JP2013042002A - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP2013042002A
JP2013042002A JP2011178313A JP2011178313A JP2013042002A JP 2013042002 A JP2013042002 A JP 2013042002A JP 2011178313 A JP2011178313 A JP 2011178313A JP 2011178313 A JP2011178313 A JP 2011178313A JP 2013042002 A JP2013042002 A JP 2013042002A
Authority
JP
Japan
Prior art keywords
winding
hole
branching device
core
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011178313A
Other languages
Japanese (ja)
Inventor
Hitoshi Komine
仁 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DX Antenna Co Ltd
Original Assignee
DX Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DX Antenna Co Ltd filed Critical DX Antenna Co Ltd
Priority to JP2011178313A priority Critical patent/JP2013042002A/en
Publication of JP2013042002A publication Critical patent/JP2013042002A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the workability of winding work of a transformer, and also to improve characteristics while suppressing variations in the characteristics of the transformer.SOLUTION: A through-hole 36 and a through-hole 38 having a smaller area than the through-hole 36 are formed in a core 30, a winding 14 is wound around the through-hole 36, and a winding 8 is wound around the through-hole 38. The number of turns of the winding 8 is smaller than that of the winding 14, and the through-hole 38 is formed smaller than the through-hole 36.

Description

本発明は、トランスに関し、特に、2つの貫通孔を有するメガネコアを使用したものに関する。   The present invention relates to a transformer, and more particularly, to a transformer using an eyeglass core having two through holes.

従来、メガネコアを使用した高周波トランスの一例が特許文献1の第2図に開示されている。特許文献1の第2図には一方の貫通孔に1つの巻線が巻回され、他方の貫通孔に別の巻線が巻回されている。   Conventionally, an example of a high-frequency transformer using an eyeglass core is disclosed in FIG. In FIG. 2 of Patent Document 1, one winding is wound around one through hole, and another winding is wound around the other through hole.

実開平3−12407号公報Japanese Utility Model Publication No. 3-12407

このようなメガネコアを使用した高周波トランスを分岐器用のトランスとして使用することがある。1分岐器は、例えば図6に示すように、入力端子2と出力端子4との間に幹線側巻線6を有し、幹線側巻線6と電磁結合された幹線側接地巻線8の一端が接地され、他端が、分岐側巻線10の一端に接続され、分岐側巻線10の他端が分岐端子12に接続されている。分岐側巻線10と電磁結合された分岐側接地巻線14の一端が出力端子4に接続され、他端が接地されている。幹線側接地巻線8と分岐側巻線10の接続点は、整合用抵抗器16を介して接地されている。各巻線6、8、10及び14には同じ太さ、例えば同じ外径の円形のものが使用されており、幹線側巻線6は巻数が最も少なく例えば1ターン(T)で、幹線側接地巻線8は、幹線側巻線6よりも巻数が多く、例えば3Tである。分岐側巻線10は、幹線側巻線6よりも巻数は多いが、幹線側接地巻線8よりも巻数が少なく、例えば2Tであり、分岐側接地巻線14は最も巻数が多く、例えば7Tである。   A high-frequency transformer using such a spectacle core may be used as a transformer for a branching device. For example, as shown in FIG. 6, the one branching unit has a main line side winding 6 between the input terminal 2 and the output terminal 4, and a main line side winding 8 that is electromagnetically coupled to the main line side winding 6. One end is grounded, the other end is connected to one end of the branch side winding 10, and the other end of the branch side winding 10 is connected to the branch terminal 12. One end of the branch-side ground winding 14 electromagnetically coupled to the branch-side winding 10 is connected to the output terminal 4 and the other end is grounded. The connection point between the trunk side ground winding 8 and the branch side winding 10 is grounded via a matching resistor 16. Each of the windings 6, 8, 10 and 14 has a circular shape having the same thickness, for example, the same outer diameter. The trunk side winding 6 has the least number of turns, for example, one turn (T), and the trunk side grounding. The winding 8 has a larger number of turns than the main line side winding 6, for example, 3T. The branch side winding 10 has more turns than the main line side winding 6, but has a smaller number of turns than the main line side winding 8, for example, 2T, and the branch side ground winding 14 has the largest number of turns, for example, 7T. It is.

これら各巻線6、8、10、14は、図7に示すようなメガネコア18に設けられている。メガネコア18は、小判型のもので、対向する主表面17、19間を貫通して同じ直径の貫通孔20及び22が、メガネコア18の長さ方向に間隔をおいて形成されている。図8に示すように、貫通孔20には幹線側巻線6及び幹線側接地巻線8が設けられている。即ち、幹線側巻線6が、主表面17側から主表面19側に抜けるように貫通孔20に挿通され、幹線側接地巻線8は、その一端が貫通孔20内に主表面17側から主表面19側に挿通され、主表面19側で一方の端部側に折り返され、一方の端部側で主表面17側に折り返されて、再び貫通孔20内に挿通されることを繰り返して、メガネコア18の一端部貫通孔20との間の巻回部24の回りに巻回されて、主表面19側に引き出されている。同様に、貫通孔22には分岐側巻線10と分岐側接地巻線14とが設けられている。即ち、分岐側巻線10及び分岐側接地巻線14の一端は貫通孔22内に主表面17側から主表面19側に挿通され、メガネコア18の他方の端部側に折り返され、他方の端部側で主表面17側に折り返されて、貫通孔22内に挿通されることを繰り返して、貫通孔22とメガネコア18の他方の端部との間の巻回部26の回りに巻回されて、主表面19側に引き出されている。これら巻線6、8、10、14の直径は、貫通孔20及び22の直径の約1/5である。図8から明らかなように分岐側巻線10及び分岐側接地巻線14は整列巻きされている。   These windings 6, 8, 10, and 14 are provided in a spectacle core 18 as shown in FIG. The eyeglass core 18 is of an oval type, and through holes 20 and 22 having the same diameter passing through the opposing main surfaces 17 and 19 are formed at intervals in the length direction of the eyeglass core 18. As shown in FIG. 8, the through-hole 20 is provided with a main line side winding 6 and a main line side ground winding 8. That is, the main line side winding 6 is inserted into the through hole 20 so as to come out from the main surface 17 side to the main surface 19 side, and one end of the main line side ground winding 8 is inserted into the through hole 20 from the main surface 17 side. Repeatedly being inserted into the main surface 19 side, folded back to one end side on the main surface 19 side, folded back to the main surface 17 side on one end side, and inserted into the through hole 20 again. The eyeglass core 18 is wound around the winding part 24 between the one end part through-hole 20 and drawn out to the main surface 19 side. Similarly, the through-hole 22 is provided with a branch side winding 10 and a branch side ground winding 14. That is, one end of the branch side winding 10 and the branch side ground winding 14 is inserted into the through hole 22 from the main surface 17 side to the main surface 19 side, folded back to the other end side of the spectacle core 18, and the other end It is wound around the winding part 26 between the through hole 22 and the other end of the eyeglass core 18 by repeatedly being folded back to the main surface 17 side on the part side and inserted into the through hole 22. The main surface 19 is pulled out. The diameters of the windings 6, 8, 10, 14 are about 1/5 of the diameters of the through holes 20 and 22. As is apparent from FIG. 8, the branch side winding 10 and the branch side ground winding 14 are aligned.

上述したように各巻線6、8、10及び14には同じ太さのものが使用されており、幹線側の巻線6及び8が巻回される貫通孔20に合計4本、分岐側の巻線10及び14が巻回される貫通孔22には合計9本の巻線が挿通される。即ち、貫通孔20への巻線数が少ないのに、貫通孔20及び22の直径が同じであるので、貫通孔20には空間が多く、逆に貫通孔22では巻線が密集状態である。貫通孔20には空間が多く、貫通孔20への巻線の巻き付け作業の作業性が悪く、平均磁路長が長くなり、実効透磁率が低く、特性が良好でなかった。   As described above, the windings 6, 8, 10, and 14 have the same thickness, and a total of four in the through holes 20 around which the main windings 6 and 8 are wound, A total of nine windings are inserted through the through holes 22 around which the windings 10 and 14 are wound. That is, although the number of windings to the through-hole 20 is small, the diameters of the through-holes 20 and 22 are the same. . The through hole 20 has a lot of space, the workability of winding the winding around the through hole 20 is poor, the average magnetic path length is long, the effective magnetic permeability is low, and the characteristics are not good.

本発明は、巻線作業の作業性を向上させ、かつ特性を向上させたトランスを提供することを目的とする。   An object of the present invention is to provide a transformer having improved workability in winding work and improved characteristics.

本発明の一態様のトランスは、コアを有し、このコアには、第1及び第2の貫通孔が形成されている。第1の貫通孔よりも第2の貫通孔の方の面積が小さい。第1及び第2の貫通孔は、例えば円形のものとすることもできるが、他の形状、例えば矩形や三角形のような多角形状とすることもできるし、或いは楕円や長孔状とすることもできる。第1の貫通孔に第1の巻線が設けられている。第2の貫通孔に第2の巻線が設けられている。前記第1の巻線よりも少ない巻数に巻いたものである。なお、第1及び第2の巻線には、円形の巻線を使用することもできるし、角型の巻線を使用することもできる。   The transformer of one embodiment of the present invention has a core, and first and second through holes are formed in the core. The area of the second through hole is smaller than that of the first through hole. The first and second through holes may be circular, for example, but may have other shapes, for example, a polygonal shape such as a rectangle or a triangle, or an ellipse or a long hole. You can also. A first winding is provided in the first through hole. A second winding is provided in the second through hole. The number of turns is smaller than that of the first winding. As the first and second windings, circular windings or square windings can be used.

このように構成されたトランスでは、巻数の少ない第2の巻線が設けられる第2の貫通孔の面積が、第1の貫通孔の面積よりも小さいので、第2の巻線を第2の貫通孔に密着した状態で設けることができ、巻線作業の作業性が向上するし、しかも平均磁路長が短くなり、実効透磁率が上がり、特性向上が見込める。   In the transformer configured as described above, since the area of the second through hole in which the second winding with a small number of turns is provided is smaller than the area of the first through hole, the second winding is connected to the second winding. It can be provided in close contact with the through hole, improving the workability of the winding work, and shortening the average magnetic path length, increasing the effective magnetic permeability and improving the characteristics.

第1及び第2の巻線は、同じ太さのものとすることができる。例えば第1及び第2の巻線に円形のものを使用した場合、同じ直径のものを使用することができ、例えば面積の大きい第1の貫通孔に設けることを基準にして第1の巻線の太さを選択した場合、その太さと同じ太さの巻線を面積の小さい第2の貫通孔に設けた場合、第2の貫通孔内における空間が小さくなり、このトランスを大量生産した場合、いずれのトランスにおいても第2の巻線の巻線間隔がばらつきにくくなり、トランスの特性もばらつきにくくなる。   The first and second windings can be of the same thickness. For example, when circular ones are used for the first and second windings, ones having the same diameter can be used. For example, the first winding is based on the provision of the first through hole having a large area. When the thickness of the transformer is selected, when the winding having the same thickness as that of the second through-hole having a small area is provided, the space in the second through-hole is reduced, and this transformer is mass-produced. In any transformer, the winding interval of the second winding is less likely to vary, and the characteristics of the transformer are also less likely to vary.

前記コアは、1つのコア本体部に第1及び第2の貫通孔が間隔をおいて形成されているものとすることができるし、或いは、前記コアは、ほぼ接触させて配置された第1及び第2のコア本体部を有し、第1のコア本体部に第1の貫通孔が、第2のコア本体部に第2の貫通孔が、それぞれ形成されているものとすることもできる。   In the core, the first and second through holes may be formed in one core main body with a space therebetween, or the core may be arranged in a substantially contacted manner. And a second core body, and a first through hole may be formed in the first core body, and a second through hole may be formed in the second core body. .

前記第1の巻線は、分岐器の分岐側の接地用巻線とすることができる。この場合、前記第2の巻線は前記分岐器の幹線側の接地用巻線で、第1の貫通孔には第1の巻線よりも少ない巻数の前記分岐器の分岐側巻線も設けられ、第2の貫通孔には第2の巻線よりも少ない巻数の前記分岐器の幹線側巻線も設けられている。このように構成することによって、分岐用のトランスを構成することができる。   The first winding may be a grounding winding on the branch side of the branching device. In this case, the second winding is a grounding winding on the main line side of the branching device, and the branching side winding of the branching device having a smaller number of turns than the first winding is also provided in the first through hole. The branch-side winding of the branching device having a smaller number of turns than the second winding is also provided in the second through hole. By configuring in this way, a branching transformer can be configured.

以上のように、本発明によれば、トランスの巻線作業の作業性を向上させることができる上に、製造されたトランスの特性のばらつきを抑えてかつ特性を向上させることができる。   As described above, according to the present invention, it is possible to improve the workability of the winding operation of the transformer, and to suppress the variation in the characteristics of the manufactured transformer and improve the characteristics.

本発明の1実施形態のトランスを使用した分岐器の正面図である。It is a front view of the branching device using the transformer of one embodiment of the present invention. 図1の分岐器に使用するコアの斜視図である。It is a perspective view of the core used for the branching device of FIG. 図1の分岐器と従来の分岐器との挿入損失、結合損失、逆結合損失を示す図である。It is a figure which shows the insertion loss, coupling loss, and reverse coupling loss of the branching device of FIG. 1 and the conventional branching device. 図1の分岐器と従来の分岐器との入力反射損失、出力反射損失及び分岐出力反射損失を示す図である。It is a figure which shows the input reflection loss, output reflection loss, and branch output reflection loss of the branching device of FIG. 1 and the conventional branching device. 図1の分岐器に使用するコアの変形例の斜視図である。It is a perspective view of the modification of the core used for the branching device of FIG. 分岐器の回路図である。It is a circuit diagram of a branching device. 従来の分岐器に使用されているコアの斜視図である。It is a perspective view of the core currently used for the conventional branching device. 従来の分岐器の正面図である。It is a front view of the conventional branching device.

本発明の一実施形態のトランスは、分岐器、例えば1分岐器に本発明を実施したもので、図1及び図2に示すようにコア、例えばメガネコア30を使用している。メガネコア30は、例えば厚みのある小判型に形成されている本体部31を有している。このメガネコア30は、図8及び図9に示したメガネコア18と同一の材料及び大きさのものである。メガネコア30の本体部31は、対向する2つの同一形状の主表面32及び34を有している。これら2つの主表面32及び34間を貫通するように第1及び第2の貫通孔、例えば2つの円形の貫通孔36及び38が穿設されている。第1の貫通孔の一例である貫通孔36は、図8及び図9に示した貫通孔20及び22と同一の直径のものである。第2の貫通孔の一例である貫通孔38は、貫通孔36の直径よりも小さい、例えば約1/2の直径のものである。     A transformer according to an embodiment of the present invention is obtained by implementing the present invention in a branching device, for example, one branching device, and uses a core, for example, an eyeglass core 30 as shown in FIGS. The eyeglass core 30 has a main body 31 formed in, for example, a thick oval shape. The eyeglass core 30 is of the same material and size as the eyeglass core 18 shown in FIGS. The main body 31 of the glasses core 30 has two main surfaces 32 and 34 having the same shape that face each other. First and second through holes, for example, two circular through holes 36 and 38 are formed so as to penetrate between the two main surfaces 32 and 34. The through hole 36 as an example of the first through hole has the same diameter as the through holes 20 and 22 shown in FIGS. The through hole 38 as an example of the second through hole has a diameter smaller than the diameter of the through hole 36, for example, about 1/2.

貫通孔38には、貫通孔22と同様に図7に示す1分岐器を構成する幹線側巻線6、幹線側接地巻線8が巻回され、貫通孔36には、分岐側巻線10及び分岐側接地巻線14が巻回される。これら巻線6、8、10及び14の直径は、全て同一の直径で、貫通孔36の直径に対して約1/5で、貫通孔38の直径に対して約1/3に相当する。巻線6、8、10及び14の直径は、直径の大きい貫通孔36に巻線10及び14を所定巻数巻くことができることを基準として選択されており、もし貫通孔38の直径が貫通孔36の直径と同じであれば、巻線6、8を貫通孔38に巻いたなら、貫通孔38には空間が多くなり、大量生産で1分岐器を生産した場合、巻線6、8の巻線間隔が1分岐器ごとにばらつきやすいものである。   Similarly to the through-hole 22, the trunk-side winding 6 and the trunk-side ground winding 8 constituting the one branching device shown in FIG. 7 are wound around the through-hole 38, and the branch-side winding 10 is wound around the through-hole 36. And the branch side grounding winding 14 is wound. The diameters of the windings 6, 8, 10, and 14 are all the same, approximately 1/5 of the diameter of the through hole 36, and approximately 1/3 of the diameter of the through hole 38. The diameters of the windings 6, 8, 10 and 14 are selected on the basis that the windings 10 and 14 can be wound a predetermined number of turns into the through-hole 36 having a large diameter. If the windings 6 and 8 are wound around the through-hole 38, the through-hole 38 has more space, and if one branch device is produced in mass production, the windings 6 and 8 are wound. The line spacing tends to vary from one branching device to another.

貫通孔38には、主表面32側から主表面34側に抜けるように幹線側巻線6が挿通され、巻数は1Tである。幹線側接地巻線8は、主表面32側から主表面34側に一端が抜けるように挿通され、その一端は、主表面34でメガネコア30の本体部31の一端部側に折り返され、一端側で主表面32を通って貫通孔38側に折り返されて、貫通孔38内に挿通されることを繰り返して、貫通孔38とメガネコア30の本体部31の一端部と間の巻回部40に3Tにわたって巻回されている。   The trunk side winding 6 is inserted into the through hole 38 so as to pass from the main surface 32 side to the main surface 34 side, and the number of turns is 1T. The trunk-side ground winding 8 is inserted so that one end is removed from the main surface 32 side to the main surface 34 side, and one end thereof is folded back to one end side of the main body 31 of the eyeglass core 30 by the main surface 34. In the winding portion 40 between the through hole 38 and one end portion of the main body portion 31 of the spectacle core 30, the main surface 32 is repeatedly folded back to the through hole 38 side and inserted into the through hole 38. It is wound over 3T.

同様に、貫通孔36では、主表面32側から主表面34側に抜けるように分岐側巻線10、分岐側接地巻線14それぞれの一端が挿通され、それらの一端は、主表面34側でメガネコア30の本体部31の他端部側に折り返され、他端側で主表面32を通って貫通孔36側に折り返されて、貫通孔36内に挿通されることを繰り返して、貫通孔36とメガネコア30の本体部31の他端部と間の巻回部42に、分岐側巻線10が2Tに亘って、分岐側接地巻線14が7Tにわたってそれぞれ巻回されている。   Similarly, in the through hole 36, one end of each of the branch side winding 10 and the branch side ground winding 14 is inserted so as to pass from the main surface 32 side to the main surface 34 side, and one end thereof is on the main surface 34 side. The eyeglass core 30 is folded back to the other end side of the main body 31, the other end side is passed through the main surface 32, is folded back to the through hole 36 side, and is inserted into the through hole 36. The branch side winding 10 is wound over 2T and the branch side ground winding 14 is wound over 7T at a winding portion 42 between the main body portion 31 of the glasses core 30 and the other end portion.

貫通孔38に巻回される幹線側巻線6及び幹線側接地巻線8の巻数は、分岐側巻線10及び分岐側接地巻線14の巻数と比較して少ない。従って、貫通孔38の直径を貫通孔36よりも小さくしている。これによって、幹線側接地巻線8は貫通孔38の円周に沿って密着して巻くことが容易になり、巻線作業の作業性が向上するし、1分岐器の特性のばらつきを抑えることができる。また、貫通孔38の直径が小さいので平均磁路長を短くすることができ、実効透磁率を上げることができ、1分岐器の特性を向上させることができる。   The number of turns of the main line side winding 6 and the main line side ground winding 8 wound around the through hole 38 is smaller than the number of turns of the branch side winding 10 and the branch side ground winding 14. Therefore, the diameter of the through hole 38 is made smaller than that of the through hole 36. As a result, the main ground-side ground winding 8 can be easily wound tightly along the circumference of the through hole 38, the workability of the winding work is improved, and variations in the characteristics of one branching device are suppressed. Can do. Moreover, since the diameter of the through hole 38 is small, the average magnetic path length can be shortened, the effective magnetic permeability can be increased, and the characteristics of the single branching device can be improved.

図3は、図1及び図2に示す1分岐器と図7及び図8に示す従来の1分岐器の挿入損失、結合損失、逆結合損失を示したもので、符号60で示すのが図1及び図2に示す分岐器の挿入損失、符号62で示すのが図7及び図8に示す従来の1分岐器の挿入損失で、両者には殆ど差は無い。符号64で示すのが図1及び図2に示す分岐器の結合損失、符号66で示すのが図7及び図8に示す従来の1分岐器の結合損失で、図1及び図2に示す分岐器の結合損失の方が図7及び図8に示す従来の1分岐器の結合損失よりも若干小さい。符号68で示すのが、図1及び図2に示す1分岐器の逆結合損失で、符号70で示すのが、従来の1分岐器の逆結合損失で、図1及び図2に示す1分岐器の逆結合損失が図7及び図8に示す従来の1分岐器の逆結合損失よりも約5dB大きい。   FIG. 3 shows the insertion loss, coupling loss, and reverse coupling loss of the single branching device shown in FIGS. 1 and 2 and the conventional single branching device shown in FIGS. 7 and 8. The insertion loss of the branching device shown in FIGS. 1 and 2 is indicated by the reference numeral 62, which is the insertion loss of the conventional single branching device shown in FIGS. 7 and 8. There is almost no difference between the two. Reference numeral 64 indicates the coupling loss of the branching device shown in FIGS. 1 and 2, and reference numeral 66 indicates the coupling loss of the conventional one-branching device shown in FIGS. 7 and 8, and the branching shown in FIGS. The coupling loss of the device is slightly smaller than the coupling loss of the conventional single branching device shown in FIGS. Reference numeral 68 indicates the reverse coupling loss of the single branching device shown in FIGS. 1 and 2, and reference numeral 70 indicates the reverse coupling loss of the conventional single branching device. One branching is shown in FIGS. The reverse coupling loss of the device is about 5 dB larger than the reverse coupling loss of the conventional single branching device shown in FIGS.

図4は、図1及び図2に示す1分岐器と図7及び図8に示す従来の1分岐器の入力側反射損失、幹線出力側反射損失及び分岐出力側反射損失を示したもので、符号72で示すのが図1及び図2に示す分岐器の入力側反射損失、符号74示すのが図7及び図8に示す従来の1分岐器の入力側反射損失で、両者には殆ど差は無い。符号76で示すのが図1及び図2に示す分岐器の幹線出力側反射損失で、符号78で示すのが図7及び図8に示す従来の1分岐器の幹線出力側反射損失で、図1及び図2に示す分岐器の結合損失の方が図7及び図8に示す従来の1分岐器の結合損失よりも最大約3dB大きい。符号80で示すのが、図1及び図2に示す1分岐器の分岐出力側反射損失で、符号82で示すのが、従来の1分岐器の分岐出力側損失で、図1及び図2に示す1分岐器の逆結合損失が図7及び図8に示す従来の1分岐器の逆結合損失よりも約5dB大きい。   FIG. 4 shows the input side reflection loss, the trunk line output side reflection loss, and the branch output side reflection loss of the one branch device shown in FIGS. 1 and 2 and the conventional one branch device shown in FIGS. 7 and 8. Reference numeral 72 indicates the input side reflection loss of the branching device shown in FIGS. 1 and 2, and reference numeral 74 indicates the input side reflection loss of the conventional one branching device shown in FIGS. There is no. Reference numeral 76 indicates the trunk line output side reflection loss of the branching device shown in FIGS. 1 and 2, and reference numeral 78 indicates the trunk line output side reflection loss of the conventional one branching device shown in FIGS. The coupling loss of the branching device shown in FIGS. 1 and 2 is about 3 dB larger than the coupling loss of the conventional one-branching device shown in FIGS. Reference numeral 80 indicates the branch output side reflection loss of the one branching device shown in FIGS. 1 and 2, and reference numeral 82 indicates the branch output side loss of the conventional one branching device. The reverse coupling loss of the single branching device shown is about 5 dB larger than the reverse coupling loss of the conventional single branching device shown in FIGS.

図3及び図4には、100MHzを超えた周波数での特性は示していないが、100MHzを超えた周波数でも、図1及び図2に示す1分岐器の挿入損失、結合損失、逆結合損失、入力側反射損失、幹線出力側反射損失及び分岐出力側反射損失は、図3及び図4に示したものと同様な特性を示す。   3 and 4 do not show the characteristics at frequencies exceeding 100 MHz, but even at frequencies exceeding 100 MHz, the insertion loss, coupling loss, reverse coupling loss of the single branching device shown in FIGS. The input side reflection loss, the trunk line output side reflection loss, and the branch output side reflection loss have the same characteristics as those shown in FIGS.

上記の実施形態では、メガネコア30の本体部31には、一体のものを示したが、図5に示すように貫通孔36を穿設した第1の本体部31aと、貫通孔38を穿設した第2の本体部31bとを、別個に形成し、第1及び第2の本体部31a及び31bを接触するように配置したものを使用することもできる。   In the above embodiment, the main body 31 of the eyeglass core 30 is shown as an integral body. However, as shown in FIG. 5, the first main body 31a having a through hole 36 and a through hole 38 are formed. It is also possible to use the second body portion 31b formed separately and arranged so as to contact the first and second body portions 31a and 31b.

上記の実施形態では、貫通孔36及び38は円形の貫通孔としたが、これに限ったものではなく、例えば矩形や三角形のような多角形状の貫通孔としたり、楕円状の貫通孔としたりすることもできる。また、上記の実施形態では、各巻線6、8、10、14には、円形の巻線を使用したが、これに限ったものではなく、例えば長さ方向に垂直な方向の縦断面形状が矩形状である角型の巻線を使用することもできる。また、上記の実施形態では、各巻線6、8、10、14の太さを同一のものとしたが、貫通孔36に設けられる巻線と、貫通孔38に設けられる巻線との太さを異なったものとすることができ、例えば巻数が少ない巻線6、8の太さを巻数が多い巻線10、14の太さよりも太くすることができる。上記の実施形態では、本発明によるトランスを1分岐器に使用したが、これに限ったものではなく、例えば2つの貫通孔にそれぞれ別個に巻回される巻線を有するトランス、例えば高周波トランスにおいて、一方の巻線に巻回される巻線の巻数が他方の巻線よりも少ないような場合にも、本発明を実施することができる。その場合、巻数の少ない巻線が巻回される貫通孔の面積(貫通孔の長さ方向に対して垂直な断面の面積)を、巻数の多く巻線が巻回される貫通孔の面積(貫通孔の長さ方向に対して垂直な断面の面積)よりも小さくする。   In the above embodiment, the through holes 36 and 38 are circular through holes. However, the present invention is not limited to this. For example, the through holes 36 and 38 may be polygonal through holes such as rectangles and triangles, or elliptical through holes. You can also In the above embodiment, circular windings are used for the windings 6, 8, 10, and 14. However, the present invention is not limited to this. For example, the longitudinal sectional shape in the direction perpendicular to the length direction is used. Rectangular rectangular windings can also be used. In the above embodiment, the thicknesses of the windings 6, 8, 10, and 14 are the same, but the thickness of the winding provided in the through hole 36 and the thickness of the winding provided in the through hole 38 are the same. For example, the thickness of the windings 6 and 8 having a small number of turns can be made larger than the thickness of the windings 10 and 14 having a large number of turns. In the above embodiment, the transformer according to the present invention is used for one branching device. However, the present invention is not limited to this. For example, in a transformer having windings separately wound around two through holes, for example, a high frequency transformer. The present invention can also be implemented when the number of windings wound around one winding is smaller than that of the other winding. In that case, the area of the through hole in which the winding with a small number of turns is wound (the area of the cross section perpendicular to the length direction of the through hole) is the area of the through hole in which the winding with a large number of turns is wound ( Smaller than the area of the cross section perpendicular to the length direction of the through hole).

6 幹線側巻線(第1の巻線)
8 幹線側接地巻線(第1の巻線)
10 分岐側巻線(第2の巻線)
14 分岐側接地巻線(第2の巻線)
30 メガネコア(コア)
31 コア本体部
36 貫通孔(第1の貫通孔)
38 貫通孔(第2の貫通孔)
6 Trunk side winding (first winding)
8 Trunk side ground winding (first winding)
10 Branch side winding (second winding)
14 Branch-side ground winding (second winding)
30 glasses core (core)
31 Core body 36 Through hole (first through hole)
38 Through hole (second through hole)

Claims (5)

第1の貫通孔と、第1の貫通孔よりも面積が小さい第2の貫通孔とを、有するコアと、
第1の貫通孔に設けられた第1の巻線と、
第2の貫通孔に設けられ、前記第1の巻線よりも少ない巻数で設けられた第2の巻線とを、
具備するトランス。
A core having a first through hole and a second through hole having a smaller area than the first through hole;
A first winding provided in the first through hole;
A second winding provided in the second through hole and provided with a smaller number of turns than the first winding,
Transformer provided.
請求項1記載のトランスにおいて、前記第1及び第2の巻線は、同じ太さであるトランス。   2. The transformer according to claim 1, wherein the first and second windings have the same thickness. 請求項1記載のトランスにおいて、前記コアは、1つのコア本体部に前記第1及び第2の貫通孔が間隔をおいて形成されているトランス。   2. The transformer according to claim 1, wherein the core has the first and second through-holes formed in a single core main body with a space therebetween. 請求項1記載のトランスにおいて、前記コアは、ほぼ接触させて配置された第1及び第2のコア本体部を有し、前記第1のコア本体部に前記第1の貫通孔が、前記第2のコア本体部に前記第2の貫通孔が、それぞれ形成されているトランス。   2. The transformer according to claim 1, wherein the core includes first and second core main body portions disposed substantially in contact with each other, and the first through hole is formed in the first core main body portion. Transformers in which the second through holes are respectively formed in the two core main body portions. 請求項1乃至4いずれか記載のトランスにおいて、前記第1の巻線は、分岐器の分岐側の接地用巻線で、前記第2の巻線は前記分岐器の幹線側の接地用巻線で、前記第1の貫通孔には前記第1の巻線よりも少ない巻数の前記分岐器の分岐側巻線も設けられ、前記第2の貫通孔には前記第2の巻線よりも少ない巻数の前記分岐器の幹線側巻線も設けられているトランス。
5. The transformer according to claim 1, wherein the first winding is a grounding winding on the branch side of the branching device, and the second winding is a grounding winding on the main line side of the branching device. Thus, the first through hole is also provided with a branch side winding of the branching device having a smaller number of turns than the first winding, and the second through hole has fewer than the second winding. A transformer provided with a main winding of the branching device of the number of turns.
JP2011178313A 2011-08-17 2011-08-17 Transformer Withdrawn JP2013042002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178313A JP2013042002A (en) 2011-08-17 2011-08-17 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178313A JP2013042002A (en) 2011-08-17 2011-08-17 Transformer

Publications (1)

Publication Number Publication Date
JP2013042002A true JP2013042002A (en) 2013-02-28

Family

ID=47890129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178313A Withdrawn JP2013042002A (en) 2011-08-17 2011-08-17 Transformer

Country Status (1)

Country Link
JP (1) JP2013042002A (en)

Similar Documents

Publication Publication Date Title
JP5971231B2 (en) Common mode choke coil and manufacturing method thereof
JP5558609B1 (en) Common mode choke coil
JP6565747B2 (en) Coil device
JP2017183444A (en) Common mode filter
US9767953B2 (en) Common mode filter and core thereof
JP2019050318A (en) Drum-shaped core and coil component
CN110024283A (en) LC resonance device and LC filter
JP2019121692A (en) Common mode filter
JP2019121693A (en) Common mode filter
CN204463976U (en) Common-mode filter
JP2020136422A (en) Differential mode choke coil component
CN104184001B (en) Micro coaxial cable connector assembly
JP2010033961A (en) Waveform distortion reducing member and communication line having the waveform distortion reducing member
US20160314888A1 (en) Integrated inductor
KR101475437B1 (en) Transformer manufactured by printed circuit board
JP6593069B2 (en) Coil parts
WO2017122441A1 (en) Coupling window of dielectric waveguide tube resonators, and dielectric waveguide tube filter using coupling window
JP2013042002A (en) Transformer
JP2015076571A (en) Noise filter for power supply, and usb connector
JP6206634B2 (en) Ferrite core and noise suppression parts
US20120092116A1 (en) High voltage transformer
CN205303103U (en) Inductance device with common mode differential mode choke function
US11328860B2 (en) Coil component
WO2009044514A1 (en) Coil component
US20210110963A1 (en) Coil component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104