JP2013043132A - Oxidation catalyst using mononuclear metal complex as effective component and use thereof - Google Patents

Oxidation catalyst using mononuclear metal complex as effective component and use thereof Download PDF

Info

Publication number
JP2013043132A
JP2013043132A JP2011183184A JP2011183184A JP2013043132A JP 2013043132 A JP2013043132 A JP 2013043132A JP 2011183184 A JP2011183184 A JP 2011183184A JP 2011183184 A JP2011183184 A JP 2011183184A JP 2013043132 A JP2013043132 A JP 2013043132A
Authority
JP
Japan
Prior art keywords
metal complex
phenol
mononuclear
oxidation catalyst
mononuclear metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011183184A
Other languages
Japanese (ja)
Inventor
Hideki Masuda
秀樹 増田
Tomohiro Ozawa
智宏 小澤
Yasuhiro Funabashi
靖博 舩橋
Tomohiro Inomata
智宏 猪股
Miki Kamiya
美貴 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011183184A priority Critical patent/JP2013043132A/en
Publication of JP2013043132A publication Critical patent/JP2013043132A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a new oxidation catalyst using a mononuclear metal complex as an effective component, having catalyst function in oxidation reaction in which phenol is produced at least from benzene, and capable of reducing the production of benzoquinone compared to the production of phenol.SOLUTION: The mononuclear metal complex represented by general formula (1) is used as an effective component. In general formula (I), R, Rand Rare each independently either one selected from a hydrogen atom and 1-3C hydrocarbon groups, and R4 may be a substitution group having 0-3C sulfo group at the terminal. M is a metal atom forming a planar tetracoordinate structure. One X of three Xs is a halogen atom or a counter ion, and the two remainders Xs are a solvent molecules.

Description

本発明は、単核系金属錯体を有効成分とする酸化触媒に関するものである。   The present invention relates to an oxidation catalyst containing a mononuclear metal complex as an active ingredient.

本出願人は、新規の単核系金属錯体を有効成分とする酸化触媒について出願している(特願2010−141175号)。この酸化触媒は、ベンゼンのような難度の高い酸化反応を触媒的に水酸化する触媒である。   The present applicant has applied for an oxidation catalyst containing a novel mononuclear metal complex as an active ingredient (Japanese Patent Application No. 2010-141175). This oxidation catalyst is a catalyst that catalytically hydroxylates a highly difficult oxidation reaction such as benzene.

この特許出願に記載の新規単核銅錯体[Cu(Pr3bbim)Cl2]および[Cu(Pr3bbim)Br2]を用いたベンゼンの酸化反応による生成物(フェノール、1,4−ベンゾキノン)のTON(Turn Over Number)は、次の通りであった。なお、次のTONは、単核銅錯体一分子当たりの値として算出したものである。 Products (phenol, 1,4-benzoquinone) produced by the oxidation reaction of benzene using the novel mononuclear copper complexes [Cu (Pr 3 bbim) Cl 2 ] and [Cu (Pr 3 bbim) Br 2 ] described in this patent application ) (Turn Over Number) was as follows. The following TON is calculated as a value per molecule of the mononuclear copper complex.

Cu(Pr3bbim)Cl2を用いた場合であって、溶媒としてアセトニトリル溶媒(MeCN)を用いた場合、フェノールは2.4、ベンゾキノンは19であり、溶媒としてアセトニトリル:水=1 : 1の混合溶媒(MeCN/H2O)を用いた場合、フェノールは17、ベンゾキノンは45であった。 When Cu (Pr 3 bbim) Cl 2 is used and acetonitrile solvent (MeCN) is used as a solvent, phenol is 2.4, benzoquinone is 19, and acetonitrile: water = 1: 1 as a solvent. When a mixed solvent (MeCN / H 2 O) was used, the phenol was 17 and the benzoquinone was 45.

Cu(Pr3bbim)Br2を用いた場合であって、溶媒としてMeCNを用いた場合、フェノールは4.0、ベンゾキノンは15であり、溶媒としてMeCN/H2Oを用いた場合、フェノールは13、ベンゾキノンは32であった。 When Cu (Pr 3 bbim) Br 2 is used, when MeCN is used as a solvent, phenol is 4.0, benzoquinone is 15, and when MeCN / H 2 O is used as a solvent, phenol is 13 and benzoquinone were 32.

しかし、上述の特願2010−141175号に記載の酸化触媒を、ベンゼンからフェノールが生成する酸化反応に用いた場合、生成したフェノールがさらに酸化されてベンゾキノンへと反応が進むことにより、ベンゾキノンのTONがフェノールのものより大きかった。すなわち、ベンゾキノンの生成量がフェノールの生成量よりも多く、フェノールの生成量が少なかった。   However, when the oxidation catalyst described in the above-mentioned Japanese Patent Application No. 2010-141175 is used for an oxidation reaction in which phenol is produced from benzene, the produced phenol is further oxidized and the reaction proceeds to benzoquinone. Was larger than that of phenol. That is, the amount of benzoquinone produced was larger than the amount of phenol produced, and the amount of phenol produced was small.

本発明は上記点に鑑みて、少なくともベンゼンからフェノールが生成する酸化反応における触媒機能を有し、ベンゾキノンの生成量をフェノールの生成量よりも少なくできる単核系金属錯体を有効成分とする新規酸化触媒を提供することを目的とする。   In view of the above points, the present invention has a catalytic function in at least an oxidation reaction in which phenol is produced from benzene, and a novel oxidation comprising a mononuclear metal complex as an active ingredient that can reduce the amount of benzoquinone produced than the amount of phenol produced. An object is to provide a catalyst.

親水性を有する新規単核系金属錯体を合成し、この新規単核系金属錯体を用いて、ベンゼンからフェノールが生成する酸化反応を試みたところ、ベンゾキノンの生成量をフェノールの生成量よりも少なくできることがわかり、本発明を創出するに至った。   A novel mononuclear metal complex with hydrophilicity was synthesized, and an oxidation reaction in which phenol was produced from benzene was attempted using this new mononuclear metal complex. The amount of benzoquinone produced was less than the amount of phenol produced. It turns out that it can be done, and came to create this invention.

すなわち、請求項1に記載の発明は、一般式(I)で表される新規単核金属錯体である。
[1]

なお、式中のR,R,Rは、それぞれ独立に、水素原子及び炭素数1〜3の炭化水素基から選択されるいずれかであり、Rは炭素数0〜3で末端にスルホ基を持つ置換基である。またMは、平面四配位型の配位構造を形成する金属原子であり、3つのXのうち1つのXはハロゲン原子もしくはカウンターイオンであり、残り2つのXが溶媒分子である。
That is, the invention described in claim 1 is a novel mononuclear metal complex represented by the general formula (I).
[1]

In the formula, R 1 , R 2 and R 3 are each independently selected from a hydrogen atom and a hydrocarbon group having 1 to 3 carbon atoms, and R 4 is a terminal having 0 to 3 carbon atoms. Is a substituent having a sulfo group. M is a metal atom that forms a planar four-coordinated coordination structure, one of the three Xs is a halogen atom or a counter ion, and the remaining two X are solvent molecules.

この新規単核金属錯体は、少なくともベンゼンからフェノールが生成する酸化反応における触媒機能を有し、ベンゼンからフェノールが生成する酸化反応における触媒として用いた場合に、ベンゾキノンの生成量をフェノールの生成量よりも少なくできる。   This new mononuclear metal complex has at least a catalytic function in the oxidation reaction in which phenol is produced from benzene, and when used as a catalyst in the oxidation reaction in which phenol is produced from benzene, the amount of benzoquinone produced from the amount of phenol produced Can also be reduced.

[2] 請求項2に記載の発明は、一般式(I)におけるR,Rがエチル基、Rが水素原子、Rがプロピルスルホ基、Mが銅である請求項1に記載の新規単核系金属錯体である。 [2] The invention according to claim 2 is the invention according to claim 1 , wherein R 1 and R 2 in the general formula (I) are ethyl groups, R 3 is a hydrogen atom, R 4 is a propylsulfo group, and M is copper. It is a novel mononuclear metal complex.

[3] 請求項3に記載の発明は、請求項1または2に記載の単核系金属錯体を有効成分とする新規酸化触媒である。 [3] The invention according to claim 3 is a novel oxidation catalyst comprising the mononuclear metal complex according to claim 1 or 2 as an active ingredient.

[4] 請求項4に記載の発明は、請求項1または2に記載の単核系金属錯体を有効成分とする酸化触媒と、反応溶媒としてのプロトン性溶媒とを用い、ベンゼンの一段階酸化によりフェノールを合成するフェノールの合成方法である。プロトン性溶媒としては、例えば、メタノール、水等が挙げられる。
これによれば、後述する実施例からわかるように、ベンゾキノンの生成を抑制しつつ、フェノールを合成することができる。
[4] The invention according to claim 4 is a one-step oxidation of benzene using an oxidation catalyst comprising the mononuclear metal complex according to claim 1 or 2 as an active ingredient and a protic solvent as a reaction solvent. This is a method for synthesizing phenol by synthesizing phenol. Examples of the protic solvent include methanol, water and the like.
According to this, as can be seen from the examples described later, it is possible to synthesize phenol while suppressing the production of benzoquinone.

実施例にて合成した単核銅錯体の結晶構造を示す図である。It is a figure which shows the crystal structure of the mononuclear copper complex synthesize | combined in the Example.

本発明の酸化触媒は、一般式(I)で表される新規単核金属錯体(単核のベンズイミダゾリル錯体)を有効成分として含むものである。なお、新規単核金属錯体のみによって酸化触媒が構成されていても良い。
The oxidation catalyst of the present invention contains a novel mononuclear metal complex (mononuclear benzimidazolyl complex) represented by the general formula (I) as an active ingredient. In addition, the oxidation catalyst may be comprised only by the novel mononuclear metal complex.

この新規単核金属錯体は、一般式(II)で表される配位子を用いて合成されるものである。
This novel mononuclear metal complex is synthesized using a ligand represented by the general formula (II).

一般式(I)、(II)におけるR,R,Rは、それぞれ独立に、水素原子及び炭素数1〜3の炭化水素基から選択されるいずれかである。 R 1 , R 2 and R 3 in the general formulas (I) and (II) are each independently selected from a hydrogen atom and a hydrocarbon group having 1 to 3 carbon atoms.

また、一般式(I)、(II)におけるRは炭素数0〜3で末端にスルホ基を持つ置換基であり得る。このように、本発明の新規単核金属錯体は、スルホ基を有するため、親水性を帯びている。 R 4 in general formulas (I) and (II) may be a substituent having 0 to 3 carbon atoms and having a sulfo group at the terminal. Thus, since the novel mononuclear metal complex of the present invention has a sulfo group, it is hydrophilic.

なお、置換基として、スルホ基を持つものを用いたのは、一般式(I)中のM(金属)との配位による構造への影響を考慮したためである。また、Rがスルホ基であるのは、スルホ基の位置が他の位置である場合よりも、単核金属錯体の合成が容易だからである。
また、一般式(I)におけるMは、平面四配位型の配位構造を形成する金属原子(例えばCu)である。今回はスルホ基の影響により、配位子が負の電荷を帯びており、分子サイズの大きなカウンターアニオンを1つだけ必要とし安定化する。金属イオン(例えば銅イオン)周りの平面性を高めるために五配位の平面四角錐型構造を取ったと考えられる。
また、一般式(I)における3つのXのうち1つのXは塩素 (Cl)や臭素 (Br)などのハロゲン原子もしくは過塩素酸 (ClO4 -) などのカウンターイオンであり、残り2つのXが水、エタノール(EtOH)などの溶媒分子である。カウンターイオンとしては、さらに、SbF 、CFSO 、PF 等が挙げられる。
The reason why a substituent having a sulfo group was used was that the influence on the structure due to coordination with M (metal) in general formula (I) was taken into consideration. R 4 is a sulfo group because the synthesis of a mononuclear metal complex is easier than when the sulfo group is located at other positions.
Further, M in the general formula (I) is a metal atom (for example, Cu) that forms a planar four-coordinate coordination structure. This time, due to the influence of the sulfo group, the ligand is negatively charged, and only one counter anion with a large molecular size is needed for stabilization. In order to improve the planarity around metal ions (for example, copper ions), a five-coordinate planar square pyramid structure is considered.
One of the three Xs in the general formula (I) is a halogen atom such as chlorine (Cl) or bromine (Br) or a counter ion such as perchloric acid (ClO 4 ), and the remaining two X Are solvent molecules such as water and ethanol (EtOH). Examples of the counter ion further include SbF 6 , CF 3 SO 3 , PF 6 − and the like.

新規単核金属錯体の例としては、R,Rがエチル基、Rが水素原子、Rがプロピルスルホ基であり、金属原子Mが銅 (Cu)、Xが水、エタノール、過塩素酸である単核銅錯体[Cu(E2pbbim)(EtOH)(H2O)(ClO4)]が挙げられる。 Examples of new mononuclear metal complexes include R 1 and R 2 are ethyl groups, R 3 is a hydrogen atom, R 4 is a propylsulfo group, metal atom M is copper (Cu), X is water, ethanol, hydrogen A mononuclear copper complex [Cu (E 2 pbbim) (EtOH) (H 2 O) (ClO 4 )] which is chloric acid can be mentioned.

この新規単核金属錯体は、後述する実施例の記載からわかるように、少なくともベンゼンからフェノールが生成する酸化反応における触媒機能を有し、ベンゼンからフェノールが生成する酸化反応における酸化触媒として用いた場合に、ベンゾキノンの生成量をフェノールの生成量よりも少なくできる。   This novel mononuclear metal complex has a catalytic function in at least an oxidation reaction in which phenol is produced from benzene, and is used as an oxidation catalyst in an oxidation reaction in which phenol is produced from benzene, as can be seen from the description of Examples below. In addition, the amount of benzoquinone produced can be less than the amount of phenol produced.

本発明の酸化触媒は、種々の形態をとることができる。例えば、上述したいずれかの金属錯体またはその塩(錯体塩)を粉末状、塊状等の状態で含む形態とすることができる。   The oxidation catalyst of the present invention can take various forms. For example, any of the metal complexes described above or a salt thereof (complex salt) may be included in a powdery or massive state.

また、本発明の酸化触媒は、上記錯体が液状媒体中に存在している形態をとることができる。この液状媒体としては、水、アセトニトリル、低級アルコール(例えば、炭素数1〜4程度のアルコール)、アセトンその他の低級ケトン(例えば、炭素数3〜5程度のケトン)等から選択される一種または二種以上を用いることができる。かかる酸化触媒は、典型的には、上述したいずれかの錯体の塩を液状媒体に溶解させる工程を含む処理によって調製(製造)することができる。また、液状媒体中に上記錯体またはその塩が分散した形態の酸化触媒であってもよい。   Moreover, the oxidation catalyst of the present invention can take a form in which the complex is present in a liquid medium. As the liquid medium, one or two selected from water, acetonitrile, lower alcohol (for example, alcohol having about 1 to 4 carbon atoms), acetone and other lower ketones (for example, ketone having about 3 to 5 carbon atoms), and the like. More than seeds can be used. Such an oxidation catalyst can be typically prepared (manufactured) by a treatment including a step of dissolving a salt of any of the above-described complexes in a liquid medium. Moreover, the oxidation catalyst of the form which the said complex or its salt disperse | distributed in the liquid medium may be sufficient.

また、本発明の酸化触媒のとり得る他の形態として、上記錯体が固体状の担体に保持されている形態が挙げられる。錯体を担持する担体としては、微粒子状物質、多孔質体等を好ましく用いることができる。例えば、活性炭等の微粒子を好ましく用いることができる。また、ゼオライト、シリカ等の材質からなる多孔質体を好ましく用いることができる。そのような多孔質体が粒子状、繊維状、ハニカム状等に成形されたものであってもよい。質量当たりの表面積が広いものが好ましい。例えば、表面積が1000m/g以上(典型的には、1200〜1500m/g)である担体を好ましく用いることができる。なお、微粒子状の担体に錯体を担持したもの(錯体担持微粒子)が液状媒体に分散している形態は、「錯体が液状媒体中に存在している形態」の一例である。 In addition, as another form that can be taken by the oxidation catalyst of the present invention, a form in which the complex is held on a solid support can be mentioned. As the carrier for supporting the complex, a particulate material, a porous body, and the like can be preferably used. For example, fine particles such as activated carbon can be preferably used. A porous body made of a material such as zeolite or silica can be preferably used. Such a porous body may be formed into particles, fibers, honeycombs or the like. Those having a large surface area per mass are preferred. For example, a carrier having a surface area of 1000 m 2 / g or more (typically 1200 to 1500 m 2 / g) can be preferably used. The form in which the complex is supported on the fine particle carrier (complex-supporting fine particles) is dispersed in the liquid medium is an example of “the form in which the complex is present in the liquid medium”.

本発明の酸化触媒は、ベンゼンからフェノールが生成する酸化反応の他に、以下の酸化反応に利用することもできる。
・芳香環を有する基質化合物を酸化してフェノール類を生成する反応。
・メチルフェニルチオエーテル等のチオエーテル(SR,ここでRは同一のまたは異なる一価の有機基である。)を酸化してS(=O)Rを生成する反応。
シクロヘキセン等の不飽和炭化水素(典型的にはアルケン、シクロアルケン等)を酸化して、ケトン、アルコール(典型的にはエノール型化合物)、エポキシ化合物等の一種または二種以上を生成する反応。
・イソプロピルベンゼン等の、芳香環(典型的にはベンゼン環)に結合した一または二以上の第二級炭素上に水素原子を有する基質化合物を酸化して、該第二級炭素に結合した水素原子を水酸基に置換する反応。
・トルエン等の、芳香環に結合した一または二以上のCH基を有する(典型的には他の官能基を有しない)基質化合物を酸化して、上記CH基がCHOHに変換された化合物および該CH基がCHOに変換された化合物の一種または二種以上を生成する反応。
・シクロヘキサン、メタン等の飽和炭化水素(典型的にはアルカン、シクロアルカン等)を酸化して、アルコール、ケトン、アルデヒド等の一種または二種以上を生成する反応。
The oxidation catalyst of the present invention can be used for the following oxidation reaction in addition to the oxidation reaction in which phenol is produced from benzene.
A reaction that oxidizes a substrate compound having an aromatic ring to generate phenols.
A reaction in which thioether such as methylphenyl thioether (SR 2 , where R is the same or different monovalent organic group) is oxidized to produce S (═O) R 2 .
A reaction in which unsaturated hydrocarbons such as cyclohexene (typically alkenes, cycloalkenes, etc.) are oxidized to produce one or more of ketones, alcohols (typically enol-type compounds), epoxy compounds and the like.
Hydrogen bonded to the secondary carbon by oxidizing a substrate compound having a hydrogen atom on one or more secondary carbons bonded to an aromatic ring (typically a benzene ring), such as isopropylbenzene Reaction that replaces an atom with a hydroxyl group.
Oxidizing a substrate compound having one or more CH 3 groups bonded to an aromatic ring, such as toluene (typically having no other functional groups), and converting the CH 3 groups into CH 2 OH To produce one or two or more compounds obtained by converting the CH 3 group into CHO.
A reaction that oxidizes saturated hydrocarbons such as cyclohexane and methane (typically alkanes, cycloalkanes, etc.) to produce one or more of alcohols, ketones, aldehydes, etc.

〈新規配位子の合成〉
より親水性の高い構造を有した新規配位子4,4−ビス(N−エチルベンズイミダゾリル)−ブタンスルホン酸(以下E2pbbimと示す)を以下に示す合成法にて合成した。
嫌気下でテトラヒドロフラン(THF)50 mlに1,1−ビス(N−エチルベンズイミダゾリル)メタン(Et2bbim)1.0 g (3.28 mmol) を溶解させ、-78℃にて1.66 mol/lのn−ブチルリチウム2.2 ml (3.60 mmol) を5分かけて滴下した。ゆっくり室温まで昇温し、1時間撹拌後、再び-78℃に戻し、プロパンスルトン0.30 ml (3.28 mmol) を加えた。1時間撹拌後、再びゆっくり室温まで昇温し、さらに12時間撹拌させた。1N塩酸10 mlを加えてpH試験紙で弱酸性になったことを確認した後、炭酸ナトリウムを加えた。再びpH試験紙で弱塩基性になったことを確認し、減圧濃縮を行った。クロロホルムと水を用いて抽出を行い、水相の減圧濃縮を行い、黄白色粉末を得た。これをアセトニトリルを加えて洗浄、吸引濾過を行い、濾液を減圧濃縮した。このようにしてE2pbbimを黄色粉末として得た。収量は0.41 g、収率は29.3 %であった。
<Synthesis of novel ligands>
A novel ligand 4,4-bis (N-ethylbenzimidazolyl) -butanesulfonic acid (hereinafter referred to as E 2 pbbim) having a more hydrophilic structure was synthesized by the following synthesis method.
Under anaerobic conditions, 1.0 g (3.28 mmol) of 1,1-bis (N-ethylbenzimidazolyl) methane (Et 2 bbim) was dissolved in 50 ml of tetrahydrofuran (THF) at 1.78 mol / l n- Butyl lithium (2.2 ml, 3.60 mmol) was added dropwise over 5 minutes. The mixture was slowly warmed to room temperature, stirred for 1 hour, returned to -78 ° C, and 0.30 ml (3.28 mmol) of propane sultone was added. After stirring for 1 hour, the temperature was slowly raised to room temperature again, and the mixture was further stirred for 12 hours. After adding 10 ml of 1N hydrochloric acid and confirming that it became weakly acidic with pH test paper, sodium carbonate was added. After confirming that it was weakly basic again with pH test paper, it was concentrated under reduced pressure. Extraction was performed using chloroform and water, and the aqueous phase was concentrated under reduced pressure to obtain a yellowish white powder. Acetonitrile was added thereto, followed by washing and suction filtration, and the filtrate was concentrated under reduced pressure. In this way, E 2 pbbim was obtained as a yellow powder. The yield was 0.41 g, and the yield was 29.3%.

得られたE2pbbimのスペクトルデータを以下のとおりである。
1H-NMR (D2O, 300 MHz, d / ppm from TSP); 7.7, 7.5 (t, 2H), 7.3 (m, 4H), 4.9 (t, 1H), 4.2 (d, 4H), 3.0 (t, 2H), 2.5 (m, 2H), 1.8 (m, 2H), 0.8 (t, 6H).
ESI-TOF-Mass (in MeOH, ion mode negative) m/z425.2 [M - H]-.
FT-IR (KBr, cm-1): n 3057 (aromatic C-H), 2979, 2935 (aliphatic C-H), 1186 (SO3 -).
The spectrum data of the obtained E 2 pbbim are as follows.
1 H-NMR (D 2 O, 300 MHz, d / ppm from TSP); 7.7, 7.5 (t, 2H), 7.3 (m, 4H), 4.9 (t, 1H), 4.2 (d, 4H), 3.0 (t, 2H), 2.5 (m, 2H), 1.8 (m, 2H), 0.8 (t, 6H).
ESI-TOF-Mass (in MeOH, ion mode negative) m / z425.2 [M-H] - .
FT-IR (KBr, cm -1 ): n 3057 (aromatic CH), 2979, 2935 (aliphatic CH), 1186 (SO 3 -).

〈新規単核銅錯体[Cu(E2pbbim)(EtOH)(H2O)(ClO4)] の合成〉
新規錯体[Cu(E2pbbim)(EtOH)(H2O)(ClO4)] の合成法とキャラクタリゼーションの結果を以下に示す。
<Synthesis of a novel mononuclear copper complex [Cu (E 2 pbbim) (EtOH) (H 2 O) (ClO 4 )]>
The synthesis method and characterization results of the new complex [Cu (E 2 pbbim) (EtOH) (H 2 O) (ClO 4 )] are shown below.

Cu(ClO4)2 ・6H2O 43.5 mg (0.117 mmol) をエタノール 1 ml に溶解させた緑色の溶液に、エタノール 1 ml に溶かした4,4- bis(N-ethylbenzimidazolyl)-butane sulfone acid (E2pbbim) 50.0 mg (0.117 mmol) をゆっくり滴下し、沸騰直前まで温め2日間静置したところ、青色の結晶が生じた。吸引濾過を行い、真空ラインを用いて減圧乾燥し、青色結晶を得た。収量は64.4 mg、収率は63.4 %であった。 4,4-bis (N-ethylbenzimidazolyl) -butane sulfone acid dissolved in 1 ml of ethanol in a green solution of Cu (ClO 4 ) 2 · 6H 2 O 43.5 mg (0.117 mmol) in 1 ml of ethanol E 2 pbbim) 50.0 mg (0.117 mmol) was slowly added dropwise, and the mixture was warmed to just before boiling and allowed to stand for 2 days. As a result, blue crystals were formed. Suction filtration was performed, and vacuum drying was performed using a vacuum line to obtain blue crystals. The yield was 64.4 mg, and the yield was 63.4%.

得られた結晶を、元素分析、UV-visスペクトル、ESI-TOF-Massスペクトル、ESRスペクトル、IRスペクトルを測定した。測定結果は以下の通りである。
FT-IR (KBr, cm-1):n 3068 (aromatic C-H), 2982, 2938 (aliphatic C-H), 1498 (aromatic C=C), 1200 (SO3 -).
Anal. Calcd for C25H37ClCuN4O10S : C, 43.86; H, 5.45; N, 8.18. Found: C, 43.80; H, 5.71; N, 7.86.
UV-vis.[MeOH, lmax / nm (e / M-1cm-1)]:340 (240), 680 (70). [MeOH/H2O (1:1, v/v),
lmax /nm(e / M-1cm-1)]: 341 (242), 691 (63).
ESR:MeOH, g// = 2.30, g = 2.07, |A//| = 161 G; MeOH/H2O (1:1, v/v), g// = 2.30, g = 2.07, |A//| = 161 G.
Elemental analysis, UV-vis spectrum, ESI-TOF-Mass spectrum, ESR spectrum, and IR spectrum of the obtained crystal were measured. The measurement results are as follows.
FT-IR (KBr, cm -1 ): n 3068 (aromatic CH), 2982, 2938 (aliphatic CH), 1498 (aromatic C = C), 1200 (SO 3 -).
Anal. Calcd for C 25 H 37 ClCuN 4 O 10 S: C, 43.86; H, 5.45; N, 8.18. Found: C, 43.80; H, 5.71; N, 7.86.
UV-vis. [MeOH, l max / nm (e / M -1 cm -1 )]: 340 (240), 680 (70). [MeOH / H 2 O (1: 1, v / v),
l max / nm (e / M -1 cm -1 )]: 341 (242), 691 (63).
ESR: MeOH, g // = 2.30, g = 2.07, | A // | = 161 G; MeOH / H 2 O (1: 1, v / v), g // = 2.30, g = 2.07, | A // | = 161 G.

また、X線結晶構造解析により得られた結晶構造を図1に示す。図1に示すように、得られた化合物は、一般式(I)の単核銅錯体において、R,Rがエチル基、Rが水素原子、Rがプロピルスルホ基であり、金属原子Mが銅 (Cu)、3つのXがそれぞれ水、エタノール、過塩素酸である単核銅錯体[Cu(E2pbbim)(EtOH)(H2O)(ClO4)]である。なお、一般式(I)中の3つのXを左から順にX、X、Xとすると、Xが過塩素酸(ClO4)である。 The crystal structure obtained by X-ray crystal structure analysis is shown in FIG. As shown in FIG. 1, the obtained compound is a mononuclear copper complex of the general formula (I), wherein R 1 and R 2 are ethyl groups, R 3 is a hydrogen atom, R 4 is a propylsulfo group, A mononuclear copper complex [Cu (E 2 pbbim) (EtOH) (H 2 O) (ClO 4 )] in which the atom M is copper (Cu) and the three Xs are water, ethanol and perchloric acid, respectively. Incidentally, when the general formula 3 X in (I) from left X 1, X 2, X 3 in this order, X 2 is perchlorate (ClO 4).

〈新規単核銅錯体を用いてのベンゼンの酸化反応〉
上記合成法によって得られた新規単核銅錯体[Cu(E2pbbim)(EtOH)(H2O)(ClO4)]を用いて、次の酸化反応スキームに示されるベンゼンの酸化反応を試みた。
<Oxidation reaction of benzene using a novel mononuclear copper complex>
Using the new mononuclear copper complex [Cu (E 2 pbbim) (EtOH) (H 2 O) (ClO 4 )] obtained by the above synthesis method, the oxidation reaction of benzene shown in the following oxidation reaction scheme was attempted. It was.

銅(II)錯体2.0 mmol、基質2.0 mmol (1000 eq)をメタノール溶媒(MeOH)またはメタノール:水=1 : 1の混合溶媒(MeOH/H2O)2 mlに溶解させ反応溶液に封入し、Ar置換を行った。これを恒温水槽25 oCにおいて、過酸化水素 4 mmol (2000 eq)をシリンジにて添加して攪拌することにより24時間反応を行った。反応終了後、反応溶液を約20 ml取り出し、2 mlのジエチルエーテルを添加し脱金属を行った後、内部標準物質として15 mMのo-ジクロロベンゼン/ジエチルエーテル溶媒20 ml 1を加えた溶液を用いてGC-Massクロマトグラフ測定を行った。 Copper (II) complex 2.0 mmol, substrate 2.0 mmol (1000 eq) was dissolved in 2 ml of methanol solvent (MeOH) or methanol: water = 1: 1 mixed solvent (MeOH / H 2 O), and sealed in the reaction solution. Ar substitution was performed. This was reacted for 24 hours by adding 4 mmol (2000 eq) of hydrogen peroxide with a syringe and stirring in a constant temperature water bath at 25 ° C. After completion of the reaction, about 20 ml of the reaction solution is taken out, 2 ml of diethyl ether is added and demetalized, and then a solution containing 15 mM o-dichlorobenzene / diethyl ether solvent 20 ml 1 is added as an internal standard substance. GC-Mass chromatograph measurement was performed.

その結果、反応生成物としてフェノールのみが存在することを確認した。すなわち、所定量のフェノールを含む溶液(検量線用試料)のGC測定においてフェノールのピークが12.2分に検出されたのに対し、測定試料のGC測定においても上記検量線とほぼ一致する時間(12.2分)にピークが検出された。同様に、所定量の1,4−ベンゾキノンを含む溶液(検量線用試料)のGC測定において1,4−ベンゾキノンのピークが8.7分に検出されたのに対し、測定試料のGC測定においては検出されなかった。さらにマススペクトルにおいて分子量94に有機物のピークが観測され、フェノールのスペクトルパターンと良い一致を示した。これらの測定結果から、ベンゼンの一段階酸化(直接酸化)にフェノールのみが生成したことを確認した。   As a result, it was confirmed that only phenol was present as a reaction product. That is, while the peak of phenol was detected at 12.2 minutes in the GC measurement of a solution containing a predetermined amount of phenol (sample for calibration curve), the time almost coincided with the calibration curve in the GC measurement of the measurement sample. A peak was detected at (12.2 minutes). Similarly, the peak of 1,4-benzoquinone was detected at 8.7 minutes in the GC measurement of a solution (calibration curve sample) containing a predetermined amount of 1,4-benzoquinone, whereas in the GC measurement of the measurement sample Was not detected. Furthermore, in the mass spectrum, an organic peak was observed at a molecular weight of 94, which was in good agreement with the phenol spectrum pattern. From these measurement results, it was confirmed that only phenol was produced in the one-step oxidation (direct oxidation) of benzene.

同様の操作を、メタノールの代わりにアセトニトリル(MeCN)やアセトニトリル:水=1:1の混合溶媒(MeCN/H2O)を用いて行った。このとき反応生成物としてフェノール、ベンゾキノンが共に生成したことをGC-MSにより確認した。 The same operation was performed using acetonitrile (MeCN) or a mixed solvent of acetonitrile: water = 1: 1 (MeCN / H 2 O) instead of methanol. At this time, it was confirmed by GC-MS that both phenol and benzoquinone were formed as reaction products.

生成したフェノール、ベンゾキノンの生成量をGC測定により求め、この反応における錯体のTON(Turn Over Number)を算出した結果を表1に示す。なお、本例におけるTONは、単核銅錯体一分子当たりの値として算出した。
Table 1 shows the results of calculating the amounts of phenol and benzoquinone produced by GC measurement and calculating the TON (Turn Over Number) of the complex in this reaction. In addition, TON in this example was calculated as a value per molecule of the mononuclear copper complex.

酸化反応の結果、今回合成した親水性(極性)の単核銅錯体はベンゼンの触媒的酸化能を有することが分かった。   As a result of the oxidation reaction, it was found that the hydrophilic (polar) mononuclear copper complex synthesized this time has catalytic oxidation ability of benzene.

さらに、表1に示されるように、反応溶媒に極性非プロトン性溶媒であるアセトニトリル(MeCN)およびそれと水との混合溶媒(MeCN/H2O)を用いた場合では、フェノールの方がベンゾキノンよりもTONが大きくなった。 Furthermore, as shown in Table 1, when the reaction solvent is acetonitrile (MeCN), which is a polar aprotic solvent, and a mixed solvent thereof (MeCN / H 2 O), phenol is more preferable than benzoquinone. TON became bigger.

また、反応溶媒に極性プロトン性溶媒であるメタノール(MeOH)やそれと水との混合溶媒(MeOH/H2O)を用いた場合では、フェノールのみの生成を確認し、高選択的な水酸化反応が生じた。この理由の一つとして、親水性(極性)の単核銅錯体と極性プロトン性溶媒を用いたことでフェノールの過酸化が進まなかったのではないかと考えられる。 In addition, when methanol (MeOH), which is a polar protic solvent, or a mixed solvent of water and water (MeOH / H 2 O) is used as the reaction solvent, it is confirmed that only phenol is produced and a highly selective hydroxylation reaction is performed. Occurred. One reason for this is thought to be that the peroxidation of phenol did not proceed by using a hydrophilic (polar) mononuclear copper complex and a polar protic solvent.

Claims (4)

下記一般式(I):

(式中のR,R,Rは、それぞれ独立に、水素原子及び炭素数1〜3の炭化水素基から選択されるいずれかであり、Rは炭素数0〜3で末端にスルホ基を持つ置換基であり得る。また、Mは、平面四配位型の配位構造を形成する金属原子であり、3つのXのうち1つのXはハロゲン原子もしくはカウンターイオンであり、残り2つのXが溶媒分子である。)
で表される単核系金属錯体。
The following general formula (I):

(In the formula, R 1 , R 2 and R 3 are each independently selected from a hydrogen atom and a hydrocarbon group having 1 to 3 carbon atoms, and R 4 has 0 to 3 carbon atoms at the end. M may be a substituent having a sulfo group, M is a metal atom that forms a planar four-coordinated coordination structure, one of the three Xs is a halogen atom or a counter ion, and the rest Two X are solvent molecules.)
A mononuclear metal complex represented by
前記一般式(I)におけるR,Rがエチル基、Rが水素原子、Rがプロピルスルホ基、Mが銅である請求項1に記載の単核系金属錯体。 The mononuclear metal complex according to claim 1, wherein R 1 and R 2 in the general formula (I) are an ethyl group, R 3 is a hydrogen atom, R 4 is a propylsulfo group, and M is copper. 請求項1または2に記載の単核系金属錯体を有効成分とする酸化触媒。   An oxidation catalyst comprising the mononuclear metal complex according to claim 1 or 2 as an active ingredient. 請求項1または2に記載の単核系金属錯体を有効成分とする酸化触媒と、反応溶媒としてのプロトン性溶媒とを用い、ベンゼンの一段階酸化によりフェノールを合成するフェノールの合成方法。
A method for synthesizing phenol, comprising synthesizing phenol by one-step oxidation of benzene, using an oxidation catalyst comprising the mononuclear metal complex according to claim 1 or 2 as an active ingredient and a protic solvent as a reaction solvent.
JP2011183184A 2011-08-25 2011-08-25 Oxidation catalyst using mononuclear metal complex as effective component and use thereof Withdrawn JP2013043132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183184A JP2013043132A (en) 2011-08-25 2011-08-25 Oxidation catalyst using mononuclear metal complex as effective component and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183184A JP2013043132A (en) 2011-08-25 2011-08-25 Oxidation catalyst using mononuclear metal complex as effective component and use thereof

Publications (1)

Publication Number Publication Date
JP2013043132A true JP2013043132A (en) 2013-03-04

Family

ID=48007478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183184A Withdrawn JP2013043132A (en) 2011-08-25 2011-08-25 Oxidation catalyst using mononuclear metal complex as effective component and use thereof

Country Status (1)

Country Link
JP (1) JP2013043132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665009A (en) * 2013-11-22 2014-03-26 河南工程学院 1,4-di-(1-H-benzimidazolyl) butane-silver(I) complex and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665009A (en) * 2013-11-22 2014-03-26 河南工程学院 1,4-di-(1-H-benzimidazolyl) butane-silver(I) complex and preparation method thereof

Similar Documents

Publication Publication Date Title
Bertini et al. Iron (II) complexes of the linear rac-tetraphos-1 ligand as efficient homogeneous catalysts for sodium bicarbonate hydrogenation and formic acid dehydrogenation
Romakh et al. Dinuclear manganese complexes containing chiral 1, 4, 7-triazacyclononane-derived ligands and their catalytic potential for the oxidation of olefins, alkanes, and alcohols
Ferrer et al. Ru (II) complexes containing dmso and pyrazolyl ligands as catalysts for nitrile hydration in environmentally friendly media
Wang et al. Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d 10 coordination polymers based on the 5, 5′-(1 H-2, 3, 5-triazole-1, 4-diyl) diisophthalic acid ligand
Liu et al. Well-defined organometallic Copper (III) complexes: Preparation, characterization and reactivity
Bour et al. Well-defined organo-gallium complexes as Lewis acids for molecular catalysis: Structure–stability–activity relationships
Dakkach et al. New aqua N-heterocyclic carbene Ru (II) complexes with two-electron process as selective epoxidation catalysts: An evaluation of geometrical and electronic effects
Kumah et al. Structural, kinetics and mechanistic studies of transfer hydrogenation of ketones catalyzed by chiral (pyridyl) imine nickel (ii) complexes
Gu et al. Macrocyclic tetranuclear copper (I) complex bearing a N-heterocyclic carbene ligand: Synthesis, structure, and catalytic properties
Türkoglu et al. Ruthenium carbonyl complexes bearing bis (pyrazol-1-yl) carboxylato ligands
Botubol-Ares et al. Methylene-Linked Bis-NHC Half-sandwich ruthenium complexes: Binding of small molecules and catalysis toward ketone transfer hydrogenation
JP2003252884A (en) New ruthenium complex and method for producing alcoholic compound by using the same as catalyst
Stanley et al. Understanding entrapped molecular photosystem and metal–organic framework synergy for improved solar fuel production
Zhong et al. Synthesis, structural characterization and catalysis of ruthenium (ii) complexes based on 2, 5-bis (2′-pyridyl) pyrrole ligand
Hanft et al. Aminotroponiminates: ligand-centred, reversible redox events under oxidative conditions in sodium and bismuth complexes
Gogoi et al. Single and multiple site Cu (II) catalysts for benzyl alcohol and catechol oxidation reactions
Han et al. Ag (I) and Pd (II) complexes of a 1, 3-dibenzhydryl substituted benzannulated N-heterocyclic carbene: Unexpected rearrangement, structures and catalytic studies
Song et al. Robust bio-derived polyoxometalate hybrid for selective aerobic oxidation of benzylic C (sp3)–H bonds
CN114478362A (en) Preparation method of chiral pyridinol derivative
US20110105693A1 (en) Cationic transition-metal arene catalysts
JP2013043132A (en) Oxidation catalyst using mononuclear metal complex as effective component and use thereof
Kumar et al. Structures, preparation and catalytic activity of ruthenium cyclopentadienyl complexes based on pyridyl-phosphine ligand
Mayboroda et al. Heterotrinuclear Complexes of the Platinum Group Metals with 2, 2′‐Biimidazole as a Bridging Ligand
US20130277229A1 (en) Novel metal complex catalysts and uses thereof
JP2011516438A (en) Ruthenium complex having (PP) coordinated diphosphorus donor ligand and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104