JP2013043439A - W-shaped or corrugated hollow structure material and method of manufacturing the same - Google Patents

W-shaped or corrugated hollow structure material and method of manufacturing the same Download PDF

Info

Publication number
JP2013043439A
JP2013043439A JP2011185057A JP2011185057A JP2013043439A JP 2013043439 A JP2013043439 A JP 2013043439A JP 2011185057 A JP2011185057 A JP 2011185057A JP 2011185057 A JP2011185057 A JP 2011185057A JP 2013043439 A JP2013043439 A JP 2013043439A
Authority
JP
Japan
Prior art keywords
hollow
bending
hollow structure
shaped
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011185057A
Other languages
Japanese (ja)
Inventor
Masahiro Fujii
昌浩 藤井
Keiichiro Koyashiki
啓一郎 古屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011185057A priority Critical patent/JP2013043439A/en
Publication of JP2013043439A publication Critical patent/JP2013043439A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock absorbing member capable of easily and efficiently allowing longitudinally-repeated bend forming and having sufficient shock absorbing power.SOLUTION: A hollow structure material is configured by using a hollow structure sheet material 10 that surface materials 2a, 2b formed of thermoplastic resin sheets are bonded to both surfaces of a core material 1 formed by heat sealing with hollow frustum-shaped convex parts 13 protruded from the thermoplastic resin sheets 1a, 1b which abut on each other. The hollow structure sheet material is bent and formed into the longitudinally-repeated W-shaped or a corrugated form.

Description

本発明は、W型又は波型の中空構造材及びその製造方法に関するものである。   The present invention relates to a W-shaped or corrugated hollow structure material and a method for manufacturing the same.

自動車の車体は、外部から車体に衝撃が加わったときの衝撃エネルギが吸収可能な車体構造とすべくさまざまな方策が講じられている。
例えば、車体前部の強度及び剛性を上げるための部品であるフロントサイドメンバーや、左右のドアの真下、車体の両サイドを構成するフレームであるサイドシル、さらには客座席より後方のボディを構成する骨格であるリアサイドメンバーといった筒体からなる強度部材を車体の要所に前後方向へ向けて配置し、車体や機体の外板にも応力を持たせる構造であるモノコック構造(応力外皮構造、または張殻構造ともいう。)とし、衝突事故の際には、衝突により負荷される衝撃エネルギを、これらの強度部材を衝撃吸収部材として利用して吸収することによって、乗員の安全を図っている。
Various measures have been taken for the body of an automobile to have a vehicle body structure that can absorb impact energy when an impact is applied to the body from the outside.
For example, a front side member that is a part for increasing the strength and rigidity of the front part of the vehicle body, a side sill that is a frame that forms both sides of the vehicle body, directly below the left and right doors, and further a body behind the passenger seat A monocoque structure (stressed skin structure or tension structure) is a structure in which a strength member consisting of a cylindrical body such as a rear side member, which is a skeleton, is arranged in a longitudinal direction at a key point of the vehicle body and stress is applied to the vehicle body and the outer plate of the machine body. It is also referred to as a shell structure.) In the event of a collision, the impact energy loaded by the collision is absorbed by using these strength members as impact absorbing members to ensure the safety of the passenger.

近年、自動車の衝撃吸収部材の一つとしてクラッシュボックスが用いられている。クラッシュボックスは、例えば、全長が一般的に80〜300mm程度の閉じた横断面形状を有する筒体からなり、バンパーレインフォースを支持しながら、左右のフロントサイドメンバーの先端部や左右のリアサイドメンバーの後端部に脱着自在に装着される。クラッシュボックスは、通常、一つのバンパーレインフォースに対して左右一個ずつ合計二個、車体の前後方向へ向けて配置される。   In recent years, a crash box has been used as one of shock absorbing members of automobiles. For example, the crash box is composed of a cylindrical body having a closed cross-sectional shape generally having an overall length of about 80 to 300 mm, and supports the bumper reinforcement while the front end members of the left and right front side members and the left and right rear side members are It is detachably attached to the rear end. Usually, two crash boxes are arranged in the front-rear direction of the vehicle body, one for each bumper reinforcement.

クラッシュボックスは、衝突の際、バンパーレインフォースに入力される衝撃荷重によって、ボディシェルをなすフロントサイドメンバーやリアサイドメンバーよりも優先して、蛇腹状に塑性座屈変形して圧壊することにより衝撃エネルギを吸収し、これにより、ボディシェルの損傷を防いで軽衝突時の修理費の低減を図るとともに、サイドメンバー等とともに衝撃エネルギを効果的に吸収して乗員を保護する。   The crash box has an impact energy that is impacted by a plastic buckling deformation and collapsing in a bellows-like manner over the front and rear side members that form the body shell due to the impact load input to the bumper reinforcement during a collision. As a result, the body shell is prevented from being damaged to reduce the repair cost at the time of a light collision, and the impact energy is effectively absorbed together with the side members to protect the occupant.

筒体であるクラッシュボックスは、例えば、薄鋼板をプレスして成形される半割品である二つの構成部材を溶接することや、中空パイプにハイドロフォーム加工を行うこと、さらにはアルミニウム合金材に熱間押し出しや冷間押し出しを行うこと等によって、所定の形状に製造される。   Crash boxes that are cylindrical bodies are, for example, welded to two components, which are half-finished products formed by pressing thin steel plates, hydroformed to hollow pipes, and further to aluminum alloy materials It is manufactured into a predetermined shape by performing hot extrusion or cold extrusion.

特許文献1には、四角形の基本横断面形状を有する金属製の筒体から構成されるクラッシュボックスが提案されている。
また、特許文献2には、自動車の先端側から加わる衝撃的な荷重に対して座屈変形可能な車体構造として、金属製の筒状フレーム部材と、筒状フレーム部材の軸心方向と略平行な方向に配列された第1の強化繊維と、この第1の強化繊維と交差して前記筒状フレーム部材の軸心方向と略直角な方向に配列された第2の強化繊維を有してなる繊維強化樹脂層を取着した車両の車体構造が開示されている。
そして、最も好適な強化繊維樹脂としては、マトリックスがエポキシ樹脂で、強化繊維として炭素繊維(カーボン繊維)が挙げられている。
Patent Document 1 proposes a crash box composed of a metal cylinder having a rectangular basic cross-sectional shape.
Further, in Patent Document 2, as a vehicle body structure capable of buckling deformation with respect to an impact load applied from the front end side of an automobile, a metal cylindrical frame member and a substantially parallel axis direction of the cylindrical frame member are disclosed. First reinforcing fibers arranged in various directions, and second reinforcing fibers that intersect with the first reinforcing fibers and are arranged in a direction substantially perpendicular to the axial direction of the cylindrical frame member. A vehicle body structure having a fiber reinforced resin layer attached thereto is disclosed.
And as a most suitable reinforced fiber resin, a matrix is an epoxy resin and carbon fiber (carbon fiber) is mentioned as a reinforced fiber.

また、特許文献3には、車体構成部材として、繊維強化樹脂からなる中空のエネルギ吸収部材と、エネルギ吸収部材の内径より大きい外径部分を有する圧子を備え、車両衝突時に、前記圧子がエネルギ吸収部材内に入り込んで破壊する自動車のエネルギ吸収構造が提案されている。繊維強化樹脂としてカーボン繊維で強化した樹脂(例えばエポキシ樹脂)が記載されている。   Further, Patent Document 3 includes a hollow energy absorbing member made of fiber reinforced resin as a vehicle body constituting member and an indenter having an outer diameter portion larger than the inner diameter of the energy absorbing member, and the indenter absorbs energy in the event of a vehicle collision. There has been proposed an energy absorption structure for an automobile that breaks into a member. A resin (for example, epoxy resin) reinforced with carbon fiber is described as the fiber reinforced resin.

一方、特許文献4には、自動車用のバンパビームにおいて、金属材料で出来た正面側敷板及び後側敷板と、2つの敷板の間に配置された少なくとも1つのコアと、前記コアの各端部に設けられ、正面側敷板又は前記コアに接続された金属材料製の中空体により形成されたエネルギアブソーバを備え、前記コア及びエネルギアブソーバの中空体の金属材料の弾性限界値と破断応力との比が所定の値のバンパビームが提案されている。
さらに、特許文献5には、樹脂成形品のリブに薄肉部を設けることによって、エネルギ吸収量を向上させるように設計された樹脂成形品が提案されている。この特許文献5の樹脂成形品は、通常、樹脂成形品のリブは瞬時に破壊するが、リブが逐次破壊するように、リブ構造を一部薄肉化して、リブの潰れ量を増加させ、リブによるエネルギ吸収量を向上させている。
On the other hand, in Patent Document 4, in a bumper beam for an automobile, at least one core disposed between two floor plates, a front side floor plate and a rear side floor plate made of a metal material, and provided at each end of the core. And an energy absorber formed by a hollow body made of a metal material connected to the front side floor plate or the core, and a ratio between an elastic limit value and a breaking stress of the metal material of the hollow body of the core and the energy absorber is predetermined. Bumper beams of the value of have been proposed.
Further, Patent Document 5 proposes a resin molded product designed to improve the amount of energy absorption by providing a thin portion on the rib of the resin molded product. In the resin molded product of Patent Document 5, the rib of the resin molded product usually breaks instantaneously, but the rib structure is partially thinned so that the ribs are sequentially broken, and the amount of rib crushing is increased. The amount of energy absorbed by is improved.

一方、特許文献6には、熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた中空構造板材の端末構造と端末処理方法が提案されている。   On the other hand, in Patent Document 6, a surface made of a thermoplastic resin sheet is provided on both surfaces of a core material that is heat-sealed in a state in which the hollow frustum-shaped convex portions projecting from the thermoplastic resin sheet face each other. A terminal structure and a terminal processing method of a hollow structure plate material bonded with materials have been proposed.

特開2011−51581号公報JP 2011-51581 A 特開平7−165109号公報JP 7-165109 A 特開2005−170299号公報JP 2005-170299 A 特表2003−503272号公報Special table 2003-503272 gazette 特開2005−271483号公報Japanese Patent Laying-Open No. 2005-271383 特開2010−58482号公報JP 2010-58482 A

特許文献1に記載のクラッシュボックスは、特殊断面形状の筒体としているため、衝撃荷重に対して連続的に安定した蛇腹状の塑性座屈変形を発生できるとされているが、金属であるため、a)質量が大きい(重い)、b)金属加工または板金加工により製作するため、形状の自由度に制約がある、c)腐食性があるため塗装の必要がある、d)振動減衰が小さいため、振動・騒音が大きいなどの問題がある。
また、特許文献4の自動車のバンパビームは、コア材が、長手方向の軸線に対して、直角に伸びる交互の突部及び凹部の連続体からなる金属材料であり、非特許文献1に記載の市販のクラッシュボックスも本質的に金属からなるので、特許文献1と同様の問題がある。
Since the crash box described in Patent Document 1 is a cylindrical body having a special cross-sectional shape, it is said that it can generate a bellows-like plastic buckling deformation that is continuously stable against an impact load, but is a metal. A) Large (heavy) b) Manufactured by metal processing or sheet metal processing, so there is a restriction on the degree of freedom of shape, c) Corrosion requires painting, d) Low vibration damping Therefore, there are problems such as large vibration and noise.
The bumper beam of the automobile of Patent Document 4 is a metal material in which the core material is a continuous material of alternating protrusions and recesses extending at right angles to the longitudinal axis, and is commercially available as described in Non-Patent Document 1. Since the crash box is essentially made of metal, there is a problem similar to that of Patent Document 1.

一方、特許文献2に記載の金属製のフレーム部材とカーボン繊維強化樹脂層を取着した車体構造や、カーボン繊維強化樹脂(CFRP)を使用した特許文献3に記載の自動車のエネルギ吸収構造では、a)価格が高い、b)カーボン繊維樹脂含浸成形により製作するため、形状の自由度に制約がある、c)破壊時に粉砕される特性を有するため、粉塵化したカーボン繊維による健康障害がある、d)振動減衰が小さいため、振動・騒音が大きい、e)リサイクルが困難、f)微細な損傷により大きく性能低下するが、損傷を検知する簡便かつ有効な手法が無いといった問題点がある。   On the other hand, in the vehicle body structure in which the metal frame member and the carbon fiber reinforced resin layer described in Patent Document 2 are attached, and in the energy absorption structure of the automobile described in Patent Document 3 using the carbon fiber reinforced resin (CFRP), a) high in price, b) limited in the degree of freedom of shape because it is manufactured by carbon fiber resin impregnation molding, c) because it has the property of being pulverized at the time of destruction, there is a health hazard due to dusted carbon fiber, d) Since vibration attenuation is small, vibration and noise are large, e) difficult to recycle, and f) performance is greatly degraded due to minute damage, but there is a problem that there is no simple and effective method for detecting damage.

また、特許文献5に記載のリブを備えた樹脂成形品では、リブの方向が一方向であるので、衝撃時にあらゆる方向に変形してエネルギを吸収する能力が不足している。
一方、特許文献6に記載の熱可塑性樹脂製中空板の端末加工方法は、該中空板の端部から塵埃等が内部に侵入するのを防ぐための端末のシール方法であって、中空板材を湾曲加工や屈曲加工する技術は開示されていない。
Moreover, in the resin molded product provided with the rib of patent document 5, since the direction of a rib is one direction, the capability to deform | transform into all directions at the time of an impact and to absorb energy is insufficient.
On the other hand, the thermoplastic resin hollow plate terminal processing method described in Patent Document 6 is a terminal sealing method for preventing dust and the like from entering the inside from the end of the hollow plate. A technique for bending or bending is not disclosed.

本発明者は、上記問題に鑑みて、十分な衝撃吸収力を有する衝撃吸収部材の構成について鋭意検討した結果、特定の熱可塑性樹脂製中空構造板材を特殊な形状に曲げ賦型して、厚み方向の面を衝撃が加わる面とすると、高い衝撃吸収特性が得られることを見出して本発明を完成した。また、本発明の曲げ賦型された衝撃吸収部材を得るための曲げ加工方法を鋭意検討して曲げ加工方法の発明を完成した。
すなわち、本発明は以下の(1)〜(3)を提供するものである。
In view of the above problems, the present inventor has intensively studied the configuration of a shock absorbing member having sufficient shock absorbing power, and as a result, a specific thermoplastic resin hollow structure plate is bent and shaped into a special shape to obtain a thickness. The present invention has been completed by finding that a high impact absorption characteristic can be obtained when the direction surface is a surface to which an impact is applied. In addition, the inventors have intensively studied a bending method for obtaining the shock-absorbing member subjected to bending shaping according to the present invention, and have completed the invention of the bending method.
That is, the present invention provides the following (1) to (3).

(1)熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた中空構造板材を用いてなる中空構造材であって、前記中空構造板材を、長手方向に繰り返すW型又は波型に曲げ賦型したことを特徴とする中空構造材。
(2)前記(1)の中空構造材を用いた衝撃吸収部材であり、厚み方向の面を衝撃が加わる面(頂面)とすることを特徴とする衝撃吸収部材。
(3)熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた中空構造板材を曲げ加工する中空構造材の製造方法であって、該製造方法は、中空構造板材の曲げ部位に対応した領域を、該表面材の熱可塑性樹脂の融点未満で熱変形可能な温度に加熱し、しかるのち、これに中空構造板材の厚みに対応した形状を有する冶具を中空構造板材の両面に加圧接触させて曲げ加工を行い、該冶具中で冷却・降温することを特徴とする中空構造材の製造方法。
(1) A surface material made of a thermoplastic resin sheet is bonded to both surfaces of a core material that is heat-sealed in a state where the hollow frustum-shaped convex portions protruding from the thermoplastic resin sheet face each other. A hollow structure material using a hollow structure plate material, wherein the hollow structure plate material is bent and shaped into a W shape or a wave shape that repeats in the longitudinal direction.
(2) An impact-absorbing member using the hollow structure material according to (1), wherein a surface in the thickness direction is a surface (top surface) to which an impact is applied.
(3) A surface material made of a thermoplastic resin sheet was bonded to both surfaces of a core material that was heat-sealed in a state where the hollow frustum-shaped convex portions protruding from the thermoplastic resin sheet were butted together. A method for producing a hollow structure material for bending a hollow structure plate material, wherein the production method comprises a temperature corresponding to the bending portion of the hollow structure plate material at a temperature at which the surface material can be thermally deformed below the melting point of the thermoplastic resin. It is characterized in that, after that, a jig having a shape corresponding to the thickness of the hollow structural plate is brought into pressure contact with both sides of the hollow structural plate, subjected to bending, and cooled and cooled in the jig. A method for producing a hollow structure material.

本発明の中空構造材は、軽量であり、衝撃吸収部材とする場合は、厚み方向の面を衝撃が加わる面としているので、周期的に並ぶ中空錐台状の凸部(以下、「コーン」と称することがある。)が突合せ状で熱融着した面と、衝撃力を始めに受けた部位から順次局所変形し伝播して行くので、安定した衝撃吸収力が確保される。
本発明の中空構造材は、中空構造板材を長手方向にW型又は波型に曲げ賦型しているので、衝撃吸収部材とする場合は、曲げ賦型されたユニット単位で衝撃力により座屈が生じても、他のユニットが順次衝撃力を吸収するので、中空構造板材の長さ全体で座屈後の衝撃吸収力を担保することができる。
本発明の中空構造材は、生産性にも優れ、リサイクルが容易である。また、接続金物や接着剤が不要であり、かつ接続金物等を使用しないため防食のために塗装をする必要がない。
本発明の中空構造材の製造方法は、本発明の衝撃吸収部材に必要な、長手方向に繰り返す曲げ賦型を簡便かつ効率的に行うことができる。
The hollow structural material of the present invention is lightweight, and when it is used as an impact absorbing member, since the surface in the thickness direction is a surface to which an impact is applied, the hollow frustum-shaped convex portions (hereinafter referred to as “cones”) arranged periodically. ) And the heat-welded surface in a butt-like manner and the portion where the impact force is first received and then sequentially deformed and propagated, so that a stable impact absorbing force is ensured.
Since the hollow structural material of the present invention is formed by bending the hollow structural plate material into a W shape or a corrugated shape in the longitudinal direction, when it is used as an impact absorbing member, it is buckled by an impact force in units of the bending shape. Even if this occurs, the other units sequentially absorb the impact force, so that the impact absorption force after buckling can be secured over the entire length of the hollow structure plate.
The hollow structural material of the present invention is excellent in productivity and easy to recycle. In addition, since no connection hardware or adhesive is required and no connection hardware is used, there is no need to paint for corrosion protection.
The method for producing a hollow structure material of the present invention can easily and efficiently perform bending shaping that is necessary for the impact absorbing member of the present invention and is repeated in the longitudinal direction.

実施例1によるW型に曲げ賦形された中空構造材を衝撃吸収部材とした斜視図である。It is the perspective view which used as a shock absorption member the hollow structure material bend-shaped by the W type by Example 1. FIG. 波型に曲げ賦形された中空構造材を衝撃吸収部材とした斜視図である。It is the perspective view which used as a shock absorption member the hollow structure material bend-shaped in the waveform. 本発明の中空構造材を構成する中空構造板材の断面図Sectional drawing of the hollow structure board | plate material which comprises the hollow structure material of this invention 中空構造板材の芯材を構成する中空円錐台状凸部を有する中空突起体シートの一例の構造を示す、(a)上面側斜視図、(b)凸部の構造を示す縦断面図、(c)下面側斜視図である。(A) top side perspective view showing structure of one example of hollow projection sheet having hollow frustoconical convex portion constituting core material of hollow structure plate material, (b) longitudinal sectional view showing structure of convex portion, ( c) It is a lower surface side perspective view. 中空構造板材のW型曲げ賦形の(A)予備加熱、(B)ヒーター後退、(C)曲げ賦形の模式説明図である。It is a model explanatory drawing of (A) preheating of the W-shaped bending shaping | molding of a hollow structure board | plate material, (B) Heater retreat, and (C) bending shaping. 曲げ加工装置の一例による中空構造板材の予熱状態の説明図である。It is explanatory drawing of the preheating state of the hollow structure board | plate material by an example of a bending process apparatus. 曲げ加工装置の一例によりヒーターが後退して冶具により中空構造板材がW形に賦形された状態を示す説明図である。It is explanatory drawing which shows the state by which the heater retracted | retreated by an example of the bending processing apparatus, and the hollow structure board | plate material was shaped in the W shape with the jig. W型曲げ賦形の衝撃吸収部材の荷重−変位曲線である。It is a load-displacement curve of a W-shaped bending shaped shock absorbing member. 本発明の衝撃吸収部材の変形モードの解析図である。It is an analysis figure of the deformation mode of the shock absorbing member of the present invention.

[中空構造材]
本発明の中空構造材は、熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた中空構造板材を用いてなるW型または波型であって、前記中空構造板材を、長手方向に繰り返すW型又は波型に曲げ賦型したことを特徴とする。本発明においてW型に曲げ賦型するとは、平面状の中空構造板材のいずれか一方の表面材に長手方向に直交して曲げ圧縮力が加わるような直線状の曲げ賦型を、曲げ方向を逐次変更して行い、上面から見るとW型(ジグザグ状)に連なった様な形状に賦型することをいい、直線状の内折れ角部に対向する表面材側は引張変形して表面材の薄肉化と芯材の変形を伴った形状を呈する。
図1はW型に曲げ賦型してなる中空構造材を衝撃吸収部材とした例を示す。該中空構造材100は、厚みTmmの中空構造板材10を、単位(ユニット)長さUmmの5個が、所定の角度で長手方向に繰り返すW型(ジグザグ状)に曲げ賦型されている。図1の中空構造材よりなる衝撃吸収部材は、上部(頂部)が衝撃の加わる面であり、ストロークSの方向に座屈力が働く構成としている。厚みTは、7〜32mm、単位長さUが20〜80mm、ストロークSが30〜150mmの範囲が好ましい。厚みTは、9〜20mmがより好ましい。
一方、図2は波型に曲げ賦型してなる中空構造材を衝撃吸収部材とした例を示す。該中空構造材101は、波長L0で繰り返す波型に曲げ賦型されており、図1のW型(ジグザグ状)と比較して直線状の角部はなく、全体が連続した曲線状で、曲げ賦型部は緩やかなR状の波型を呈している。
中空構造材の長さLは、クラッシュボックスやバンパーなど当該中空構造材が収納される部位の長さに対応している。また、衝撃荷重が、中空構造板材の厚みTの面(頂面)に負荷されるように配置される。
図1、2の中空構造材100,101についてSで示している中空構造材の幅は、厚み面Tに負荷された衝撃力をどれだけの長さ(ストローク)で吸収するかで決定される。このストロークSは、バンパービームの場合は概ね50〜150mm、クラッシュボックス用途の場合は概ね40〜150mmの長さである。
[Hollow structure material]
The hollow structural material of the present invention is a surface made of a thermoplastic resin sheet on both sides of a core material that is heat-sealed in a state in which the hollow frustum-shaped convex portions projecting from the thermoplastic resin sheet are butted together. It is a W type or corrugated shape using a hollow structural plate material bonded together, and the hollow structural plate material is bent and shaped into a W shape or a corrugated shape that repeats in the longitudinal direction. In the present invention, bending molding into a W shape means a linear bending molding in which a bending compressive force is applied perpendicularly to the longitudinal direction to any one surface material of a flat hollow structure plate material, It is said that the surface material side facing the linear inner fold corner is tensile-deformed to form the surface material. The shape is accompanied by the thinning of the core and deformation of the core material.
FIG. 1 shows an example in which a hollow structure material formed by bending into a W shape is used as an impact absorbing member. The hollow structural member 100 is formed by bending a hollow structural plate member 10 having a thickness of Tmm into a W shape (zigzag shape) in which five units (unit) length Umm are repeated in a longitudinal direction at a predetermined angle. The impact absorbing member made of the hollow structural material of FIG. 1 has a structure in which an upper part (top) is a surface to which an impact is applied and a buckling force acts in the direction of the stroke S. The thickness T is preferably in the range of 7 to 32 mm, the unit length U is 20 to 80 mm, and the stroke S is 30 to 150 mm. The thickness T is more preferably 9 to 20 mm.
On the other hand, FIG. 2 shows an example in which a hollow structural material formed by bending into a corrugated shape is used as an impact absorbing member. The hollow structural member 101 is bent and shaped into a wave shape that repeats at the wavelength L 0 , and has no straight corners compared to the W shape (zigzag shape) in FIG. The bend forming part has a gentle R-shaped waveform.
The length L of the hollow structural material corresponds to the length of a portion in which the hollow structural material is stored, such as a crash box or a bumper. Moreover, it arrange | positions so that an impact load may be loaded on the surface (top surface) of thickness T of a hollow structure board | plate material.
The width of the hollow structural material indicated by S in the hollow structural materials 100 and 101 of FIGS. 1 and 2 is determined by how long (stroke) the impact force applied to the thickness surface T is absorbed. . This stroke S is approximately 50 to 150 mm for a bumper beam and approximately 40 to 150 mm for a crash box application.

(中空構造板材)
本発明の中空構造材に用いる中空構造板材は、熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた構造を有し、WO2003/080326号パンフレットに開示された中空構造板材の製造方法によって製造することができ、「ツインコーン」の商品名で宇部日東化成株式会社より市販されている中空構造板を利用することができる。
WO2003/080326号パンフレットに開示された中空構造板材の製造方法は、二枚の熱可塑性樹脂シートを減圧チャンバ内に導入し、該減圧チャンバ内に回転可能に配置された上下一対のエンボスローラの周面にそれぞれの樹脂シートを吸着させて両エンボスローラに突設されたピン形状に応じて各樹脂シートに多数の中空凸部を形成するとともに、両エンボスローラの接線位置で前記中空凸部の端面同士を連続して熱融着して芯材を形成し、該芯材の両面に熱可塑性樹脂シートからなる表面材を熱融着する製造方法であり、エンボスローラに突設されたピンは、円錐台状又は角錐台状を呈している。
本発明において、中空錘台状とは、中空円錐台状又は中空角錐台状をいい、これらのいずれであってもよい。
図3は、熱可塑性樹脂製の中空構造板材の主体部を示す概略断面図である。
図3に部分断面を示す中空構造板材は、熱可塑性樹脂シートからなる2枚の中空突起体シート1a、1bの凸部頂点同士を熱融着により貼り合わせて構成した芯材1の両面に表面材2a、2bを貼り合わせて構成したものである。
(Hollow structure plate)
The hollow structural plate material used for the hollow structural material of the present invention is thermoplastic on both surfaces of the core material that is heat-sealed in a state where the hollow frustum-shaped convex portions protruding from the thermoplastic resin sheet are butted together. Ube Nitto Kasei Co., Ltd., which has a structure in which a surface material made of a resin sheet is bonded, can be manufactured by a method for manufacturing a hollow structure plate material disclosed in a pamphlet of WO2003 / 080326. More commercially available hollow structure plates can be used.
A method of manufacturing a hollow structure plate material disclosed in the pamphlet of WO2003 / 080326 introduces two thermoplastic resin sheets into a decompression chamber and surrounds a pair of upper and lower embossing rollers disposed rotatably in the decompression chamber. A plurality of hollow projections are formed on each resin sheet in accordance with the pin shape projecting from both embossing rollers by adsorbing each resin sheet to the surface, and the end surfaces of the hollow projections at the tangential position of both embossing rollers It is a manufacturing method in which a core material is formed by continuously heat-sealing each other, and a surface material made of a thermoplastic resin sheet is heat-sealed on both surfaces of the core material. It has a truncated cone shape or a truncated pyramid shape.
In the present invention, the hollow frustum shape means a hollow frustum shape or a hollow frustum shape, and any of these may be used.
FIG. 3 is a schematic cross-sectional view showing the main part of a hollow structure plate made of thermoplastic resin.
The hollow structure board | plate material which shows a partial cross section in FIG. 3 is the surface on both surfaces of the core material 1 comprised by bonding the convex-part vertices of the two hollow projection sheet | seats 1a and 1b which consist of a thermoplastic resin sheet by heat sealing | fusion. The material 2a and 2b are bonded together.

中空突起体シートや表面材の材料としては、特に限定されるものではない。例えば、ポリエチレン系樹脂や、ポリプロピレン系樹脂等のポリオレフィン系樹脂、およびこれらのコモノマー若しくはコモノマーと他のモノマーとの共重合体、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ABS、AAS、AES、ポリスチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリアミド、ポリフッ化ビニリデン、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルケトン及びこれらのコモノマー若しくはコモノマーと他のモノマーとの共重合体等が挙げられ、これらは単独で使用しても併用してもよい。以上のように各種の熱可塑性樹脂を用いることができるが、コスト面、成形性、物性、耐低温性、耐熱性等の特性とのバランスを考慮すると、ポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂が特に好ましい。
ポリエチレン系樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンが挙げられ、ポリプロピレン系樹脂としては、ホモポリプロピレン、ランダムポリプロピレン、ブロック状ポリプロピレンが挙げられる。
中空突起体シートや表面材の剛性を高める目的で、フィラーを副材料として配合しても良い。
副材料は、特に限定されるものではないが、コスト面、成形性、取り扱い性等とのバランスを考慮すると、タルク、炭酸カルシウム等が好ましい。フィラーの添加量が増加すると、コスト高、比重の増大につながるので、これらのバランスを考慮すると、添加量は総重量に対してタルクの場合は5〜30質量%、炭酸カルシウムの場合は20質量%程度以下とするのが好ましい。
さらに、前記フィラーの他に、酸化防止剤、紫外線吸収剤、帯電防止剤、抗菌剤、難燃剤、光安定剤、滑剤等を必要に応じて添加もしてもよい。
The material for the hollow protrusion sheet and the surface material is not particularly limited. For example, polyethylene resins, polyolefin resins such as polypropylene resins, copolymers of these comonomers or comonomers and other monomers, polyvinyl chloride, chlorinated polyvinyl chloride, ABS, AAS, AES, polystyrene, Examples include polyethylene terephthalate, polycarbonate, polyamide, polyvinylidene fluoride, polyphenylene sulfide, polysulfone, polyether ketone, and copolymers of these comonomers or comonomers with other monomers. These may be used alone or in combination. Also good. As described above, various thermoplastic resins can be used. However, in consideration of balance with properties such as cost, moldability, physical properties, low temperature resistance, and heat resistance, polyolefin resins are preferable, and polypropylene resins are preferable. Particularly preferred.
Examples of the polyethylene resin include low density polyethylene, high density polyethylene, and linear low density polyethylene. Examples of the polypropylene resin include homopolypropylene, random polypropylene, and block polypropylene.
For the purpose of increasing the rigidity of the hollow protrusion sheet or the surface material, a filler may be blended as an auxiliary material.
The auxiliary material is not particularly limited, but talc, calcium carbonate, and the like are preferable in consideration of the balance with cost, formability, handleability, and the like. Increasing the amount of filler added leads to high costs and specific gravity. Therefore, considering these balances, the amount added is 5 to 30% by mass in the case of talc and 20% in the case of calcium carbonate. It is preferable to be about% or less.
In addition to the filler, an antioxidant, an ultraviolet absorber, an antistatic agent, an antibacterial agent, a flame retardant, a light stabilizer, a lubricant and the like may be added as necessary.

本発明の中空構造材を構成する中空構造板材の芯材を構成する中空突起体シートについて更に詳しく説明する。
図4(a)に示す中空突起体シート1aは、複数の凸部13が中空突起体シートベース面の一方の面に規則的に設けられ、下底側が開口した中空円錐台状をなすものであって、この実施の形態においては、本体部12の長手方向に沿って所定の間隔ごとに凸部13を一列に設けて凸部列14を構成し、このような凸部列14を中空突起体シートベース面12の幅方向に所定の間隔ごとに複数列設けて構成している。凸部列14は隣合う凸部列14'とは幅方向における中空錐台状の凸部の位置をずらしたいわゆる千鳥状とすることが、より等方性の物性の板材とするために望ましい。中空錐台の形状は、中空角錐台状(図示省略)であってもよい。以下、中空円錐台状の凸部のものにより説明する。
The hollow protrusion sheet constituting the core material of the hollow structure plate constituting the hollow structure material of the present invention will be described in more detail.
The hollow protrusion sheet 1a shown in FIG. 4 (a) has a hollow truncated cone shape in which a plurality of convex portions 13 are regularly provided on one surface of the hollow protrusion sheet base surface, and the lower bottom side is open. In this embodiment, the convex portions 13 are formed by providing the convex portions 13 in a row at predetermined intervals along the longitudinal direction of the main body portion 12, and the convex portion rows 14 are formed as hollow projections. A plurality of rows are provided at predetermined intervals in the width direction of the body sheet base surface 12. It is desirable for the convex portion row 14 to have a so-called staggered shape in which the positions of the hollow frustum-like convex portions in the width direction are shifted from the adjacent convex portion row 14 ′ in order to obtain a plate material with more isotropic properties. . The shape of the hollow frustum may be a hollow frustum shape (not shown). In the following, description will be made by using a hollow frustoconical convex portion.

各凸部13は、内面側に中空突起体シートベース面12の他方の面(下面)すなわち下底側に開口する凹部15を有する中空状をなすものであって、外周面が先端から根元にかけて直径が次第に増大するテーパー面の円錐台状に形成され、かつ、各凸部13は、同一形状、大きさに形成されている。
各凹部15は、内面が先端(最深部)から根元(開口端部)にかけて次第に直径が増大するテーパー面の円錐形状の空間に形成されている。各凹部15は、同一形状、大きさに形成されている。
Each convex portion 13 has a hollow shape having a concave portion 15 opened on the other surface (lower surface) of the hollow projection sheet base surface 12, that is, the lower bottom side, on the inner surface side, and the outer peripheral surface extends from the tip to the root. Each convex part 13 is formed in the same shape and magnitude | size, and it is formed in the truncated cone shape of the taper surface where a diameter increases gradually.
Each recess 15 is formed in a conical space having a tapered surface whose inner surface gradually increases in diameter from the tip (deepest part) to the root (opening end). Each recess 15 is formed in the same shape and size.

各凸部13のテーパー角度及び各凹部内面15のテーパー角度θ〔図4(b)に示す〕は、芯材としての耐圧性の観点から、40〜80°の範囲内が好ましく、より好ましくは60〜80°の範囲内である。(テーパー角度が60°未満であると、芯材としての耐圧性が不足する可能性があり、テーパー角度を80°以上とすると、凸部壁面の厚みが小さくなり、同様に耐圧性が不足する可能性がある。)
また、各凸部13の下底部直径は3〜16mm、上底部直径1.5〜4mm、隣接する円錐台状凸部の隙間間隔は10mm以下、凸部の高さは3〜13mmとすることができる。
隣接する円錐台状凸部の隙間間隔は、10mm以上となると、耐圧性が不足しやすくなる。凸部の高さが3〜13mmであれば、中空構造材の中空突起体シートとして、衝撃力が負荷された際の耐圧性および凸部同士及び表面材との熱融着部における凝集破壊による衝撃吸収力等の点で好ましい。
The taper angle θ of each convex portion 13 and the taper angle θ of each concave inner surface 15 (shown in FIG. 4B) is preferably within a range of 40 to 80 °, more preferably from the viewpoint of pressure resistance as a core material. It is in the range of 60-80 °. (If the taper angle is less than 60 °, the pressure resistance as the core material may be insufficient, and if the taper angle is 80 ° or more, the thickness of the convex wall surface becomes small, and the pressure resistance is similarly insufficient. there is a possibility.)
In addition, the lower bottom diameter of each convex portion 13 is 3 to 16 mm, the upper bottom portion diameter is 1.5 to 4 mm, the gap interval between adjacent frustoconical convex portions is 10 mm or less, and the height of the convex portion is 3 to 13 mm. Can do.
When the gap interval between adjacent frustoconical convex portions is 10 mm or more, the pressure resistance tends to be insufficient. If the height of the convex portion is 3 to 13 mm, as a hollow protrusion sheet of the hollow structure material, due to the pressure resistance when impact force is applied and the cohesive failure at the thermal fusion portion between the convex portions and the surface material It is preferable in terms of impact absorption.

中空構造板材の芯材の中空突起体シートとしての耐圧性から、本体部12の厚みは、0.1〜1mmが好ましい。本体部12の厚みを0.1mmよりも薄くすると、成形機により成形して複数の凸部13を形成した場合に、各凸部13がフィルム状態で十分な剛性が得られなくなる可能性があり、中空構造板材の芯材の中空突起体シートとしての耐圧性が不足し、凸部が破壊する可能性がある。
本発明の中空構造材に用いられる中空構造板材の芯材は、上記の中空突起体シート1a、1bを2枚同時に成形し、凸部13を熱融着して製造され、前述の如く芯材1は、例えば、WO2003/080326号パンフレットに記載の製造方法により得ることができる。
なお、その寸法形状は、全体厚みは、基本的には一方の中空突起体シートの2倍のものが用いられる。
2枚の中空突起体シートは、必ずしも同一寸法あるいは、同一材質のものを用いる必要はなく、異なる寸法、異なる材質のものを組合せてもよい。しかし、中空構造材として、平面性を要求される場合は、2枚の中空突起体シートに、同一寸法あるいは、同一材質のものを用いると、厚み方向の中立軸に対して、対称になって、反りが生ずることが少ないので、好ましい。
The thickness of the main body 12 is preferably 0.1 to 1 mm from the pressure resistance of the hollow structure sheet material as the hollow protrusion sheet. If the thickness of the main body portion 12 is less than 0.1 mm, when the plurality of convex portions 13 are formed by molding with a molding machine, there is a possibility that each convex portion 13 cannot obtain sufficient rigidity in a film state. The pressure resistance of the hollow structural plate material as the hollow projection sheet of the core material is insufficient, and the convex portion may be destroyed.
The core material of the hollow structure plate material used in the hollow structure material of the present invention is manufactured by simultaneously molding the two hollow protrusion sheets 1a and 1b and heat-sealing the convex portions 13, and as described above, the core material. 1 can be obtained, for example, by the production method described in the pamphlet of WO2003 / 080326.
As for the dimensional shape, the total thickness is basically twice that of one hollow protrusion sheet.
The two hollow projection sheets need not necessarily have the same size or the same material, and may have different dimensions and different materials. However, when flatness is required as a hollow structural material, if the two hollow projection sheets are of the same size or the same material, they are symmetrical with respect to the neutral axis in the thickness direction. This is preferable because warpage hardly occurs.

本発明の中空構造材を構成する中空構造板材は、衝撃吸収力の観点から、JIS Z 0403−1に準拠した荷重速度10mm/分での平板圧縮試験による、平面圧縮強度が300〜3000kN/m2であるものを用いることができる。
平面圧縮強度が300〜3000kN/m2の範囲であれば、バンパー等の構造部材の一部としての耐圧性を備え、かつ、衝撃力が負荷されたときには、座屈変形、熱融着部の凝集破壊等により衝撃力を吸収できる。
The hollow structural plate material constituting the hollow structural material of the present invention has a plane compressive strength of 300 to 3000 kN / m by a flat plate compression test at a load speed of 10 mm / min in accordance with JIS Z 0403-1 from the viewpoint of impact absorption. What is 2 can be used.
If the plane compressive strength is in the range of 300 to 3000 kN / m 2 , it has pressure resistance as a part of a structural member such as a bumper, and when an impact force is applied, buckling deformation and heat fusion part Impact force can be absorbed by cohesive failure.

本発明の中空構造材は、前記の熱可塑性樹脂からなる中空構造板材の連続生産時の長手方向(搬送方向=機械方向=MD方向)と直交する方向すなわちTD方向に繰り返すW型又は波型の曲げ賦型を施すことが、変形モードに付随する衝撃力の吸収性能の観点から好ましい。
さらに、曲げ賦型は、W型曲げ賦型がより高い衝撃力の吸収性能の観点から特に好ましい。
The hollow structural material of the present invention is W-shaped or corrugated that repeats in the direction perpendicular to the longitudinal direction (conveying direction = machine direction = MD direction) during continuous production of the hollow structural plate material made of the thermoplastic resin, that is, in the TD direction. It is preferable to perform bending molding from the viewpoint of absorbing performance of impact force accompanying the deformation mode.
Furthermore, the bending forming is particularly preferable from the viewpoint of absorbing performance of higher impact force than the W-shaped bending forming.

また、中空構造板材の芯材及び表面材が共にポリオレフィン系樹脂であることが、コスト面、成形性、物性、耐低温性、耐熱性等の特性とのバランス等の観点から好ましく、ポリプロピレン系樹脂が特に好ましい。
中空構造板材の表面材の厚みは、0.5〜3.0mmが好ましく、0.6〜2.0mmがより好ましく、0.7mm〜1.5mmがさらに好ましい。
Further, it is preferable that both the core material and the surface material of the hollow structure plate material are polyolefin resins from the viewpoints of cost, moldability, physical properties, low temperature resistance, balance with properties such as heat resistance, and the like. Is particularly preferred.
The thickness of the surface material of the hollow structural plate is preferably 0.5 to 3.0 mm, more preferably 0.6 to 2.0 mm, and still more preferably 0.7 mm to 1.5 mm.

[中空構造材の製造方法]
次に、本発明の中空構造材に用いる中空構造板材の曲げ加工方法について説明する。
図5は、本発明の曲げ加工方法を模式的に示すもので、(A)は中空構造板材の曲げ加工部位をヒーターにより予備加熱している状態を示し、(B)は、ヒーターが後退して予熱された中空構造板材を冶具により曲げ加工する直前の状態を示し、(C)は、冶具により曲げ賦型された状態を模式的に示す説明図である。前記のヒーターによる予備加熱は、中空構造板材の曲げ部位に対応した領域、すなわち曲げによる圧縮変形(内周)側と引張変形(外周)側の少なくとも両表面材の領域を、該表面材の熱可塑性樹脂の融点未満で熱変形可能な温度に加熱するものであり、しかる後、これに曲げ形状に対応した形状を有する冶具を中空構造板材の両面に加圧接触させて曲げ加工を行い、該冶具中で冷却・降温することを特徴とする。
前記の、少なくとも両表面材の領域を表面材の熱可塑性樹脂の融点未満で熱変形可能な温度への加熱は、曲げ変形に際して、引張変形を受ける表面材が、曲げ変形に耐えられず破断することを防止する程度に加熱するもので、曲げ変形を受ける部分全体、すなわち、芯材を含む中空構造板材の厚み全体が容易に塑性変形できる程度に加熱されていることがより好ましい。
[Method for producing hollow structure material]
Next, the bending method of the hollow structure board | plate material used for the hollow structure material of this invention is demonstrated.
FIG. 5 schematically shows the bending method of the present invention, in which (A) shows a state in which the bending portion of the hollow structure plate is preheated by a heater, and (B) shows that the heater is retracted. The state just before bending the hollow structure board | plate material preheated in advance with a jig | tool is shown, (C) is explanatory drawing which shows typically the state shape | molded by the jig. The preheating by the heater described above is performed on the region corresponding to the bending portion of the hollow structure plate material, that is, the region of at least both surface materials on the compression deformation (inner periphery) side and tensile deformation (outer periphery) side by bending. It is heated to a temperature that can be thermally deformed at a temperature lower than the melting point of the plastic resin.After that, a jig having a shape corresponding to the bent shape is pressed on both surfaces of the hollow structural plate material to perform bending. It is characterized by cooling and cooling in a jig.
When heating at least the surface material region to a temperature at which the surface material can be thermally deformed below the melting point of the thermoplastic resin of the surface material, the surface material that undergoes tensile deformation at the time of bending deformation cannot withstand bending deformation and breaks. It is more preferable that the entire portion subjected to bending deformation, that is, the entire thickness of the hollow structural plate including the core material, is heated to such an extent that it can be easily plastically deformed.

曲げ変形に用いられる冶具としては、例えばプレス金型等が挙げられ、金型内に冷却水の循環装置を有し、曲げ変形後に、曲げ変形された中空構造材を挟持した状態で降温して、固化する機能を有するものが好ましい。   Examples of the jig used for bending deformation include a press mold, etc., and a cooling water circulation device is provided in the mold, and after bending deformation, the temperature is lowered in a state of sandwiching the bent hollow structural material. Those having a function of solidifying are preferable.

さらに、本発明の曲げ加工方法は、中空構造板材を長手方向に繰り返すW型に賦型する曲げ加工では、該曲げ加工を施す部位及び数に対応して、中空構造板材の長手方向に直交するように配置された直線状(ブレード状)の電気ヒーターと、該電気ヒーターが進退可能に挿通され、曲げ賦型の形状に対応した所定の形状を有する冶具を用い、該中空構造板材に電気ヒーターを接近させ、非接触で加熱した後、電気ヒーターを中空構造板材表面から後退させ、しかる後冶具を中空構造板材の両面に加圧接触させて曲げ加工を行い、該冶具中で冷却・降温する中空構造板材の曲げ加工方法とすることができる。   Furthermore, in the bending method of the present invention, in the bending process in which the hollow structural plate material is formed into a W shape that repeats in the longitudinal direction, the bending direction is orthogonal to the longitudinal direction of the hollow structural plate material in accordance with the number and the number of the bending process. A linear (blade-shaped) electric heater arranged in such a manner, and a jig having a predetermined shape corresponding to the shape of bending molding, wherein the electric heater is inserted so as to be able to advance and retract, and the electric heater is used for the hollow structure plate After heating up in a non-contact manner, the electric heater is retracted from the surface of the hollow structural plate, and then bending is performed by pressing the jig against both sides of the hollow structural plate, and then cooling and lowering the temperature in the jig. It can be set as the bending method of a hollow structure board | plate material.

W型に賦型する曲げ加工方法について、図6及び図7を参照して説明する。図6は、曲げ加工装置20により中空構造板材10を予熱している状態を模式的に示している。上冶具22a、下冶具22bのそれぞれの頂部及び谷部には、直線状(ブレード状)の電気ヒーター21が、セットされた中空構造板材10から進退可能に挿通されている。中空構造板材10は、その曲げ変形を受ける部位(屈曲部位)を非接触状態でヒーター21群により加熱される。
次いで、電気ヒーターが中空構造板材の屈曲部位から後退し、上下の冶具が中空構造板材の両面を挟持するように動いて、加圧接触して、冶具22に対応した所定形状であるW型(ジグザグ型)に賦型され、冶具により冷却されて、W型に冷却固化される。
図7は、熱賦型、冷却固化が終了して、上下の冶具が後退して、W型中空構造材の成形が完了し、脱型可能な状態を示している。
A bending method for forming a W shape will be described with reference to FIGS. FIG. 6 schematically shows a state in which the hollow structure plate 10 is preheated by the bending apparatus 20. A linear (blade-shaped) electric heater 21 is inserted into each of the top and valley portions of the upper jig 22a and the lower jig 22b so as to be able to advance and retreat from the set hollow structure plate 10. The hollow structural plate 10 is heated by the heater 21 group in a non-contact state at a portion (bent portion) that undergoes bending deformation.
Next, the electric heater moves backward from the bent portion of the hollow structural plate material, and the upper and lower jigs move so as to sandwich both surfaces of the hollow structural plate material, and come into pressure contact to form a W shape (a predetermined shape corresponding to the jig 22). Zigzag type), cooled by a jig, and cooled and solidified to W type.
FIG. 7 shows a state where the heat forming and cooling solidification are completed, the upper and lower jigs are moved backward, the forming of the W-type hollow structure material is completed, and demolding is possible.

以下、本発明を実施例及び比較例により説明するが、本発明はこれらの実施例になんら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, this invention is not limited to these Examples at all.

実施例1
〔中空構造材〕
中空構造板材として標準厚みが13.3mmの「ツインコーン」〔宇部日東化成株式会社製(品番:TC12−3010N9)〕を、TD方向に100mm、MD方向に300mmの大きさに切断した。これを、MD方向に50mmピッチで屈曲を5回繰り返す、図1に示すW型の中空構造材を作製した。
曲げ加工装置は、図6,7に原理を示したものを用い、直線状の電気ヒーター21として3mm幅で表面温度が170〜175℃に制御されたヒーターを、中空構造板材の曲げ加工を施すべき位置の表面材から2mmの空隙を設けた非接触状態で対峙させ、1分間加熱した後、該電気ヒーター21を後退させつつ、冶具22a、bを中空構造板材側に移動させて加圧接触させて中空構造板材を挟持し、しかる後、冶具中に40℃の冷却媒体を通して、冶具22a、22bを冷却して、W型に曲げ賦型された中空構造板材を冷却・固化して中空構造材100を得た。得られたW型の中空構造材について、図1に示すように厚み方向の面を上面として、この面に衝撃力を加える次のような衝撃テストを行った。
Example 1
[Hollow structure material]
A “twin cone” having a standard thickness of 13.3 mm (manufactured by Ube Nitto Kasei Co., Ltd. (product number: TC12-3010N9)) as a hollow structural plate was cut into a size of 100 mm in the TD direction and 300 mm in the MD direction. A W-shaped hollow structural material shown in FIG. 1 was produced, in which this bending was repeated 5 times at a pitch of 50 mm in the MD direction.
6 and 7 is used as a bending apparatus, and a linear electric heater 21 having a width of 3 mm and a surface temperature controlled to 170 to 175 ° C. is subjected to bending of a hollow structure plate material. Faced in a non-contact state with a gap of 2 mm from the surface material at the position to be heated, heated for 1 minute, then moved the jigs 22a and 22b toward the hollow structure plate while retreating the electric heater 21, and contacted with pressure Then, the hollow structure plate material is sandwiched, and then the jigs 22a and 22b are cooled through a cooling medium at 40 ° C. in the jig to cool and solidify the hollow structure plate material bent and shaped into a W shape. Material 100 was obtained. The resulting W-shaped hollow structural material was subjected to the following impact test in which an impact force was applied to the surface in the thickness direction as shown in FIG.

(衝撃テスト)
試験装置としてミネベア社製TCM−5000Cを使用し圧縮試験により行った。圧子による圧縮面を図1に示すように厚み方向の上面とし、測定条件は、温度23℃、湿度50%RH、圧縮速度10mm/minとし、圧子ストローク・荷重・製品正面の変形動画を記録した。なお、変形動画は図1の左端側面で記録した。この記録による変形モードの解析結果を図9に示す。
中空構造板材(芯材、表面材を含む)の構成、中空構造材の物性についてまとめて表1に示す。
(Shock test)
The compression test was performed using TCM-5000C manufactured by Minebea as a test device. The compression surface by the indenter is the upper surface in the thickness direction as shown in FIG. 1, and the measurement conditions are a temperature of 23 ° C., a humidity of 50% RH, a compression speed of 10 mm / min. . In addition, the deformation | transformation moving image was recorded on the left end side surface of FIG. The analysis result of the deformation mode by this recording is shown in FIG.
Table 1 summarizes the structure of the hollow structural plate (including the core material and the surface material) and the physical properties of the hollow structural material.

実施例2
実施例1の中空構造板材(ツインコーン:TC12−3010N)に代えて、コーン高さを4.5mmとして全体厚みを10.4mmとした中空構造板材((ツインコーン:TCB9−3010N)を用いた他は実施例1と同様にして、W型に曲げ賦型して中空構造材を得た。
中空構造板材(芯材、表面材を含む)の構成、中空構造材の物性についてまとめて表1に示す。
また、実施例1、2の衝撃テストにおける荷重−変位曲線を図8に示す。
Example 2
Instead of the hollow structure plate material of Example 1 (twin cone: TC12-3010N), a hollow structure plate material (twin cone: TCB9-3010N) having a cone height of 4.5 mm and an overall thickness of 10.4 mm was used. Otherwise, the hollow structure material was obtained by bending into a W shape in the same manner as in Example 1.
Table 1 summarizes the structure of the hollow structural plate (including the core material and the surface material) and the physical properties of the hollow structural material.
Moreover, the load-displacement curve in the impact test of Examples 1 and 2 is shown in FIG.

表1の実施例の結果より、実施例2においては、芯材のコーンの高さを4.5mmとして中空構造板材の全体厚みを薄くしたことにより、コーン部の厚みが厚くなって、中空構造材全体としての曲げ剛性が増加したため、吸収エネルギが実施例1と比較して13%向上した。これらのことから、中空構造板材のコーンの最適設計、原料樹脂の選択等でより高い質量当たりの吸収エネルギの中空構造材を得ることができることが確認された。   From the results of the examples in Table 1, in Example 2, the height of the cone of the core material is set to 4.5 mm, and the entire thickness of the hollow structure plate is reduced, so that the thickness of the cone portion is increased and the hollow structure is formed. Since the bending rigidity of the whole material increased, the absorbed energy was improved by 13% compared with Example 1. From these facts, it was confirmed that a hollow structure material having a higher absorption energy per mass can be obtained by optimal design of the cone of the hollow structure plate material, selection of raw material resin, and the like.

本発明の中空構造材は、安定した衝撃吸収力が確保されるので、自動車のバンパビームのコア材やクラッシュボックス、内装材(ピラー・トリム)からコンテナ等の産業用梱包材の中空構造材として幅広く利用できる。
本発明の中空構造材の製造方法は、本発明の中空構造材に必要な、長手方向に繰り返す曲げ賦型を簡易かつ効率的に行うことができる曲げ加工方法として利用できる。
Since the hollow structural material of the present invention ensures stable shock absorption, it is widely used as a hollow structural material for industrial packing materials such as automobile bumper beam core materials, crash boxes, interior materials (pillar trims) and containers. Available.
The method for producing a hollow structure material of the present invention can be used as a bending method that can easily and efficiently perform bending shaping that is necessary for the hollow structure material of the present invention and repeats in the longitudinal direction.

1 芯材
1a、1b 中空突起体シート
2、2a、2b 表面材
10 中空構造板材
12 中空突起体シートベース面
13 下底側が開口した中空円錐台状凸部(凸部)
14、14’ 凸部列
15 開口部
20 曲げ加工装置
21 電気ヒーター
22a (上)冶具
22b (下)冶具
100 W型中空構造材
101 波型中空構造材
DESCRIPTION OF SYMBOLS 1 Core material 1a, 1b Hollow protrusion sheet | seat 2, 2a, 2b Surface material 10 Hollow structure board | plate material 12 Hollow protrusion sheet | seat base surface 13 The hollow frustum-shaped convex part (convex part) which the bottom bottom side opened
14, 14 'Convex part row 15 Opening part 20 Bending device 21 Electric heater 22a (Upper) Jig 22b (Lower) Jig 100 W type hollow structure material 101 Wave type hollow structure material

Claims (8)

熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた中空構造板材を用いてなる中空構造材であって、
前記中空構造板材を、長手方向に繰り返すW型又は波型に曲げ賦型したことを特徴とする中空構造材。
A hollow structural plate material in which a surface material made of a thermoplastic resin sheet is bonded to both surfaces of a core material that is heat-sealed in a state in which the hollow frustum-shaped projections protruding from the thermoplastic resin sheet are butted together A hollow structural material using
A hollow structure material obtained by bending the hollow structure plate material into a W shape or a wave shape that repeats in the longitudinal direction.
請求項1記載の中空構造材を用いた衝撃吸収部材であり、
厚み方向の面を衝撃が加わる面(頂面)とすることを特徴とする衝撃吸収部材。
An impact absorbing member using the hollow structural material according to claim 1,
An impact-absorbing member, wherein a surface in the thickness direction is a surface to which an impact is applied (top surface).
前記中空構造板材の芯材の中空錐台状凸部が中空円錐台状凸部であって、下底部直径3〜16mm、上底部直径1.5〜4mm、高さ3〜13mm、隣接する円錐台状凸部の隙間間隔が10mm以下、シート厚さ0.1〜1mm、円錐台状凸部のテーパー角度が60〜80度で、全体厚みTが7〜32mmである請求項2に記載の衝撃吸収部材。   The hollow frustum-shaped convex part of the core material of the hollow structural plate material is a hollow frustum-shaped convex part having a lower bottom diameter of 3 to 16 mm, an upper bottom diameter of 1.5 to 4 mm, a height of 3 to 13 mm, and an adjacent cone The gap interval between the trapezoidal convex portions is 10 mm or less, the sheet thickness is 0.1 to 1 mm, the taper angle of the truncated conical convex portion is 60 to 80 degrees, and the total thickness T is 7 to 32 mm. Shock absorbing member. 前記曲げ賦型が中空構造板材の長手方向に繰り返すW型又は波型の曲げ賦型である請求項2又は3に記載の衝撃吸収部材。   The impact absorbing member according to claim 2 or 3, wherein the bending shaping is a W-shaped or wave-shaped bending shaping which is repeated in the longitudinal direction of the hollow structural plate material. 前記曲げ賦型がW型の曲げ賦型である請求項3に記載の衝撃吸収部材。   The impact absorbing member according to claim 3, wherein the bending molding is a W-shaped bending molding. 芯材及び表面材の熱可塑性樹脂がポリオレフィン系樹脂である請求項2〜4のいずれかに記載の衝撃吸収部材。   The shock absorbing member according to any one of claims 2 to 4, wherein the thermoplastic resin of the core material and the surface material is a polyolefin resin. 熱可塑性樹脂シートに突設された中空錐台状の凸部同士を突き合せた状態で熱融着してなる芯材の両面に、熱可塑性樹脂シートからなる表面材を貼り合わせた中空構造板材曲げ加工する中空構造材の製造方法であって、該製造方法は、中空構造板材の曲げ部位に対応した領域を、該表面材の熱可塑性樹脂の融点未満で熱変形可能な温度に加熱し、しかるのち、これに中空構造板材の厚みに対応し形状を有する冶具を中空構造板材の両面に加圧接触させて曲げ加工を行い、該冶具中で冷却・降温することを特徴とする中空構造材の製造方法。 A hollow structural plate material in which a surface material made of a thermoplastic resin sheet is bonded to both surfaces of a core material that is heat-sealed in a state in which the hollow frustum-shaped projections protruding from the thermoplastic resin sheet are butted together A method of manufacturing a hollow structure material that bends, wherein the manufacturing method heats a region corresponding to a bending portion of the hollow structure plate material to a temperature that can be thermally deformed below the melting point of the thermoplastic resin of the surface material. Then, a hollow structure characterized in that a jig having a shape corresponding to the thickness of the hollow structure plate material is subjected to pressure contact with both surfaces of the hollow structure plate material, bending is performed, and cooling / cooling is performed in the jig. A method of manufacturing the material. 前記曲げ加工が、中空構造板材を長手方向に繰り返すW型に賦型する曲げ加工であって、該曲げ加工を施す部位及び数に対応して、中空板材の長手方向に直交するように配置された直線状の電気ヒーターと、該電気ヒーターが進退可能に挿通され、曲げ賦型の形状に対応した所定の形状を有する冶具を用い、該中空構造板材に電気ヒーターを接近させ、非接触で加熱した後、電気ヒーターを中空構造板材表面から後退させ、しかる後該冶具を中空構造板材の両面に加圧接触させて曲げ加工を行い、該冶具中で冷却・降温する請求項7に記載の中空構造材の製造方法。   The bending process is a bending process in which the hollow structural plate material is shaped into a W shape that repeats in the longitudinal direction, and is arranged so as to be orthogonal to the longitudinal direction of the hollow plate material, in accordance with the number and location of the bending process. A straight electric heater and a jig having a predetermined shape corresponding to the shape of the bending molding are inserted through the electric heater so that the electric heater can be moved forward and backward, and the electric heater is brought close to the hollow structural plate material and heated without contact. 8. The hollow according to claim 7, wherein the electric heater is retracted from the surface of the hollow structural plate, and thereafter the jig is pressed and brought into contact with both surfaces of the hollow structural plate to perform bending, thereby cooling and lowering the temperature in the jig. Manufacturing method of structural material.
JP2011185057A 2011-08-26 2011-08-26 W-shaped or corrugated hollow structure material and method of manufacturing the same Withdrawn JP2013043439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011185057A JP2013043439A (en) 2011-08-26 2011-08-26 W-shaped or corrugated hollow structure material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011185057A JP2013043439A (en) 2011-08-26 2011-08-26 W-shaped or corrugated hollow structure material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013043439A true JP2013043439A (en) 2013-03-04

Family

ID=48007706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011185057A Withdrawn JP2013043439A (en) 2011-08-26 2011-08-26 W-shaped or corrugated hollow structure material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013043439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105082635A (en) * 2015-08-26 2015-11-25 杭州电子科技大学 Multicycle energy absorbing structure
WO2020145234A1 (en) * 2019-01-09 2020-07-16 王子ホールディングス株式会社 Corrugated honeycomb structure, corrugated honeycomb laminate, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105082635A (en) * 2015-08-26 2015-11-25 杭州电子科技大学 Multicycle energy absorbing structure
WO2020145234A1 (en) * 2019-01-09 2020-07-16 王子ホールディングス株式会社 Corrugated honeycomb structure, corrugated honeycomb laminate, and manufacturing method thereof
JPWO2020145234A1 (en) * 2019-01-09 2021-11-18 王子ホールディングス株式会社 Corrugated honeycomb structures, corrugated honeycomb laminates, and methods for manufacturing them.
JP7216926B2 (en) 2019-01-09 2023-02-02 王子ホールディングス株式会社 Method for manufacturing corrugated honeycomb structure and corrugated honeycomb laminate

Similar Documents

Publication Publication Date Title
US7160621B2 (en) Energy absorbing articles
EP2632769B1 (en) Unitary energy absorbing assembly and method of making the same
US6547280B1 (en) Energy-absorbing structures
JP6438481B2 (en) Semi-finished product and method for manufacturing three-dimensional hybrid parts of metal / plastic composite and use of the semi-finished product
CN109131190B (en) Method for producing a laminate, energy absorber composition and forming tool
US9908562B2 (en) Impact energy absorption structure for vehicle
EP2956337B1 (en) Hybrid quarter module design for front underrun protection device
US10308290B1 (en) Vehicle floor and subassemblies thereof
EP3485996B1 (en) Hot-stamping formed article, structural member using the same, and manufacturing method of hot-stamping formed article
US20100266806A1 (en) Anti-intrusion beam for vehicle door assembly
US10300872B2 (en) Vehicle bumper beam and method for manufacturing vehicle bumper beam
WO2014069108A1 (en) Fiber-reinforced resinous impact-receiving member and method for manufacturing impact-receiving member
WO2008117896A1 (en) Vehicular metal absorber, vehicular bumper system, vehicular bumper absorber, and automobile bumper system
US10407010B2 (en) Cellular structures with eight-sided cells
JP5928929B2 (en) Automotive shock absorbing member and automotive body structure
JPH08216684A (en) Door guard beam for automobile
JP5549964B2 (en) Frame structure for vehicles with excellent collision resistance
JPWO2020085381A1 (en) Automotive frame members and electric vehicles
JP2013043439A (en) W-shaped or corrugated hollow structure material and method of manufacturing the same
KR101026962B1 (en) Production method of bumper beam
KR102098495B1 (en) Battery case
JP2015199468A (en) Impact absorption structure and vehicle outer panel member including the same
KR101369725B1 (en) The crash box used a car
JP4206127B2 (en) Shock absorber for vehicle
JP5238588B2 (en) Vehicle frame structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104