JP2013044536A - Porosity measuring method for porous resin sheet and manufacturing method therefor - Google Patents

Porosity measuring method for porous resin sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2013044536A
JP2013044536A JP2011180184A JP2011180184A JP2013044536A JP 2013044536 A JP2013044536 A JP 2013044536A JP 2011180184 A JP2011180184 A JP 2011180184A JP 2011180184 A JP2011180184 A JP 2011180184A JP 2013044536 A JP2013044536 A JP 2013044536A
Authority
JP
Japan
Prior art keywords
resin sheet
porous resin
porosity
sheet
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011180184A
Other languages
Japanese (ja)
Inventor
Harumi Tanaka
治美 田中
Ozora Yoshino
大空 吉野
Hirokata Sasamoto
裕方 佐々本
Yasuhiro Nakai
康博 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011180184A priority Critical patent/JP2013044536A/en
Publication of JP2013044536A publication Critical patent/JP2013044536A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a state of submicron-size holes of a porous resin sheet for a battery separator in a noncontact manner, and contribute to quality improvement by performing in-line measurement on porosity and air permeability resistance related to the porosity in a film forming step and a slit or processing step.SOLUTION: A characteristic value correlated with porosity is obtained by using the multiple scattering of minute holes and the change of sonic velocity for each frequency, so that the porosity of a porous resin sheet is measured. In addition, a manufacturing method for a porous resin film having the measuring method is provided.

Description

本発明は、多孔性樹脂シートの空孔率測定方法、及び多孔性樹脂シートの製造方法に関する。   The present invention relates to a method for measuring the porosity of a porous resin sheet and a method for producing a porous resin sheet.

ポリプロピレンフィルムやポリエチレンフィルムを始めとするポリオレフィンフィルムを微多孔化した多孔性フィルムはその透気性、低比重などの特性から、リチウムイオン2次電池や電解コンデンサーのセパレーター用途へ展開されている。   Porous films in which polyolefin films such as polypropylene films and polyethylene films are microporous have been developed for separators of lithium ion secondary batteries and electrolytic capacitors because of their air permeability and low specific gravity.

リチウムイオン2次電池向けセパレーターは、電池の正極と負極電極間の絶縁を確保すると共に、リチウムイオンがセパレーターに含浸した電解質中を正極から負極に透過する役目を有する。すなわち、リチウムイオンを透過させる空孔の形成や密度が電池の特性を左右するため、樹脂シート中に空孔との割合である空孔率が重要な品質項目である。空孔率などの多孔性樹脂シートの構造に起因する測定値には透気抵抗がある。透気抵抗は、空孔を透過する空気やイオンなどの透過しやすさの指標である。   The separator for a lithium ion secondary battery has a function of ensuring insulation between the positive electrode and the negative electrode of the battery and permeating the electrolyte impregnated in the separator from the positive electrode to the negative electrode. That is, since the formation and density of the vacancies that allow lithium ions to permeate affect the characteristics of the battery, the porosity, which is the ratio of the vacancies in the resin sheet, is an important quality item. The measured value resulting from the structure of the porous resin sheet such as the porosity has air permeability resistance. Air permeation resistance is an index of the ease of permeation of air or ions that permeate the air holes.

ここで、多孔性の指標となる空孔率、すなわち、樹脂シートが有する空隙の体積を樹脂シートの体積で割った割合の定量方法としては、次のようなものが知られている。樹脂シートの重量と嵩密度より全体体積を求め、この値と実際の体積との差から空孔体積を求める方法や、エタノールや水などの溶媒を樹脂シートに含浸させて、含浸したエタノールの重量を体積に換算し、これを空孔体積とする方法がある。しかしながら、どちらの方法もシートを製造後オフラインで試料を切り出し測定するものである。セパレーター向けの多孔性樹脂シートは柔軟で、シート内部の空孔はつぶれやすく、また、溶媒の種類によっては多孔性樹脂シートに含浸させると樹脂が収縮するなどして空孔の大きさが変化してしまう課題があった。   Here, the following method is known as a quantification method of the porosity that is an index of porosity, that is, the ratio of the void volume of the resin sheet divided by the volume of the resin sheet. The total volume is obtained from the weight and bulk density of the resin sheet, the pore volume is obtained from the difference between this value and the actual volume, or the resin sheet is impregnated with a solvent such as ethanol or water, and the weight of the impregnated ethanol. Is converted into a volume, and this is used as a void volume. However, both methods measure and measure a sample off-line after manufacturing the sheet. The porous resin sheet for the separator is flexible, and the pores inside the sheet are apt to be crushed, and depending on the type of solvent, impregnation into the porous resin sheet causes the resin to shrink and the size of the pores changes. There was a problem.

セパレーターの重要な特性の1つである透気抵抗は、空孔率などの多孔性樹脂シートの構造に起因する。透気抵抗測定方法としてガーレー試験機法がある(JISP8117「紙及び板紙(透気度試験方法)ガーレー試験機法」)。この試験機法は、JISP8117に則って、シートを搬送させながら測定するインライン方式で、走行する多孔性樹脂シートに測定子を圧着し空気を吸引する。この方法は、ガーレー試験と同様に、一定体積、たとえば0.1×10−3の空気が多孔性シートから透過する時間を計測するものである。しかしながら、測定子を密着させて空気のもれを防ぐ必要があり、接触させた測定子が搬送されるシートをこすり、スリキズを発生させることがあった。 Air permeation resistance, which is one of important characteristics of the separator, is attributed to the structure of the porous resin sheet such as porosity. There is a Gurley tester method as a method for measuring air resistance (JISP 8117 “Paper and paperboard (air permeability test method) Gurley tester method”). This test method is an in-line method in which measurement is performed while a sheet is conveyed in accordance with JISP 8117, and a probe is pressed onto a traveling porous resin sheet to suck air. Similar to the Gurley test, this method measures the time required for a certain volume of air, for example, 0.1 × 10 −3 m 3 to pass through the porous sheet. However, it is necessary to prevent the leakage of air by bringing the probe into close contact, and the contacted probe may be rubbed to generate a scratch.

一方、非接触で樹脂内部の空気ボイドなどを測定する方法として、従来から樹脂成型品などで超音波を利用する測定方法がある。一般に超音波の測定は水中で実施される場合が多い。これは、大気中では空気と樹脂との音響インピーダンスが大きく異なるので、空中からシートには超音波が伝播しにくいからである。多孔性樹脂シートの製造は大気中で行われるので、空中で超音波の測定を行うことになる。つまり、ごくわずかな超音波の透過量で測定を実施しなければならない。   On the other hand, as a method for measuring air voids in a resin in a non-contact manner, there is a conventional measurement method using ultrasonic waves in a resin molded product or the like. In general, ultrasonic measurement is often performed in water. This is because the acoustic impedance of air and resin is greatly different in the atmosphere, so that it is difficult for ultrasonic waves to propagate from the air to the sheet. Since the production of the porous resin sheet is performed in the air, the ultrasonic measurement is performed in the air. In other words, the measurement must be performed with a very small amount of ultrasonic transmission.

特許文献1に示す通り、超音波素子を樹脂成型品の片面に設置し、素子から超音波を発振し樹脂成型品の反対面で反射してくる超音波を、同じ超音波素子で受信する構成である。すなわち、樹脂成型品の背面での反射波を利用する構成で、樹脂成型品に超音波を入射し成型品の裏面で反射して戻るまでの伝播時間を計測する技術が特許文献1に開示されている。超音波の伝播速度は樹脂成型品のヤング率と密度に関係するが、空隙量が大きい樹脂成型品は密度が小さく、伝播速度が遅くなる原理を用い空隙量を測定する。あらかじめ求めておいた空隙量と伝播速度との間の相関関係を用い、試料に超音波を入射し伝播速度から空隙量を換算するものである。特許文献1の技術は、樹脂成型品のような肉厚な対象物であって、伝播時間の差が十分に計測できる場合に用いられる。本発明者らの知見によると、上記のような構成で反射波を計測する方法は、シートのような厚みが小さい試料においては入射する波と反射する波とが重なってしまう。すなわち、多孔性樹脂シートの厚みは数10μmであって、波長より厚みが小さく伝播時間の違いを得ることが困難であった。すなわち、特許文献1の技術では、肉厚が数10mmの対象物の1mm程度の空気ボイドを測定することに限られている。つまり、シートの厚さが30μm以下と薄い多孔性樹脂シートの内部にある空孔は測定できなかった。   As shown in Patent Document 1, an ultrasonic element is installed on one side of a resin molded product, and an ultrasonic wave oscillated from the element and reflected by the opposite surface of the resin molded product is received by the same ultrasonic element. It is. That is, Patent Document 1 discloses a technique for measuring a propagation time until an ultrasonic wave is incident on a resin molded product and is reflected on the back surface of the molded product by using a reflected wave on the back surface of the resin molded product. ing. The propagation speed of ultrasonic waves is related to the Young's modulus and density of a resin molded product, but a resin molded product having a large void volume has a low density and the void volume is measured using the principle that the propagation speed is slow. Using the correlation between the void amount and the propagation velocity obtained in advance, ultrasonic waves are incident on the sample and the void amount is converted from the propagation velocity. The technique of Patent Document 1 is used when the object is a thick object such as a resin molded product and the difference in propagation time can be sufficiently measured. According to the knowledge of the present inventors, in the method of measuring a reflected wave with the above configuration, an incident wave and a reflected wave are overlapped in a sample having a small thickness such as a sheet. That is, the thickness of the porous resin sheet is several tens of μm, and the thickness is smaller than the wavelength and it is difficult to obtain a difference in propagation time. That is, the technique of Patent Document 1 is limited to measuring an air void of about 1 mm in an object having a thickness of several tens of mm. That is, it was not possible to measure the pores in the porous resin sheet as thin as 30 μm or less.

さらに、超音波を利用して、固体材料の気孔率を測定する方法としては、超音波が気孔に当って迂回波となる点に着目し、その伝播遅れから気孔率を求める方法が知られている(特許文献2)。特許文献2で開示された技術は、入射した超音波の応答波形を、気泡がまったく存在しない同じ材質から得た応答波形との対比から逆畳み込み積分処理により気孔関数を求める。横軸に時間、縦軸に気孔関数をとって、伝播遅れ時間、気孔関数の半値幅又は気孔関数のピーク値を得る。体積置換法で得た気孔率の結果と伝播遅れ時間、ピーク値の相関関係を使って、気孔率を算出するものである。この方法では、数μmオーダーまでの気泡検出が可能である。   Furthermore, as a method for measuring the porosity of a solid material using ultrasonic waves, a method for determining the porosity from the propagation delay is known by paying attention to the point that the ultrasonic waves hit the pores and become a detour wave. (Patent Document 2). The technique disclosed in Patent Document 2 obtains a pore function by deconvolution integration processing from a comparison between a response waveform of an incident ultrasonic wave and a response waveform obtained from the same material in which no bubbles are present. Taking the time on the horizontal axis and the pore function on the vertical axis, the propagation delay time, the half value width of the pore function or the peak value of the pore function is obtained. The porosity is calculated using the correlation between the porosity result obtained by the volume substitution method, the propagation delay time, and the peak value. With this method, it is possible to detect bubbles up to several μm order.

本発明者らの知見によると、応答波形の分解能は、超音波の波長に依存する。周波数の逆数である波長は、空中超音波に利用しやすい20kHzの場合、波長は50μmである。特許文献2の測定では試料の板厚は15mmであって、シートの厚みが波長に比べて十分大きく、入射した波形と迂回波とが分かれて観察される。しかしながら、波長より厚みが薄いシートであっては、入射した波形と迂回波が重なって観察され、伝播遅れ時間や気孔関数のピーク値を得ることが困難であった。つまり、セパレーターに用いられる多孔性樹脂シートの0.3μm以下の微小な空孔の割合を測定することはできなかった。   According to the knowledge of the present inventors, the resolution of the response waveform depends on the wavelength of the ultrasonic wave. The wavelength, which is the reciprocal of the frequency, is 50 μm in the case of 20 kHz that is easily used for airborne ultrasonic waves. In the measurement of Patent Document 2, the thickness of the sample is 15 mm, the thickness of the sheet is sufficiently larger than the wavelength, and the incident waveform and the detour wave are observed separately. However, in the sheet having a thickness smaller than the wavelength, the incident waveform and the detour wave are observed to overlap each other, and it is difficult to obtain the propagation delay time and the peak value of the pore function. That is, it was not possible to measure the proportion of fine pores of 0.3 μm or less in the porous resin sheet used for the separator.

つまり、本発明者らの知見によれば、従来の技術では、多孔性樹脂シートの空孔状態や透気抵抗を、非接触で連続測定することはできないでいた。さらに、従来の超音波の透過強度の減衰量や、伝播時間の遅れや波長におけるピーク関数を用いた方法であっては、超音波の波長以下の測定が不可能で、1μm以下、特に0.3μm以下の空孔の測定はできないでいた。このため、多孔性樹脂シートの製造方法において、インラインで連続的に空孔状態や透気抵抗を評価する手段はなかった。   That is, according to the knowledge of the present inventors, the conventional technology cannot continuously measure the pore state and air permeability resistance of the porous resin sheet in a non-contact manner. Furthermore, the conventional method using the attenuation amount of the transmission intensity of ultrasonic waves, the delay of propagation time, and the peak function in the wavelength cannot measure the wavelength below the ultrasonic wave, and is 1 μm or less, particularly 0. Measurement of pores of 3 μm or less was not possible. For this reason, in the manufacturing method of the porous resin sheet, there was no means for continuously evaluating the pore state and the air permeation resistance in-line.

特開平8−210965号公報JP-A-8-210965 特開平6−18403号公報Japanese Patent Laid-Open No. 6-18403

本発明は、上記従来技術の課題を解決する。すなわち、多孔性樹脂シートの空孔状態を、超音波を用いて非接触で測定する、超音波の伝播速度の差や応答波形から気孔関数を得る計測方法では、超音波の波長以下のシート厚みのサブミクロンサイズの空孔を測定することはできないでいた。   The present invention solves the above-described problems of the prior art. That is, in the measurement method for measuring the pore state of the porous resin sheet in a non-contact manner using ultrasonic waves, and obtaining the pore function from the difference in ultrasonic propagation velocity and the response waveform, the sheet thickness below the wavelength of the ultrasonic wave It was not possible to measure the submicron sized holes.

本発明は、前記従来の課題を解決するもので、微細な空孔の多重散乱を用いて、空孔率と相関する特性値を用いて、多孔性樹脂シートの空孔率を測定することを目的とする。また、該方法を有する多孔性樹脂フィルムの製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problem, and measures the porosity of a porous resin sheet using a characteristic value correlated with the porosity using multiple scattering of fine pores. Objective. Moreover, it aims at providing the manufacturing method of the porous resin film which has this method.

本発明に係る測定方法は、以下の通りである。本発明者らは、超音波を用いて、固体材料中の気孔特性を非破壊的に評価する方法を提供する。シート厚みより波長が長い超音波を用い、シートを通過した際に空孔で散乱する伝播波形を用いて、周波数毎の位相速度の変化または透過量の減少から、固体材料の空孔率を求める方法を提案する。また、あらかじめ、空孔率と透気抵抗の関係式を得ておき、空孔率から透気抵抗を算出する方法を提供する。   The measuring method according to the present invention is as follows. The inventors provide a method for non-destructively evaluating the pore characteristics in a solid material using ultrasound. Using ultrasonic waves with a wavelength longer than the sheet thickness, and using the propagation waveform scattered by the holes when passing through the sheet, obtain the porosity of the solid material from the change in the phase velocity for each frequency or the decrease in the amount of transmission. Suggest a method. In addition, a relational expression between the porosity and the air resistance is obtained in advance, and a method for calculating the air resistance from the porosity is provided.

すなわち、本発明によれば、シート内部に多数の空孔を有する多孔性樹脂シートにおいて、空中に発信された10kHzから2MHzの超音波を前記多孔性樹脂シートに透過させ、空孔での散乱を含む透過音波を受信し、前記多孔性樹脂シートの空孔率を測定する多孔性樹脂シートの空孔率測定方法が提供される。   That is, according to the present invention, in a porous resin sheet having a large number of pores inside the sheet, 10 kHz to 2 MHz ultrasonic waves transmitted in the air are transmitted through the porous resin sheet, and scattering in the pores is caused. There is provided a method for measuring a porosity of a porous resin sheet by receiving a transmitted sound wave containing the sound wave and measuring the porosity of the porous resin sheet.

また、本発明の好ましい形態によれば、周波数の異なる超音波を前記多孔性樹脂シートに発信し、受信した超音波波形を周波数毎の音速測定結果において、前記多孔性樹脂シートの厚みより波長が長い超音波を用い、周波数毎の位相速度の変化から多孔性樹脂シートの空孔率を測定する多孔性樹脂シートの空孔率測定方法が提供される。   According to a preferred embodiment of the present invention, ultrasonic waves having different frequencies are transmitted to the porous resin sheet, and the received ultrasonic waveform has a wavelength that is greater than the thickness of the porous resin sheet in the sound velocity measurement result for each frequency. There is provided a method for measuring a porosity of a porous resin sheet, in which the porosity of the porous resin sheet is measured from a change in phase velocity for each frequency using a long ultrasonic wave.

また、本発明の好ましい形態によれば、周波数の異なる超音波を前記多孔性樹脂シートに発信し、受信した超音波波形の周波数毎に減衰量測定結果を用い、多孔性樹脂シートの空孔率を測定する多孔性樹脂シートの空孔率測定方法が提供される。   Further, according to a preferred embodiment of the present invention, ultrasonic waves having different frequencies are transmitted to the porous resin sheet, and the attenuation rate measurement result is used for each frequency of the received ultrasonic waveform, and the porosity of the porous resin sheet is determined. A method for measuring the porosity of a porous resin sheet is provided.

また、本発明の好ましい形態によれば、前記空孔率が樹脂量の重量に対して、40%以上80%以下を測定する前記多孔性樹脂シートの空孔率測定方法が提供される。   Moreover, according to the preferable form of this invention, the porosity measuring method of the said porous resin sheet which measures the said porosity for 40 to 80% with respect to the weight of resin amount is provided.

また、本発明の別の形態によれば、前記多孔性樹脂シートの空孔率測定結果と、あらかじめ求めた空孔率と透気抵抗の関係を用いて、多孔性樹脂シートの透気抵抗を測定する多孔性樹脂シートの透気度測定方法が提供される。   According to another aspect of the present invention, the porosity measurement result of the porous resin sheet and the relationship between the porosity and the air resistance obtained in advance are used to determine the air resistance of the porous resin sheet. A method for measuring the air permeability of a porous resin sheet to be measured is provided.

また、本発明の好ましい形態によれば、透気抵抗80秒以上400秒以下を測定する多孔性樹脂シートの透気度測定方法が提供される。   Moreover, according to the preferable form of this invention, the air permeability measurement method of the porous resin sheet which measures air resistance 80 second or more and 400 second or less is provided.

また、本発明の別の形態によれば、樹脂をシート状に成型し、連続的に製膜する多孔性樹脂シートの製造方法であって、シート成型した後延伸した状態で、前記多孔性樹脂シートの空孔率測定方法を備える多孔性樹脂シートの製造方法が提供される。   According to another aspect of the present invention, there is provided a method for producing a porous resin sheet in which a resin is molded into a sheet shape and continuously formed into a film, wherein the porous resin is stretched after being molded into a sheet. There is provided a method for producing a porous resin sheet comprising a method for measuring the porosity of a sheet.

本発明によれば、多孔性樹脂シートを破壊することなく、大気中で多孔性樹脂シート内部に存在する1μm以下の気孔の分布状況による空孔率を測定することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to measure the porosity by the distribution condition of the 1 micrometer or less pore which exists in the inside of a porous resin sheet in air | atmosphere, without destroying a porous resin sheet.

また、多孔性樹脂シートの空孔率は透気抵抗と相関することを利用して透気抵抗値を得ることができる。これにより、多孔性樹脂シートの製造方法において、インラインで連続的に空孔状態や透気抵抗を評価できるので、品質が安定化するだけでなく、空孔率ムラのばらつきが大きいために発生する生産ロスを最小に抑えることができる。   Further, the air resistance value can be obtained by utilizing the correlation between the porosity of the porous resin sheet and the air resistance. As a result, in the method for producing a porous resin sheet, since the pore state and air permeability resistance can be continuously evaluated in-line, not only the quality is stabilized but also the variation in the porosity is large. Production loss can be minimized.

本発明の超音波測定方法を示す概略図である。It is the schematic which shows the ultrasonic measurement method of this invention. 本発明の多孔性樹脂シートを透過する超音波を示す概念図である。It is a conceptual diagram which shows the ultrasonic wave which permeate | transmits the porous resin sheet of this invention. 本発明の空孔での超音波散乱状況を示す概念図である。It is a conceptual diagram which shows the ultrasonic scattering condition in the void | hole of this invention. 本発明の超音波測定器を有するフィルム製膜工程の概略図である。It is the schematic of the film forming process which has the ultrasonic measuring device of this invention.

次に、本発明の実施形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

なお、本実施形態にかかる測定対象である多孔性樹脂シートとしては、リチウムイオン2次電池用のセパレーターフィルムが好ましく適用される。セパレーターフィルムの材質では、ポリエチレン、ポリプロピレンなどのオレフィン系フィルムが好適に用いられるが、ポリテトラフルオロエチレン、ポリアミド、ポリビニリデンフルオライド等の樹脂を測定対象としても好ましく用いられる。多孔性樹脂シートには、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有した多孔性樹脂シートも測定対象に含まれる。   In addition, as a porous resin sheet which is a measuring object concerning this embodiment, the separator film for lithium ion secondary batteries is applied preferably. As a material for the separator film, an olefin film such as polyethylene or polypropylene is preferably used, but a resin such as polytetrafluoroethylene, polyamide, or polyvinylidene fluoride is also preferably used as a measurement target. The porous resin sheet contains an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and a porous material containing various additives such as an antiblocking agent, a filler, and an incompatible polymer. A resin sheet is also included in the measurement object.

図1において、多孔性樹脂シートを挟んで、空中に超音波を放射する放射部21を有する超音波発振手段2と、上記超音波を受波し電気信号に変換する受波部31を有する超音波受波手段3が対向して配置されている。超音波発振手段2は、超音波振動子を有し、超音波USを放射する放射部21と、超音波振動子を所定の周波数で駆動する駆動回路22とからなる。なお、超音波USは、超音波振動子に曲率を持たせるなどして収束させて放射している。超音波受波手段3は、超音波USを受波するとその強度に応じた振幅の電気信号を発生する超音波振動子を有する受波部31、及び、この超音波振動子の出力(電気信号)を、その大きさに応じた電圧値を有する直流電圧信号に変換する受波回路32からなる。上記超音波受波手段3で受波した信号は、超音波発振手段2と超音波受波手段3との間に配置した測定対象物を透過した信号である。   In FIG. 1, an ultrasonic wave oscillating means 2 having a radiation part 21 that emits ultrasonic waves in the air with a porous resin sheet interposed therebetween, and an ultrasonic wave having a wave receiving part 31 that receives the ultrasonic waves and converts them into electric signals. The sound wave receiving means 3 is arranged to face each other. The ultrasonic oscillating means 2 includes an ultrasonic vibrator, and includes a radiation unit 21 that radiates an ultrasonic wave US, and a drive circuit 22 that drives the ultrasonic vibrator at a predetermined frequency. The ultrasonic wave US is converged and radiated by giving the ultrasonic vibrator a curvature. The ultrasonic wave receiving means 3 receives the ultrasonic wave US and receives a wave receiving unit 31 having an ultrasonic vibrator that generates an electric signal having an amplitude corresponding to the intensity of the ultrasonic wave US, and an output (electric signal) of the ultrasonic vibrator. ) Is converted into a DC voltage signal having a voltage value corresponding to the magnitude thereof. The signal received by the ultrasonic wave receiving means 3 is a signal that has passed through the measurement object disposed between the ultrasonic wave oscillating means 2 and the ultrasonic wave receiving means 3.

上記超音波発振手段2は、上記放射部21から、互いに周波数の異なる超音波を放射する。周波数の異なる超音波は、2つ以上の複数の定常波を複数回に分けて放射しても良いが、周波数を連続的に変化させるチャープ波をパルス発振して放射部21から放射することが好ましく用いられる。制御部4は、CPU、ROM、RAMを含む公知のマイクロコンピュータ(図示しない)を有し、記憶されているプログラムに従って、超音波発振手段2と超音波受波手段3を制御している。具体的な制御は、駆動回路22を介して超音波発振手段2に接続されており、パルス波を連続的に照射するように制御している。上述のチャープ波は、周波数10kHzから2MHzの成分をパルス波で放射し、そのパルス放射回数は、1000〜10000回連続放射できるようになっている。そして、超音波受信手段3で、繰り返し放射されたパルス波の透過波形を順々に取り込む。取り込んだ波形は、記録部5で記録されるととともに演算される。演算は、波形をフーリエ変換し周波数毎のパワーを表示させる機能を有する。   The ultrasonic oscillating means 2 radiates ultrasonic waves having different frequencies from the radiating unit 21. Two or more standing waves may be emitted in multiple times for ultrasonic waves having different frequencies. However, it is preferable to radiate a chirp wave that continuously changes the frequency and emit it from the radiation unit 21. Used. The control unit 4 includes a known microcomputer (not shown) including a CPU, a ROM, and a RAM, and controls the ultrasonic oscillating means 2 and the ultrasonic wave receiving means 3 according to a stored program. Specifically, the control is connected to the ultrasonic wave oscillating means 2 via the drive circuit 22 and is controlled so as to continuously emit pulse waves. The chirp wave described above radiates a component having a frequency of 10 kHz to 2 MHz as a pulse wave, and the number of pulse radiations can be continuously radiated 1000 to 10000 times. Then, the ultrasonic wave receiving means 3 sequentially captures the transmission waveform of the pulse wave repeatedly emitted. The acquired waveform is recorded and calculated by the recording unit 5. The calculation has a function of Fourier-transforming the waveform and displaying the power for each frequency.

次に、測定方法について、図2を用いて説明する。本発明者らは、リチウムイオン2次電池向けセパレーターの多孔性樹脂シートが、一般的な樹脂シートや樹脂成型品よりも空中で超音波を伝播することを見出した。超音波発信手段2から空中に照射された超音波US0は多孔性樹脂シートSに入射し、微小な空気孔を伝播して多孔性シートを透過し透過超音波US1となる。図2A、図2B中、超音波US0は模式的に表しており、超音波US0は、10kHzから2MHzの周波数を有するチャープ波を示している。従来、空中で超音波US0は樹脂シートを透過しにくいと考えられていた。多孔性樹脂シートSは0.1μm以下の微小なフィブリルと呼ばれる網目構造体18が不連続に形成され、空気孔はつながっておらず不連続に位置する。それぞれの空孔では、超音波USが空気と樹脂の界面での入射と放射を繰り返すため減衰が大きく、多孔性樹脂シートSでは超音波はさらに透過しにくいと考え、多孔性樹脂シートの空孔率の測定は困難と考えられていた。   Next, the measurement method will be described with reference to FIG. The present inventors have found that the porous resin sheet of the separator for a lithium ion secondary battery propagates ultrasonic waves in the air rather than a general resin sheet or resin molded product. The ultrasonic wave US0 irradiated into the air from the ultrasonic wave transmitting means 2 is incident on the porous resin sheet S, propagates through minute air holes, passes through the porous sheet, and becomes a transmitted ultrasonic wave US1. 2A and 2B, the ultrasonic wave US0 is schematically represented, and the ultrasonic wave US0 indicates a chirp wave having a frequency of 10 kHz to 2 MHz. Conventionally, it was thought that the ultrasonic wave US0 was not easily transmitted through the resin sheet in the air. In the porous resin sheet S, a network structure 18 called minute fibrils of 0.1 μm or less is formed discontinuously, and air holes are not connected and are located discontinuously. In each of the holes, the ultrasonic wave US is repeatedly attenuated and incident on the air / resin interface, so that the attenuation is large, and it is considered that the ultrasonic wave is more difficult to transmit in the porous resin sheet S. The rate measurement was considered difficult.

しかしながら、図2Bに示すように、超音波US0がこの複雑で不連続な空気孔を伝播できることを見出し、さらに、1つ1つの空気孔を形成する樹脂フィブリルと衝突し入射や透過を繰り返すことで、超音波が多重に散乱し、その多重散乱した音波19を含む超音波US1の波形に注目することで、超音波USの波長より小さい空孔の空孔率に関する測定ができることを見出した。   However, as shown in FIG. 2B, it is found that the ultrasonic wave US0 can propagate through this complicated and discontinuous air hole, and further, it collides with the resin fibril forming each air hole and repeats incidence and transmission. The present inventors have found that measurement of the porosity of vacancies smaller than the wavelength of the ultrasonic wave US can be performed by paying attention to the waveform of the ultrasonic wave US1 including the multi-scattered sound wave 19 in which the ultrasonic waves are scattered multiple times.

すなわち、シートの厚みや空孔の大きさは波長より小さいので、多孔性樹脂シートSを透過してくる透過応答波形には、空孔で多重散乱した音波19が重畳している。多重散乱した音波19は、超音波発振手段2から発振したパルス波形より強度が小さく、伝播速度に遅れが生じている。そこで、図2Aの超音波受信手段3で受信した波形をフーリエ変換し、周波数毎の強度を解析し、多重散乱した音波19分の変化を求める。ここで、多孔性樹脂シートSの空孔の大きさや形状と散乱する音波には、波長依存性がある。周波数の異なる2つ以上の音波で散乱状態を観察すると、空孔の大きさや形状によって周波数応答が変化するので、周波数解析結果から空孔の情報が得られる。すなわち、周波数が連続的に変化するチャープ波やスイープ波を用いて受波した波形を周波数解析し、特定の周波数帯域の特性値に注目することで空孔状態、すなわち空孔率と相関することを見出した。特性値としては、透過減衰量、音速、位相速度の情報が有効である。多孔性樹脂シートSがない状態で取得した波形や孔がない樹脂シートで取得した波形と、多孔性樹脂シートSで測定した波形の比や差で表すと、変化を精度よく測定することができる。   That is, since the thickness of the sheet and the size of the pores are smaller than the wavelength, the sound wave 19 that is multiply scattered by the pores is superimposed on the transmission response waveform that is transmitted through the porous resin sheet S. The multiple scattered sound wave 19 has a smaller intensity than the pulse waveform oscillated from the ultrasonic wave oscillating means 2, and the propagation speed is delayed. Therefore, the waveform received by the ultrasonic wave receiving means 3 of FIG. 2A is Fourier transformed, the intensity for each frequency is analyzed, and the change of 19 minutes of multiple scattered sound waves is obtained. Here, the size and shape of the pores of the porous resin sheet S and the scattered sound wave have wavelength dependency. When the scattering state is observed with two or more sound waves having different frequencies, the frequency response changes depending on the size and shape of the holes, so that information on the holes can be obtained from the frequency analysis result. That is, correlate with the vacancy state, that is, the porosity, by analyzing the frequency of the received waveform using a chirp wave or sweep wave whose frequency changes continuously and paying attention to the characteristic value of a specific frequency band I found. Information on transmission attenuation, sound velocity, and phase velocity is effective as the characteristic value. The change can be measured with high accuracy when represented by the ratio or difference between the waveform acquired with the porous resin sheet S and the waveform acquired with the resin sheet without pores and the waveform measured with the porous resin sheet S. .

本発明者らが見出した超音波の波長より小さいシート厚みの多孔性樹脂シートSの多重散乱現象を以下に述べる。
(1)同じシート厚みにおいて空孔率が大きい方が周波数毎の超音波の減衰量が小さい。
(2)それぞれの空孔直径が大きいと散乱が大きくなりやすく、透過波形の減衰量が大きい。
(3)シート厚みが厚いほうが超音波の減衰量が大きい。
(4)空孔の大きさと減衰特性には周波数依存性がある。空孔の大きさに依存して散乱しやすい周波数帯域が変化する。傾向として、空孔の大きい場合には広い周波数帯域で減衰が大きい。周波数の高い、つまり波長の短い音波に対しても減衰しやすいからである。したがって、周波数特性を取ると広い範囲の周波数帯域で減衰が大きい。
(5)音の進む速度を表す位相速度が周波数依存性がある。空孔の大きさや空孔率が大きくなると、音波の山や谷の特定の位置が移動する位相速度が大きくなる。
The multiple scattering phenomenon of the porous resin sheet S having a sheet thickness smaller than the ultrasonic wave wavelength found by the present inventors will be described below.
(1) When the porosity is the same for the same sheet thickness, the attenuation of ultrasonic waves for each frequency is small.
(2) When each hole diameter is large, scattering tends to increase and the attenuation of the transmission waveform is large.
(3) The attenuation of the ultrasonic wave is larger as the sheet thickness is thicker.
(4) The hole size and attenuation characteristics are frequency dependent. Depending on the size of the holes, the frequency band that is likely to be scattered changes. As a tendency, when the hole is large, the attenuation is large in a wide frequency band. This is because it is easy to attenuate even a sound wave having a high frequency, that is, a short wavelength. Therefore, when the frequency characteristic is taken, the attenuation is large in a wide frequency band.
(5) The phase velocity representing the speed of sound travel is frequency dependent. As the size and porosity of the holes increase, the phase velocity at which specific positions of the sonic peaks and valleys move increases.

なお、音の速度として、群速度と位相速度の速度がある。位相速度は、位相すなわち波の山や谷の特定の位置が移動する速度のことである。速度は直線を移動する速さであり単位時間当たりに進んだ距離を表すが、位相速度は円の外周の1点がどれだけの速度で移動するかを表す。たとえば、定位置で回転運動する円の外周の1点の高さだけに注目すると、点は上下することとなる。点の上下の位置を縦軸とし横軸を時間軸とすると正弦波で表され、円周上の1点は正弦波の波一つの山であったり、谷であったりする。位相速度はその1点の外周での移動速度を表す。位相速度の例としては、しゃくとり虫の動きがある。歩行しているしゃくとり虫を横から見るとこぶが波打って見える。こぶの波打ちが位相速度、しゃくとり虫そのものの移動が群速度である。波が媒質中を伝播する際、周波数の異なる成分の位相速度は異なる。つまり、シートの厚みより伝播する超音波の波長が長い場合においても、位相速度から超音波の伝播状態の変化を知ることができる。本発明において、空孔で散乱する超音波が伝播する際の位相速度は、空孔の大きさや割合によって変化し、音波の周波数に対して位相速度が遅れやすい場合や速まる場合がある。すなわち、その周波数特性を用いることで多孔性樹脂シートの空孔率評価が可能となる。   Note that the sound speed includes a group speed and a phase speed. The phase velocity is the phase, that is, the velocity at which a specific position of a wave peak or valley moves. The speed is the speed of moving along a straight line and represents the distance traveled per unit time, while the phase speed represents how fast one point on the outer circumference of the circle moves. For example, if you focus only on the height of one point on the outer circumference of a circle that rotates at a fixed position, the point will move up and down. When the vertical position of the point is the vertical axis and the horizontal axis is the time axis, it is represented by a sine wave, and one point on the circumference is a peak or valley of one sine wave. The phase velocity represents the moving velocity at the outer periphery of that one point. An example of a phase velocity is the movement of a worm. Humps appear to wave when you look at the insects walking from the side. The undulation of the hump is the phase velocity, and the movement of the insects is the group velocity. When waves propagate through the medium, the phase velocities of components with different frequencies are different. That is, even when the wavelength of the ultrasonic wave propagating is longer than the thickness of the sheet, the change in the ultrasonic wave propagation state can be known from the phase velocity. In the present invention, the phase velocity at the time of propagation of the ultrasonic wave scattered by the vacancies varies depending on the size and ratio of the vacancies, and the phase velocity may be easily delayed or increased with respect to the sound wave frequency. That is, it is possible to evaluate the porosity of the porous resin sheet by using the frequency characteristics.

上記の波長より小さいシート厚みを有する多孔性樹脂シートの超音波透過現象を利用した空孔率測定方法の1実施形態を以下に示す。   One embodiment of a porosity measurement method using the ultrasonic transmission phenomenon of a porous resin sheet having a sheet thickness smaller than the above wavelength will be described below.

まず、最初にあらかじめ空孔率を測定した多孔性樹脂シートを用いて、透過波形を周波数解析し、空孔率と相関関係を導いておく。厚みや空孔率を変えたものを測定し、その透過波形を周波数解析して特定の周波数に着目して検量線を作成した。具体的には、空孔率が既知の試料として、空孔率30、40、50、60%の試料に超音波USを透過して受波した結果を周波数解析した。このとき、空孔の大きさがたとえば、0.1μm、0.05μm、0.02μm、0.01μmでは散乱の周波数特性が異なるので、それぞれの空孔の大きさで別々の検量線を準備しておく。なお、製膜のインライン測定の際には、延伸などの製膜条件によって空孔の大きさはほぼ一定であり、どの大きさの空孔の検量線を使用するかは決めることができる。周波数は、10kHz、100kHz、1MHzなどの空孔情報が明確に判別しやすい周波数を選ぶが、横軸に周波数、縦軸に特性値をとってグラフ化しておくと良い。特性値としては、多孔性樹脂シートがない状態と測定した波形と比較した透過量や伝播時間の速度変化(たとえば、位相速度)が好ましく用いられる。   First, using a porous resin sheet whose porosity has been measured in advance, the transmission waveform is subjected to frequency analysis, and a correlation with the porosity is derived. A calibration curve was created by measuring the thickness and porosity, and analyzing the frequency of the transmission waveform, focusing on a specific frequency. Specifically, as a sample with a known porosity, a frequency analysis was performed on the result of transmitting the ultrasonic wave US through a sample with a porosity of 30, 40, 50, or 60%. At this time, since the frequency characteristics of the scattering are different when the hole size is 0.1 μm, 0.05 μm, 0.02 μm, 0.01 μm, for example, separate calibration curves are prepared for each hole size. Keep it. In the in-line measurement of the film formation, the size of the pores is substantially constant depending on the film formation conditions such as stretching, and it is possible to determine which size of the calibration curve to use. As the frequency, a frequency such as 10 kHz, 100 kHz, 1 MHz or the like where the hole information can be clearly discriminated is selected, but it is preferable to graph the frequency on the horizontal axis and the characteristic value on the vertical axis. As the characteristic value, a change in velocity of the transmission amount or propagation time (for example, phase velocity) compared with the measured waveform when there is no porous resin sheet is preferably used.

次に測定試料を測定し、上述の検量線または周波数解析のグラフとの類似性から空孔率を算出する。このとき、シートの厚みが必要な場合は、既存の厚さ計を用いてあらかじめ測定しておくのが好ましい。   Next, the measurement sample is measured, and the porosity is calculated from the similarity to the above-described calibration curve or frequency analysis graph. At this time, when the thickness of the sheet is required, it is preferable to measure in advance using an existing thickness meter.

以上の通り、超音波を用いた多孔性樹脂シートの空孔率測定は、シートに接触させることなく、超音波を伝播させて非接触で連続的に測定できる利点がある。   As described above, the porosity measurement of a porous resin sheet using ultrasonic waves has an advantage that ultrasonic waves can be propagated and continuously measured without contact without contacting the sheets.

また、透気抵抗は、空孔率の値との相関もあるが、空孔が大きさとその単位体積あたりの個数に影響される。同じ空孔率でも空孔の大きさが大きく数が少ない場合は透気抵抗が小さいし、空孔の大きさが小さく数が多い場合は透気抵抗が大きくなる傾向を有するからである。本発明の超音波の透過波形による多重散乱の周波数解析結果では、空孔の大きさに関する情報を得ることができるので、透気抵抗との相関がより得られる利点がある。透気抵抗測定の場合も、あらかじめ検量線や周波数毎の透過量や伝播遅れや位相速度の変化のグラフを準備する必要がある。厚さと密度の積に比例する、X線や赤外吸収量から透気抵抗を評価するよりは、本発明の超音波測定の方が相関性良く評価することができる。   In addition, the air resistance has a correlation with the value of the porosity, but is influenced by the size of the pores and the number per unit volume. This is because, even if the porosity is the same, the air resistance tends to be small when the size of the holes is large and the number is small, and the air resistance tends to be large when the size of the holes is small and the number is large. According to the frequency analysis result of the multiple scattering by the transmission waveform of the ultrasonic wave according to the present invention, information on the size of the holes can be obtained, so that there is an advantage that the correlation with the air permeation resistance can be obtained more. Also in the case of measuring air resistance, it is necessary to prepare a calibration curve, a graph of the amount of transmission for each frequency, a propagation delay, and a change in phase velocity in advance. The ultrasonic measurement of the present invention can be evaluated with better correlation than the air resistance is evaluated from the X-ray or infrared absorption amount, which is proportional to the product of the thickness and the density.

次に、本発明の空孔率測定方法が好適に適用できる、ポリオレフィンフィルムを多孔化する手法を述べる。多孔性樹脂シートの製造方法には、湿式法と乾式法がある。超高分子量のポリエチレン樹脂と抽出樹脂としてパラフィンなどの有機液状物を添加して押出し成形したシートから有機液状物を抽出除去し、多孔質化してから延伸する抽出後延伸する方法である。抽出後延伸法の利点としては、孔が広がりやすく高倍率延伸しなくても低透気度化することが挙げられる。その結果、横延伸工程にて低倍率延伸で低透気度化するので、低透気度で低収縮応力及び低収縮率の微多孔膜の作製が可能となる。一方、乾式法としては、たとえば溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを長手方向に一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法が知られている。乾式法として、無機粒子またはマトリックス樹脂であるポリプロピレンなどに非相溶な樹脂を粒子として多量添加し、シートを形成して延伸することにより粒子とポリプロピレン樹脂界面で開裂させ、空隙形成する方法も提案されている。たとえば、ポリプロピレンフィルムの場合は、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してシート中に空隙を形成させる方法が知られている。本発明の空孔率測定は、いずれの多孔性樹脂シートの製造方法でも適用することができる。   Next, a method for making a polyolefin film porous to which the porosity measurement method of the present invention can be suitably applied will be described. There are a wet method and a dry method as a method for producing the porous resin sheet. In this method, the organic liquid material is extracted and removed from the extruded sheet by adding an ultra-high molecular weight polyethylene resin and an organic liquid material such as paraffin as an extraction resin, and the film is made porous and then stretched. The advantage of the post-extraction stretching method is that the pores are easy to spread and the air permeability is reduced even without stretching at a high magnification. As a result, since the air permeability is lowered by low magnification stretching in the transverse stretching step, it is possible to produce a microporous film having a low air permeability and a low shrinkage stress and a low shrinkage rate. On the other hand, as a dry method, for example, by adopting low temperature extrusion and high draft ratio at the time of melt extrusion, the lamella structure in the film before stretching formed into a sheet is controlled, and this is uniaxially stretched in the longitudinal direction, thereby lamellar interface There is known a method of generating a void by generating a cleavage at a point. As a dry method, a method is proposed in which a large amount of incompatible resin is added as inorganic particles or polypropylene, which is a matrix resin, and a sheet is formed and stretched to cleave at the interface between the particles and the polypropylene resin to form voids. Has been. For example, in the case of a polypropylene film, a method of forming voids in a sheet by utilizing the crystal density difference and crystal transition between α-type crystal (α crystal) and β-type crystal (β crystal), which are polymorphs of polypropylene. It has been known. The porosity measurement of the present invention can be applied to any method for producing a porous resin sheet.

湿式法は、湿式法と乾式法のいずれにおいても、多孔性フィルムの製膜における課題のひとつは、空孔の大きさと空孔率、透気抵抗の均一化である。均一化を達成するために製造方法においては、幅方向の延伸時の温度ムラによる延伸ムラを小さくして空孔率を均一化してきた。   As for the wet method, in both the wet method and the dry method, one of the problems in the formation of a porous film is the uniformization of pore size, porosity, and air resistance. In order to achieve uniformity, in the manufacturing method, the stretching unevenness due to temperature unevenness during stretching in the width direction has been reduced to make the porosity uniform.

乾式法による多孔性樹脂シート製造工程に、本発明の空孔率測定方法を適用した実施形態を図3を用いて説明する。図3は、多孔性樹脂シートの乾式法製造方法の一例を示す概略工程図である。図3では矢印の方向にシートが移動し多孔性樹脂シートが製造される。高分子量のポリプロピレン樹脂と低密度ポリエチレン樹脂を混合した原料を、混錬押出手段10で溶融温度以上で加熱し、口金12よりキャストドラム13上に樹脂を押し出し、未延伸樹脂シートを得る。この際、β晶分率を制御するためにキャストドラム13は表面温度が110℃〜130℃とし、未延伸樹脂シートのβ晶分率を高く制御する。得られた未延伸シートを二軸延伸する。シート長手方向に延伸手段14でシート長手方向に延伸され、続いて、シート幅方向に延伸手段15でシート幅方向に延伸される。延伸倍率は、長手方向に3〜8倍、シート幅方向に3〜8倍である。その後、エッジをカットするなどの渡り17を経て、巻き取り手段16で多孔性樹脂シートはコアに巻き取られる。   Embodiment which applied the porosity measuring method of this invention to the porous resin sheet manufacturing process by a dry method is described using FIG. FIG. 3 is a schematic process diagram showing an example of a method for producing a porous resin sheet by a dry method. In FIG. 3, the sheet moves in the direction of the arrow to produce a porous resin sheet. A raw material in which a high molecular weight polypropylene resin and a low density polyethylene resin are mixed is heated at a melting temperature or higher by the kneading extrusion means 10 and the resin is extruded from the die 12 onto the cast drum 13 to obtain an unstretched resin sheet. At this time, in order to control the β crystal fraction, the surface temperature of the cast drum 13 is set to 110 ° C. to 130 ° C., and the β crystal fraction of the unstretched resin sheet is controlled to be high. The obtained unstretched sheet is biaxially stretched. The sheet is stretched in the sheet longitudinal direction by the stretching means 14 in the sheet longitudinal direction, and subsequently stretched in the sheet width direction by the stretching means 15 in the sheet width direction. The draw ratio is 3 to 8 times in the longitudinal direction and 3 to 8 times in the sheet width direction. Thereafter, after passing through a transition 17 such as cutting an edge, the winding means 16 winds the porous resin sheet around the core.

本発明の超音波測定器1は、長手方向とシート幅方向に延伸された後、巻き取り手段16までの間に設置されている。図3では、シート幅方向延伸手段15の下流に、搬送される樹脂シートを挟んで設置されている。多孔性樹脂シートと超音波発振手段2の発振部21の最表面との距離は、5mmから20mmにする。10mmより狭いと、多孔性樹脂シートに発振部21が接触してしまう可能性がある。また、20mmを超えると超音波の空中での減衰が大きく感度が低下してしまうため、5mmから20mmが好ましく用いられる。より好ましくは10mmから15mmの距離が好ましい。
これにより、空孔を形成する延伸手段15の下流で空孔率の均一が保たれるようにシート搬送方向において空孔率を連続的に測定している。空孔率測定用の超音波測定器1は、シート幅方向にスキャンさせてもよいし、複数個の超音波測定器1を配置しても良い。シート幅方向にスキャンさせる場合は、速度10mm/秒程度で行う。
The ultrasonic measuring instrument 1 of the present invention is installed between the winding means 16 after being stretched in the longitudinal direction and the sheet width direction. In FIG. 3, it is installed downstream of the sheet width direction extending means 15 with the resin sheet to be conveyed interposed therebetween. The distance between the porous resin sheet and the outermost surface of the oscillating portion 21 of the ultrasonic oscillating means 2 is set to 5 mm to 20 mm. If it is smaller than 10 mm, the oscillating portion 21 may come into contact with the porous resin sheet. Moreover, since the attenuation | damping in the air of an ultrasonic wave will be large and sensitivity will fall when it exceeds 20 mm, 5-20 mm is used preferably. A distance of 10 mm to 15 mm is more preferable.
As a result, the porosity is continuously measured in the sheet conveying direction so that the porosity is kept uniform downstream of the stretching means 15 for forming the holes. The ultrasonic measuring device 1 for measuring the porosity may be scanned in the sheet width direction, or a plurality of ultrasonic measuring devices 1 may be arranged. When scanning in the sheet width direction, it is performed at a speed of about 10 mm / second.

多孔性樹脂シートの製膜速度は10m/分〜80m/分である。本発明の空孔率測定装置は、製膜工程でインライン測定できるように設置したのでシート全長に渡り、連続的に空孔率の測定が可能で、品質の均一化の達成や品質管理が行える。従来、空孔率や透気抵抗は、シートをロール上に巻き上げてから表層を巻きだし製品からオフラインで測定していた。このため、製品のロスが発生することがあったが、本発明により長手方向のオンラインプロセスモニタとして異常を早期発見でき成製品のロスを小さくすることができる効果がある。   The film forming speed of the porous resin sheet is 10 m / min to 80 m / min. Since the porosity measuring apparatus of the present invention is installed so that in-line measurement can be performed in the film forming process, it is possible to continuously measure the porosity over the entire length of the sheet, and to achieve uniform quality and quality control. . Conventionally, the porosity and air permeation resistance have been measured off-line from a product by unwinding the surface layer after winding the sheet on a roll. For this reason, a product loss may occur, but the present invention has an effect that an abnormality can be detected early as an on-line process monitor in the longitudinal direction, and the loss of a product can be reduced.

本発明の空孔率測定が適用される空孔率は、20%から80%である。80%を超えると、フィルムの機械強度が低くなりすぎて、ロールに巻取った状態での保管時にロールの巻芯でフィルム自重によりフィルムが圧縮され、セパレーターとして使用する際の強度が得られない場合がある。より好ましくは、65〜75%であればなおよい。   The porosity to which the porosity measurement of the present invention is applied is 20% to 80%. If it exceeds 80%, the mechanical strength of the film becomes too low, and the film is compressed by the film's own weight at the roll core when stored in the state of being wound on the roll, and the strength when used as a separator cannot be obtained. There is a case. More preferably, it is still 65 to 75%.

本発明における多孔性ポリプロピレンフィルムは、セパレーターとして用いた際に優れた電池特性と安全性を両立する観点から空孔の直径は20〜300nmであることが好ましい。空孔の直径が20nm未満では透気抵抗が高くなり、イオン透過時のエネルギーロスが大きくなる場合があるからである。反対に、空孔の直径が300nmを超えると、イオンが過剰に透過する場合がある。よって、空孔の直径として20以上300nm以下であればより好ましい。   The porous polypropylene film in the present invention preferably has a pore diameter of 20 to 300 nm from the viewpoint of achieving both excellent battery characteristics and safety when used as a separator. This is because if the diameter of the holes is less than 20 nm, the air resistance increases, and the energy loss during ion transmission may increase. On the other hand, if the diameter of the pore exceeds 300 nm, ions may permeate excessively. Therefore, the hole diameter is more preferably 20 to 300 nm.

本発明における好適に使用される多孔性ポリプロピレンフィルムは、フィルム総厚みが5〜50μmであることが好ましい。多孔性樹脂シートの膜厚は、電池のエネルギー密度や安全性の点から、好ましくは5〜35μm、さらに好ましくは5〜25μmである。膜厚が5μm未満の場合、絶縁性が十分でなく、安全性を確保することが困難となり好ましくない。また、膜厚が50μmより大きい場合、電池のエネルギー密度が低くなるため好ましくない。   The porous polypropylene film suitably used in the present invention preferably has a total film thickness of 5 to 50 μm. The film thickness of the porous resin sheet is preferably 5 to 35 μm, more preferably 5 to 25 μm, from the viewpoint of battery energy density and safety. When the film thickness is less than 5 μm, insulation is not sufficient, and it is difficult to ensure safety, which is not preferable. Moreover, since the energy density of a battery will become low when a film thickness is larger than 50 micrometers, it is unpreferable.

また、本発明における多孔性ポリプロピレンフィルムは、組成の異なる、もしくは同一組成からなる複数の層を積層してなる積層フィルムであってもよい。積層フィルムとすると、フィルム表面特性とフィルム全体の特性を好ましい範囲に個別に制御できる場合があるので、好ましい。なお、積層厚み比は、本発明の効果を損なわない範囲において制限されない。突刺強度は2.5N/20μm以上であるが、好ましくは2.8N/20μm以上、さらに好ましくは3.0N/20μm以上である。突刺強度が2.5N/20μmよりも低いと安全性と取り扱い時のハンドリングに問題がある。   The porous polypropylene film in the present invention may be a laminated film formed by laminating a plurality of layers having different compositions or the same composition. A laminated film is preferable because the film surface characteristics and the overall film characteristics may be individually controlled within a preferable range. In addition, a lamination | stacking thickness ratio is not restrict | limited in the range which does not impair the effect of this invention. The puncture strength is 2.5 N / 20 μm or more, preferably 2.8 N / 20 μm or more, and more preferably 3.0 N / 20 μm or more. When the puncture strength is lower than 2.5 N / 20 μm, there is a problem in safety and handling during handling.

このように測定された製品は、一旦巻き上げられたあと、最終製品の幅は、使用する用途、蓄電デバイスであればそのサイズに合わせて適切な幅に合わせて二次スリットすることが好ましく、0.005〜1m幅、より好ましくは0.01〜0.5m幅とすることが好ましい。   After the product measured in this manner is wound up once, the width of the final product is preferably a secondary slit with an appropriate width according to the size of the intended use and power storage device. 0.005 to 1 m width, more preferably 0.01 to 0.5 m width.

本発明の多孔性ポリプロピレンフィルムロールは透気性や空孔率に優れるだけでなく、透気性や空孔率のバラツキが極めて小さいので、蓄電デバイス用セパレーターに使用した際に蓄電デバイス間の特性バラツキが小さく、均一な品質を得ることができる。したがって、特に電気自動車などで用いる大型リチウムイオン二次電池のセパレーターとして特に好ましく用いることができる。   The porous polypropylene film roll of the present invention is not only excellent in air permeability and porosity, but also has extremely small variations in air permeability and porosity, so there is no variation in characteristics between electricity storage devices when used for a separator for electricity storage devices. Small and uniform quality can be obtained. Therefore, it can be particularly preferably used as a separator for large-sized lithium ion secondary batteries used in electric vehicles and the like.

以下、実施例を用いて本発明の実施形態の一例を説明する。各種の測定は以下の通り行った。
(1)透気抵抗の測定
製膜後の多孔性樹脂シートを切りだし、JIS P 8117(紙及び板紙−透気度試験方法−ガーレー試験機法)に準拠したガーレー試験機とその測定方法を使用した。また、その際のガーレー試験機のガスケット内径は28.6mmとし、100mLの空気を透過させた。100mLが透過する時間を測定し、透気抵抗[sec/100mL]とした。
(2)空孔率の測定
多孔性樹脂シートを100mm角に切りだし、溶融温度より高い温度150℃で5MPaの加圧で気泡のないシートを得た。この樹脂シートの重量と体積を求め、密度dを算出した。その結果、ポリプロピレン樹脂からなるシートの密度は0.92g/cmであった。100mm角に切り出した多孔性樹脂シートを電子比重計を用いて比重ρを測定した。電子比重計は、ミラージュ貿易(株)製SD−120Lを用いた。多孔性樹脂シートの比重ρと樹脂の密度dから、以下の式により空孔率を算出した。
Hereinafter, an example of an embodiment of the present invention will be described using examples. Various measurements were performed as follows.
(1) Measurement of air permeability resistance A porous resin sheet after film formation is cut out, and a Gurley tester and its measurement method in accordance with JIS P 8117 (paper and paperboard-air permeability test method-Gurley test method) are used. used. At that time, the inner diameter of the gasket of the Gurley tester was 28.6 mm, and 100 mL of air was allowed to pass through. The time required for 100 mL to pass through was measured, and the air resistance was determined as [sec / 100 mL].
(2) Measurement of porosity The porous resin sheet was cut into a 100 mm square, and a sheet free of bubbles was obtained by pressurizing 5 MPa at a temperature 150 ° C. higher than the melting temperature. The weight and volume of this resin sheet were determined, and the density d was calculated. As a result, the density of the sheet made of polypropylene resin was 0.92 g / cm 2 . The specific gravity ρ of the porous resin sheet cut out to 100 mm square was measured using an electronic hydrometer. As the electronic hydrometer, SD-120L manufactured by Mirage Trading Co., Ltd. was used. From the specific gravity ρ of the porous resin sheet and the resin density d, the porosity was calculated by the following formula.

空孔率(%) = 〔( d − ρ ) / d 〕 × 100
なお、多孔性樹脂シートの厚みは、東洋精機製の微小測厚器(タイプKBN、端子径Φ5mm、測定圧62.47kPa)を用いて、雰囲気温度23±2℃で測定した。
(3)空孔の大きさ
多孔性樹脂シート試料を空孔がつぶれないように処理を行い、電子顕微鏡観察した結果から画像処理にて空孔の大きさと分布を算出した。
(4)超音波空孔率測定
検量線作成は、(2)で得た空孔率と(3)で得た空孔の大きさが既知のサンプルを用いてオフラインで実施した。検量線や検量するための周波数特性グラフは、空孔率40%、50%、60%、70%のサンプルを使用した。また、空孔の直径は、空孔率40%で中心値が50nm、空孔率70%75nmを使用した。検量線を作成する超音波測定は以下のように行った。検量線はオフラインで切り出したシートを固定して実施した。空中超音波素子として、型番は3K12.7NR10(ジャパンプローブ社製)で発信と受信装置は同じ素子を対向させた。超音波は発振周波数の中心が300kHzで、パルス発振したチャープ波の周波数は10kHzから2MHzとした。超音波発振手段21の発振部21と超音波受信手段3の受信部31を16mmの間隔をあけて設置し、多孔性樹脂シートをほぼ中央に配置した。多孔性樹脂シートにパルス状のチャープ波を20μsec間隔でパルス発信し、受信したパルス波形を1000回積算して試料の透過波形Aを得た。さらに、多孔性樹脂シートのない状態つまり、多孔性樹脂シートを取り除いて同様の測定を行い、リファレンス透過波形Bを得た。A/Bの値を周波数解析して、横軸に10kHzから1MHzの周波数をとった。雰囲気温度23±2℃で測定した。
Porosity (%) = [(d−ρ) / d] × 100
The thickness of the porous resin sheet was measured at an ambient temperature of 23 ± 2 ° C. using a micro thickness gauge (type KBN, terminal diameter Φ5 mm, measurement pressure 62.47 kPa) manufactured by Toyo Seiki.
(3) Size of pores The porous resin sheet sample was processed so that the pores were not crushed, and the size and distribution of the pores were calculated by image processing from the result of observation with an electron microscope.
(4) Measurement of ultrasonic porosity The calibration curve was created off-line using a sample whose porosity obtained in (2) and the size of the pore obtained in (3) are known. Samples having porosity of 40%, 50%, 60%, and 70% were used for the calibration curve and the frequency characteristic graph for calibration. As the diameter of the holes, a porosity of 40%, a center value of 50 nm, and a porosity of 70% and 75 nm were used. Ultrasonic measurement for creating a calibration curve was performed as follows. The calibration curve was carried out by fixing the sheet cut off offline. As an aerial ultrasonic element, the model number is 3K12.7NR10 (manufactured by Japan Probe Co., Ltd.), and the transmitting and receiving devices face each other. In the ultrasonic wave, the center of the oscillation frequency was 300 kHz, and the frequency of the chirped wave that pulsated was 10 kHz to 2 MHz. The oscillating part 21 of the ultrasonic oscillating means 21 and the receiving part 31 of the ultrasonic receiving means 3 were installed with an interval of 16 mm, and the porous resin sheet was arranged almost at the center. A pulsed chirp wave was transmitted to the porous resin sheet at intervals of 20 μsec, and the received pulse waveform was integrated 1000 times to obtain a transmission waveform A of the sample. Furthermore, the state without a porous resin sheet, that is, the porous resin sheet was removed, and the same measurement was performed to obtain a reference transmission waveform B. The A / B value was subjected to frequency analysis, and the frequency from 10 kHz to 1 MHz was taken on the horizontal axis. Measurement was performed at an ambient temperature of 23 ± 2 ° C.

また、10kHz、100kHz、1MHzの周波数成分の位相速度を求めた。位相速度は、周波数毎に正弦波で回転する角速度をω[rad/秒]とし、外周で1秒間に移動した距離、すなわち長さにおける位相の進行度合いを波数κ[rad/μm]とし、位相速度VpをVp=ω/κ[μm/秒]から求めた。以上のようにして、空孔率と超音波の透過強度、伝播速度の変化の相関性を表す検量線(周波数解析グラフ)を作成した。   Moreover, the phase velocity of the frequency component of 10 kHz, 100 kHz, and 1 MHz was obtained. For the phase velocity, the angular velocity rotating with a sine wave for each frequency is ω [rad / sec], the distance traveled in one second on the outer circumference, that is, the degree of phase progression at the length is the wave number κ [rad / μm], and the phase velocity The velocity Vp was determined from Vp = ω / κ [μm / sec]. As described above, a calibration curve (frequency analysis graph) representing the correlation between the porosity, the ultrasonic transmission intensity, and the change in the propagation velocity was created.

超音波空孔率測定装置は、図3に示す通り、製膜工程の横延伸工程15の下流で、超音波発振手段21の発振部21と超音波受信手段3の受信部31を16mmの間隔をあけた。温度23℃湿度50%の環境に設置した。このとき、超音波が温度の影響を受けるため、発信部と、受信部をカバーするようにアクリル製のボックスに入れ、温度管理を行った。   As shown in FIG. 3, the ultrasonic porosity measuring device has an interval of 16 mm between the oscillating unit 21 of the ultrasonic oscillating means 21 and the receiving unit 31 of the ultrasonic receiving means 3 downstream of the transverse stretching process 15 of the film forming process. Opened. It was installed in an environment with a temperature of 23 ° C. and a humidity of 50%. At this time, since the ultrasonic waves are affected by the temperature, the temperature management was performed by placing them in an acrylic box so as to cover the transmitter and the receiver.

ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂94質量部、同じく市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1質量部、さらにメルトインデックス18g/10分の超低密度ポリエチレン樹脂5質量部にN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド0.2質量部を混合し、二軸押出機10を使用して予め所定の割合で混合した原料を準備する。この際、溶融温度は270〜300℃とすることが好ましい。次に、上述の混合原料を220℃にて溶融押出を行った。口金12よりキャストドラム上13に吐出し、未延伸シートを得る。この際、キャストドラム13は表面温度が120℃とし、キャストフィルムのβ晶分率を高く制御した。シートをドラムへ密着させるためにエアナイフを用いて空気を吹き付ける方法を採用した。このようにして得られた未延伸シートを二軸延伸してフィルム中に空孔を形成する。二軸延伸の方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、逐次二軸延伸法を採用し、長手方向に5.2倍延伸後、幅方向に7倍延伸した。製膜速度は35m/分であった。   As a polypropylene resin, 94 parts by mass of a commercially available homopolypropylene resin with an MFR of 8 g / 10 minutes, 1 part by mass of a commercially available MFR of 2.5 g / 10 minutes with a high melt tension polypropylene resin, and an ultra low density polyethylene resin 5 with a melt index of 18 g / 10 minutes. A raw material is prepared by mixing 0.2 parts by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide and 2 parts by mass in advance using a twin screw extruder 10. At this time, the melting temperature is preferably 270 to 300 ° C. Next, the mixed raw material was melt-extruded at 220 ° C. It is discharged from the die 12 onto the cast drum 13 to obtain an unstretched sheet. At this time, the surface temperature of the cast drum 13 was 120 ° C., and the β crystal fraction of the cast film was controlled to be high. In order to bring the sheet into close contact with the drum, an air knife was used to blow air. The unstretched sheet thus obtained is biaxially stretched to form pores in the film. As a biaxial stretching method, the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method of stretching in the longitudinal direction after stretching in the width direction, or the longitudinal direction and the width direction of the film are stretched almost simultaneously. A simultaneous biaxial stretching method or the like can be used, but a sequential biaxial stretching method was adopted, and the film was stretched 5.2 times in the longitudinal direction and then 7 times in the width direction. The film forming speed was 35 m / min.

以上のような条件で製膜、延伸を行った多孔性ポリプロピレンフィルムについてクリップで把持していたフィルム端部をトリミングしてフィルムの中央部のみをコアに巻きつけてシートロール体を得た。巻き取り長さは、4000mであった。   With respect to the porous polypropylene film which was formed and stretched under the above conditions, the film end held by the clip was trimmed, and only the central part of the film was wound around the core to obtain a sheet roll body. The winding length was 4000 m.

超音波測定器1は、シート幅方向の中央部に設置した。搬送される多孔性樹脂シートを連続して測定した。使用した超音波素子の構成は、上記(4)超音波空孔率測定と同等とした。使用したチャープ波も同等とした。超音波測定結果を周波数解析し、あらかじめ得た検量線と、透過した超音波波形の周波数解析グラフの近似性から、空孔率を55%と推定できた。測定のばらつきは、+/−5%であった。   The ultrasonic measuring instrument 1 was installed at the center in the sheet width direction. The conveyed porous resin sheet was measured continuously. The configuration of the ultrasonic element used was the same as that in (4) Ultrasonic porosity measurement. The chirp wave used was also equivalent. The frequency of the ultrasonic measurement result was analyzed, and the porosity was estimated to be 55% from the approximation of the calibration curve obtained in advance and the frequency analysis graph of the transmitted ultrasonic waveform. The variation in measurement was +/− 5%.

本発明は、超音波を用いて気孔率又は気孔径を測定する方法に関するものである。さらに詳しくいえば、本発明は、固体材料に入出力センサを取り付けて超音波を発信させ、その応答波形を分析することによって、該材料を破壊せずに、材料内部に存在する気孔の気孔率、平均気孔径を測定する方法に関するものである。   The present invention relates to a method for measuring porosity or pore diameter using ultrasonic waves. More specifically, the present invention relates to the porosity of the pores existing in the material without destroying the material by attaching an input / output sensor to the solid material and transmitting ultrasonic waves and analyzing the response waveform. The present invention relates to a method for measuring an average pore diameter.

1 超音波測定器
2 超音波発振手段
21 放射部
22 発振用駆動回路
3 超音波受信手段
31 受信部
32 受信回路
4 制御部
5 記録部
10 混錬押出手段
11 押出手段
12 口金
13 キャストドラム
14 シート移動方向延手段
15 シート幅方向延伸手段
16 シート巻き取り部(ワインダー)
17 シート厚み計
US 空中超音波
S 多孔性樹脂シート
DESCRIPTION OF SYMBOLS 1 Ultrasonic measuring device 2 Ultrasonic oscillation means 21 Radiation part 22 Oscillation drive circuit 3 Ultrasonic reception means 31 Reception part 32 Reception circuit 4 Control part 5 Recording part 10 Kneading extrusion means 11 Extrusion means 12 Base 13 Cast drum 14 Sheet Moving direction extending means 15 Sheet width direction extending means 16 Sheet winding part (winder)
17 Sheet Thickness Gauge US Aerial Ultrasonic S Porous Resin Sheet

Claims (7)

シート内部に多数の空孔を有する多孔性樹脂シートにおいて、空中に発信された10kHzから2MHzの超音波を前記多孔性樹脂シートに透過させ、空孔での散乱を含む透過音波を受信し、前記多孔性樹脂シートの空孔率を測定することを特徴とする、多孔性樹脂シートの空孔率測定方法。 In the porous resin sheet having a large number of pores inside the sheet, 10 kHz to 2 MHz ultrasonic waves transmitted in the air are transmitted through the porous resin sheet, and the transmitted acoustic waves including scattering in the pores are received, A method for measuring a porosity of a porous resin sheet, comprising measuring a porosity of the porous resin sheet. 周波数の異なる超音波を前記多孔性樹脂シートに発信し、受信した超音波波形を周波数毎の音速測定結果において、前記多孔性樹脂シートの厚みより波長が長い超音波を用い、周波数毎の位相速度の変化から多孔性樹脂シートの空孔率を測定することを特徴とする、請求項1に記載の多孔性樹脂シートの空孔率測定方法。 Transmitting ultrasonic waves having different frequencies to the porous resin sheet, and using the ultrasonic wave having a wavelength longer than the thickness of the porous resin sheet in the sound velocity measurement result for each frequency of the received ultrasonic waveform, the phase velocity for each frequency The porosity measuring method of the porous resin sheet according to claim 1, wherein the porosity of the porous resin sheet is measured from the change of the above. 周波数の異なる超音波を前記多孔性樹脂シートに発信し、受信した超音波波形の周波数毎に減衰量測定結果を用い、多孔性樹脂シートの空孔率を測定することを特徴とする、請求項1に記載の多孔性樹脂シートの空孔率測定方法。 The ultrasonic wave having a different frequency is transmitted to the porous resin sheet, and the porosity of the porous resin sheet is measured using an attenuation measurement result for each frequency of the received ultrasonic waveform. 2. A method for measuring the porosity of a porous resin sheet according to 1. 前記空孔率が樹脂量の重量に対して、40%以上80%以下を測定することを特徴とする請求項1または2に記載の多孔性樹脂シートの空孔率測定方法。 The porosity measurement method for a porous resin sheet according to claim 1 or 2, wherein the porosity is 40% or more and 80% or less with respect to the weight of the resin amount. 請求項1から4のいずれかに記載の多孔性樹脂シートの空孔率測定結果と、あらかじめ求めた空孔率と透気抵抗の関係を用いて、多孔性樹脂シートの透気抵抗を測定することを特徴とする多孔性樹脂シートの透気度測定方法。 The air permeability resistance of the porous resin sheet is measured using the porosity measurement result of the porous resin sheet according to any one of claims 1 to 4 and the relationship between the porosity and the air resistance obtained in advance. A method for measuring the air permeability of a porous resin sheet. 透気抵抗80秒以上400秒以下を測定することを特徴とする、請求項5に記載の多孔性樹脂シートの透気度測定方法。 The air permeability measurement method for a porous resin sheet according to claim 5, wherein the air resistance is measured from 80 seconds to 400 seconds. 樹脂をシート状に成型し、連続的に製膜する多孔性樹脂シートの製造方法であって、シート成型した後延伸した状態で、前記請求項1から4のいずれかに記載の多孔性樹脂シートの空孔率測定方法を備えることを特徴とする、多孔性樹脂シートの製造方法。 A porous resin sheet according to any one of claims 1 to 4, wherein the method is a method for producing a porous resin sheet in which a resin is molded into a sheet shape and continuously formed into a film, wherein the sheet is molded and then stretched. A method for producing a porous resin sheet, comprising:
JP2011180184A 2011-08-22 2011-08-22 Porosity measuring method for porous resin sheet and manufacturing method therefor Withdrawn JP2013044536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180184A JP2013044536A (en) 2011-08-22 2011-08-22 Porosity measuring method for porous resin sheet and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180184A JP2013044536A (en) 2011-08-22 2011-08-22 Porosity measuring method for porous resin sheet and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013044536A true JP2013044536A (en) 2013-03-04

Family

ID=48008573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180184A Withdrawn JP2013044536A (en) 2011-08-22 2011-08-22 Porosity measuring method for porous resin sheet and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013044536A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760621A (en) * 2014-01-14 2014-04-30 重庆工商职业学院 Diaphragm micro-hole detection device and control system thereof
WO2017122464A1 (en) * 2016-01-13 2017-07-20 株式会社日立製作所 Ultrasonic measuring device and centrifugal compressor device
CN107478546A (en) * 2017-07-10 2017-12-15 合肥国轩高科动力能源有限公司 Method for testing wettability of lithium battery diaphragm
CN108226007A (en) * 2017-12-29 2018-06-29 大连理工大学 A kind of carbon fiber enhancement resin base composite material porosity characterizing method two-parameter based on ultrasound
JP2018147687A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147692A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147691A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2020162337A (en) * 2019-03-27 2020-10-01 株式会社カネカ Inspection device and inspection method
US20220299417A1 (en) * 2021-03-16 2022-09-22 Honda Motor Co., Ltd. Porosity deriving method and porosity deriving device
US11519879B2 (en) 2021-01-25 2022-12-06 Saudi Arabian Oil Company Two methods of determining permeabilities of naturally fractured rocks from laboratory measurements
JP2023524529A (en) * 2020-05-06 2023-06-12 リミナル・インサイト・インコーポレーテッド Acoustic signal-based analysis of membranes
CN118650256A (en) * 2024-08-21 2024-09-17 福建祥鑫新材料科技有限公司 Foam aluminum fixed-length cutting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760621A (en) * 2014-01-14 2014-04-30 重庆工商职业学院 Diaphragm micro-hole detection device and control system thereof
WO2017122464A1 (en) * 2016-01-13 2017-07-20 株式会社日立製作所 Ultrasonic measuring device and centrifugal compressor device
JP2018147691A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147687A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147692A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
CN107478546A (en) * 2017-07-10 2017-12-15 合肥国轩高科动力能源有限公司 Method for testing wettability of lithium battery diaphragm
CN108226007A (en) * 2017-12-29 2018-06-29 大连理工大学 A kind of carbon fiber enhancement resin base composite material porosity characterizing method two-parameter based on ultrasound
JP2020162337A (en) * 2019-03-27 2020-10-01 株式会社カネカ Inspection device and inspection method
JP2023524529A (en) * 2020-05-06 2023-06-12 リミナル・インサイト・インコーポレーテッド Acoustic signal-based analysis of membranes
US11519879B2 (en) 2021-01-25 2022-12-06 Saudi Arabian Oil Company Two methods of determining permeabilities of naturally fractured rocks from laboratory measurements
US20220299417A1 (en) * 2021-03-16 2022-09-22 Honda Motor Co., Ltd. Porosity deriving method and porosity deriving device
JP2022142293A (en) * 2021-03-16 2022-09-30 本田技研工業株式会社 Porosity derivation method and porosity derivation device
JP7220245B2 (en) 2021-03-16 2023-02-09 本田技研工業株式会社 Porosity derivation method and porosity derivation device
US11796442B2 (en) * 2021-03-16 2023-10-24 Honda Motor Co., Ltd. Porosity deriving method and porosity deriving device
CN118650256A (en) * 2024-08-21 2024-09-17 福建祥鑫新材料科技有限公司 Foam aluminum fixed-length cutting device

Similar Documents

Publication Publication Date Title
JP2013044536A (en) Porosity measuring method for porous resin sheet and manufacturing method therefor
Pashmforoush et al. Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm
US7798000B1 (en) Non-destructive imaging, characterization or measurement of thin items using laser-generated lamb waves
US6959602B2 (en) Ultrasonic detection of porous medium characteristics
Podymova et al. Broadband laser-ultrasonic spectroscopy for quantitative characterization of porosity effect on acoustic attenuation and phase velocity in CFRP laminates
Álvarez-Arenas A nondestructive integrity test for membrane filters based on air-coupled ultrasonic spectroscopy
Quaegebeur et al. Ultrasonic non-destructive testing of cardboard tubes using air-coupled transducers
Daschewski et al. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation
Álvarez-Arenas et al. Characterization of mineral paper by air-coupled ultrasonic spectroscopy
Abi Ghanem et al. Remote opto‐acoustic probing of single‐cell adhesion on metallic surfaces
Webster et al. Evaluation of ultrasonic battery inspection techniques
Gaal et al. New technologies for air-coupled ultrasonic transducers
Gélébart et al. Air coupled Lamb waves evaluation of the long-term thermo-oxidative ageing of carbon-epoxy plates
Ambrozinski et al. Pitch-catch air-coupled ultrasonic technique for detection of barely visible impact damages in composite laminates
Gitis et al. Flaw detection in the coating process of lithium-ion battery electrodes with acoustic guided waves
Buchholz et al. Acoustic data of cross linked polyethylene (XLPE) and cured liquid silicone rubber (LSR) by means of ultrasonic and low frequency DMTA
Tohmyoh et al. Detection of micro-bubbles in thin polymer films by means of acoustic resonant spectroscopy
Park et al. Terahertz ray nondestructive characterizations in FRP composites
Gaal et al. Novel air-coupled ultrasonic transducer combining the thermoacoustic with the piezoelectric effect
JP2007309850A (en) Method for measuring property value of soft thin film, and apparatus for the same
Salso et al. Testing of battery separators: transducers and methods for air-coupled ultrasonic sensing.
Sikdar et al. Detection of disbond in a honeycomb composite sandwich structure using ultrasonic guided waves and bonded PZT sensors
Vandewal et al. Structural health monitoring using a scanning THz system
Lerch A noncontact method for determining surface density of nonporous materials with the limp-wall mass law
CN109521094A (en) One kind can ceramizable resin matrix composite material tiltedly fold winding product internal soundness acoustic resonance detection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104