させるステージと、前記微生物検査チップと接続され、前記検体を前記検体容器から前記試薬液容器に搬送し、前記検体と前記試薬液からなる検出液を前記試薬液容器から前記微生物検出用流路に搬送する圧力を供給する圧力供給装置と、前記微生物検出用流路に励起光を照射する光源、前記微生物検出用流路を流れる前記検出液からの蛍光を検出して電気信号に変換する光検出器を有する検出装置と、前記圧力供給装置及び前記検出装置と接続し、前記圧力供給装置に制御信号の出力と前記検出装置からの電気信号を処理する制御装置と、前記圧力供給装置と前記微生物検査チップとの間に配置された流量センサーと有する微生物検査装置を用いた微生物検査方法であって、
前記微生物検査チップを前記ステージの所定箇所に装着するステップ、
前記微生物検査チップと前記検出装置との位置合わせをするステップ、
前記圧力供給装置から圧力を供給し、前記検出液を前記微生物検査チップ内で流動させ、前記検出液が前記微生物検出用流路を流動する際に前記光源から励起光を照射し、前記光検出器により蛍光を検出して電気信号に変換して出力するステップとを有し、
前記蛍光を検出して電気信号に変換して出力する際に、前記流量センサーから得られる流量情報又は前記光検出器から得られる蛍光強度の強弱の情報に基づき微生物検査装置に異常がないか判断することを特徴とする微生物検査方法。
Sample container for holding sample, reagent liquid container for holding reagent liquid, flow path for microorganism detection, flow path for connecting the sample container and the reagent liquid container, and the reagent liquid container and the flow path for microorganism detection A microbe test chip comprising: a stage for holding the microbe test chip and moving the microbe test chip; connected to the microbe test chip; transporting the sample from the sample container to the reagent solution container; A pressure supply device for supplying a pressure for conveying a detection liquid composed of a specimen and the reagent liquid from the reagent liquid container to the microorganism detection flow path; a light source for irradiating the microorganism detection flow path with excitation light; and the microorganism detection A detection device having a photodetector for detecting fluorescence from the detection liquid flowing through the flow path and converting it into an electrical signal; and the pressure supply device and the detection device, and the pressure Microbiological testing using a microbiological testing device having a control device for processing a control signal output and an electrical signal from the detection device, and a flow rate sensor disposed between the pressure supply device and the microbiological testing chip. A method,
Attaching the microbe testing chip to a predetermined portion of the stage;
Aligning the microorganism testing chip and the detection device;
Pressure is supplied from the pressure supply device, the detection liquid is caused to flow in the microorganism testing chip, and when the detection liquid flows in the microorganism detection flow path, excitation light is emitted from the light source, and the light detection is performed. Detecting fluorescence with a vessel, converting it into an electrical signal and outputting it,
When detecting the fluorescence and converting it into an electrical signal and outputting it, it is determined whether there is an abnormality in the microbiological examination apparatus based on the flow rate information obtained from the flow sensor or the intensity information of the fluorescence intensity obtained from the photodetector. A method for testing microorganisms, comprising:
請求項8において、前記流量センサーから得られる流動情報と前記光検出器から得られる蛍光強度の情報とに基づき、前記微生物検査装置の異常原因を推定するステップを有することを特徴とする微生物検査方法。   9. The microorganism testing method according to claim 8, further comprising the step of estimating an abnormality cause of the microorganism testing apparatus based on flow information obtained from the flow sensor and information on fluorescence intensity obtained from the photodetector. . 請求項8において、微生物の検出信号がない又は所定値よりも小さい場合、前記流量センサーから得られる流動情報又は前記光検出器から得られる蛍光強度の強弱の情報に基づき微生物検査装置に異常がないか判断することを特徴とする微生物検査方法。   In Claim 8, when there is no detection signal of microorganisms or when it is smaller than a predetermined value, there is no abnormality in the microorganism inspection apparatus based on flow information obtained from the flow sensor or information on the intensity of fluorescence intensity obtained from the photodetector. A method for testing microorganisms, characterized in that
JP2011181227A 2011-08-23 2011-08-23 Microorganism inspection device and inspection method Pending JP2013044585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181227A JP2013044585A (en) 2011-08-23 2011-08-23 Microorganism inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181227A JP2013044585A (en) 2011-08-23 2011-08-23 Microorganism inspection device and inspection method

Publications (1)

Publication Number Publication Date
JP2013044585A true JP2013044585A (en) 2013-03-04

Family

ID=48008614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181227A Pending JP2013044585A (en) 2011-08-23 2011-08-23 Microorganism inspection device and inspection method

Country Status (1)

Country Link
JP (1) JP2013044585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047442A1 (en) * 2016-09-12 2018-03-15 ソニー株式会社 Microparticle measurement device and microparticle measurement method
JP2021534380A (en) * 2018-08-10 2021-12-09 サイテック バイオサイエンスィズ インコーポレイテッド Smart flow cytometer for self-monitoring and self-verification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412245A (en) * 1987-07-03 1989-01-17 Canon Kk Particle analyzing device
JP2009500612A (en) * 2005-07-01 2009-01-08 ハネウェル・インターナショナル・インコーポレーテッド Flow measurement analyzer
JP2009281753A (en) * 2008-05-20 2009-12-03 Hitachi Engineering & Services Co Ltd Microorganism testing device and microorganism testing chip
JP2010271168A (en) * 2009-05-21 2010-12-02 Sony Corp Fine particle measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412245A (en) * 1987-07-03 1989-01-17 Canon Kk Particle analyzing device
JP2009500612A (en) * 2005-07-01 2009-01-08 ハネウェル・インターナショナル・インコーポレーテッド Flow measurement analyzer
JP2009281753A (en) * 2008-05-20 2009-12-03 Hitachi Engineering & Services Co Ltd Microorganism testing device and microorganism testing chip
JP2010271168A (en) * 2009-05-21 2010-12-02 Sony Corp Fine particle measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047442A1 (en) * 2016-09-12 2018-03-15 ソニー株式会社 Microparticle measurement device and microparticle measurement method
JPWO2018047442A1 (en) * 2016-09-12 2019-07-18 ソニー株式会社 Microparticle measuring device and microparticle measuring method
US10690583B2 (en) 2016-09-12 2020-06-23 Sony Corporation Microparticle measuring device and microparticle measuring method
JP2021534380A (en) * 2018-08-10 2021-12-09 サイテック バイオサイエンスィズ インコーポレイテッド Smart flow cytometer for self-monitoring and self-verification
JP7489373B2 (en) 2018-08-10 2024-05-23 サイテック バイオサイエンスィズ インコーポレイテッド Self-Monitoring, Self-Validating Smart Flow Cytometer

Similar Documents

Publication Publication Date Title
JP5167194B2 (en) Microbiological testing device
CN102365566B (en) Waveguide with integrated lens
RU2195653C2 (en) Analyser
JP2011092104A (en) Test method and test apparatus for microorganism or the like
US20100288941A1 (en) Fluorescence-based pipette instrument
JP2009544016A (en) Optical characterization methods and systems
JP2008157829A (en) Apparatus for examining microorganism
US8248604B2 (en) Flow cytometer and flow cell for the same
US20090291488A1 (en) Microorganism testing device and microorganism testing chip
US10324020B2 (en) Fluidic optical cartridge
JP5895064B2 (en) Flow type single particle spectrometer
JP2009178078A (en) Microbiological testing chip and microbiological testing instrument
JP2018169400A (en) Apparatus and method for determining blood sedimentation rate and other parameters associated therewith
US9517466B2 (en) Measuring cassette and measuring device for the detection of target molecules in a liquid sample by measurement of fluorescence emission after excitation in an evanescent field
US20130027686A1 (en) Analysis Device and Method
KR20200015316A (en) Automated device for enzyme immunoassay in liquid and method thereof
JP2014119418A (en) Measuring apparatus and measuring method
JP2013044585A (en) Microorganism inspection device and inspection method
Liszka et al. A microfluidic chip for high resolution Raman imaging of biological cells
JP2011220947A (en) Microbiological testing apparatus and microbiological testing chip
JP2014102227A (en) Inspection method and inspection device of microorganism or the like
JP5197290B2 (en) Microbiological testing device and microbiological testing chip
JP2013046576A (en) Method and device for examining microorganism or the like
JP2015019586A (en) Method and apparatus for testing microorganisms or the like
JP2013215142A (en) Method and apparatus for testing microorganism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401