JP2013041807A - Positive electrode for lithium secondary battery and lithium secondary battery including the same - Google Patents

Positive electrode for lithium secondary battery and lithium secondary battery including the same Download PDF

Info

Publication number
JP2013041807A
JP2013041807A JP2012074406A JP2012074406A JP2013041807A JP 2013041807 A JP2013041807 A JP 2013041807A JP 2012074406 A JP2012074406 A JP 2012074406A JP 2012074406 A JP2012074406 A JP 2012074406A JP 2013041807 A JP2013041807 A JP 2013041807A
Authority
JP
Japan
Prior art keywords
positive electrode
less
lithium secondary
secondary battery
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074406A
Other languages
Japanese (ja)
Inventor
Masato Kijima
正人 木島
Kenji Shizuka
賢治 志塚
彰司 ▲高▼野
Shoji Takano
Tomohiro Kusano
智博 草野
Jeong Min Kim
呈▲民▼ 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012074406A priority Critical patent/JP2013041807A/en
Publication of JP2013041807A publication Critical patent/JP2013041807A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a positive electrode for a lithium secondary battery, capable of achieving both enhanced capacity/output and elongated lifetime of a lithium secondary battery; and a lithium secondary battery including the positive electrode for a lithium secondary battery.SOLUTION: A positive electrode for a lithium secondary battery contains an active material, a conductive material and a binding material. In the positive electrode for a lithium secondary battery, the conductive material has a nitrogen absorption specific surface area (NSA) of 70 m/g or more, and, when S represents the nitrogen absorption specific surface area (NSA, unit: m/g) of the conductive material, and M represents a weight average molecular weight of the binding material, the following expression (1) is satisfied. (S×M)/10,000≤7,500...(1)

Description

本発明は、リチウム二次電池等に用いられるリチウム二次電池用正極と、このリチウム二次電池用正極を用いたリチウム二次電池に関するものである。   The present invention relates to a positive electrode for a lithium secondary battery used for a lithium secondary battery and the like, and a lithium secondary battery using the positive electrode for a lithium secondary battery.

近年、電子機器の小型軽量化や高機能化に伴い、これらに用いるリチウム二次電池の開発が進められている。これらリチウム二次電池に用いられる正極には、通常、電子を蓄えたり放出できる機能を有する活物質が必要であるが、この活物質は電子伝導性が必ずしも高くなかったり、使用中に電子伝導性の低下が生じたりするため、活物質単独だけではうまく機能しない場合が多い。そこで活物質同士の間や活物質と集電体との間の導電パスをとるために、通常、活物質に、電子伝達機能を有する導電材が混合使用されている。   In recent years, along with the reduction in size and weight and the increase in functionality of electronic devices, development of lithium secondary batteries used in these devices has been promoted. The positive electrode used in these lithium secondary batteries usually requires an active material having a function of storing and releasing electrons. However, this active material does not necessarily have high electron conductivity, and the electron conductivity during use. In many cases, the active material alone does not function well. Therefore, in order to take a conductive path between the active materials or between the active material and the current collector, a conductive material having an electron transfer function is usually mixed with the active material.

この導電材には、通常、有機物を高温で燃焼ないし焼成した良導電性の炭素質材料が用いられるが、その物性が正極ひいてはリチウム二次電池の性能を大きく左右することが知られている。
以下に、例としてリチウム二次電池について説明するが、本発明のリチウム二次電池は、導電材の効果が損なわれない限り、その種類が限定されるものではない。
As the conductive material, a highly conductive carbonaceous material obtained by burning or baking organic substances at a high temperature is usually used. It is known that the physical properties greatly affect the performance of the positive electrode and thus the lithium secondary battery.
Although a lithium secondary battery will be described below as an example, the type of the lithium secondary battery of the present invention is not limited as long as the effect of the conductive material is not impaired.

リチウム二次電池の中で、リチウム二次電池ないしリチウムイオン二次電池と呼ばれる二次電池は、エネルギー密度及び出力密度等に優れ、小型化・軽量化が可能であるため、ノート型パソコン、携帯電話及びハンディビデオカメラなどの携帯機器やハイブリッド電気自動車用の電源として使用されており、さらに高性能化の研究が盛んである。
リチウム二次電池の正極活物質には、リチウムを吸蔵・放出可能な化合物が用いられる。より具体的には、正極活物質には通常スピネル構造を有するリチウムマンガン酸化物や、層状構造を有するリチウムコバルト酸化物等のリチウム遷移金属酸化物が用いられる。
Among lithium secondary batteries, secondary batteries called lithium secondary batteries or lithium ion secondary batteries are excellent in energy density and power density, and can be reduced in size and weight. It is used as a power source for portable devices such as telephones and handy video cameras, and hybrid electric vehicles.
As the positive electrode active material of the lithium secondary battery, a compound capable of inserting and extracting lithium is used. More specifically, lithium transition metal oxides such as lithium manganese oxide having a spinel structure and lithium cobalt oxide having a layered structure are usually used for the positive electrode active material.

正極には、これらの活物質を導電材および結着材と共に集電体に付着させたものが用いられる。特に、正極は、活物質の電子伝導性が低く、導電材がないとうまく作動しないため、導電材の配合が必要とされる。
その導電材としては、アセチレンブラックやケッチェンブラック等のカーボンブラックが広く用いられているが、特にアセチレンブラックが主に用いられている。
As the positive electrode, a material obtained by attaching these active materials to a current collector together with a conductive material and a binder is used. In particular, since the positive electrode has a low electronic conductivity of the active material and does not work well without a conductive material, it is necessary to add a conductive material.
As the conductive material, carbon black such as acetylene black and ketjen black is widely used, but acetylene black is mainly used.

しかしながら、近年、電子機器のさらなる軽量化や、長時間作動等の高性能化の要求により、リチウム二次電池にもより一層の高容量化、高出力化と長寿命化が求められている。そして、それに応じて、正極に用いる活物質の改良や、導電材の改良が必要となっている。
電池の高容量化とは、電池の正極を作成する際に、正極活物質、導電材および決着剤を極板にできるだけ密に詰め込むことである。これには、正極作成工程の段階や捲回時にクラックが入りづらくする必要がある。従って、極板にするには、特定の正極活物質および特定の導電材を選択することにより、極板の強度を高めることが重要である。
However, in recent years, lithium secondary batteries are required to have higher capacity, higher output, and longer life due to demands for further weight reduction of electronic devices and higher performance such as long-time operation. Accordingly, it is necessary to improve the active material used for the positive electrode and the conductive material.
To increase the capacity of the battery means to pack the positive electrode active material, the conductive material and the fixing agent as close as possible to the electrode plate when producing the positive electrode of the battery. For this purpose, it is necessary to make it difficult for cracks to occur during the positive electrode preparation step or winding. Therefore, in order to obtain an electrode plate, it is important to increase the strength of the electrode plate by selecting a specific positive electrode active material and a specific conductive material.

電池の高出力化とは、従来より高い電流で電池を充放電させても、分極が少なく、高い容量を引き出せるようにすることであり、これには導電材が正極の中で有効な導電パスを形成し、活物質本来の性能を十分に引き出すことが重要である。
一方、電池の長寿命化は、充放電の繰り返しサイクル数を従来より多くしても電池性能の劣化を抑えるということである。これには正極活物質と導電材が、効率的に導電パスをとることが重要である。従って、極板としたときに、特定の正極活物質および特定の導電
材を選択することにより、正極表面と導電材との密着性を高めることが重要である。
Higher battery output means that even if the battery is charged / discharged at a higher current than before, there is little polarization and a high capacity can be extracted. It is important to sufficiently form the original performance of the active material.
On the other hand, extending the life of the battery means that deterioration of battery performance is suppressed even if the number of repeated charge / discharge cycles is increased. For this purpose, it is important that the positive electrode active material and the conductive material efficiently take a conductive path. Therefore, when the electrode plate is used, it is important to improve the adhesion between the positive electrode surface and the conductive material by selecting a specific positive electrode active material and a specific conductive material.

本出願人は、特許文献1のとおり、レート・出力特性といった負荷特性の向上を図りつつ粉体物性の改善を図るという課題を解決するために、嵩密度の向上や比表面積の最適化をはかるべく鋭意検討を重ねた結果、B、Biから選ばれる少なくとも1種以上の元素を含有する化合物と、Mo、Wから選ばれる少なくとも1種以上の元素を含有する化合物をそれぞれ1種以上、規定の割合で併用添加した後、焼成することにより、前述の改善効果を損なうことなく、取り扱いや正極調製の容易なリチウム含有遷移金属系化合物粉体を得ることができ、リチウム二次電池正極材料として、優れた粉体物性と高い負荷特性、耐高電圧性、高安全性を示し、低コスト化が可能なリチウム遷移金属系化合物粉体を得ることができること、また、このようなリチウム遷移金属系化合物粉体は、表面増強ラマン分光スペクトルにおいて特長的なピークを有することを見出した。   In order to solve the problem of improving the physical properties of the powder while improving the load characteristics such as the rate / output characteristics as described in Patent Document 1, the present applicant attempts to improve the bulk density and optimize the specific surface area. As a result of intensive studies, the compounds containing at least one element selected from B and Bi and one or more compounds containing at least one element selected from Mo and W are specified. After the combined addition in proportion, by firing, lithium-containing transition metal compound powder easy to handle and positive electrode preparation can be obtained without impairing the improvement effect described above, as a lithium secondary battery positive electrode material, It is possible to obtain lithium transition metal-based compound powder that exhibits excellent powder physical properties, high load characteristics, high voltage resistance, high safety, and can be reduced in cost. Lithium transition metal based compound powder was found to have a feature peak in a surface enhanced Raman spectrum.

また、特許文献2には、特定のカーボンブラックと正極活物質を用いて正極を作成することで、電池としたときにリチウム二次電池の高出力化と長寿命化とを両立し得るリチウム二次電池用正極を作成できることが記載されている。
また、特許文献3および4には、低分子量のバインダーを正極作製時に用いる事が記載されている。
Patent Document 2 discloses a lithium secondary battery that can achieve both high output and long life of a lithium secondary battery by producing a positive electrode using a specific carbon black and a positive electrode active material. It describes that a positive electrode for a secondary battery can be produced.
Patent Documents 3 and 4 describe the use of a low molecular weight binder when producing a positive electrode.

特開2008−270161号公報JP 2008-270161 A 特開2006−210007号公報JP 2006-210007 A 特開2009−37937号公報JP 2009-37937 A 特開2005−268206号公報JP 2005-268206 A

前述の如く、最近のリチウム二次電池にはさらなる高容量化、高出力化ないし長寿命化、さらにはこれら全ての特性の向上が同時に求められている。ここで、特許文献1のような正極活物質は、正極としたときに電子抵抗が高くなり導電パス維持が重要となるため、サイクル特性のさらなる向上が望まれていた。
これに対し、特許文献1のような正極活物質に対し、特許文献2のような導電材を用いることで、導電材の形状が正極活物質表面に接触しやすく、その接触を維持した状態を保ちやすいため、導電パスの維持力が向上していると推察される。
As described above, recent lithium secondary batteries are required to have higher capacities, higher outputs or longer lifetimes, and to improve all these characteristics at the same time. Here, since the positive electrode active material as in Patent Document 1 has a high electronic resistance when it is used as a positive electrode and it is important to maintain a conductive path, further improvement in cycle characteristics has been desired.
In contrast, by using a conductive material as in Patent Document 2 for the positive electrode active material as in Patent Document 1, the shape of the conductive material is easy to contact the surface of the positive electrode active material, and the state in which the contact is maintained is maintained. Since it is easy to maintain, it is presumed that the maintenance power of the conductive path is improved.

また、特許文献3および4には、低分子量のバインダーを正極作製時に用いる事が記載されているが、窒素吸着比表面積が大きい、または、平均粒子径が小さい、または揮発分が多いなどの特徴を有する特定の導電材を用いる際の正極スラリーの安定性などについては一切記載されておらず、そのような技術的思想を示唆させるような記述もいない。
本発明は、リチウム二次電池の高出力化と長寿命化の両方の要求を満たすために、特定の導電材を用いる際に、結着材の種類を選択することで、リチウム二次電池の高出力化と長寿命化とを両立し得るリチウム二次電池用正極と、このリチウム二次電池用正極を用いたリチウム二次電池を提供すること、およびその製造過程において取り扱うこととなる正極スラリーの安定性を向上させることを目的とする。
Patent Documents 3 and 4 describe the use of a low molecular weight binder in the production of the positive electrode, but the features such as a large nitrogen adsorption specific surface area, a small average particle diameter, or a large amount of volatile matter. There is no description about the stability of the positive electrode slurry when using a specific conductive material having, and there is no description that suggests such a technical idea.
In order to satisfy the demands for both high output and long life of a lithium secondary battery, the present invention selects the type of binder when using a specific conductive material. Providing a positive electrode for a lithium secondary battery capable of achieving both higher output and longer life, and providing a lithium secondary battery using the positive electrode for a lithium secondary battery, and a positive electrode slurry to be handled in the manufacturing process The purpose is to improve the stability.

本発明者らは、リチウム二次電池の高出力化と長寿命化を図るべく、特定の導電材を用いる際に、結着材の種類を選択することで、正極を作製する際のスラリーにおけるポットライフの改善が可能であることを見出し、本発明に至った。
すなわち、本発明は、以下を要旨とするものである。
(1) 活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の窒素吸着比表面積(NSA)が70m/g以上であり、 導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たすリチウム二次電池用正極。
In order to increase the output and extend the life of a lithium secondary battery, the present inventors select a type of binder when using a specific conductive material, so that in a slurry for producing a positive electrode The present inventors have found that pot life can be improved and have reached the present invention.
That is, the gist of the present invention is as follows.
(1) A positive electrode for a lithium secondary battery containing an active material, a conductive material, and a binder,
The conductive material has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more, the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S, and the weight of the binder A positive electrode for a lithium secondary battery that satisfies the following formula (1) when the average molecular weight is M.

(S×M)/10000≦7500・・・(1)
(2) 活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の平均粒径が35nm以下であり、
導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たす
リチウム二次電池用正極。
(S × M) / 10000 ≦ 7500 (1)
(2) A positive electrode for a lithium secondary battery containing an active material, a conductive material, and a binder,
The conductive material has an average particle size of 35 nm or less;
The positive electrode for a lithium secondary battery satisfying the following formula (1) when the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S and the weight average molecular weight of the binder is M .

(S×M)/10000≦7500・・・(1)
(3) 活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の揮発分が0.8%以上であり、
導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たす
リチウム二次電池用正極。
(S × M) / 10000 ≦ 7500 (1)
(3) A positive electrode for a lithium secondary battery containing an active material, a conductive material, and a binder,
The conductive material has a volatile content of 0.8% or more,
The positive electrode for a lithium secondary battery satisfying the following formula (1) when the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S and the weight average molecular weight of the binder is M .

(S×M)/10000≦7500・・・(1)
(4) 結着材の重量平均分子量が60万以下である上記(1)〜(3)のいずれか一に記載のリチウム二次電池用正極。
(5) 結着材がPVdFである上記(1)〜(4)のいずれか一に記載のリチウム二次電池用正極。
(6) 導電材の窒素吸着比表面積(NSA)が70m/g以上である上記(1)〜(5)のいずれか一に記載のリチウム二次電池用正極。
(7) 導電材の平均粒径が35nm以下である上記(1)〜(6)のいずれか一に記載のリチウム二次電池用正極。
(8) 導電材の揮発分が0.8%以上である上記(1)〜(7)のいずれか一に記載のリチウム二次電池用正極。
(9) 導電材がオイルファーネスカーボンブラックである上記(1)〜(8)のいずれか一に記載のリチウム二次電池用正極。
(10) 活物質重量に対する導電材の割合が0.5重量%以上、15重量%以下である上記(1)〜(9)のいずれか一に記載のリチウム二次電池用正極。
(11) 活物質がリチウム遷移金属系複合酸化物を含有する上記(1)〜(10)のいずれか一に記載のリチウム二次電池用正極。
(12) 活物質が、表面増強ラマン分光スペクトルにおいて、800cm−1以上、1000cm−1以下にピークを有するものである上記(1)〜(11)のいずれか一に記載のリチウム二次電池用正極。
(13) 正極と、負極と、リチウム塩を含有する非水電解質とを含むリチウム二次電池であって、
正極が上記(1)〜(12)のいずれか一に記載のリチウム二次電池用正極であるリチウム二次電池。
(S × M) / 10000 ≦ 7500 (1)
(4) The positive electrode for a lithium secondary battery according to any one of (1) to (3), wherein the binder has a weight average molecular weight of 600,000 or less.
(5) The positive electrode for a lithium secondary battery according to any one of (1) to (4), wherein the binder is PVdF.
(6) The positive electrode for a lithium secondary battery according to any one of (1) to (5), wherein the conductive material has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more.
(7) The positive electrode for a lithium secondary battery according to any one of (1) to (6), wherein the conductive material has an average particle size of 35 nm or less.
(8) The positive electrode for a lithium secondary battery according to any one of (1) to (7), wherein a volatile content of the conductive material is 0.8% or more.
(9) The positive electrode for a lithium secondary battery according to any one of (1) to (8), wherein the conductive material is oil furnace carbon black.
(10) The positive electrode for a lithium secondary battery according to any one of the above (1) to (9), wherein a ratio of the conductive material to the active material weight is 0.5 wt% or more and 15 wt% or less.
(11) The positive electrode for a lithium secondary battery according to any one of (1) to (10), wherein the active material contains a lithium transition metal composite oxide.
(12) active material, the surface-enhanced Raman spectrum, 800 cm -1 or more, for a lithium secondary battery according to any one of the above and has a peak at 1000 cm -1 (1) to (11) Positive electrode.
(13) A lithium secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte containing a lithium salt,
The lithium secondary battery whose positive electrode is a positive electrode for lithium secondary batteries as described in any one of said (1)-(12).

本発明によれば、リチウム二次電池用正極の性能の向上、ひいてはそのリチウム二次電池の高性能化を達成することができ、特に、このリチウム二次電池用正極をリチウム二次電池の正極として用いる場合において、従来困難とされていたリチウム二次電池の高出力化と長寿命化を同時に達成することが可能となる。   According to the present invention, it is possible to improve the performance of a positive electrode for a lithium secondary battery, and hence to improve the performance of the lithium secondary battery. In particular, the positive electrode for a lithium secondary battery can be used as a positive electrode for a lithium secondary battery. When used as, it becomes possible to simultaneously achieve higher output and longer life of a lithium secondary battery, which has been considered difficult in the past.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に特定はされない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention. The content of is not specified.

[リチウム二次電池]
本発明におけるリチウム二次電池とは、主に電子機器等に用いられる小型のリチウム二次電池や、最近研究が盛んになってきている自動車用のリチウム二次電池などがある。
前述の如く、これらのリチウム二次電池に用いられる正極には、通常、電子を蓄えたり放出できる機能を有する活物質が必要であるが、その活物質は電子伝導性が必ずしも高くなかったり、使用中に電子伝導性の低下が生じるため、活物質単独だけではうまく機能しない場合が多い。そこで、活物質同士の間や活物質と集電体との間の導電パスをとるため、電子伝達機能を有する導電材を混合するのが一般的である。
[Lithium secondary battery]
Examples of the lithium secondary battery in the present invention include a small-sized lithium secondary battery mainly used for electronic devices and the like, and a lithium secondary battery for automobiles that have been actively studied recently.
As described above, the positive electrode used in these lithium secondary batteries usually requires an active material having a function of storing and releasing electrons, but the active material does not necessarily have high electron conductivity or is used. Since there is a decrease in electron conductivity, the active material alone does not function well in many cases. Therefore, in order to take a conductive path between the active materials or between the active material and the current collector, a conductive material having an electron transfer function is generally mixed.

[リチウム二次電池用正極]
本発明のリチウム二次電池用正極は、特定の導電材を用いる際に、結着材の種類を選択することで、好適な正極作製用スラリーを得ることができる。
なお、本発明のリチウム二次電池用正極においては、導電材として、後述のカーボンブラックの1種を単独で用いても良く、2種以上を併用しても良い。
[Positive electrode for lithium secondary battery]
When the positive electrode for lithium secondary batteries of the present invention uses a specific conductive material, a suitable positive electrode-forming slurry can be obtained by selecting the type of binder.
In addition, in the positive electrode for lithium secondary batteries of this invention, 1 type of the below-mentioned carbon black may be used independently as a electrically conductive material, and 2 or more types may be used together.

[リチウム二次電池用正極]
次に、本発明のリチウム二次電池用正極について説明する。
本発明におけるリチウム二次電池用正極は、以下のそれぞれの態様である。
(1)活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の窒素吸着比表面積(NSA)が70m/g以上であり、 導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たすことを特徴とする
リチウム二次電池用正極。
[Positive electrode for lithium secondary battery]
Next, the positive electrode for a lithium secondary battery of the present invention will be described.
The positive electrode for a lithium secondary battery in the present invention has the following aspects.
(1) A positive electrode for a lithium secondary battery containing an active material, a conductive material, and a binder,
The conductive material has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more, the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S, and the weight of the binder A positive electrode for a lithium secondary battery, which satisfies the following formula (1) when the average molecular weight is M.

(S×M)/10000≦7500・・・(1)
(2)活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の平均粒径が35nm以下であり、
導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たすことを特徴とする
リチウム二次電池用正極。
(S × M) / 10000 ≦ 7500 (1)
(2) A positive electrode for a lithium secondary battery containing an active material, a conductive material and a binder,
The conductive material has an average particle size of 35 nm or less;
Lithium satisfying the following formula (1), where S is the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material, and M is the weight average molecular weight of the binder. Secondary battery positive electrode.

(S×M)/10000≦7500・・・(1)
(3)活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の揮発分が0.8%以上であり、
導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たすことを特徴とする
リチウム二次電池用正極。
(S × M) / 10000 ≦ 7500 (1)
(3) A positive electrode for a lithium secondary battery containing an active material, a conductive material and a binder,
The conductive material has a volatile content of 0.8% or more,
Lithium satisfying the following formula (1), where S is the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material, and M is the weight average molecular weight of the binder. Secondary battery positive electrode.

(S×M)/10000≦7500・・・(1)
なお、正極活物質層は、通常、導電材と正極活物質と結着材と更に必要に応じて用いられる増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することによって作製される。
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるた
めに、ハンドプレス、ローラープレス等により圧密化することが好ましい。
正極活物質層の厚さは、通常10〜200μm程度である。
(S × M) / 10000 ≦ 7500 (1)
In addition, the positive electrode active material layer is usually a sheet obtained by mixing a conductive material, a positive electrode active material, a binder, and a thickener, which is used as necessary, in a dry manner into a positive electrode current collector. It is produced by pressure bonding, or by dissolving or dispersing these materials in a liquid medium to form a slurry, which is applied to a positive electrode current collector and dried.
The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material.
The thickness of the positive electrode active material layer is usually about 10 to 200 μm.

[活物質]
[リチウム遷移金属系化合物粉体]
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体(以下「本発明の正極活物質」と称す場合がある。)は、上記で示したように、表面増強ラマン分光スペクトルにおいて、800cm−1以上、1000cm−1以下にピーク(以下、ピークAとする)を有することが好ましい。
[Active material]
[Lithium transition metal compound powder]
As described above, the lithium transition metal-based compound powder for lithium secondary battery positive electrode material of the present invention (hereinafter sometimes referred to as “the positive electrode active material of the present invention”) in the surface-enhanced Raman spectroscopy spectrum, 800 cm -1 or more, the peak to 1000 cm -1 or less (hereinafter, referred to as peak a) preferably has a.

ここで、表面増強ラマン分光法(以下SERSと略す)は、試料表面に銀などの貴金属をごく薄く海島状に蒸着することにより、試料最表面の分子振動に由来するラマンスペクトルを選択的に増幅する手法である。通常のラマン分光法における検出深さはおおよそ0.1〜1μm程度とされているが、SERSでは貴金属粒子に接した表層部分の信号が大部分を占めることとなる。   Here, surface-enhanced Raman spectroscopy (hereinafter abbreviated as SERS) selectively amplifies the Raman spectrum derived from molecular vibrations on the outermost surface of the sample by depositing a noble metal such as silver on the surface of the sample in a very thin sea-island shape. It is a technique to do. The detection depth in ordinary Raman spectroscopy is about 0.1 to 1 μm. However, in SERS, the signal of the surface layer portion in contact with the noble metal particles occupies most.

本発明においては、SERSスペクトルにおいて、800cm−1以上、かつ、1000cm−1以下にピーク(以下、ピークAとする)を有する。ピークAの位置は、通常800cm−1以上、好ましくは810cm−1以上、より好ましくは820cm−1以上、さらに好ましくは830cm−1以上、最も好ましくは840cm−1以上であり、通常1000cm−1以下、好ましくは980cm−1以下、より好ましくは960cm−1以下、最も好ましくは940cm−1以下である。この範囲を逸脱すると、本発明の効果が十分に得られない可能性がある。 In the present invention, having the SERS spectrum, 800 cm -1 or more, and peak at 1000 cm -1 or less (hereinafter, referred to as peak A) the. Position of the peak A is usually 800 cm -1 or more, preferably 810 cm -1 or more, more preferably 820 cm -1 or more, more preferably 830 cm -1 or more, and most preferably at 840 cm -1 or more and usually 1000 cm -1 or less , Preferably 980 cm −1 or less, more preferably 960 cm −1 or less, and most preferably 940 cm −1 or less. If it deviates from this range, the effects of the present invention may not be sufficiently obtained.

また、本発明の正極活物質は、上記で示したように、SERSにおいて、上記ピークAの半値幅が30cm−1以上であることが好ましく、60cm−1以上であることがさらに好ましい。このような半値幅を有するブロードなピークの帰属の原因は、添加元素が正極活物質中の元素との相互作用により化学的に変化したものに由来すると推察され、ピークAの半値幅が上記範囲を逸脱する場合、すなわち添加元素と正極活物質中の元素の相互作用が小さい場合は、本発明の効果が十分に得られない可能性がある。なお、ここでいう添加元素は、後述する添加元素と同義である。 Further, as described above, the positive electrode active material of the present invention preferably has a half width of the peak A of 30 cm −1 or more, more preferably 60 cm −1 or more in SERS. The cause of the attribution of such a broad peak having a half-value width is presumed to be that the additive element is derived from a chemical change caused by the interaction with the element in the positive electrode active material, and the half-value width of peak A is in the above range. In other words, if the interaction between the additive element and the element in the positive electrode active material is small, the effects of the present invention may not be sufficiently obtained. In addition, the additive element here is synonymous with the additive element mentioned later.

さらに、本発明の正極活物質は、上記で示したように、SERSにおいて600±50cm−1のピーク(以下、ピークB)の強度に対するピークAの強度が0.04より大きいことが好ましく、0.05以上であることがさらに好ましい。ここで、600±50cm−1のピークBは、M’’O(M’’は正極活物質中の金属元素である)の伸縮振動に由来するピークである。ピークBに対するピークAの強度が小さい場合、本発明の効果が十分に得られない可能性がある。 Furthermore, as described above, the positive electrode active material of the present invention preferably has an intensity of peak A greater than 0.04 relative to the intensity of a peak of 600 ± 50 cm −1 (hereinafter referred to as peak B) in SERS. More preferably, it is 0.05 or more. Here, the peak B of 600 ± 50 cm −1 is a peak derived from stretching vibration of M ″ O 6 (M ″ is a metal element in the positive electrode active material). When the intensity of peak A relative to peak B is small, the effects of the present invention may not be sufficiently obtained.

本発明に用いるリチウム遷移金属系化合物粉体は、その一次粒子の表面部分に、添加剤由来の元素(添加元素)、即ち、B、Bi(添加元素1)並びにMo、W(添加元素2)から選ばれる少なくとも1種以上の元素が濃化して存在していることが好ましい。本発明の活物質は、リチウム遷移金属系化合物を主成分として含有し、B及びBiから選ばれる少なくとも1種以上の元素(以下「添加元素1」と称す。)と、Mo及びWから選ばれる少なくとも1種以上の元素(以下「添加元素2」と称す。)を含有し、該活物質の一次粒子の表面部分の、Liと前記添加元素1及び添加元素2以外の金属元素の合計に対する該添加元素1の合計のモル比(原子比)が、粒子全体の該モル比の20倍以上であることが好ましい。この比率の下限は25倍以上であることが好ましく、30倍以上であることがさらに好ましく、40倍以上であることがより好ましく、50倍以上であることが特に好ましい。上限は通常、特に制限されないが、500倍以下であることが好ましく、400
倍以下であることがより好ましく、300倍以下であることが特に好ましく、200倍以下であることが最も好ましい。この比率が小さすぎると粉体物性の改善効果が小さく、反対に大きすぎると電池性能の悪化を招く場合がある。
The lithium transition metal compound powder used in the present invention has an additive-derived element (additive element), that is, B, Bi (additive element 1), and Mo, W (additive element 2) on the surface of the primary particles. It is preferable that at least one element selected from is present in a concentrated state. The active material of the present invention contains a lithium transition metal compound as a main component, and is selected from at least one element selected from B and Bi (hereinafter referred to as “additive element 1”), and Mo and W. Containing at least one element (hereinafter referred to as “additive element 2”), and the surface portion of the primary particles of the active material with respect to the total of Li and metal elements other than additive element 1 and additive element 2 The total molar ratio (atomic ratio) of additive element 1 is preferably 20 times or more of the molar ratio of the entire particle. The lower limit of this ratio is preferably 25 times or more, more preferably 30 times or more, more preferably 40 times or more, and particularly preferably 50 times or more. The upper limit is not particularly limited, but is preferably 500 times or less, 400
It is more preferable that it is not more than twice, particularly preferably not more than 300 times, and most preferably not more than 200 times. If this ratio is too small, the effect of improving powder physical properties is small, while if it is too large, battery performance may be deteriorated.

また、一次粒子の表面部分のLiと添加元素1及び添加元素2以外の金属元素(即ち、Liと添加元素1と添加元素2以外の金属元素)の合計に対する添加元素2のモル比は、通常、粒子全体の該モル比の3倍以上である。この比率の下限は4倍以上であることが好ましく、5倍以上であることがより好ましく、6倍以上であることが特に好ましい。上限は通常、特に制限されないが、150倍以下であることが好ましく、100倍以下であることがより好ましく、50倍以下であることが特に好ましく、30倍以下であることが最も好ましい。この比率が小さすぎると電池性能の改善効果が小さく、反対に大きすぎると電池性能の悪化を招く場合がある。   Further, the molar ratio of additive element 2 to the total of Li and metal elements other than additive element 1 and additive element 2 (that is, metal elements other than Li, additive element 1 and additive element 2) in the surface portion of the primary particles is usually The molar ratio of the whole particle is 3 times or more. The lower limit of this ratio is preferably 4 times or more, more preferably 5 times or more, and particularly preferably 6 times or more. The upper limit is not particularly limited, but is preferably 150 times or less, more preferably 100 times or less, particularly preferably 50 times or less, and most preferably 30 times or less. If this ratio is too small, the effect of improving battery performance is small, while if too large, battery performance may be deteriorated.

リチウム遷移金属系化合物粉体の一次粒子の表面部分の組成の分析は、X線光電子分光法(XPS)により、X線源として単色光AlKαを用い、分析面積0.8mm径、取り出し角65°の条件で行う。一次粒子の組成により、分析可能な範囲(深さ)は異なるが、通常0.1nm以上50nm以下、特に正極活物質においては通常1nm以上10nm以下となる。従って、本発明において、リチウム遷移金属系化合物粉体の一次粒子の表面部分とは、この条件において測定可能な範囲を示す。   Analysis of the composition of the surface part of the primary particles of the lithium transition metal compound powder was performed by X-ray photoelectron spectroscopy (XPS), using monochromatic light AlKα as an X-ray source, an analysis area of 0.8 mm diameter, and an extraction angle of 65 °. Perform under the conditions of Although the range (depth) that can be analyzed varies depending on the composition of the primary particles, it is usually 0.1 nm to 50 nm, particularly 1 nm to 10 nm for a positive electrode active material. Therefore, in the present invention, the surface portion of the primary particles of the lithium transition metal-based compound powder indicates a measurable range under these conditions.

本発明に用いる正極活物質は、リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分として含有する原料に、B及びBiから選ばれる少なくとも1種以上の元素(以下「添加元素1」と称す。)を含有する化合物(以下「添加剤1」と称す。)と、Mo及びWから選ばれる少なくとも1種以上の元素(以下「添加元素2」と称す。)を含有する化合物(以下「添加剤2」と称す。)をそれぞれ1種以上、原料中の遷移金属元素の合計モル量に対して、添加剤1と添加剤2の合計で0.01モル%以上、2モル%未満の割合で併用添加した後、焼成されたものであることが好ましい。   The positive electrode active material used in the present invention contains at least one element selected from B and Bi (hereinafter referred to as a raw material containing a lithium transition metal-based compound having a function capable of insertion / extraction of lithium ions as a main component (hereinafter referred to as “a lithium transition metal compound”). A compound containing “additive element 1” (hereinafter referred to as “additive 1”) and at least one element selected from Mo and W (hereinafter referred to as “additive element 2”). One or more compounds to be contained (hereinafter referred to as “additive 2”), and 0.01 mol% or more in total of additive 1 and additive 2 with respect to the total molar amount of transition metal elements in the raw material It is preferable that it is fired after the combined addition at a ratio of less than 2 mol%.

〈リチウム含有遷移金属化合物〉
本発明のリチウム遷移金属系化合物とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiCoO、LiNiO、LiNi1−xCo、LiNi1−x−yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。
<Lithium-containing transition metal compound>
The lithium transition metal compound of the present invention is a compound having a structure capable of desorbing and inserting Li ions, and examples thereof include sulfides, phosphate compounds, and lithium transition metal composite oxides. . Examples of sulfides include compounds having a two-dimensional layered structure such as TiS 2 and MoS 2 , and strong compounds represented by the general formula Me x Mo 6 S 8 (Me is various transition metals including Pb, Ag, and Cu). Examples thereof include a sugar compound having a three-dimensional skeleton structure. Examples of the phosphate compound include those belonging to the olivine structure, and are generally represented by LiMePO 4 (Me is at least one or more transition metals), specifically LiFePO 4 , LiCoPO 4 , LiNiPO 4 , Examples include LiMnPO 4 . Examples of the lithium transition metal composite oxide include spinel structures capable of three-dimensional diffusion and those belonging to a layered structure capable of two-dimensional diffusion of lithium ions. Those having a spinel structure are generally expressed as LiMe 2 O 4 (Me is at least one transition metal), specifically, LiMn 2 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 1.5 O. 4 , LiCoVO 4 and the like. Those having a layered structure are generally expressed as LiMeO 2 (Me is at least one or more transition metals), specifically, LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 , LiNi 1-x. -y Co x Mn y O 2, LiNi 0.5 Mn 0.5 O 2, Li 1.2 Cr 0.4 Mn 0.4 O 2, Li 1.2 Cr 0.4 Ti 0.4 O 2, Examples include LiMnO 2 .

本発明のリチウム遷移金属系化合物粉体は、リチウムイオン拡散の点からオリビン構造、スピネル構造、層状構造を有するものが好ましい。これらの中でも、充放電に伴う結晶格子の膨張・収縮が大きく、本発明の効果が顕著である点から、層状構造またはスピネル
構造を有するものが好ましく、中でも層状構造を有するものが特に好ましい。
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,Iの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
The lithium transition metal-based compound powder of the present invention preferably has an olivine structure, a spinel structure, or a layered structure from the viewpoint of lithium ion diffusion. Among these, those having a layered structure or a spinel structure are preferred, and those having a layered structure are particularly preferred from the viewpoint that the expansion and contraction of the crystal lattice accompanying charge / discharge is large and the effect of the present invention is remarkable.
Further, foreign elements may be introduced into the lithium transition metal-based compound powder of the present invention. As the different elements, B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te , Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi , N, F, S, Cl, Br, or I. These foreign elements may be incorporated into the crystal structure of the lithium transition metal compound, or may not be incorporated into the crystal structure of the lithium transition metal compound, and may be a single element or compound on the particle surface or grain boundary. May be unevenly distributed.

本発明では、添加元素1として、B及びBiから選ばれる少なくとも1種以上を用いることを特徴としている。これらの添加元素1の中でも、工業原料として安価に入手でき、かつ軽元素である点から、添加元素1がBであることが好ましい。
添加元素1を含有する化合物(添加剤1)の種類としては、本発明の効果を発現するものであればその種類に格別の制限はないが、通常はホウ酸、オキソ酸の塩類、酸化物、水酸化物などが用いられる。これらの添加剤1の中でも、工業原料として安価に入手できる点から、ホウ酸、酸化物であることが好ましく、ホウ酸であることが特に好ましい。
In the present invention, as the additive element 1, at least one selected from B and Bi is used. Among these additive elements 1, the additive element 1 is preferably B from the viewpoint that it can be obtained at low cost as an industrial raw material and is a light element.
The type of the compound containing additive element 1 (additive 1) is not particularly limited as long as it exhibits the effects of the present invention, but usually boric acid, oxo acid salts, oxides , Hydroxides and the like are used. Among these additives 1, boric acid and oxides are preferable, and boric acid is particularly preferable from the viewpoint of being inexpensively available as an industrial raw material.

添加剤1の例示化合物としては、BO、B、B、B、BO、BO、B13、LiBO、LiB、Li、HBO、HBO、B(OH)、B(OH)、BiBO、Bi、Bi、Bi(OH)などが挙げられ、工業原料として比較的安価かつ容易に入手できる点から、好ましくはB、HBO、Biが挙げられ、特に好ましくは、HBOが挙げられる。これらの添加剤1は1種を単独で用いても良く、2種以上を混合して用いても良い。 Examples of the additive 1 include BO, B 2 O 2 , B 2 O 3 , B 4 O 5 , B 6 O, B 7 O, B 13 O 2 , LiBO 2 , LiB 5 O 8 , Li 2 B. 4 O 7 , HBO 2 , H 3 BO 3 , B (OH) 3 , B (OH) 4 , BiBO 3 , Bi 2 O 3 , Bi 2 O 5 , Bi (OH) 3 and the like are listed as industrial raw materials. From the viewpoint of being relatively inexpensive and easily available, B 2 O 3 , H 3 BO 3 , and Bi 2 O 3 are preferable, and H 3 BO 3 is particularly preferable. These additives 1 may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明では、添加元素2として、Mo及びWから選ばれる少なくとも1種以上を用いることを特徴としている。これらの添加元素2の中でも、効果が大きい点から、添加元素2がWであることが好ましい。
添加元素2を含有する化合物(添加剤2)の種類としては、本発明の効果を発現するものであればその種類に格別の制限はないが、通常は酸化物が用いられる。
In the present invention, as the additive element 2, at least one selected from Mo and W is used. Among these additive elements 2, the additive element 2 is preferably W from the viewpoint of great effect.
The type of the compound containing additive element 2 (additive 2) is not particularly limited as long as it exhibits the effects of the present invention, but an oxide is usually used.

添加剤2の例示化合物としては、MoO、MoO、MoO、MoO、Mo、Mo、LiMoO、WO、WO、WO、WO、W、W、W1849、W2058、W2470,W2573、W40118、LiWOなどが挙げられ、工業原料として比較的入手し易い、又はリチウムを包含するといった点から、好ましくはMoO、LiMoO、WO、LiWOが挙げられ、特に好ましくはWOが挙げられる。これらの添加剤2は1種を単独で用いても良く、2種以上を混合して用いても良い。 Exemplary compounds of the additive 2, MoO, MoO 2, MoO 3, MoO x, Mo 2 O 3, Mo 2 O 5, Li 2 MoO 4, WO, WO 2, WO 3, WO x, W 2 O 3 , W 2 O 5 , W 18 O 49 , W 20 O 58 , W 24 O 70 , W 25 O 73 , W 40 O 118 , Li 2 WO 4 and the like, which are relatively easily available as industrial raw materials, or From the viewpoint of including lithium, MoO 3 , Li 2 MoO 4 , WO 3 , and Li 2 WO 4 are preferable, and WO 3 is particularly preferable. These additives 2 may be used alone or in combination of two or more.

添加剤1と添加剤2の合計の添加量の範囲としては、主成分を構成する遷移金属元素の合計モル量に対して、通常0.01モル%以上、2モル%未満、好ましくは0.03モル%以上、1.8モル%以下、より好ましくは0.04モル%以上、1.6モル%以下、特に好ましくは0.05モル%以上、1.5モル%以下である。下限を下回ると、前記効果が得られなくなる可能性があり、上限を超えると電池性能の低下を招く可能性がある。   The range of the total amount of additive 1 and additive 2 is generally 0.01 mol% or more and less than 2 mol%, preferably 0. 0%, based on the total molar amount of transition metal elements constituting the main component. They are 03 mol% or more and 1.8 mol% or less, More preferably, they are 0.04 mol% or more and 1.6 mol% or less, Especially preferably, they are 0.05 mol% or more and 1.5 mol% or less. If the lower limit is not reached, the above effect may not be obtained. If the upper limit is exceeded, battery performance may be reduced.

添加剤1と添加剤2の添加割合の範囲としては、モル比で、通常10:1以上、1:20以下、好ましくは5:1以上、1:15以下、より好ましくは2:1以上、1:10以下、特に好ましくは1:1以上、1:5以下である。この範囲を逸脱すると、本発明の効果を得にくくなる虞がある。
加えて、本発明の正極活物質は、飛行時間型二次イオン質量分析(以下ToF−SIMSと略す)において、添加元素間、又は、添加元素と正極活物質を構成する元素が結合したフラグメントに由来するピークが観測されることが好ましい。
As the range of the addition ratio of additive 1 and additive 2, the molar ratio is usually 10: 1 or more, 1:20 or less, preferably 5: 1 or more, 1:15 or less, more preferably 2: 1 or more, 1:10 or less, particularly preferably 1: 1 or more and 1: 5 or less. If it deviates from this range, the effects of the present invention may be difficult to obtain.
In addition, in the time-of-flight secondary ion mass spectrometry (hereinafter abbreviated as “ToF-SIMS”), the positive electrode active material of the present invention is a fragment in which an additive element and an element constituting the positive electrode active material are combined. It is preferred that a derived peak is observed.

ここで、ToF−SIMSは、試料にイオンビームを照射して発生する二次イオンを飛行時間型質量分析器によって検出し、試料最表面に存在する化学種を推定する手法である。この方法により、表層付近に存在する添加元素の分布状態を推察することができる。添加元素間、又は、添加元素と正極活物質中の元素が結合したフラグメントに由来するピークを有さない場合には、添加元素の分散が十分でなく、本発明の効果が十分に得られない可能性がある。   Here, ToF-SIMS is a method for estimating chemical species present on the outermost surface of a sample by detecting secondary ions generated by irradiating the sample with an ion beam using a time-of-flight mass spectrometer. By this method, it is possible to infer the distribution state of additive elements existing in the vicinity of the surface layer. In the case where there is no peak derived from a fragment in which the additive element is combined with the element in the positive electrode active material, the additive element is not sufficiently dispersed, and the effect of the present invention cannot be sufficiently obtained. there is a possibility.

ところで、本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、ToF−SIMSにおいて、添加元素として、B及びWを用いたとき、BWO 及びM’BWO (M’は2価の状態を取りうる元素である)、又は、BWO 及びLiBWO に由来するピークが観測されることが好ましい。上記のピークが観測されない場合、添加元素の分散が十分でなく、本発明の効果が十分に得られない可能性がある。 By the way, the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material of the present invention has BWO 5 and M′BWO 6 (M ′) when B and W are used as additive elements in ToF-SIMS. is an element may take bivalent state), or, BWO 5 - and Li 2 BWO 6 - preferably that a peak derived is observed. When the above peak is not observed, the additive element is not sufficiently dispersed, and the effect of the present invention may not be sufficiently obtained.

〈平均一次粒子径〉
本発明のリチウムリチウム遷移金属系化合物粉体の平均径(平均一次粒子径)としては、特に限定されないが、下限としては、好ましくは0.1μm以上、より好ましくは0.2μm以上、最も好ましくは0.3μm以上、また、上限としては、好ましくは2μm以下、より好ましくは1.8μm以下、さらに好ましくは1.5μm以下、最も好ましくは1.2μm以下である。平均一次粒子径が、上記上限を超えると、粉体充填性に悪影響を及ぼしたり、比表面積が低下したりするために、レート特性や出力特性等の電池性能が低下する可能性が高くなる可能性がある。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる可能性がある。
なお、本発明における平均一次粒子径は、走査型電子顕微鏡(SEM)で観察した平均径であり、30,000倍のSEM画像を用いて、10〜30個程度の一次粒子の粒子径の平均値として求めることができる。
<Average primary particle size>
The average diameter (average primary particle diameter) of the lithium lithium transition metal compound powder of the present invention is not particularly limited, but the lower limit is preferably 0.1 μm or more, more preferably 0.2 μm or more, and most preferably The upper limit is preferably 2 μm or less, more preferably 1.8 μm or less, still more preferably 1.5 μm or less, and most preferably 1.2 μm or less. If the average primary particle size exceeds the above upper limit, it may adversely affect the powder filling property or the specific surface area will decrease, which may increase the possibility that the battery performance such as rate characteristics and output characteristics will decrease. There is sex. If the lower limit is not reached, there is a possibility that problems such as inferior reversibility of charge / discharge due to the undeveloped crystals.
In addition, the average primary particle diameter in this invention is an average diameter observed with the scanning electron microscope (SEM), and the average particle diameter of about 10-30 primary particles using a SEM image of 30,000 times. It can be obtained as a value.

〈メジアン径、5μm以下の粒子の積算分率〉
本発明のリチウム遷移金属系化合物粉体のメジアン径(50%積算径(D50))は通常2μm以上、好ましくは2.5μm以上、より好ましくは3μm以上、更に好ましくは3.5μm以上、最も好ましくは4μm以上で、通常20μm以下、好ましくは19μm以下、より好ましくは18μm以下、更に好ましくは17μm以下、最も好ましくは15μm以下である。メジアン径がこの下限を下回ると、正極活物質層形成時の塗布性に問題を生ずる可能性があり、上限を超えると電池性能の低下を来たす可能性がある。
<Cumulative fraction of particles with median diameter of 5 μm or less>
The median diameter (50% cumulative diameter (D 50 )) of the lithium transition metal-based compound powder of the present invention is usually 2 μm or more, preferably 2.5 μm or more, more preferably 3 μm or more, still more preferably 3.5 μm or more. It is preferably 4 μm or more, usually 20 μm or less, preferably 19 μm or less, more preferably 18 μm or less, still more preferably 17 μm or less, and most preferably 15 μm or less. If the median diameter is less than this lower limit, there is a possibility of causing a problem in applicability at the time of forming the positive electrode active material layer, and if it exceeds the upper limit, battery performance may be lowered.

また、本発明のリチウムリチウム遷移金属系化合物粉体の5μm以下の粒子の積算分率は、通常70%以下、好ましくは50%以下、より好ましくは40%以下、最も好ましくは30%以下である。5μm以下の粒子の積算分率が上記上限を超えると極板作成時における調液及び塗布不良の可能性がある。
なお、本発明において、平均粒子径としてのメジアン径及び50%積算径(D50)は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.60a−0.10iを設定し、粒子径基準を体積基準として測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。なお、超音波分散は行っていない。
The cumulative fraction of particles of 5 μm or less of the lithium lithium transition metal compound powder of the present invention is usually 70% or less, preferably 50% or less, more preferably 40% or less, and most preferably 30% or less. . If the cumulative fraction of particles of 5 μm or less exceeds the above upper limit, there is a possibility of liquid preparation and application failure during electrode plate preparation.
In the present invention, the median diameter and the 50% cumulative diameter (D 50 ) as the average particle diameter are set to a refractive index of 1.60a-0.10i using a known laser diffraction / scattering particle size distribution measuring device, Measured with the particle diameter standard as the volume standard. In the present invention, a 0.1 wt% sodium hexametaphosphate aqueous solution was used as a dispersion medium used in the measurement, and measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz). Note that ultrasonic dispersion is not performed.

〈BET比表面積〉
本発明のリチウムリチウム遷移金属系化合物粉体はまた、BET比表面積が、通常0.2m/g以上、好ましくは0.25m/g以上、更に好ましくは0.3m/g以上、最も好ましくは0.4m/g以上で、通常3m/g以下、好ましくは2.8m/g以下、更に好ましくは2.5m/g以下、最も好ましくは2.0m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいと嵩密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすくなる可能性がある。
<BET specific surface area>
The lithium-lithium transition metal compound powder of the present invention also has a BET specific surface area of usually 0.2 m 2 / g or more, preferably 0.25 m 2 / g or more, more preferably 0.3 m 2 / g or more, most Preferably it is 0.4 m 2 / g or more, usually 3 m 2 / g or less, preferably 2.8 m 2 / g or less, more preferably 2.5 m 2 / g or less, most preferably 2.0 m 2 / g or less. is there. If the BET specific surface area is smaller than this range, the battery performance is likely to be lowered, and if it is larger, the bulk density is difficult to increase, and there is a possibility that a problem is likely to occur in the coating property at the time of forming the positive electrode active material.

なお、BET比表面積は、公知のBET式粉体比表面積測定装置によって測定できる。本発明では、大倉理研製:AMS8000型全自動粉体比表面積測定装置を用い、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動法によるBET1点式法測定を行った。具体的には粉体試料を混合ガスにより150℃の温度で加熱脱気し、次いで液体窒素温度まで冷却して混合ガスを吸着させた後、これを水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導検出器によって検出し、これから試料の比表面積を算出した。   The BET specific surface area can be measured by a known BET type powder specific surface area measuring device. In the present invention, an OMS Riken: AMS8000 type automatic powder specific surface area measuring device was used, nitrogen was used as an adsorption gas, and helium was used as a carrier gas. Specifically, the powder sample was heated and deaerated with a mixed gas at a temperature of 150 ° C., then cooled to liquid nitrogen temperature to adsorb the mixed gas, and then heated to room temperature with water to be adsorbed. Nitrogen gas was desorbed, the amount was detected by a heat conduction detector, and the specific surface area of the sample was calculated therefrom.

〈嵩密度〉
本発明のリチウム遷移金属系化合物粉体の嵩密度は通常1.2g/cc以上、好ましくは1.3g/cc以上、より好ましくは1.4g/cc以上、最も好ましくは1.5g/cc以上で、通常3.0g/cc以下、好ましくは2.9g/cc以下、より好ましくは2.8g/cc以下、最も好ましくは2.7g/cc以下である。嵩密度がこの上限を上回ることは、粉体充填性や電極密度向上にとって好ましい一方、比表面積が低くなり過ぎる可能性があり、電池性能が低下する可能性がある。嵩密度がこの下限を下回ると粉体充填性や正極調製に悪影響を及ぼす可能性がある。
なお、本発明では、嵩密度は、リチウム遷移金属系化合物粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
<The bulk density>
The bulk density of the lithium transition metal compound powder of the present invention is usually 1.2 g / cc or more, preferably 1.3 g / cc or more, more preferably 1.4 g / cc or more, most preferably 1.5 g / cc or more. Usually, it is 3.0 g / cc or less, preferably 2.9 g / cc or less, more preferably 2.8 g / cc or less, and most preferably 2.7 g / cc or less. While the bulk density exceeding this upper limit is preferable for improving powder filling properties and electrode density, the specific surface area may become too low, and battery performance may be reduced. If the bulk density is below this lower limit, there is a possibility of adversely affecting the powder filling property and the positive electrode preparation.
In the present invention, the bulk density is 5 to 10 g of lithium transition metal compound powder in a 10 ml glass measuring cylinder and tapped 200 times with a stroke of about 20 mm (tap density) g / Calculate as cc.

〈体積抵抗率〉
本発明のリチウム遷移金属系化合物粉体を40MPaの圧力で圧密した時の体積抵抗率の値は、下限としては、1×10Ω・cm以上がさらに好ましく、3×10Ω・cm以上がさらに好ましく、5×10Ω・cm以上が最も好ましい。上限としては、1×10Ω・cm以下が好ましく、8×10Ω・cm以下がより好ましく、5×10Ω・cm以下がさらに好ましく、3×10Ω・cm以下が最も好ましい。この体積抵抗率がこの上限を超えると電池とした時の負荷特性が低下する可能性がある。一方、体積抵抗率がこの下限を下回ると、電池とした時の安全性などが低下する可能性がある。
<Volume resistivity>
The volume resistivity value when the lithium transition metal-based compound powder of the present invention is compacted at a pressure of 40 MPa is more preferably 1 × 10 5 Ω · cm or more as a lower limit, and 3 × 10 5 Ω · cm or more. Is more preferable, and 5 × 10 5 Ω · cm or more is most preferable. The upper limit is preferably 1 × 10 7 Ω · cm or less, more preferably 8 × 10 6 Ω · cm or less, further preferably 5 × 10 6 Ω · cm or less, and most preferably 3 × 10 6 Ω · cm or less. . If this volume resistivity exceeds this upper limit, the load characteristics when used as a battery may be reduced. On the other hand, if the volume resistivity is below this lower limit, the safety of the battery may be reduced.

なお、本発明において、リチウム遷移金属系化合物粉体の体積抵抗率は、四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mmで、印加電圧リミッタを90Vとして、リチウム遷移金属系化合物粉体を40MPaの圧力で圧密した状態で測定した体積抵抗率である。体積抵抗率の測定は、例えば、粉体抵抗測定装置(例えば、ダイアインスツルメンツ社製、ロレスターGP粉体抵抗測定システム)を用い、粉体用プローブユニットにより、所定の加圧下の粉体に対して行うことができる。   In the present invention, the volume resistivity of the lithium transition metal based compound powder is such that the four probe / ring electrode, the electrode spacing is 5.0 mm, the electrode radius is 1.0 mm, the sample radius is 12.5 mm, and the applied voltage limiter is 90 V. The volume resistivity measured in a state where the lithium transition metal-based compound powder is compacted at a pressure of 40 MPa. The volume resistivity can be measured, for example, by using a powder resistance measuring device (for example, Lorester GP powder resistance measuring system manufactured by Dia Instruments Co., Ltd.) with a powder probe unit on a powder under a predetermined pressure. It can be carried out.

〈水銀圧入法による細孔特性〉
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、好ましくは水銀圧入法による測定において、特定の条件を満たす。
本発明のリチウム遷移金属系化合物粉体の評価で採用する水銀圧入法について以下に説明する。
<Pore characteristics by mercury intrusion method>
The lithium transition metal-based compound powder for a lithium secondary battery positive electrode material of the present invention preferably satisfies a specific condition in measurement by a mercury intrusion method.
The mercury intrusion method employed in the evaluation of the lithium transition metal compound powder of the present invention will be described below.

水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀を浸入
させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布などの情報を得る手法である。
具体的には、まず、試料の入った容器内を真空排気した上で、容器内に水銀を満たす。水銀は表面張力が高く、そのままでは試料表面の細孔には水銀は浸入しないが、水銀に圧力をかけ、徐々に昇圧していくと、径の大きい細孔から順に径の小さい孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら水銀液面の変化(つまり細孔への水銀圧入量)を検出していけば、水銀に加えた圧力と水銀圧入量との関係を表す水銀圧入曲線が得られる。
The mercury intrusion method is a method for obtaining information such as specific surface area and pore size distribution from the relationship between pressure and the amount of mercury intruded into a pore of a sample such as porous particles while applying pressure. It is.
Specifically, first, the container containing the sample is evacuated and filled with mercury. Mercury has a high surface tension, and as it is, mercury does not penetrate into the pores on the sample surface, but when pressure is applied to the mercury and the pressure is gradually increased, the pores increase in size from the smallest to the smallest. Gradually mercury enters the pores. If a change in the mercury liquid level (that is, the amount of mercury intruded into the pores) is detected while the pressure is continuously increased, a mercury intrusion curve representing the relationship between the pressure applied to the mercury and the amount of mercury intruded can be obtained. .

ここで、細孔の形状を円筒状と仮定し、その半径をr、水銀の表面張力をδ、接触角をθとすると、細孔から水銀を押し出す方向への大きさは−2πrδ(cosθ)で表される(θ>90°なら、この値は正となる)。また、圧力P下で細孔へ水銀を押し込む方向への力の大きさはπrPで表されることから、これらの力の釣り合いから以下の数式(1)、数式(2)が導かれることになる。 Here, assuming that the shape of the pore is cylindrical, the radius is r, the surface tension of mercury is δ, and the contact angle is θ, the size in the direction of extruding mercury from the pore is −2πrδ (cos θ). (If θ> 90 °, this value is positive). Moreover, since the magnitude of the force in the direction of pushing mercury into the pores under the pressure P is represented by πr 2 P, the following formulas (1) and (2) are derived from the balance of these forces. It will be.

−2πrδ(cosθ)=πrP …(1)
Pr=−2δ(cosθ) …(2)
水銀の場合、表面張力δ=480dyn/cm程度、接触角θ=140°程度の値が一般的に良く用いられる。これらの値を用いた場合、圧力P下で水銀が圧入される細孔の半径は以下の数式(3)で表される。
-2πrδ (cosθ) = πr 2 P (1)
Pr = -2δ (cos θ) (2)
In the case of mercury, values of surface tension δ = 480 dyn / cm and contact angle θ = 140 ° are generally used well. When these values are used, the radius of the pore into which mercury is injected under the pressure P is expressed by the following formula (3).

Figure 2013041807
Figure 2013041807

すなわち、水銀に加えた圧力Pと水銀が浸入する細孔の半径rとの間には相関があることから、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積との関係を表す細孔分布曲線を得ることができる。例えば、圧力Pを0.1MPaから100MPaまで変化させると、7500nm程度から7.5nm程度までの範囲の細孔について測定が行えることになる。   That is, since there is a correlation between the pressure P applied to mercury and the radius r of the pore into which mercury enters, the size of the pore radius of the sample and its volume are calculated based on the obtained mercury intrusion curve. A pore distribution curve representing the relationship can be obtained. For example, when the pressure P is changed from 0.1 MPa to 100 MPa, the pores in the range from about 7500 nm to about 7.5 nm can be measured.

なお、水銀圧入法による細孔半径のおおよその測定限界は、下限が約2nm以上、上限が約200μm以下であり、後述する窒素吸着法に比べて、細孔半径が比較的大きな範囲における細孔分布の解析に向いていると言える。
水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水銀ポロシメータの具体例としては、Micromeritics社製オートポア、Quantachrome社製ポアマスター等が挙げられる。
Note that the approximate measurement limit of the pore radius by the mercury intrusion method is that the lower limit is about 2 nm or more and the upper limit is about 200 μm or less, and the pores in a relatively large range compared to the nitrogen adsorption method described later. It can be said that it is suitable for analysis of distribution.
Measurement by the mercury intrusion method can be performed using an apparatus such as a mercury porosimeter. Specific examples of the mercury porosimeter include an autopore manufactured by Micromeritics, a pore master manufactured by Quantachrome, and the like.

本発明のリチウム遷移金属系化合物粉体は、水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が、0.1cm/g以上、1.5cm/g以下であることが好ましい。水銀圧入量はより好ましくは0.15cm/g以上、最も好ましくは0.2cm/g以上であり、より好ましくは1.4cm/g以下、更に好ましくは1.3cm/g以下、最も好ましくは1.2cm/g以下である。この範囲の上限を超えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう。一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、粒子間のリチウム拡散が阻害され、負荷特性が低下する。 Lithium transition metal based compound powder according to the present invention, in a mercury intrusion curve obtained by mercury intrusion porosimetry, mercury penetration amount at boosting the pressure 3.86kPa to 413MPa is, 0.1 cm 3 / g or more, 1.5 cm 3 / g or less is preferable. The amount of mercury intrusion is more preferably 0.15 cm 3 / g or more, most preferably 0.2 cm 3 / g or more, more preferably 1.4 cm 3 / g or less, still more preferably 1.3 cm 3 / g or less, Most preferably, it is 1.2 cm 3 / g or less. When the upper limit of this range is exceeded, the voids become excessive, and when the lithium transition metal compound powder of the present invention is used as the positive electrode material, the filling rate of the positive electrode active material into the positive electrode plate becomes low, and the battery capacity is limited. Will be. On the other hand, if the lower limit of this range is not reached, voids between the particles become excessively small. Therefore, when a battery is produced using the lithium transition metal compound powder of the present invention as a positive electrode material, lithium diffusion between particles is inhibited. As a result, the load characteristics deteriorate.

本発明のリチウム遷移金属系化合物粉体は、上述の水銀圧入法によって細孔分布曲線を測定した場合に、通常、以下に説明する特定のメインピークが現れる。
なお、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以上の半径を有する細孔の単位重量(通常は1g)当たりの細孔体積の合計を、細孔半径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結んだグラフとして表す。特に本発明のリチウム遷移金属系化合物粉体を水銀圧入法により測定して得られた細孔分布曲線を、以下の記載では適宜「本発明にかかる細孔分布曲線」という。
In the lithium transition metal-based compound powder of the present invention, when a pore distribution curve is measured by the mercury intrusion method described above, a specific main peak described below usually appears.
In the present specification, the “pore distribution curve” refers to the total pore volume per unit weight (usually 1 g) of pores having a radius equal to or larger than the radius of the pores on the horizontal axis, The value obtained by differentiating the logarithm of the pore radius is plotted on the vertical axis, and is usually expressed as a graph connecting the plotted points. In particular, a pore distribution curve obtained by measuring the lithium transition metal-based compound powder of the present invention by a mercury intrusion method is referred to as “a pore distribution curve according to the present invention” as appropriate in the following description.

また、本明細書において「メインピーク」とは、細孔分布曲線が有するピークの内で最も大きいピークをいい、「サブピーク」とは、細孔分布曲線が有するメインピーク以外のピークを表す。
また、本明細書において「ピークトップ」とは、細孔分布曲線が有する各ピークにおいて縦軸の座標値が最も大きい値をとる点をいう。
In this specification, “main peak” refers to the largest peak among the peaks of the pore distribution curve, and “sub peak” refers to a peak other than the main peak of the pore distribution curve.
In the present specification, “peak top” refers to the point at which the coordinate value of the vertical axis takes the largest value in each peak of the pore distribution curve.

〈メインピーク〉
本発明に係る細孔分布曲線が有するメインピークは、そのピークトップが、細孔半径が通常1600nm以上、より好ましくは1700nm以上、最も好ましくは1800nm以上、また、通常3000nm以下、好ましくは2900nm以下、より好ましくは2800nm以下、更に好ましくは2700nm以下、最も好ましくは2600nm以下の範囲に存在する。この範囲の上限を超えると、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作成した場合に、正極材内でのリチウム拡散が阻害され、又は導電パスが不足して、負荷特性が低下する可能性がある。一方、この範囲の下限を下回ると、本発明のリチウム遷移金属系化合物粉体を用いて正極を作製した場合に、導電材や結着材の必要量が増加し、正極板(正極の集電体)への活物質の充填率が制約され、電池容量が制約される可能性がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性質が硬く、又は脆くなり、電池組立て時の捲回工程で塗膜の剥離が生じ易くなる可能性がある。
<Main peak>
The main peak of the pore distribution curve according to the present invention has a peak top with a pore radius of usually 1600 nm or more, more preferably 1700 nm or more, most preferably 1800 nm or more, and usually 3000 nm or less, preferably 2900 nm or less, More preferably, it exists in 2800 nm or less, More preferably, it is 2700 nm or less, Most preferably, it exists in the range of 2600 nm or less. When the upper limit of this range is exceeded, when a battery is made using the lithium transition metal compound powder of the present invention as the positive electrode material, lithium diffusion in the positive electrode material is inhibited, or the conductive path is insufficient, resulting in load characteristics. May be reduced. On the other hand, below the lower limit of this range, when a positive electrode is produced using the lithium transition metal compound powder of the present invention, the required amount of conductive material and binder increases, and the positive electrode plate (positive electrode current collector) increases. The active material filling rate into the body) is restricted, and the battery capacity may be restricted. In addition, with the formation of fine particles, the mechanical properties of the coating film at the time of coating become hard or brittle, and there is a possibility that the coating film is likely to be peeled off during the winding process during battery assembly.

また、本発明に係る細孔分布曲線が有する、細孔半径1600nm以上、3000nm以下にピークトップが存在するピークの細孔容量は、好適には、通常0.10cm/g以上、好ましくは0.15cm/g以上、より好ましくは0.18cm/g以上、最も好ましくは0.20cm/g以上、また、通常0.8cm/g以下、好ましくは0.7cm/g以下、より好ましくは0.6cm/g以下、最も好ましくは0.5cm/g以下である。この範囲の上限を超えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう可能性がある。一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下する可能性がある。 In addition, the pore volume of the peak having a peak top at a pore radius of 1600 nm or more and 3000 nm or less, which the pore distribution curve according to the present invention has, is preferably usually 0.10 cm 3 / g or more, preferably 0. .15cm 3 / g or more, more preferably 0.18 cm 3 / g or more, most preferably 0.20 cm 3 / g or more and usually 0.8 cm 3 / g or less, preferably 0.7 cm 3 / g, More preferably, it is 0.6 cm < 3 > / g or less, Most preferably, it is 0.5 cm < 3 > / g or less. When the upper limit of this range is exceeded, the voids become excessive, and when the lithium transition metal compound powder of the present invention is used as the positive electrode material, the filling rate of the positive electrode active material into the positive electrode plate becomes low, and the battery capacity is limited. There is a possibility of being. On the other hand, if the lower limit of the range is not reached, voids between the particles become too small. Therefore, when a battery is produced using the lithium transition metal compound powder of the present invention as a positive electrode material, lithium diffusion between secondary particles is caused. May be hindered and load characteristics may be reduced.

〈サブピーク〉
本発明に係る細孔分布曲線は、上述のメインピークに加えて、複数のサブピークを有していてもよく、特には80nm以上、1600nm未満の細孔半径の範囲内にピークトップが存在するサブピークを有することが好ましい。 サブピークのピークトップは、細孔
半径が通常80nm以上、より好ましくは100nm以上、最も好ましくは120nm以上、また、通常1600nm未満、好ましくは1400nm以下、より好ましくは1200nm以下、更に好ましくは1000nm以下、最も好ましくは800nm以下の範囲に存在する。この範囲内であれば、電解液が粒子内部に浸透し、レート特性が向上する。細孔半径がこれを越えて大きい場合、容積も大きくなり、タップ密度の低下を招いてしまう可能性がある。
<Sub-peak>
The pore distribution curve according to the present invention may have a plurality of sub-peaks in addition to the above-mentioned main peak, and in particular, a sub-peak in which a peak top exists in a pore radius range of 80 nm or more and less than 1600 nm. It is preferable to have. The peak top of the sub-peak has a pore radius of usually 80 nm or more, more preferably 100 nm or more, most preferably 120 nm or more, and usually less than 1600 nm, preferably 1400 nm or less, more preferably 1200 nm or less, still more preferably 1000 nm or less, most preferably Preferably, it exists in the range of 800 nm or less. If it exists in this range, electrolyte solution osmose | permeates the inside of particle | grains and a rate characteristic improves. When the pore radius is larger than this, the volume also increases, which may cause a decrease in tap density.

本発明に係る細孔分布曲線が有する細孔半径80nm以上、1600nm未満にピークトップが存在するサブピークの細孔容量は、好適には、通常0.001cm/g以上、好ましくは0.003cm/g以上、より好ましくは0.005cm/g以上、最も好ましくは0.007cm/g以上、また、通常0.3cm/g以下、好ましくは0.25cm/g以下、より好ましくは0.20cm/g以下、最も好ましくは0.18cm/g以下である。この範囲の上限を超えると二次粒子間の空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう可能性がある。一方、この範囲の下限を下回ると、二次粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下する可能性がある。 The pore volume of the sub-peak where the peak top is present in the pore radius of 80 nm or more and less than 1600 nm of the pore distribution curve according to the present invention is suitably usually 0.001 cm 3 / g or more, preferably 0.003 cm 3. / g or more, more preferably 0.005 cm 3 / g or more, and most preferably 0.007cm 3 / g or more and usually 0.3 cm 3 / g or less, preferably 0.25 cm 3 / g, more preferably 0.20 cm 3 / g or less, and most preferably not more than 0.18 cm 3 / g. If the upper limit of this range is exceeded, voids between secondary particles become excessive, and when the lithium transition metal-based compound powder of the present invention is used as a positive electrode material, the filling rate of the positive electrode active material into the positive electrode plate becomes low. The battery capacity may be limited. On the other hand, if the lower limit of this range is not reached, voids between secondary particles become excessively small. Therefore, when a battery is produced using the lithium transition metal-based compound powder of the present invention as a positive electrode material, between secondary particles. Lithium diffusion may be hindered and load characteristics may be reduced.

なお、本発明においては、水銀圧入法による細孔分布曲線が、細孔半径1600nm以上、3000nm以下にピークトップが存在するメインピークを少なくとも1つ以上有し、かつ細孔半径80nm以上、1600nm未満にピークトップが存在するサブピークを有するリチウム二次電池正極材料用リチウム遷移金属系化合物粉体が好ましいものとして挙げられる。   In the present invention, the pore distribution curve by mercury porosimetry has at least one main peak having a peak top at a pore radius of 1600 nm or more and 3000 nm or less, and a pore radius of 80 nm or more and less than 1600 nm. A lithium transition metal-based compound powder for a lithium secondary battery positive electrode material having a sub-peak in which a peak top is present is preferable.

〈結晶構造〉
本発明のリチウム遷移金属系化合物粉体は、少なくとも層状構造を有するリチウムニッケルマンガンコバルト系複合酸化物および/またはスピネル構造を有するリチウムマンガン系複合酸化物を主成分としたものが好ましい。これらの中でも、結晶格子の膨張・収縮が大きく、本発明の効果が顕著であるため、層状構造を有するリチウムニッケルマンガンコバルト系複合酸化物を主成分としたものがさらに好ましい。なお、本発明においては、リチウムニッケルマンガンコバルト系複合酸化物のうち、コバルトを含まないリチウムニッケルマンガン系複合酸化物も「リチウムニッケルマンガンコバルト系複合酸化物」との文言に含むものとする。
ここで、層状構造に関してさらに詳しく述べる。層状構造を有するものの代表的な結晶系としては、LiCoO、LiNiOのようなα−NaFeO型に属するものがあり、これらは六方晶系であり、その対称性から空間群
<Crystal structure>
The lithium transition metal-based compound powder of the present invention preferably contains at least a lithium nickel manganese cobalt-based composite oxide having a layered structure and / or a lithium manganese-based composite oxide having a spinel structure as a main component. Among these, since the expansion and contraction of the crystal lattice is large and the effect of the present invention is remarkable, the main component is a lithium nickel manganese cobalt composite oxide having a layered structure. In the present invention, among lithium nickel manganese cobalt-based composite oxides, lithium nickel manganese-based composite oxides not including cobalt are also included in the term “lithium nickel manganese cobalt-based composite oxide”.
Here, the layered structure will be described in more detail. As a typical crystal system having a layered structure, there are those belonging to the α-NaFeO 2 type such as LiCoO 2 and LiNiO 2 , which are hexagonal and have a space group due to their symmetry.

Figure 2013041807
Figure 2013041807

(以下「層状R(−3)m構造」と表記することがある。)に帰属される。
ただし、層状LiMeOとは、層状R(−3)m構造に限るものではない。これ以外にもいわゆる層状Mnと呼ばれるLiMnOは斜方晶系で空間群Pm2mの層状化合物であり、また、いわゆる213相と呼ばれるLiMnOは、Li[Li1/3Mn2/3]Oとも表記でき、単斜晶系の空間群C2/m構造であるが、やはりLi層と[Li1/3Mn2/3]層及び酸素層が積層した層状化合物である。
さらに、スピネル構造に関してさらに詳しく述べる。スピネル型構造を有するものの代表的な結晶系としては、LiMnのようなMgAl型に属するものがあり、これらは立方晶系であり、その対称性から空間群
(Hereinafter referred to as “layered R (−3) m structure”).
However, the layered LiMeO 2 is not limited to the layered R (−3) m structure. In addition to this, LiMnO 2 called so-called layered Mn is an orthorhombic and space-group Pm2m layered compound, and Li 2 MnO 3 called so-called 213 phase is Li [Li 1/3 Mn 2/3 ]. O 2 , which is a monoclinic space group C2 / m structure, is also a layered compound in which a Li layer, a [Li 1/3 Mn 2/3 ] layer, and an oxygen layer are stacked.
Furthermore, the spinel structure will be described in more detail. As a typical crystal system having a spinel structure, there is a crystal system belonging to the MgAl 2 O 4 type such as LiMn 2 O 4 , which is a cubic system, and because of its symmetry, the space group.

Figure 2013041807
Figure 2013041807

(以下「スピネル型Fd(−3)m構造」と表記することがある。)に帰属される。 ただし、スピネル型LiMeOとは、スピネル型Fd(−3)m構造に限るものではない。これ以外にも異なる空間郡(P432)に属するスピネル型LiMeOも存在する。 (Hereinafter sometimes referred to as “spinel-type Fd (−3) m structure”). However, the spinel type LiMeO 4 is not limited to the spinel type Fd (−3) m structure. In addition, spinel type LiMeO 4 belonging to a different space group (P4 3 32) also exists.

〈組成〉
また、本発明のリチウム含有遷移金属化合物粉体は、下記組成式(A)または(B)で示されるリチウム遷移金属系化合物粉体であることが好ましい。
Li1+xMO …(A)
Li[LiMn2−b−a]O4+δ・・・(B)
さらに、層状化合物においては、スピネル型化合物と比較して、相対的にMnの溶出量が少なく、サイクル特性におよぼすMnの影響が少ないため、本発明の効果がより明確な差となって現れる。従って、本発明は下記組成式(A)で示されるリチウム遷移金属系化合物粉体であることが、さらに好ましい。
1)下記組成式(A)で示されるリチウム遷移金属系化合物粉体である場合
<composition>
The lithium-containing transition metal compound powder of the present invention is preferably a lithium transition metal compound powder represented by the following composition formula (A) or (B).
Li 1 + x MO 2 (A)
Li [Li a M b Mn 2 -b-a] O 4 + δ ··· (B)
Further, in the layered compound, the amount of Mn eluted is relatively small compared to the spinel type compound, and the influence of Mn on the cycle characteristics is small. Therefore, the effect of the present invention appears as a clear difference. Therefore, the present invention is more preferably a lithium transition metal compound powder represented by the following composition formula (A).
1) In the case of a lithium transition metal compound powder represented by the following composition formula (A)

Li1+xMO …(A)
ただし、xは通常0以上、好ましくは0.01以上、さらに好ましくは0.02以上、最も好ましくは0.03以上、通常0.5以下、好ましくは0.4以下、さらに好ましくは0.3以下、最も好ましくは0.2以下である。Mは、Ni及びMn、或いは、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、好ましくは0.3以上、より好ましくは0.5以上、更に好ましくは0.6以上、より一層好ましくは0.7以上、更に好ましくは0.8以上、最も好ましくは0.9以上、通常5以下、好ましくは4以下、より好ましくは3以下、更に好ましくは2.5以下、最も好ましくは1.5以下である。Ni/Mモル比は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.05以上、通常0.50以下、好ましくは0.49以下、より好ましくは0.48以下、更に好ましくは0.47以下、最も好ましくは0.45以下である。Co/Mモル比は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.05以上、通常0.50以下、好ましくは0.40以下、より好ましくは0.30以下、更に好ましくは0.20以下、最も好ましくは0.15以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
Li 1 + x MO 2 (A)
However, x is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, most preferably 0.03 or more, usually 0.5 or less, preferably 0.4 or less, more preferably 0.3. Hereinafter, it is most preferably 0.2 or less. M is an element composed of Ni and Mn, or Ni, Mn and Co, and the Mn / Ni molar ratio is usually 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more, Preferably 0.6 or more, more preferably 0.7 or more, still more preferably 0.8 or more, most preferably 0.9 or more, usually 5 or less, preferably 4 or less, more preferably 3 or less, still more preferably 2.5 or less, most preferably 1.5 or less. The Ni / M molar ratio is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more, most preferably 0.05 or more, usually 0.50 or less, preferably 0. .49 or less, more preferably 0.48 or less, still more preferably 0.47 or less, and most preferably 0.45 or less. The Co / M molar ratio is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more, most preferably 0.05 or more, usually 0.50 or less, preferably 0. .40 or less, more preferably 0.30 or less, still more preferably 0.20 or less, and most preferably 0.15 or less. In addition, the rich portion of Li represented by x may be replaced with the transition metal site M.

なお、上記組成式(A)においては、酸素量のモル比(原子比)は便宜上2と記載しているが、多少の不定比性があってもよい。不定比性がある場合、酸素のモル比(原子比)は通常2±0.2の範囲、好ましくは2±0.15の範囲、より好ましくは2±0.12の範囲、さらに好ましくは2±0.10の範囲、特に好ましくは2±0.05の範囲である。
また、本発明のリチウム遷移金属系化合物粉体は、正極活物質の結晶性を高めるために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものであることが好ましい。
In the composition formula (A), the molar ratio (atomic ratio) of the oxygen amount is described as 2 for convenience, but there may be some non-stoichiometry. When there is nonstoichiometry, the molar ratio (atomic ratio) of oxygen is usually in the range of 2 ± 0.2, preferably in the range of 2 ± 0.15, more preferably in the range of 2 ± 0.12, and even more preferably 2. The range is ± 0.10, particularly preferably 2 ± 0.05.
In addition, the lithium transition metal-based compound powder of the present invention is preferably obtained by firing at a high temperature in an oxygen-containing gas atmosphere in order to increase the crystallinity of the positive electrode active material.

焼成温度の下限は特に、上記組成式(A)で示される組成を持つリチウム遷移金属系化合物においては、通常950℃以上、好ましくは960℃以上、より好ましくは970℃以上、最も好ましくは980℃以上であり、上限は1200℃以下、好ましくは1175℃以下、更に好ましくは1150℃以下、最も好ましくは1125℃以下である。焼成温度が低すぎると異相が混在し、また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎる。逆に焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。
2)下記組成式(B)で表されるリチウム遷移金属系化合物である場合。
In particular, the lower limit of the firing temperature is usually 950 ° C. or higher, preferably 960 ° C. or higher, more preferably 970 ° C. or higher, most preferably 980 ° C., in the lithium transition metal compound having the composition represented by the composition formula (A). The upper limit is 1200 ° C. or lower, preferably 1175 ° C. or lower, more preferably 1150 ° C. or lower, and most preferably 1125 ° C. or lower. If the firing temperature is too low, heterogeneous phases are mixed, and the lattice distortion increases without developing a crystal structure. Moreover, the specific surface area becomes too large. Conversely, if the firing temperature is too high, the primary particles grow excessively, sintering between the particles proceeds too much, and the specific surface area becomes too small.
2) A lithium transition metal compound represented by the following composition formula (B).

Li[LiMn2−b−a]O4+δ・・・(B)
ただし、Mは、Ni、Cr、Fe、Co、Cu、Zr、AlおよびMgから選ばれる遷移金属のうちの少なくとも1種から構成される元素であり、これらの中でも、高電位における充放電容量の点から、最も好ましくはNiである。
bの値は通常0.4以上、好ましくは0.425以上、より好ましくは0.45以上、さらに好ましくは0.475以上、最も好ましくは0.49以上、通常0.6以下、好ましくは0.575以下、より好ましくは0.55以下、更に好ましくは0.525以下、最も好ましくは0.51以下である。
Li [Li a M b Mn 2 -b-a] O 4 + δ ··· (B)
However, M is an element composed of at least one of transition metals selected from Ni, Cr, Fe, Co, Cu, Zr, Al and Mg, and among these, the charge / discharge capacity at a high potential is From the point of view, Ni is most preferable.
The value of b is usually 0.4 or more, preferably 0.425 or more, more preferably 0.45 or more, further preferably 0.475 or more, most preferably 0.49 or more, usually 0.6 or less, preferably 0. .575 or less, more preferably 0.55 or less, still more preferably 0.525 or less, and most preferably 0.51 or less.

bの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度が高く、好ましい。
また、aの値は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、さらに好ましくは0.03以上、最も好ましくは0.04以上、通常0.3以下、好ましくは0.2以下、より好ましくは0.15以下、更に好ましくは0.1以下、最も好ましくは0.075以下である。
If the value of b is in this range, the energy density per unit weight in the lithium transition metal compound is high, which is preferable.
The value of a is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, further preferably 0.03 or more, most preferably 0.04 or more, usually 0.3 or less, preferably 0. .2 or less, more preferably 0.15 or less, still more preferably 0.1 or less, and most preferably 0.075 or less.

aの値がこの範囲であれば、リチウム遷移金属系化合物における単位重量当たりのエネルギー密度を大きく損なわず、かつ、良好な負荷特性が得られるため、好ましい。
さらに、δの値は通常±0.5の範囲、好ましくは±0.4の範囲、より好ましくは±0.2の範囲、さらに好ましくは±0.1の範囲、特に好ましくは±0.05の範囲である。
If the value of a is within this range, the energy density per unit weight in the lithium transition metal-based compound is not significantly impaired, and good load characteristics can be obtained, which is preferable.
Furthermore, the value of δ is usually in the range of ± 0.5, preferably in the range of ± 0.4, more preferably in the range of ± 0.2, still more preferably in the range of ± 0.1, particularly preferably ± 0.05. Range.

δの値がこの範囲であれば、結晶構造としての安定性が高く、このリチウム遷移金属系化合物を用いて作製した電極を有する電池のサイクル特性や高温保存が良好であるため、好ましい。
ここで本発明のリチウム遷移金属系化合物の組成であるリチウムニッケルマンガン系複合酸化物におけるリチウム組成の化学的な意味について、以下により詳細に説明する。
If the value of δ is within this range, the stability as a crystal structure is high, and the cycle characteristics and high-temperature storage of a battery having an electrode produced using this lithium transition metal compound are favorable.
Here, the chemical meaning of the lithium composition in the lithium nickel manganese composite oxide, which is the composition of the lithium transition metal compound of the present invention, will be described in more detail below.

上記リチウム遷移金属系化合物の組成式のa,bを求めるには、各遷移金属とリチウムを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mnの比を求める事で計算される。
構造的視点では、aに係るリチウムは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、aに係るリチウムによって、電荷中性の原理によりMとマンガンの平均価数が3.5価より大きくなる。
In order to obtain a and b in the composition formula of the lithium transition metal compound, each transition metal and lithium are analyzed with an inductively coupled plasma emission spectrometer (ICP-AES) to obtain a ratio of Li / Ni / Mn. It is calculated by the thing.
From a structural point of view, it is considered that lithium related to a is substituted for the same transition metal site. Here, due to the lithium according to a, the average valence of M and manganese becomes larger than 3.5 due to the principle of charge neutrality.

〈含有炭素濃度C〉
本発明のリチウム遷移金属系化合物粉体の含有炭素濃度C(重量%)値は、通常0.005重量%以上、好ましくは0.01重量%以上、更に好ましくは0.015重量%以上、最も好ましくは0.02重量%以上であり、通常0.25重量%以下、好ましくは0.2重量%以下、より好ましくは0.15重量%以下、更に好ましくは0.1重量%以下、最も好ましくは0.07重量%以下である。この下限を下回ると電池性能が低下する可能性があり、上限を超えると電池とした時のガス発生による膨れが増大したり電池性能が低下したりする可能性がある。
<Contained carbon concentration C>
The carbon concentration C (wt%) value of the lithium transition metal compound powder of the present invention is usually 0.005 wt% or more, preferably 0.01 wt% or more, more preferably 0.015 wt% or more, most preferably Preferably it is 0.02% by weight or more, usually 0.25% by weight or less, preferably 0.2% by weight or less, more preferably 0.15% by weight or less, still more preferably 0.1% by weight or less, most preferably Is 0.07% by weight or less. If the lower limit is not reached, battery performance may be reduced. If the upper limit is exceeded, swelling due to gas generation when the battery is produced may increase or battery performance may be reduced.

本発明において、リチウムニッケルマンガンコバルト系複合酸化物粉体の含有炭素濃度Cは、後述の実施例の項で示すように、酸素気流中燃焼(高周波加熱炉式)赤外吸収法による測定で求められる。
なお、後述の炭素分析により求めたリチウムニッケルマンガンコバルト系複合酸化物粉体の含有炭素成分は、炭酸化合物、特に炭酸リチウムの付着量についての情報を示すもの
とみなすことができる。これは、炭素分析により求めた炭素量を、全て炭酸イオン由来と仮定した数値と、イオンクロマトグラフィーにより分析した炭酸イオン濃度が概ね一致することによる。
In the present invention, the carbon concentration C of the lithium nickel manganese cobalt-based composite oxide powder is determined by measurement using an oxygen gas combustion (high-frequency heating furnace type) infrared absorption method, as shown in the Examples section below. It is done.
In addition, the carbon component contained in the lithium nickel manganese cobalt composite oxide powder obtained by carbon analysis described later can be regarded as indicating information on the amount of carbonic acid compound, particularly lithium carbonate. This is due to the fact that the carbon amount determined by carbon analysis is assumed to be all derived from carbonate ions, and the carbonate ion concentration analyzed by ion chromatography generally agrees.

一方、電子伝導性を高めるための手法として導電性カーボンと複合化処理をしたりする場合には、前記規定範囲を超えるC量が検出されることがあるが、そのような処理が施された場合におけるC値は、前記規定範囲に限定されるものではない。
〈好適組成〉
本発明のリチウム二次電池正極材料用リチウム遷移金属系複合酸化物粉体は、前記組成式(A)におけるMサイト中の原子構成が下記式(I)又は下記式(I’)で示されるものが特に好ましい。
On the other hand, when a composite treatment with conductive carbon is performed as a method for increasing the electron conductivity, a C amount exceeding the specified range may be detected, but such a treatment was performed. The C value in the case is not limited to the specified range.
<Preferred composition>
In the lithium transition metal composite oxide powder for a lithium secondary battery positive electrode material of the present invention, the atomic configuration in the M site in the composition formula (A) is represented by the following formula (I) or the following formula (I ′). Those are particularly preferred.

M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/21−xCo2/(2+z) …(I)
(ただし、上記式(I)中、
0≦x≦0.1、
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。)
M=Liz’/(2+z’){(Ni(1+y’)/2Mn(1−y’)/21−x’Cox’2/(2+z’) …(I’)(ただし、組成式(I’)中、
0.1<x’≦0.35
−0.1≦y’≦0.1
(1−x’)(0.02−0.98y’)≦z’≦(1−x’)(0.20−0.88y’))
上記(I)式において、xの値は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.04以上、通常0.1以下、好ましくは0.099以下、最も好ましくは0.098以下である。
M = Li z / (2 + z) {(Ni (1 + y) / 2 Mn (1-y) / 2 ) 1-x Co x } 2 / (2 + z) (I)
(However, in the above formula (I),
0 ≦ x ≦ 0.1,
−0.1 ≦ y ≦ 0.1,
(1-x) (0.05-0.98y) ≤z≤ (1-x) (0.20-0.88y)
It is. )
M = Li z ′ / (2 + z ′) {(Ni (1 + y ′) / 2 Mn (1-y ′) / 2 ) 1-x ′ Co x ′ } 2 / (2 + z ′) (I ′) (however, In the composition formula (I ′),
0.1 <x ′ ≦ 0.35
−0.1 ≦ y ′ ≦ 0.1
(1-x ′) (0.02-0.98y ′) ≦ z ′ ≦ (1-x ′) (0.20-0.88y ′))
In the above formula (I), the value of x is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more, most preferably 0.04 or more, usually 0.1. Hereinafter, it is preferably 0.099 or less, and most preferably 0.098 or less.

yの値は通常−0.1以上、好ましくは−0.05以上、より好ましくは−0.03以上、最も好ましくは−0.02以上、通常0.1以下、好ましくは0.05以下、より好ましくは0.03以下、最も好ましくは0.02以下である。
zの値は通常(1−x)(0.05−0.98y)以上、好ましくは(1−x)(0.06−0.98y)以上、より好ましくは(1−x)(0.07−0.98y)以上、さらに好ましくは(1−x)(0.08−0.98y)以上、最も好ましくは(1−x)(0.10−0.98y)以上、通常(1−x)(0.20−0.88y)以下、好ましくは(1−x)(0.18−0.88y)以下、より好ましくは(1−x)(0.17−0.88y)、最も好ましくは(1−x)(0.16−0.88y)以下である。zがこの下限を下回ると導電性が低下し、上限を超えると遷移金属サイトに置換する量が多くなり過ぎて電池容量が低くなる等、これを使用したリチウム二次電池の性能低下を招く可能性がある。また、zが大きすぎると、活物質粉体の炭酸ガス吸収性が増大するため、大気中の炭酸ガスを吸収しやすくなる。その結果、含有炭素濃度が大きくなると推定される。
The value of y is usually −0.1 or more, preferably −0.05 or more, more preferably −0.03 or more, most preferably −0.02 or more, usually 0.1 or less, preferably 0.05 or less, More preferably, it is 0.03 or less, and most preferably 0.02 or less.
The value of z is usually (1-x) (0.05-0.98y) or more, preferably (1-x) (0.06-0.98y) or more, more preferably (1-x) (0. 07-0.98y) or more, more preferably (1-x) (0.08-0.98y) or more, most preferably (1-x) (0.10-0.98y) or more, usually (1- x) (0.20-0.88y) or less, preferably (1-x) (0.18-0.88y) or less, more preferably (1-x) (0.17-0.88y), most Preferably, it is (1-x) (0.16-0.88y) or less. If z is below this lower limit, the conductivity will decrease, and if it exceeds the upper limit, the amount of substitution to transition metal sites will increase so much that the battery capacity will decrease, leading to a decrease in the performance of lithium secondary batteries using this. There is sex. On the other hand, if z is too large, the carbon dioxide absorbability of the active material powder increases, so that it becomes easy to absorb carbon dioxide in the atmosphere. As a result, it is estimated that the concentration of contained carbon increases.

上記(I’)式において、x’の値は通常0.1より大きく、好ましくは0.15以上、より好ましくは0.2以上、更に好ましくは0.25以上、最も好ましくは0.30以上、通常0.35以下、好ましくは0.345以下、最も好ましくは0.34以下である。
y’の値は通常−0.1以上、好ましくは−0.05以上、より好ましくは−0.03以上、最も好ましくは−0.02以上、通常0.1以下、好ましくは0.05以下、より好ましくは0.03以下、最も好ましくは0.02以下である。
In the above formula (I ′), the value of x ′ is usually larger than 0.1, preferably 0.15 or more, more preferably 0.2 or more, still more preferably 0.25 or more, most preferably 0.30 or more. Usually, it is 0.35 or less, preferably 0.345 or less, and most preferably 0.34 or less.
The value of y ′ is usually −0.1 or more, preferably −0.05 or more, more preferably −0.03 or more, most preferably −0.02 or more, usually 0.1 or less, preferably 0.05 or less. More preferably, it is 0.03 or less, and most preferably 0.02 or less.

z’の値は通常(1−x’)(0.02−0.98y’)以上、好ましくは(1−x’)(0.03−0.98y)以上、より好ましくは(1−x’)(0.04−0.98y’)以上、最も好ましくは(1−x’)(0.05−0.98y’)以上、通常(1−x’)(0.20−0.88y’)以下、好ましくは(1−x’)(0.18−0.88y’)以下、より好ましくは(1−x’)(0.17−0.88y’)、最も好ましくは(1−x’)(0.16−0.88y’)以下である。z’がこの下限を下回ると導電性が低下し、上限を超えると遷移金属サイトに置換する量が多くなり過ぎて電池容量が低くなる等、これを使用したリチウム二次電池の性能低下を招く可能性がある。また、z’が大きすぎると、活物質粉体の炭酸ガス吸収性が増大するため、大気中の炭酸ガスを吸収しやすくなる。その結果、含有炭素濃度が大きくなると推定される。   The value of z ′ is usually (1−x ′) (0.02−0.98y ′) or more, preferably (1−x ′) (0.03−0.98y) or more, more preferably (1−x ') (0.04-0.98y') or more, most preferably (1-x ') (0.05-0.98y') or more, usually (1-x ') (0.20-0.88y) ') Or less, preferably (1-x') (0.18-0.88y ') or less, more preferably (1-x') (0.17-0.88y '), most preferably (1- x ′) (0.16-0.88y ′) or less. If z ′ is less than this lower limit, the conductivity will be reduced, and if it exceeds the upper limit, the amount of substitution to transition metal sites will be too much and the battery capacity will be reduced. there is a possibility. On the other hand, if z ′ is too large, the carbon dioxide absorbability of the active material powder increases, so that it becomes easy to absorb carbon dioxide in the atmosphere. As a result, it is estimated that the concentration of contained carbon increases.

上記(I),(I’)式の組成範囲において、z,z’値が定比である下限に近い程、電池とした時のレート特性や出力特性が低くなる傾向が見られ、逆にz,z’値が上限に近い程、電池とした時のレート特性や出力特性が高くなるが、一方で容量が低下するという傾向が見られる。また、y,y’値が下限、つまりマンガン/ニッケルモル比(原子比)が小さい程、低い充電電圧で容量が出るが、高い充電電圧を設定した電池のサイクル特性や安全性が低下する傾向が見られ、逆にy,y’値が上限に近い程、高い充電電圧で設定した電池のサイクル特性や安全性が向上する一方で、放電容量やレート特性、出力特性が低下する傾向が見られる。また、x,x’値が下限に近い程、電池とした時のレート特性や出力特性といった負荷特性が低くなるという傾向が見られ、逆に、x,x’値が上限に近い程、電池とした時のレート特性や出力特性が高くなるが、この上限を超えると、高い充電電圧で設定した場合のサイクル特性や安全性が低下し、また原料コストが高くなる。前記組成パラメータx,x’、y,y’、z,z’を規定範囲とすることは、本発明の重要な構成要素である。   In the composition range of the above formulas (I) and (I ′), as the z and z ′ values are closer to the lower limit, which is a constant ratio, the battery tends to have lower rate characteristics and output characteristics. The closer the z and z ′ values are to the upper limit, the higher the rate characteristics and output characteristics of the battery, but there is a tendency for the capacity to decrease. In addition, the lower the y and y ′ values, that is, the smaller the manganese / nickel molar ratio (atomic ratio), the lower the charging voltage, but the lower the cycle characteristics and the safety of the battery with a higher charging voltage. On the contrary, as the y and y ′ values are closer to the upper limit, the cycle characteristics and safety of the battery set at a higher charge voltage improve, while the discharge capacity, rate characteristics, and output characteristics tend to decrease. It is done. Also, the closer the x and x ′ values are to the lower limit, the lower the load characteristics such as the rate characteristics and the output characteristics of the battery, and conversely, the closer the x and x ′ values are to the upper limit, However, if this upper limit is exceeded, cycle characteristics and safety when set at a high charge voltage will be reduced, and raw material costs will be increased. It is an important component of the present invention that the composition parameters x, x ', y, y', z, and z 'are within a specified range.

ここで本発明のリチウム遷移金属系化合物粉体の好適組成であるリチウムニッケルマンガンコバルト系複合酸化物におけるLi組成(z,z’及びx,x’)の化学的な意味について、以下により詳細に説明する。
前述のように層状構造は必ずしもR(−3)m構造に限られるものではないが、R(−3)m構造に帰属しうるものであることが電気化学的な性能面から好ましい。
Here, the chemical meaning of the Li composition (z, z ′ and x, x ′) in the lithium nickel manganese cobalt composite oxide, which is a preferred composition of the lithium transition metal compound powder of the present invention, will be described in more detail below. explain.
As described above, the layered structure is not necessarily limited to the R (-3) m structure, but is preferably one that can be attributed to the R (-3) m structure from the viewpoint of electrochemical performance.

上記リチウム遷移金属系化合物の組成式のx,x’、y,y’、z,z’を求めるには、各遷移金属とLiを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mn/Coの比を求める事で計算される。
構造的視点では、z,z’に係るLiは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、z,z’に係るLiによって、電荷中性の原理によりNiの平均価数が2価より大きくなる(3価のNiが生成する)。z,z’はNi平均価数を上昇させるため、Ni価数(Ni(III)の割合)の指標となる。
In order to obtain x, x ′, y, y ′, z, and z ′ of the composition formula of the lithium transition metal compound, each transition metal and Li are analyzed with an inductively coupled plasma emission spectrometer (ICP-AES). Thus, the ratio is calculated by determining the ratio of Li / Ni / Mn / Co.
From a structural point of view, it is considered that Li related to z and z ′ is substituted for the same transition metal site. Here, due to Li relating to z and z ′, the average valence of Ni becomes larger than divalent (trivalent Ni is generated) by the principle of charge neutrality. Since z and z ′ increase the Ni average valence, they are indicators of the Ni valence (the ratio of Ni (III)).

なお、上記組成式から、z,z’の変化に伴うNi価数(m)を計算すると、Co価数は3価、Mn価数は4価であるとの前提で、下記式のようになる。   When the Ni valence (m) accompanying the change of z and z ′ is calculated from the above composition formula, the Co valence is trivalent and the Mn valence is tetravalent, Become.

Figure 2013041807
Figure 2013041807

この計算結果は、Ni価数はz,z’のみで決まるのではなく、x,x’及びy,y’の関数となっていることを意味している。z,z’=0かつy,y’=0であれば、x,x’の値に関係なくNi価数は2価のままである。z,z’が負の値になる場合は、活物質中に含まれるLi量が化学量論量より不足していることを意味し、あまり大きな負の値を有するものは本発明の効果が出ない可能性がある。一方、同じz,z’値であっても、Niリッチ(y,y’値が大きい)及び/又はCoリッチ(x,x’値が大きい)な組成ほどNi価数は高くなるということを意味し、電池に用いた場合、レート特性や出力特性が高くなるが、反面、容量低下しやすくなる結果となる。このことから、z,z’値の上限と下限はx,x’及びy,y’の関数として規定するのがより好ましいと言える。   This calculation result means that the Ni valence is not determined only by z and z ', but is a function of x, x' and y, y '. If z, z '= 0 and y, y' = 0, the Ni valence remains divalent regardless of the values of x, x '. When z and z ′ are negative values, it means that the amount of Li contained in the active material is less than the stoichiometric amount, and those having a very large negative value are effective for the present invention. It may not come out. On the other hand, even if the z and z ′ values are the same, the Ni valence increases as the composition is rich in Ni (y, y ′ values are large) and / or Co rich (large in x, x ′ values). This means that when used in a battery, the rate characteristics and output characteristics are improved, but on the other hand, the capacity tends to decrease. From this, it can be said that the upper and lower limits of the z and z 'values are more preferably defined as functions of x, x' and y, y '.

また、x値が0≦x≦0.1と、Co量が少ない範囲にあると、コストが低減されることに加え、高い充電電位で充電するように設計されたリチウム二次電池として使用した場合において、充放電容量やサイクル特性、安全性が向上する。
他方、x’値が0.10<x’≦0.35と、Co量が比較的多い範囲にあると、リチウム二次電池として使用した場合において、充放電容量やサイクル特性、負荷特性、安全性などがバランスよく向上する。
In addition, when the x value is in the range of 0 ≦ x ≦ 0.1 and the amount of Co is small, in addition to reducing the cost, it was used as a lithium secondary battery designed to be charged at a high charging potential. In some cases, charge / discharge capacity, cycle characteristics, and safety are improved.
On the other hand, if the x ′ value is in the range of 0.10 <x ′ ≦ 0.35 and the amount of Co is relatively large, when used as a lithium secondary battery, the charge / discharge capacity, cycle characteristics, load characteristics, safety Improved in a balanced manner.

〈粉末X線回折ピーク〉
本発明において、前記組成式(I)及び(II)を満たす組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体は、CuKα線を使用した粉末X線回折パターンにおいて、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅をFWHM(110)とした時に、0.1≦FWHM(110)≦0.3の範囲にあることが好ましい。
<Powder X-ray diffraction peak>
In the present invention, the lithium nickel manganese cobalt composite oxide powder having a composition satisfying the composition formulas (I) and (II) has a diffraction angle 2θ of 64.5 in a powder X-ray diffraction pattern using CuKα rays. When the half width of the (110) diffraction peak existing in the vicinity of ° is FWHM (110), it is preferably in the range of 0.1 ≦ FWHM (110) ≦ 0.3.

一般に、結晶性の尺度としてX線回折ピークの半価幅が用いられることから、本発明者らは結晶性と電池性能の相関について鋭意検討を行った。その結果、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅の値が、規定した範囲内にあるものが良好な電池性能を発現することを見出した。
本発明において、FWHM(110)は通常0.01以上、好ましくは0.05以上、より好ましくは0.10以上、更に好ましくは0.12以上、最も好ましくは0.14以上、通常0.3以下、好ましくは0.28以下、より好ましくは0.26以下、更に好ましくは0.24以下、最も好ましくは0.22以下である。
In general, since the half width of the X-ray diffraction peak is used as a measure of crystallinity, the present inventors have conducted intensive studies on the correlation between crystallinity and battery performance. As a result, it has been found that when the half-value width of the (110) diffraction peak having a diffraction angle 2θ of around 64.5 ° is within the specified range, good battery performance is exhibited.
In the present invention, the FWHM (110) is usually 0.01 or more, preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.12 or more, most preferably 0.14 or more, usually 0.3. Hereinafter, it is preferably 0.28 or less, more preferably 0.26 or less, further preferably 0.24 or less, and most preferably 0.22 or less.

また、本発明において、前記組成式(I)及び(II)を満たす組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体は、CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)回折ピーク、64.5°付近に存在する(110)回折ピーク、及び68°付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異相由来の回折ピークを持たないか、あるいは異相由来の回折ピークを有する場合、本来の結晶相の回折ピークに対する異相ピーク
の積分強度比が、各々、以下の範囲内にあることが好ましい。
In the present invention, the lithium nickel manganese cobalt based composite oxide powder having a composition satisfying the composition formulas (I) and (II) has a diffraction angle 2θ of 64 in powder X-ray diffraction measurement using CuKα rays. In the (018) diffraction peak existing at around 0 °, the (110) diffraction peak around 64.5 °, and the (113) diffraction peak around 68 °, a different phase is present on the higher angle side than the peak top. In the case of having no diffraction peak derived from or having a diffraction peak derived from a different phase, the integrated intensity ratio of the different phase peak to the diffraction peak of the original crystal phase is preferably in the following range, respectively.

0≦I018 /I018≦0.20 0≦I110 /I110≦0.25
0≦I113 /I113≦0.30(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018 、I110 、I113 は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。)
0 ≦ I 018 * / I 018 ≦ 0.20 0 ≦ I 110 * / I 110 ≦ 0.25
0 ≦ I 113 * / I 113 ≦ 0.30 (where I 018 , I 110 , and I 113 represent the integrated intensities of the diffraction peaks of (018), (110), and (113), respectively, and I 018 * , (I 110 * and I 113 * represent the integrated intensities of the diffraction peaks derived from different phases appearing at higher angles than the peak tops of the (018), (110), and (113) diffraction peaks, respectively.)

ところで、この異相由来の回折ピークの原因物質の詳細は明らかではないが、異相が含まれると、電池とした時の容量やレート特性、サイクル特性等が低下する。このため、回折ピークは本発明の電池性能に悪影響を与えない程度の回折ピークを有していてもよいが、前記範囲の割合であることが好ましく、それぞれの回折ピークに対する異相由来の回折ピークの積分強度比は、通常I018 /I018≦0.20、I110 /I110≦0.25、I113 /I113≦0.30、好ましくはI018 /I018≦0.15、I110 /I110≦0.20、I113 /I113≦0.25、より好ましくはI018 /I018≦0.10、I110 /I110≦0.15、I113 /I113≦0.20、更に好ましくはI018 /I018≦0.05、I110 /I110≦0.10、I113 /I113≦0.15であり、最も好ましくは異相由来の回折ピークが無いことが特に好ましい。 By the way, although the details of the causative substance of the diffraction peak derived from this heterogeneous phase are not clear, when a heterogeneous phase is included, the capacity, rate characteristics, cycle characteristics, etc. when it is made into a battery are lowered. For this reason, the diffraction peak may have a diffraction peak that does not adversely affect the battery performance of the present invention, but is preferably a ratio in the above range, and the diffraction peak derived from a different phase with respect to each diffraction peak. The integrated intensity ratio is usually I 018 * / I 018 ≦ 0.20, I 110 * / I 110 ≦ 0.25, I 113 * / I 113 ≦ 0.30, preferably I 018 * / I 018 ≦ 0. 15, I 110 * / I 110 ≦ 0.20, I 113 * / I 113 ≦ 0.25, more preferably I 018 * / I 018 ≦ 0.10, I 110 * / I 110 ≦ 0.15, I 113 * / I 113 ≦ 0.20, more preferably I 018 * / I 018 ≦ 0.05 , I 110 * / I 110 ≦ 0.10, an I 113 * / I 113 ≦ 0.15 , It is particularly preferred is also preferably no diffraction peaks derived from heterogeneous phases.

〈AFMにより検出される化学的な吸着ポイント〉
本発明のリチウム遷移金属系化合物粉体は、活物質粒子表面に化学的な吸着ポイントを多く有すること望ましい。ここで言う化学的な吸着ポイントは、以下の方法によって測定される。まず、ポリアクリル酸で化学修飾したプローブを用いたAFM(ブルカー・エイエックスエス社製NanoscopeIII)によって、活物質表面の任意の箇所を4μm
×4μmの面積で走査し、画像データ(高さ像と位相像)を取得する。なお、プローブの修飾は以下の手順で行う。まず、材質がシリコンのプローブを0.1wt%のポリアクリル酸水溶液中に2〜3時間静置し、次にプローブを水溶液から取り出して1日程度風乾をすることで、プローブにポリアクリル酸を修飾する。また、AFMにおける走査は以下の条件で行う。走査速度は1Hz、観察点数は512×512ポイントとして画像データを取得する。
<Chemical adsorption points detected by AFM>
The lithium transition metal-based compound powder of the present invention desirably has many chemical adsorption points on the surface of the active material particles. The chemical adsorption point here is measured by the following method. First, by using AFM (Nanoscope III manufactured by Bruker AXS Co., Ltd.) using a probe chemically modified with polyacrylic acid, an arbitrary portion on the surface of the active material is 4 μm
Scan with an area of × 4 μm to obtain image data (height image and phase image). Probe modification is performed according to the following procedure. First, a probe made of silicon is left in a 0.1 wt% polyacrylic acid aqueous solution for 2 to 3 hours, and then the probe is taken out of the aqueous solution and air-dried for about one day, so that the polyacrylic acid is attached to the probe. Qualify. Further, scanning in AFM is performed under the following conditions. Image data is acquired with a scanning speed of 1 Hz and a number of observation points of 512 × 512 points.

次に、取得した画像データのうち、位相像について、画像解析ソフトImageProPlus(Media Cybernetics社製 (株)日本ローパー社販売)を用
いて平坦化処理と化学的な吸着ポイント抽出の自動閾値処理を行い、個数をカウントする。(ここで言う平坦化処理とは、画像から背景画像を作成し元画像から背景画像の減算処理を行うことにより、一様でない画像の背景をならしてフラットにする方法である。また、化学的な吸着ポイント抽出方法は、取得した画像において、濃度が明るく、面積が1000nm〜20000nmであり、真円度が0.0〜3.0であり、楕円短長軸比が1.0〜3.0かつ不均質度が0.05〜1.0である画像上のポイントを化学的な吸着ポイントとして個数カウントした。)活物質表面それぞれの任意の5箇所においてAFM走査による画像データの取得および取得した画像における平坦化処理と化学的な吸着ポイントの個数カウントを行い、カウントした化学的な吸着ポイントの数の平均値を求め、その値をもって化学的な状態を評価した際の値としたとき、その値が10以上であることが導電材もしくは結着剤との結着強度が高まるため好ましく、20以上であることがさらに好ましく、30以上であることが特に好ましい。
Next, among the acquired image data, the phase image is subjected to flattening processing and automatic threshold extraction processing of chemical adsorption points using image analysis software ImageProPlus (manufactured by Media Cybernetics, Inc., Japan Roper) Count the number. (The flattening process mentioned here is a method in which a background image is created from an image and a background image is subtracted from the original image to smooth the background of the non-uniform image and make it flat. in adsorption point extraction method, the acquired image, bright concentration, the area is 1000nm 2 ~20000nm 2, a circularity of 0.0 to 3.0, an ellipse short length axis ratio of 1.0 The number of points on the image having an inhomogeneity of ~ 3.0 and a non-homogeneity of 0.05 to 1.0 was counted as a chemical adsorption point. Perform the flattening process and count the number of chemical adsorption points in the acquired and acquired images, find the average value of the counted number of chemical adsorption points, and use that value to determine the chemical state When the value is calculated, the value is preferably 10 or more because the binding strength with the conductive material or the binder is increased, more preferably 20 or more, and particularly preferably 30 or more. preferable.

[リチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法]
本発明のリチウム遷移金属系化合物粉体を製造する方法は、特定の製法に限定されるものではないが、リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選
ばれる少なくとも1種類以上の遷移金属化合物と、添加剤1と添加剤2とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥体を焼成する焼成工程を含む本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法により、好適に製造される。
[Method for producing lithium transition metal compound powder for positive electrode material of lithium secondary battery]
The method for producing the lithium transition metal compound powder of the present invention is not limited to a specific production method, but at least selected from lithium compounds and V, Cr, Mn, Fe, Co, Ni, and Cu. One or more transition metal compounds, additive 1 and additive 2 are pulverized in a liquid medium, and a slurry preparation step for obtaining a slurry in which these are uniformly dispersed, and spray for drying the obtained slurry It is preferably produced by the method for producing a lithium transition metal compound powder for a lithium secondary battery positive electrode material of the present invention comprising a drying step and a firing step of firing the resulting spray-dried product.

例えば、リチウムニッケルマンガンコバルト系複合酸化物粉体を例にあげて説明すると、リチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物、並びに添加剤1と添加剤2を液体媒体中に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体を、酸素含有ガス雰囲気中で焼成して製造することができる。
以下に、本発明の好適態様であるリチウムニッケルマンガンコバルト系複合酸化物粉体の製造方法を例にあげて、本発明のリチウム遷移金属系化合物粉体の製造方法について詳細に説明する。
For example, a lithium nickel manganese cobalt composite oxide powder will be described as an example. A lithium compound, a nickel compound, a manganese compound, a cobalt compound, and a slurry in which additive 1 and additive 2 are dispersed in a liquid medium. A spray-dried product obtained by spray-drying can be produced by firing in an oxygen-containing gas atmosphere.
Hereinafter, the method for producing a lithium transition metal-based compound powder of the present invention will be described in detail by taking as an example the method for producing a lithium nickel manganese cobalt-based composite oxide powder which is a preferred embodiment of the present invention.

〈スラリー調製工程〉
本発明の方法により、リチウム遷移金属系化合物粉体を製造するに当たり、スラリーの調製に用いる原料化合物のうち、リチウム化合物としては、LiCO、LiNO、LiNO、LiOH、LiOH・HO、LiH、LiF、LiCl、LiBr、LiI、CHOOLi、LiO、LiSO、ジカルボン酸Li、クエン酸Li、脂肪酸Li、アルキルリチウム等が挙げられる。これらリチウム化合物の中で好ましいのは、焼成処理の際にSO、NO等の有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリチウム化合物であり、また、焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に分解ガスを発生するなどして空隙を形成しやすい化合物であり、これらの点を勘案すると、LiCO、LiOH、LiOH・HOが好ましく、特にLiCOが好ましい。これらのリチウム化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
<Slurry preparation process>
Among the raw material compounds used in the preparation of the slurry in producing the lithium transition metal-based compound powder by the method of the present invention, the lithium compounds include Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH · H 2. Examples include O, LiH, LiF, LiCl, LiBr, LiI, CH 3 OOLi, Li 2 O, Li 2 SO 4 , dicarboxylic acid Li, citric acid Li, fatty acid Li, and alkyl lithium. Among these lithium compounds, lithium compounds that do not contain nitrogen, sulfur, or halogen atoms are preferred because they do not generate harmful substances such as SO x and NO x during the firing treatment. It is a compound that easily forms voids by generating cracked gas in the secondary particles of the spray-dried powder by generating cracked gas. Taking these points into consideration, Li 2 CO 3 , LiOH, LiOH.H 2 O is preferable, and Li 2 CO 3 is particularly preferable. These lithium compounds may be used individually by 1 type, and may use 2 or more types together.

また、ニッケル化合物としては、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・ BR>QHO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際にSO、NO等の有害物質を発生させない点で、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HOのようなニッケル化合物が好ましい。また、更に工業原料として安価に入手できる観点、及び反応性が高い、という観点からNi(OH)、NiO、NiOOH、NiCO、さらに焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはNi(OH)、NiOOH、NiCOである。これらのニッケル化合物は1種を単独で使用しても良く、2種以上を併用しても良い。 Moreover, as a nickel compound, Ni (OH) 2 , NiO, NiOOH, NiCO 3 , 2NiCO 3 .3Ni (OH) 2 .4H 2 O, NiC 2 O 4 .BR> QH 2 O, Ni (NO 3 ) 2 · 6H 2 O, NiSO 4, NiSO 4 · 6H 2 O, fatty nickel, nickel halides and the like. Among these, Ni (OH) 2 , NiO, NiOOH, NiCO 3 , 2NiCO 3 .3Ni (OH) 2 .4H 2 O, NiC are used in that no harmful substances such as SO X and NO X are generated during the firing process. Nickel compounds such as 2 O 4 .2H 2 O are preferred. Further, from the viewpoint that it can be obtained as an industrial raw material at a low cost and from the viewpoint of high reactivity, Ni (OH) 2 , NiO, NiOOH, NiCO 3 , and further, a decomposition gas is generated at the time of firing. Ni (OH) 2 , NiOOH, and NiCO 3 are particularly preferable from the viewpoint of easily forming voids in the secondary particles. These nickel compounds may be used individually by 1 type, and may use 2 or more types together.

また、マンガン化合物としてはMn、MnO、Mn等のマンガン酸化物、MnCO、Mn(NO、MnSO、酢酸マンガン、ジカルボン酸マンガン、クエン酸マンガン、脂肪酸マンガン等のマンガン塩、オキシ水酸化物、塩化マンガン等のハロゲン化物等が挙げられる。これらのマンガン化合物の中でも、MnO、Mn、Mn、MnCOは、焼成処理の際にSO、NO等のガスを発生せず、更に工業原料として安価に入手できるため好ましい。これらのマンガン化合物は1種を単独で用いても良く、2種以上を併用しても良い。 In addition, manganese compounds such as Mn 2 O 3 , MnO 2 , Mn 3 O 4 , manganese oxide, MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylate, manganese citrate, fatty acid manganese And manganese salts such as oxyhydroxide, manganese chloride and the like. Among these manganese compounds, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , and MnCO 3 do not generate gases such as SO X and NO X during firing, and can be obtained at low cost as industrial raw materials. Therefore, it is preferable. These manganese compounds may be used individually by 1 type, and may use 2 or more types together.

また、コバルト化合物としては、Co(OH)、CoOOH、CoO、Co、Co、Co(OCOCH・4HO、CoCl、Co(NO・6HO、Co(SO・7HO、CoCO等が挙げられる。中でも、焼成工程の際
にSO、NO等の有害物質を発生させない点で、Co(OH)、CoOOH、CoO、Co、Co、CoCOが好ましく、更に好ましくは、工業的に安価に入手できる点及び反応性が高い点でCo(OH)、CoOOHである。加えて焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはCo(OH)、CoOOH、CoCOである。これらのコバルト化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
Further, as the cobalt compound, Co (OH) 2 , CoOOH, CoO, Co 2 O 3 , Co 3 O 4 , Co (OCOCH 3 ) 2 .4H 2 O, CoCl 2 , Co (NO 3 ) 2 .6H 2 O, Co (SO 4 ) 2 · 7H 2 O, CoCO 3 and the like. Among them, Co (OH) 2 , CoOOH, CoO, Co 2 O 3 , Co 3 O 4 , and CoCO 3 are preferable, and more preferably, from the viewpoint that no harmful substances such as SO X and NO X are generated during the firing process. Co (OH) 2 and CoOOH are industrially inexpensively available and highly reactive. In addition, Co (OH) 2 , CoOOH, and CoCO 3 are particularly preferable from the viewpoint of easily forming voids in the secondary particles of the spray-dried powder due to generation of decomposition gas during firing. These cobalt compounds may be used individually by 1 type, and may use 2 or more types together.

また、上記のLi、Ni、Mn、Co原料化合物以外にも他元素置換を行って前述の異元素を導入したり、後述する噴霧乾燥にて形成される二次粒子内の空隙を効率よく形成させたりすることを目的とした化合物群を使用することが可能である。なお、ここで使用する、二次粒子の空隙を効率よく形成させることを目的として使用する化合物の添加段階は、その性質に応じて、原料混合前又は混合後の何れかを選択することが可能である。特に、混合工程によって機械的剪断応力が加わるなどして分解しやすい化合物は混合工程後に添加することが好ましい。   In addition to the above Li, Ni, Mn, and Co raw material compounds, other elements are substituted to introduce the above-mentioned foreign elements, and voids in secondary particles formed by spray drying described later are efficiently formed. It is possible to use a group of compounds intended to be used. In addition, the addition stage of the compound used for the purpose of efficiently forming the voids of the secondary particles used here can be selected either before or after mixing the raw materials depending on the property. It is. In particular, it is preferable to add a compound that is easily decomposed due to mechanical shear stress applied by the mixing step after the mixing step.

添加剤1としては、前述の通りである。また、添加剤2としては、前述の通りである。
原料の混合方法は特に限定されるものではなく、湿式でも乾式でも良い。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。原料化合物を水、アルコール等の液体媒体中で混合する湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。
混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていれば良く、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から6時間程度である。
The additive 1 is as described above. The additive 2 is as described above.
The method for mixing the raw materials is not particularly limited, and may be wet or dry. For example, the method of using apparatuses, such as a ball mill, a vibration mill, and a bead mill, is mentioned. Wet mixing in which the raw material compound is mixed in a liquid medium such as water or alcohol is preferable because more uniform mixing is possible and the reactivity of the mixture can be increased in the firing step.
The mixing time varies depending on the mixing method, but it is sufficient that the raw materials are uniformly mixed at the particle level. For example, a ball mill (wet or dry) usually takes about 1 to 2 days, and a bead mill (wet continuous method) has a residence time. Is usually about 0.1 to 6 hours.

なお、原料の混合段階においてはそれと並行して原料の粉砕が為されていることが好ましい。粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒子径(メジアン径)として通常0.7μm以下、好ましくは0.6μm以下、さらに好ましくは0.55μm以下、最も好ましくは0.5μm以下とする。粉砕後の原料粒子の平均粒子径が大きすぎると、焼成工程における反応性が低下するのに加え、組成が均一化し難くなる。ただし、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、平均粒子径が通常0.01μm以上、好ましくは0.02μm以上、さらに好ましくは0.05μm以上となるように粉砕すれば良い。このような粉砕程度を実現するための手段としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノーミル等を挙げることができる。   In the raw material mixing stage, it is preferable that the raw material is pulverized in parallel. As the degree of pulverization, the particle diameter of the raw material particles after pulverization is an index, but the average particle diameter (median diameter) is usually 0.7 μm or less, preferably 0.6 μm or less, more preferably 0.55 μm or less, most preferably Preferably, it is 0.5 μm or less. If the average particle size of the pulverized raw material particles is too large, the reactivity in the firing process is lowered, and the composition is difficult to homogenize. However, making particles smaller than necessary leads to an increase in the cost of pulverization, so that the average particle size is usually 0.01 μm or more, preferably 0.02 μm or more, more preferably 0.05 μm or more. It ’s fine. A means for realizing such a degree of pulverization is not particularly limited, but a wet pulverization method is preferable. Specific examples include dyno mill.

なお、本発明においてスラリー中の粉砕粒子のメジアン径は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.24を設定し、粒子径基準を体積基準に設定して測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。   In the present invention, the median diameter of the pulverized particles in the slurry was measured with a known laser diffraction / scattering type particle size distribution measuring apparatus with a refractive index of 1.24 and a particle diameter standard set as a volume standard. Is. In the present invention, a 0.1 wt% sodium hexametaphosphate aqueous solution was used as a dispersion medium used in the measurement, and measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz).

〈噴霧乾燥工程〉
湿式混合後は、次いで通常乾燥工程に供される。乾燥方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、乾燥粒子を効率よく製造できる等の観点から噴霧乾燥が好ましい。
(噴霧乾燥粉体)
本発明のリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の製造方法においては、原料化合物と添加剤1及び添加剤2とを湿式粉砕して得られたスラリーを噴霧乾燥することにより、一次粒子が凝集して二次粒子を形成してなる粉体を得る。一次粒子が凝集して二次粒子を形成してなる噴霧乾燥粉体は、本発明品の
噴霧乾燥粉体の形状的特徴である。形状の確認方法としては、例えば、SEM観察、断面SEM観察が挙げられる。
<Spray drying process>
After the wet mixing, it is then usually subjected to a drying process. The drying method is not particularly limited, but spray drying is preferable from the viewpoints of uniformity of the generated particulate matter, powder fluidity, powder handling performance, and efficient production of dry particles.
(Spray-dried powder)
In the method for producing a lithium transition metal-based compound powder such as lithium nickel manganese cobalt-based composite oxide powder of the present invention, a slurry obtained by wet-grinding a raw material compound, additive 1 and additive 2 is sprayed. By drying, a powder obtained by agglomerating primary particles to form secondary particles is obtained. The spray-dried powder formed by agglomerating primary particles to form secondary particles is a geometric feature of the spray-dried powder of the present invention. Examples of the shape confirmation method include SEM observation and cross-sectional SEM observation.

本発明のリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の焼成前駆体でもある噴霧乾燥により得られる粉体のメジアン径(ここでは超音波分散をかけずに測定した値)は通常25μm以下、より好ましくは20μm以下、更に好ましくは18μm以下、最も好ましくは16μm以下となるようにする。ただし、あまりに小さな粒径は得にくい傾向にあるので、通常は3μm以上、好ましくは4μm以上、より好ましくは5μm以上である。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。   The median diameter of the powder obtained by spray drying, which is also a firing precursor of lithium transition metal based compound powder such as lithium nickel manganese cobalt based composite oxide powder of the present invention (in this case, measured without applying ultrasonic dispersion) The value is usually 25 μm or less, more preferably 20 μm or less, still more preferably 18 μm or less, and most preferably 16 μm or less. However, since it tends to be difficult to obtain a too small particle size, it is usually 3 μm or more, preferably 4 μm or more, more preferably 5 μm or more. In the case of producing a particulate material by the spray drying method, the particle size can be controlled by appropriately selecting the spray format, the pressurized gas flow supply rate, the slurry supply rate, the drying temperature, and the like.

即ち、例えば、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合物と添加剤1と添加剤2とを液体媒体中に分散させたスラリーを噴霧乾燥後、得られた粉体を焼成してリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するに当たり、噴霧乾燥時のスラリー粘度をV(cp)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、スラリー粘度Vが、50cp≦V≦10000cpであって、かつ、気液比G/Sが、500≦G/S≦10000となる条件で噴霧乾燥を行う。   That is, for example, a lithium compound, a nickel compound, a manganese compound, and a slurry in which a cobalt compound, additive 1 and additive 2 are dispersed in a liquid medium are spray-dried, and the obtained powder is fired to obtain lithium nickel. In producing the manganese cobalt-based composite oxide powder, when the slurry viscosity during spray drying is V (cp), the slurry supply amount is S (L / min), and the gas supply amount is G (L / min), Spray drying is performed under conditions where the slurry viscosity V is 50 cp ≦ V ≦ 10000 cp and the gas-liquid ratio G / S is 500 ≦ G / S ≦ 10000.

スラリー粘度V(cp)が低すぎると一次粒子が凝集して二次粒子を形成してなる粉体を得にくくなる虞があり、高過ぎると供給ポンプが故障したり、ノズルが閉塞する虞がある。従って、スラリー粘度V(cp)は、下限値として通常50cp以上、好ましくは100cp以上、更に好ましくは300cp以上、最も好ましくは500cpであり、上限値としては通常10000cp以下、好ましくは7500cp以下、更に好ましくは6500cp以下、最も好ましくは6000cp以下である。   If the slurry viscosity V (cp) is too low, it may be difficult to obtain a powder obtained by agglomerating primary particles to form secondary particles. If the slurry viscosity V (cp) is too high, the supply pump may fail or the nozzle may be blocked. is there. Therefore, the slurry viscosity V (cp) is usually 50 cp or more as a lower limit, preferably 100 cp or more, more preferably 300 cp or more, most preferably 500 cp, and the upper limit is usually 10000 cp or less, preferably 7500 cp or less, more preferably. Is 6500 cp or less, most preferably 6000 cp or less.

また、気液比G/Sが上記下限を下回ると二次粒子サイズが粗大化したり、乾燥性が低下しやすくなるなどして、上限を超えると生産性が低下する虞がある。従って、気液比G/Sは、下限値として通常400以上、好ましくは600以上、更に好ましくは700以上、最も好ましくは800以上であり、上限値としては通常10000以下、好ましくは9000以下、更に好ましくは8000以下、最も好ましくは7500以下である。   Further, when the gas-liquid ratio G / S is lower than the lower limit, the secondary particle size is coarsened or the drying property is liable to be lowered. When the upper limit is exceeded, the productivity may be lowered. Therefore, the gas-liquid ratio G / S is usually 400 or more as a lower limit, preferably 600 or more, more preferably 700 or more, most preferably 800 or more, and the upper limit is usually 10,000 or less, preferably 9000 or less, Preferably it is 8000 or less, most preferably 7500 or less.

スラリー供給量Sやガス供給量Gは、噴霧乾燥に供するスラリーの粘度や用いる噴霧乾燥装置の仕様等によって適宜設定される。
本発明の方法においては、前述のスラリー粘度V(cp)を満たし、かつ用いる噴霧乾燥装置の仕様に適したスラリー供給量とガス供給量を制御して、前述の気液比G/Sを満たす範囲で噴霧乾燥を行えばよく、その他の条件については、用いる装置の種類等に応じて適宜設定されるが、更に次のような条件を選択することが好ましい。
The slurry supply amount S and the gas supply amount G are appropriately set according to the viscosity of the slurry used for spray drying, the specifications of the spray drying apparatus used, and the like.
In the method of the present invention, the above-mentioned gas-liquid ratio G / S is satisfied by controlling the slurry supply amount and gas supply amount that meet the above-mentioned slurry viscosity V (cp) and that are suitable for the specifications of the spray drying apparatus to be used. Spray drying may be performed within a range, and other conditions are appropriately set according to the type of apparatus to be used, but it is preferable to select the following conditions.

即ち、スラリーの噴霧乾燥は、通常、50℃以上、好ましくは70℃以上、更に好ましくは120℃以上、最も好ましくは140℃以上で、通常300℃以下、好ましくは250℃以下、更に好ましくは230℃以下、最も好ましくは210℃以下の温度で行うことが好ましい。この温度が高すぎると得られた造粒粒子が中空構造の多いものとなる可能性があり、粉体の充填密度が低下する虞がある。一方、低すぎると粉体出口部分での水分結露による粉体固着・閉塞等の問題が生じる可能性がある。   That is, spray drying of the slurry is usually 50 ° C. or higher, preferably 70 ° C. or higher, more preferably 120 ° C. or higher, most preferably 140 ° C. or higher, usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 230. It is preferable to carry out the reaction at a temperature of ℃ or less, most preferably 210 ℃ or less. If this temperature is too high, the resulting granulated particles may have a lot of hollow structures, which may reduce the packing density of the powder. On the other hand, if it is too low, problems such as powder sticking and blockage due to moisture condensation at the powder outlet may occur.

<焼成工程>
このようにして得られた焼成前駆体は、次いで焼成処理される。
ここで、本発明において「焼成前駆体」とは、噴霧乾燥粉体を処理して得られる焼成前
のリチウムニッケルマンガンコバルト系複合酸化物等のリチウム遷移金属系化合物の前駆体を意味する。例えば、前述の焼成時に分解ガスを発生又は昇華して、二次粒子内に空隙を形成させる化合物を、上述の噴霧乾燥粉体に含有させて焼成前駆体としてもよい。
<Baking process>
The fired precursor thus obtained is then fired.
Here, the “firing precursor” in the present invention means a precursor of a lithium transition metal compound such as a lithium nickel manganese cobalt composite oxide before firing obtained by treating a spray-dried powder. For example, the above spray-dried powder may contain a compound that generates or sublimates decomposition gas during the above-described firing to form voids in the secondary particles, and serves as a firing precursor.

この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、傾向として、焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。逆に低すぎると異相が混在し、また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎる。焼成温度としては、通常1050℃以上、好ましくは1060℃以上、より好ましくは1070℃以上、更に好ましくは1080℃以上、最も好ましくは1090℃以上であり、上限は1200℃以下、好ましくは1190℃以下、更に好ましくは1180℃以下、最も好ましくは1170℃以下である。   This firing condition depends on the composition and the lithium compound raw material used, but as a tendency, if the firing temperature is too high, primary particles grow excessively, sintering between the particles proceeds too much, and the specific surface area becomes small. Pass. On the other hand, if it is too low, heterogeneous phases are mixed, and the lattice distortion increases without developing the crystal structure. Moreover, the specific surface area becomes too large. The firing temperature is usually 1050 ° C. or higher, preferably 1060 ° C. or higher, more preferably 1070 ° C. or higher, further preferably 1080 ° C. or higher, most preferably 1090 ° C. or higher, and the upper limit is 1200 ° C. or lower, preferably 1190 ° C. or lower. More preferably, it is 1180 ° C. or less, and most preferably 1170 ° C. or less.

焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成工程は、通常、昇温・最高温度保持・降温の三部分に分けられる。二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程又は、一次粒子或いはさらに微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回又はそれ以上繰り返しても良い。   For firing, for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like can be used. The firing process is usually divided into three parts: temperature increase, maximum temperature retention, and temperature decrease. The second maximum temperature holding portion is not necessarily limited to one time, and may include two or more stages depending on the purpose, which means that aggregation is eliminated to the extent that secondary particles are not destroyed. The temperature raising, maximum temperature holding, and temperature lowering steps may be repeated twice or more with a crushing step or a crushing step meaning crushing to primary particles or even fine powder.

焼成を二段階で行う場合、一段目はLi原料が分解し始める温度以上、融解する温度以下で保持することが好ましく、たとえば炭酸リチウムを用いる場合には一段目の保持温度は400℃以上が好ましく、より好ましくは450℃以上、さらに好ましくは500℃以上、最も好ましくは550℃以上が好ましく、通常850℃以下、より好ましくは800℃以下、さらに好ましくは780℃以下、最も好ましくは750℃以下である。   When firing is performed in two stages, the first stage is preferably maintained at a temperature not lower than the temperature at which the Li raw material begins to decompose and below the melting temperature. For example, when lithium carbonate is used, the first stage is preferably maintained at 400 ° C. or higher. More preferably, it is 450 ° C. or higher, more preferably 500 ° C. or higher, most preferably 550 ° C. or higher, usually 850 ° C. or lower, more preferably 800 ° C. or lower, more preferably 780 ° C. or lower, most preferably 750 ° C. or lower. is there.

最高温度保持工程に至る昇温工程は通常1℃/分以上15℃/分以下の昇温速度で炉内を昇温させる。この昇温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。昇温速度は、好ましくは2℃/分以上、より好ましくは3℃/分以上で、好ましくは10℃/分以下、より好ましくは8℃/分以下である。   In the temperature raising step leading to the maximum temperature holding step, the temperature in the furnace is usually raised at a temperature raising rate of 1 ° C./min to 15 ° C./min. Even if this rate of temperature rise is too slow, it takes time and is industrially disadvantageous. However, if it is too fast, the furnace temperature does not follow the set temperature depending on the furnace. The heating rate is preferably 2 ° C./min or more, more preferably 3 ° C./min or more, preferably 10 ° C./min or less, more preferably 8 ° C./min or less.

最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範囲であれば30分以上、好ましくは1時間以上、更に好ましくは2時間以上、最も好ましくは3時間以上で、50時間以下、好ましくは25時間以下、更に好ましくは20時間以下、最も好ましくは15時間以下である。焼成時間が短すぎると結晶性の良いリチウム遷移金属系化合物粉体が得られ難くなり、長すぎるのは実用的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難になったりするので、不利である。   Although the holding time in the maximum temperature holding step varies depending on the temperature, it is usually 30 minutes or longer, preferably 1 hour or longer, more preferably 2 hours or longer, most preferably 3 hours or longer within the above-mentioned temperature range. Time or less, preferably 25 hours or less, more preferably 20 hours or less, and most preferably 15 hours or less. If the firing time is too short, it becomes difficult to obtain a lithium transition metal-based compound powder with good crystallinity, and it is not practical to be too long. If the firing time is too long, it will be disadvantageous because it will be necessary to crush afterwards or it will be difficult to crush.

降温工程では、通常0.1℃/分以上15℃/分以下の降温速度で炉内を降温させる。降温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても目的物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。降温速度は、好ましくは1℃/分以上、より好ましくは3℃/分以上で、好ましくは10℃/分以下、より好ましくは8℃/分以下である。   In the temperature lowering step, the temperature in the furnace is usually decreased at a temperature decreasing rate of 0.1 ° C./min to 15 ° C./min. If the temperature lowering rate is too slow, it takes time and is industrially disadvantageous, but if it is too fast, the uniformity of the target product tends to be lost or the deterioration of the container tends to be accelerated. The temperature lowering rate is preferably 1 ° C./min or more, more preferably 3 ° C./min or more, preferably 10 ° C./min or less, more preferably 8 ° C./min or less.

焼成時の雰囲気は、得ようとするリチウム遷移金属系化合物粉体の組成によって適切な酸素分圧領域があるため、それを満足するための適切な種々ガス雰囲気が用いられる。ガス雰囲気としては、例えば、酸素、空気、窒素、アルゴン、水素、二酸化炭素、及びそれらの混合ガス等を挙げることができる。本発明において具体的に実施しているリチウムニッケルマンガンコバルト系複合酸化物粉体については、空気等の酸素含有ガス雰囲気を用いることができる。通常は酸素濃度が1体積%以上、好ましくは10体積%以上、より好
ましくは15体積%以上で、100体積%以下、好ましくは50体積%以下、より好ましくは25体積%以下の雰囲気とする。
Since the firing atmosphere has an appropriate oxygen partial pressure region depending on the composition of the lithium transition metal-based compound powder to be obtained, appropriate various gas atmospheres for satisfying the oxygen partial pressure region are used. Examples of the gas atmosphere include oxygen, air, nitrogen, argon, hydrogen, carbon dioxide, and a mixed gas thereof. An oxygen-containing gas atmosphere such as air can be used for the lithium nickel manganese cobalt based composite oxide powder specifically implemented in the present invention. Usually, the atmosphere has an oxygen concentration of 1% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and 100% by volume or less, preferably 50% by volume or less, more preferably 25% by volume or less.

このような製造方法において、本発明のリチウム遷移金属系化合物粉体、例えば前記特定の組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するには、製造条件を一定とした場合には、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合物と、添加剤1と添加剤2とを液体媒体中に分散させたスラリーを調製する際、各化合物の混合比を調整することで、目的とするLi/Ni/Mn/Coのモル比を制御することができる。
このようにして得られたリチウムニッケルマンガンコバルト系複合酸化物粉体等の本発明のリチウム遷移金属系化合物粉体によれば、容量が高く、低温出力特性、保存特性に優れた、性能バランスの良いリチウム二次電池用正極材料が提供される。
In such a production method, in order to produce the lithium transition metal-based compound powder of the present invention, for example, the lithium nickel manganese cobalt-based composite oxide powder having the specific composition, the production conditions are constant. When preparing a slurry in which a lithium compound, a nickel compound, a manganese compound, and a cobalt compound, and additive 1 and additive 2 are dispersed in a liquid medium, by adjusting the mixing ratio of each compound, It is possible to control the molar ratio of Li / Ni / Mn / Co.
According to the lithium transition metal-based compound powder of the present invention such as lithium nickel manganese cobalt-based composite oxide powder thus obtained, the capacity is high, the low-temperature output characteristics and the storage characteristics are excellent, and the performance balance is high. A positive electrode material for a lithium secondary battery is provided.

[導電材]
従来知られているカーボンブラックをはじめとする導電材としての炭素質材料は、窒素吸着比表面積を大きくしようとすると脱水素量が大きくなり、逆に脱水素量を低く抑えようとすると、比表面積が小さくなるため、24M4DBP吸収量も小さくなり、導電材自体の電導度を高めつつ、寿命も向上させることが難しかった。
本発明においては、カーボンブラックの製造条件を調節し、上記のような窒素吸着比表面積と24M4DBP吸収量の範囲を達成することにより、電導度を高めて高出力に対応すると共に、電気化学的な寿命も高めた正極、ひいては高出力かつ長寿命のリチウム二次電池を実現する。
以下に、本発明における導電材の物性パラメータについて説明する。
[Conductive material]
Conventionally known carbonaceous materials as conductive materials such as carbon black increase the amount of dehydrogenation when trying to increase the nitrogen adsorption specific surface area, and conversely when trying to keep the dehydrogenation amount low. Therefore, the 24M4DBP absorption amount is also reduced, and it is difficult to improve the life while increasing the conductivity of the conductive material itself.
In the present invention, by adjusting the production conditions of carbon black and achieving the above-mentioned range of nitrogen adsorption specific surface area and 24M4DBP absorption amount, the conductivity can be increased to cope with high output, and electrochemical A positive electrode with a long life, and thus a lithium secondary battery with high output and long life is realized.
Below, the physical property parameter of the electrically conductive material in this invention is demonstrated.

〈窒素吸着比表面積(NSA)〉
窒素吸着比表面積(NSA)は、JIS K6217に準拠して定義される(単位はm/g)。
本発明で用いるカーボンブラックの窒素吸着比表面積(NSA)については、下限は、通常70m/g以上であり、好ましくは80m/g以上であり、より好ましくは100m/g以上、さらに好ましくは150m/g以上である。また上限は、通常300m/g以下であり、好ましくは290m/g以下、さらに好ましくは280m/g以下であることが好ましい。
<Nitrogen adsorption specific surface area (N 2 SA)>
The nitrogen adsorption specific surface area (N 2 SA) is defined based on JIS K6217 (unit: m 2 / g).
Regarding the nitrogen adsorption specific surface area (N 2 SA) of carbon black used in the present invention, the lower limit is usually 70 m 2 / g or more, preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more, More preferably, it is 150 m < 2 > / g or more. The upper limit is usually 300 m 2 / g or less, preferably 290 m 2 / g or less, more preferably 280 m 2 / g or less.

リチウム二次電池の正極中の活物質間の導電パスを確保し、高出力時の性能を出すには、導電材の比表面積が大きい方が好ましい。一方、比表面積が大きすぎると、正極作成時の成形上不都合が生じるおそれがあり、電気化学的副反応等による不可逆的な反応が起きやすくなり、寿命が低下するおそれがある。
従って、導電材としてのカーボンブラックの窒素吸着比表面積(NSA)は上記範囲内にあることが好ましい。
In order to secure a conductive path between the active materials in the positive electrode of the lithium secondary battery and to obtain performance at high output, it is preferable that the specific surface area of the conductive material is large. On the other hand, if the specific surface area is too large, there may be a problem in forming the positive electrode, an irreversible reaction due to an electrochemical side reaction or the like tends to occur, and the life may be shortened.
Therefore, the nitrogen adsorption specific surface area (N 2 SA) of carbon black as the conductive material is preferably within the above range.

〈平均粒径〉
なお、本発明における平均粒径は、走査型電子顕微鏡(SEM)で観察した平均径である。
また、本発明のカーボンブラックの平均粒径は、下限は10nm以上、好ましくは12nm以上、特に好ましくは15nm以上、上限は35nm以下、好ましくは33nm以下、特に好ましくは31nm以下である。この平均粒径が小さすぎると、正極スラリー中での分散時に固形分濃度が低くなり、スラリー調整時に溶媒が多く必要となる。逆に大きすぎると正極活物質への密着性が低下する場合がある。
<Average particle size>
In addition, the average particle diameter in this invention is an average diameter observed with the scanning electron microscope (SEM).
The average particle size of the carbon black of the present invention has a lower limit of 10 nm or more, preferably 12 nm or more, particularly preferably 15 nm or more, and an upper limit of 35 nm or less, preferably 33 nm or less, particularly preferably 31 nm or less. If this average particle size is too small, the solid content concentration becomes low during dispersion in the positive electrode slurry, and a large amount of solvent is required during slurry adjustment. On the other hand, if it is too large, the adhesion to the positive electrode active material may decrease.

〈揮発分〉
また、本発明の導電材としてのカーボンブラックの揮発分は、下限は、通常0.8%以上、好ましくは0.9%以上、特に好ましくは1.0%以上、上限は、通常5%以下、好ましくは4%以下、特に好ましくは3%以下である。この揮発分が小さすぎると、活物質との相互作用が小さく、導電材と活物質の密着性が不十分となる場合がある。逆に大きすぎると正極作製時におけるスラリーの安定性が不十分であり、スラリーの凝集を引き起こし易くなるなどのデメリットが生じる場合がある。
<Volatile matter>
The lower limit of the volatile content of carbon black as the conductive material of the present invention is usually 0.8% or more, preferably 0.9% or more, particularly preferably 1.0% or more, and the upper limit is usually 5% or less. , Preferably 4% or less, particularly preferably 3% or less. If the volatile content is too small, the interaction with the active material is small, and the adhesion between the conductive material and the active material may be insufficient. On the other hand, if it is too large, the stability of the slurry at the time of producing the positive electrode is insufficient, and disadvantages such as the tendency of the slurry to easily aggregate may occur.

〈24M4DBP吸収量及びDBP吸収量〉
DBP吸収量は、JIS K6217に準拠して定義される量である(単位はcm/100g)。
24M4DBP吸収量は、DBP吸収量とは別のパラメータであるが、DBP吸収量と同様にJIS K6217に準拠した、圧縮試料についてのDBP吸収量である(単位は同じくcm/100g)。
<24M4 DBP absorption and DBP absorption>
DBP absorption amount is an amount that is defined in conformity with JIS K6217 (unit cm 3 / 100g).
24M4DBP absorption is the DBP absorption is another parameter, in compliance with DBP absorption as well as JIS K6217, a DBP absorption amount of the compression sample (units also cm 3 / 100g).

本発明におけるカーボンブラックは、24M4DBP吸収量が、通常100cm/100g以上、好ましくは105cm/100g、より好ましくは110cm/100g以上のものである。
24M4DBP吸収量が、上記下限未満では、正極作成時のストレスやサイクルや保存時のストレスによってストラクチャーが壊れやすいために、十分な導電パスが形成されず容量や出力が低下したり、形成された導電パスが壊れて寿命が低下する場合がある。24M4DBP吸収量の上限は特に制限はないが、正極作成時の取り扱い易さの点から、通常200cm/100g以下である。
Carbon black in the present invention, 24M4DBP absorption is generally 100 cm 3/100 g or more, preferably 105 cm 3/100 g, more preferably not less than 110 cm 3/100 g.
If the amount of 24M4DBP absorption is less than the above lower limit, the structure is easily broken due to stress at the time of positive electrode creation, cycle or stress at the time of storage. The path may be broken and the life may be reduced. The upper limit of the 24M4DBP absorption is not particularly limited, in terms of the positive electrode creating readiness in handling, usually less than 200 cm 3/100 g.

一般に、カーボンブラックは一次粒子が葡萄房状に連なった独特のストラクチャー(凝集体構造)と称される連鎖体よりなる二次粒子を形成している。しかして、導電パスを確保しやすい点から、カーボンブラックは、ストラクチャーが発達したものであることが好ましい。また、カーボンブラックの一次粒子径を小さくすることによっても導電性が向上する。さらに、カーボンブラックの一次粒子の表面における官能基(酸素化合物)量を少なくすることによっても導電性が向上する。   In general, carbon black forms secondary particles composed of a chain called a unique structure (aggregate structure) in which primary particles are arranged in a kitchen shape. Therefore, it is preferable that the carbon black has a developed structure because it is easy to secure a conductive path. Further, the conductivity is improved by reducing the primary particle size of carbon black. Furthermore, the conductivity is improved by reducing the amount of functional groups (oxygen compounds) on the surfaces of the primary particles of carbon black.

DBP(ジブチルフタレート)は、カーボンブラックのストラクチャーの葡萄房状連鎖体の空隙部分等に吸収されるので、24M4DBP吸収量やDBP吸収量はカーボンブラックが有するストラクチャーの発達度合を示す重要な指標値である。
通常のDBP吸収量がカーボンブラックそのままの状態にDBPを吸収させて測定するのと違い、24M4DBP吸収量はカーボンブラックにストレスをかけて容易に壊れる部分を壊してからDBPを吸収させて測定するものである。正極にカーボンブラックを用いる場合、通常活物質との混合過程や正極の成形時等にカーボンブラックは種々ストレスを受けるため、DBP吸収量よりも24M4DBP吸収量のほうがカーボンブラックのストラクチャーを示す上で重要と考えられる。
Since DBP (dibutyl phthalate) is absorbed in the voids of the kitchen chain structure of the carbon black structure, the 24M4 DBP absorption amount and DBP absorption amount are important index values indicating the degree of structure development of the carbon black. is there.
Unlike normal DBP absorption by absorbing DBP while carbon black is intact, 24M4 DBP absorption is measured by absorbing DBP after stressing carbon black and breaking easily broken parts. It is. When carbon black is used for the positive electrode, the carbon black is usually subjected to various stresses during the mixing process with the active material and during the molding of the positive electrode. Therefore, the 24M4DBP absorption is more important than the DBP absorption to show the carbon black structure. it is conceivable that.

そして、カーボンブラックの24M4DBP吸収量は正極の中で導電パスを形成する有効なストラクチャーの量と相関があるため、電池の向上と相関があり、しかも、リチウム二次電池のサイクル特性や保存特性などで活物質や正極の膨張収縮等が起きる際にも破壊されにくいストラクチャーの存在量を表していると考えられるので、寿命とも相関がある。つまり24M4DBP吸収量がある程度大きくないとこれら電気化学特性を引き出しにくいと考えられる。
このようなことから、本発明においては、カーボンブラックの24M4DBP吸収量を上記所定値以上とする。
The amount of 24M4DBP absorbed by carbon black correlates with the amount of effective structure that forms a conductive path in the positive electrode, so it correlates with the improvement of the battery, and the cycle characteristics and storage characteristics of the lithium secondary battery. Therefore, it is considered to represent the abundance of a structure that is not easily destroyed even when the active material or the positive electrode expands or contracts. That is, it is considered that these electrochemical characteristics are difficult to extract unless the 24M4DBP absorption amount is large to some extent.
For this reason, in the present invention, the 24M4DBP absorption amount of carbon black is set to be equal to or greater than the predetermined value.

〈(1500℃×30分)脱水素量〉
(1500℃×30分)脱水素量は、カーボンブラックを真空中にて1500℃で30分間加熱し、この間に発生したガス中の水素量であり、具体的には後述のようにして測定される。
本発明における導電材であるカーボンブラック(以下、単に「カーボンブラック」とも言う。)の脱水素量は、通常1.8mg/g以下、好ましくは1.7mg/g以下、より好ましくは1.6mg/g以下であることが好ましい。
<(1500 ° C. × 30 minutes) Dehydrogenation amount>
(1500 ° C. × 30 minutes) The amount of dehydrogenation is the amount of hydrogen in the gas generated during heating of carbon black at 1500 ° C. for 30 minutes in a vacuum, and is specifically measured as described below. The
The amount of dehydrogenation of carbon black (hereinafter also simply referred to as “carbon black”), which is a conductive material in the present invention, is usually 1.8 mg / g or less, preferably 1.7 mg / g or less, more preferably 1.6 mg. / G or less is preferable.

脱水素量は、カーボンブラックが受ける熱履歴と大きく関わっており、熱処理が不十分であると水素が多く残り、これが導電性と大きく関わると考えられる。脱水素量が多いものはカーボンブラック表面の炭素化が進んでいないため、電極中で導電性を向上させることができず、ひいては出力を出すことができないと考えられる。また、電池に用いられる場合は電気化学的安定性にも影響し、寿命を左右すると考えられる。これらのことから、通常、カーボンブラックの脱水素量は小さいほうが好ましいと考えられる。ただし、小さすぎると工業的に製造する際のコスト上昇につながることから、一般的には、通常0.1mg/g以上、より好ましくは0.3mg/g以上が良い。   The amount of dehydrogenation is greatly related to the thermal history received by the carbon black. If the heat treatment is insufficient, a large amount of hydrogen remains, which is considered to be largely related to conductivity. In the case of a large amount of dehydrogenation, carbonization on the surface of carbon black has not progressed, so that the conductivity cannot be improved in the electrode, and it is considered that an output cannot be obtained. In addition, when used in a battery, it also affects the electrochemical stability and is considered to influence the life. From these facts, it is generally considered that a smaller amount of dehydrogenation of carbon black is preferable. However, since it will lead to the cost increase at the time of manufacturing industrially when too small, generally it is 0.1 mg / g or more normally, More preferably, 0.3 mg / g or more is good.

(測定法)
カーボンブラックを約0.5g精秤し、アルミナ管に入れ、0.01Torr(1.3Pa)まで減圧した後、減圧系を閉じ、1500℃の電気炉内に30分間保持してカーボンブラックに存在する酸素化合物や水素化合物を分解・揮発させる。揮発成分は定量吸引ポンプを通じて、一定容量のガス捕集管に採取する。圧力と温度からガス量を求めると共に、ガスクロマトグラフにて組成分析し、水素(H)の発生量(mg)を求め、カーボンブラック1g当たりからの水素量に換算した値を計算する(単位はmg/g)。
(Measurement method)
About 0.5g of carbon black is precisely weighed, put in an alumina tube, depressurized to 0.01 Torr (1.3 Pa), then the decompression system is closed, and it is kept in an electric furnace at 1500 ° C. for 30 minutes. Decomposes and volatilizes oxygen and hydrogen compounds. Volatile components are collected in a fixed-capacity gas collection tube through a quantitative suction pump. The amount of gas is determined from the pressure and temperature, the composition is analyzed by gas chromatography, the amount of hydrogen (H 2 ) generated (mg) is determined, and the value converted to the amount of hydrogen per gram of carbon black is calculated (the unit is mg / g).

〈結晶子サイズLc〉
本発明で用いるカーボンブラックは、結晶子サイズLcの下限が10Å以上、より好ましくは13Å以上であり、上限が40Å以下、好ましくは25Å以下、さらに好ましくは17Å以下であることが好ましい。カーボンブラックでは結晶子サイズLcをこの特定の範囲とすることで、正極の導電性を最も高めることができる。この値が大きすぎても低すぎても、十分な導電性が得られないおそれがある。
<Crystallite size Lc>
The carbon black used in the present invention has a lower limit of the crystallite size Lc of 10 mm or more, more preferably 13 mm or more, and an upper limit of 40 mm or less, preferably 25 mm or less, and more preferably 17 mm or less. In carbon black, the conductivity of the positive electrode can be maximized by setting the crystallite size Lc within this specific range. If this value is too large or too low, sufficient conductivity may not be obtained.

なお、本発明に係る結晶子サイズLcは、X線回折装置(RINT−1500型 理学電機社製)を用いて測定される。測定条件は、管球にCuを用い、管電圧40KV、管電流250mAである。カーボンブラック試料は装置付属の試料板に充填し、測定角度(2θ)10゜〜60゜、測定速度0.5゜/分とし、ピーク位置と半価幅は装置のソフトにより算出する。また測定角度の校正にはX線標準用シリコンを用いる。この様にして得られた結果を用いて、Scherrerの式;(Lc(Å)=K×λ/(β×cosθ)(但しK:形状因子定数0.9、λ:特性X線の波長CuKα 1.5418(Å)、β:半価幅(ラジアン)、θ:ピーク位置(度)))により結晶子サイズLcを求める。   The crystallite size Lc according to the present invention is measured using an X-ray diffractometer (RINT-1500 type, manufactured by Rigaku Corporation). The measurement conditions are such that Cu is used for the tube, tube voltage is 40 KV, and tube current is 250 mA. The carbon black sample is filled in a sample plate attached to the apparatus, the measurement angle (2θ) is 10 ° to 60 °, the measurement speed is 0.5 ° / min, and the peak position and half width are calculated by the software of the apparatus. Further, silicon for X-ray standard is used for calibration of the measurement angle. Using the results thus obtained, Scherrer's formula; (Lc (c) = K × λ / (β × cos θ) (where K: form factor constant 0.9, λ: wavelength of characteristic X-ray CuKα 1.5418 (Å), β: half width (radian), θ: peak position (degrees))).

本発明では、さらにDmod/24M4DBPが0.6〜0.9の範囲にあるカーボンブラックが好ましい。カーボンブラックは、前述の如く、1次粒子が複数繋がった2次粒子(凝集体)からなっており、その凝集体構造(ストラクチャー)の発達度合の指標として、24M4DBP吸収量が用いられている。また、カーボンブラックの特性を測る他の指標として、ストークス径が知られている。このストークス径は、一般的に、カーボンブラック凝集体をストークスの法則に従う疑似球状と見なして遠心沈降法(DCP)により求めた直径(モード径;Dmod)が用いられており、そしてDmodの分布指標として、Dmodの半値幅(D1/2)が用いられている。   In the present invention, carbon black having a Dmod / 24M4DBP in the range of 0.6 to 0.9 is more preferable. As described above, carbon black is composed of secondary particles (aggregates) in which a plurality of primary particles are connected, and 24M4DBP absorption is used as an indicator of the degree of development of the aggregate structure (structure). As another index for measuring the characteristics of carbon black, the Stokes diameter is known. The Stokes diameter is generally a diameter (mode diameter; Dmod) obtained by centrifugal sedimentation (DCP) on the assumption that a carbon black aggregate is a pseudosphere according to Stokes' law, and a distribution index of Dmod. The half-width of Dmod (D1 / 2) is used.

従来、これらの指標やその比(D1/2/Dmod)、そして他の物性値等をカーボン
ブラックの物性指標として、カーボンブラック自体や、ゴム、樹脂組成物における物性、加工性等の改善がなされてきた。しかし、従来においては、これらの数値は各々個別に評価するに留まっており、カーボンブラックの特性を充分に把握するには到っていなかった。例えば、カーボンブラックのストークスモード径(Dmod)のみでは、そのストラクチャーの発達具合が一義的に決定されないので、Dmodが同じカーボンブラックであっても導電性に差がある等、特に導電性樹脂組成物へ添加するカーボンブラックにおいては充分な改良が成されていないという課題があった。
Conventionally, using these indices, their ratio (D1 / 2 / Dmod), and other physical property values as the physical property indices of carbon black, improvements in the physical properties and processability of carbon black itself, rubber, and resin compositions have been made. I came. However, conventionally, these numerical values are only evaluated individually, and the characteristics of carbon black have not been sufficiently grasped. For example, since only the Stokes mode diameter (Dmod) of carbon black does not uniquely determine the development of its structure, there is a difference in conductivity even when the carbon black has the same Dmod. There has been a problem that the carbon black added to is not sufficiently improved.

そこで、本発明者らが鋭意検討した結果、Dmodが、ストラクチャーの発達度合いを示す24M4DBP吸収量に対して特定の数値範囲にあるカーボンブラック、つまりDmod/24M4DBPの値が特定範囲にあるカーボンブラックを、導電性樹脂組成物のフィラーとして用いることで、極めて優れた導電性と流動性のバランスを有する導電性樹脂組成物を実現し得ることを見出した。   Therefore, as a result of intensive studies by the present inventors, carbon black whose Dmod is in a specific numerical range with respect to the amount of 24M4DBP absorption indicating the degree of structure development, that is, carbon black whose Dmod / 24M4DBP value is in a specific range. It has been found that a conductive resin composition having an extremely excellent balance between conductivity and fluidity can be realized by using it as a filler of a conductive resin composition.

このDmod/24M4DBPで示される数値は、カーボンブラックのストラクチャーの発達度合いに対する凝集体径の大きさを示すものである。この数値が低いほど、つまり同一サイズの凝集体径に対するストラクチャーの発達度が高いほど、カーボンブラック1次粒子がより密集していることを示す。この数値が低すぎると樹脂との馴染みの低下により樹脂組成物の流動性低下や、樹脂組成物中でのカーボンブラックの分散性低下による樹脂組成物の導電性の低下が起こる場合がある。逆に、高過ぎるとカーボンブラック自体の導電性が低下し、所望の導電性を付与するための導電性樹脂組成物へのカーボンブラック添加量の増加により、樹脂組成物の機械的物性等が低下する場合がある。よって、本発明のカーボンブラックにおいては、Dmod/24M4DBPが0.6以上、0.9以下であることが好ましい。   The numerical value shown by Dmod / 24M4DBP indicates the size of the aggregate diameter with respect to the degree of carbon black structure development. The lower this value, that is, the higher the degree of development of the structure with respect to the aggregate size of the same size, the more dense the carbon black primary particles are. If this value is too low, the fluidity of the resin composition may decrease due to a decrease in familiarity with the resin, and the conductivity of the resin composition may decrease due to a decrease in the dispersibility of carbon black in the resin composition. Conversely, if it is too high, the conductivity of the carbon black itself will decrease, and the mechanical properties of the resin composition will decrease due to an increase in the amount of carbon black added to the conductive resin composition to give the desired conductivity. There is a case. Therefore, in the carbon black of the present invention, it is preferable that Dmod / 24M4DBP is 0.6 or more and 0.9 or less.

更に、本発明のカーボンブラックにおいては、ストラクチャーの発達度合いに対する凝集体径分布が狭い方が好ましい。具体的には、24M4DBP吸収量に対するストークスモード半値幅(D1/2)の比(D1/2/24M4DBP)で示される数値が、小さい方が好ましい。この数値が高過ぎるとカーボンブラック自体の導電性が低下し、所望の導電性を付与するための導電性樹脂組成物へのカーボンブラック添加量の増加により、樹脂組成物の機械的物性等が低下する場合がある。よって、本発明のカーボンブラックにおけるD1/2/24M4DBPは0.9以下であることが好ましい。またその下限は特に制限はないが、製造の経済性等の理由から0.45以上であることが好ましい。   Furthermore, the carbon black of the present invention preferably has a narrow aggregate diameter distribution with respect to the degree of structure development. Specifically, it is preferable that the numerical value indicated by the ratio (D1 / 2 / 24M4DBP) of the Stokes mode half width (D1 / 2) to the 24M4DBP absorption amount is smaller. If this value is too high, the conductivity of the carbon black itself will decrease, and the mechanical properties of the resin composition will decrease due to the increase in the amount of carbon black added to the conductive resin composition to give the desired conductivity. There is a case. Therefore, D1 / 2 / 24M4DBP in the carbon black of the present invention is preferably 0.9 or less. The lower limit is not particularly limited, but is preferably 0.45 or more for reasons such as production economics.

さらに、本発明では、カーボンブラックのCTAB吸着比表面積を120〜220m/g、特に150〜200m/gとすることが好ましい。この特定範囲にすることにより、樹脂組成物の導電性及び流動性の双方をより一層高めることができる。CTAB比表面積が小さ過ぎると導電性が低下する場合があり、逆に大きすぎると、樹脂組成物中での分散性が低下する場合がある。 Furthermore, in the present invention, the CTAB adsorption specific surface area of the carbon black is preferably 120 to 220 m 2 / g, particularly 150 to 200 m 2 / g. By setting this specific range, both the electrical conductivity and fluidity of the resin composition can be further enhanced. If the CTAB specific surface area is too small, the conductivity may be reduced, whereas if too large, the dispersibility in the resin composition may be reduced.

上記に加えて、本発明では、以下の式で定義される、含酸素官能基密集度を3μmol/m以下とすることが好ましい。
含酸素官能基密集度(μmol/m
=[CO発生量(μmol/g)+CO発生量(μmol/g)]/窒素吸着比表面積(m/g)
In addition to the above, in the present invention, the oxygen-containing functional group density defined by the following formula is preferably 3 μmol / m 2 or less.
Oxygen-containing functional group density (μmol / m 2 )
= [CO generation amount (μmol / g) + CO 2 generation amount (μmol / g)] / Nitrogen adsorption specific surface area (m 2 / g)

ここで、この数値について説明する。カーボンブラックには、ある程度の表面官能基が存在するが、これを加熱することによって、一酸化炭素(CO)・二酸化炭素(CO)が発生する。例えば、カルボニル基(ケトン、キノン等)が存在すれば、分解によって主にCOが発生し、カルボキシル基およびその誘導体(エステル、ラクトン等)が存在すれ
ば同様にCOが発生する。つまり、発生したガス量を求めることで、カーボンブラックの表面に存在する官能基の量が推定できる。一方で、カーボンブラックの導電性向上においては、これらの官能基量が少ないことが望ましいことは、従来から知られている。しかしながら、これらの官能基は、従来はカーボンブラックの重量あたりの発生ガス量に基づいた数値が用いられてきた。言い換えれば、カーボンブラック重量に対する官能基の量が、導電性に影響するというのが従来の通説であった。
Here, this numerical value will be described. Carbon black has a certain amount of surface functional groups. When heated, carbon monoxide (CO) / carbon dioxide (CO 2 ) is generated. For example, if a carbonyl group (ketone, quinone, etc.) is present, CO is mainly generated by decomposition, and if a carboxyl group and derivatives thereof (ester, lactone, etc.) are present, CO 2 is similarly generated. That is, the amount of functional groups present on the surface of carbon black can be estimated by determining the amount of gas generated. On the other hand, it is conventionally known that a small amount of these functional groups is desirable for improving the conductivity of carbon black. However, numerical values based on the amount of gas generated per weight of carbon black have been conventionally used for these functional groups. In other words, it has been a conventional wisdom that the amount of functional groups relative to the weight of carbon black affects the conductivity.

これに対して、本発明者らは、さらなる鋭意検討の結果、分散性とは別個の概念から、導電性においても、これら官能基量はカーボンブラックの重量あたりの数値ではなく、むしろ単位表面積あたりの数が樹脂組成物の導電性、しいては導電性と流動性との両立に効果があることを見出した。
その理由の詳細は明らかではないが、樹脂組成物内を電流が流れる際、カーボンブラックの表面に局在する官能基が、カーボンブラック2次粒子間の電子移動を阻害するため、重量あたりの絶対量よりも、単位表面積あたりの数(密集度)が導電性に影響するためと考えられる。
On the other hand, as a result of further intensive studies, the present inventors have determined that the amount of these functional groups is not a numerical value per unit weight of carbon black, but rather a unit per unit surface area. Has been found to be effective in achieving both the electrical conductivity of the resin composition, and thus the electrical conductivity and fluidity.
Although the details of the reason are not clear, when an electric current flows through the resin composition, the functional group localized on the surface of the carbon black inhibits the electron transfer between the carbon black secondary particles. It is considered that the number per unit surface area (concentration) affects the conductivity rather than the amount.

即ち、含酸素官能基密集度とは、カーボンブラック単位表面積あたりの官能基の数を示すものであるため、この数値は低いのが好ましい。この数値が高い場合には、かかる理由によりカーボンブラックを含む樹脂組成物の導電性が低下する。なお、この数値は低いほど導電性の観点では好ましいが、あまりに低すぎると上述の如く、分散性が低下して導電性や流動性が却って悪化する恐れがあり、また脱水素量の場合と同様、工業的な経済性などの理由により不利である。従って、含酸素官能基密集度は、0.1μmol/m以上とするのが好ましい。 That is, since the oxygen-containing functional group density indicates the number of functional groups per unit surface area of carbon black, this value is preferably low. When this numerical value is high, the conductivity of the resin composition containing carbon black decreases due to such a reason. Note that the lower the value, the better from the viewpoint of conductivity. However, if the value is too low, as described above, the dispersibility may be lowered and the conductivity and fluidity may be deteriorated. It is disadvantageous for reasons such as industrial economy. Therefore, the oxygen-containing functional group density is preferably 0.1 μmol / m 2 or more.

<製造方法>
本発明の導電材としてのカーボンブラックの製造方法は任意であり、例えばオイルファーネス法やアセチレン法、賦活法によるケッチェンブラックが挙げられる。中でもオイルファーネス法は、安価に、且つ歩留まり良く製造できるので好ましい。
上記特定の物性を有するカーボンブラックの具体的な合成法については、日本国特開2006−52237号公報に記載する通りである。
<Manufacturing method>
The method for producing carbon black as the conductive material of the present invention is arbitrary, and examples thereof include ketjen black by an oil furnace method, an acetylene method, and an activation method. Among these, the oil furnace method is preferable because it can be manufactured at low cost and with high yield.
A specific method for synthesizing carbon black having the above specific physical properties is as described in Japanese Patent Application Laid-Open No. 2006-52237.

オイルファーネス法によるカーボンブラックの製造装置は、燃料を燃焼させて高温燃焼ガス流を生じさせる第1反応帯域と、該第1反応帯域に引き続いて設置され、カーボンブラック原料炭化水素(以下、「オイル」ということがある。)を導入してカーボンブラック生成反応をさせる第2反応帯域と、該第2反応帯域に引き続いて設置され、カーボンブラック生成反応を停止させるための冷却手段を有した第3反応帯域とを備えている。   An apparatus for producing carbon black by an oil furnace method is installed following a first reaction zone for burning a fuel to generate a high-temperature combustion gas flow, and a carbon black raw material hydrocarbon (hereinafter referred to as “oil”). A second reaction zone for introducing a carbon black production reaction and a cooling means for stopping the carbon black production reaction, which is subsequently installed in the second reaction zone. Reaction zone.

このカーボンブラック製造装置によってカーボンブラックを製造するには、第1反応帯域内に高温の燃焼ガス流を生じさせ、第2反応帯域内にカーボンブラック原料炭化水素(オイル)を噴霧し、該第2反応帯域内でカーボンブラックを生成させる。このカーボンブラックを含むガス流は、第3反応帯域内に導入され、該第3反応帯域内でスプレーノズルから水噴霧を受けて急冷される。第3反応帯域内のカーボンブラックを含むガス流は、その後煙道を経由してサイクロン又はバッグフィルター等の捕集手段に導入され、カーボンブラックが捕集される。
オイルファーネスカーボンブラックは、このような製造装置の設計や製造条件を制御することにより製造することができ、物性の制御を比較的容易に行うことができ、リチウム二次電池の正極に用いる場合の物性設計上、他の導電材よりも有利である。
In order to produce carbon black by this carbon black production apparatus, a high-temperature combustion gas flow is generated in the first reaction zone, and carbon black raw material hydrocarbon (oil) is sprayed in the second reaction zone. Carbon black is produced in the reaction zone. The gas stream containing carbon black is introduced into the third reaction zone, and is rapidly cooled by receiving water spray from the spray nozzle in the third reaction zone. The gas stream containing carbon black in the third reaction zone is then introduced into a collecting means such as a cyclone or a bag filter via a flue to collect the carbon black.
Oil furnace carbon black can be manufactured by controlling the design and manufacturing conditions of such a manufacturing apparatus, the physical properties can be controlled relatively easily, and when used for the positive electrode of a lithium secondary battery. It is more advantageous than other conductive materials in terms of physical property design.

例えば、上述の第2反応帯域におけるカーボンブラック原料導入ノズルの位置と、第3反応帯域における冷却水供給ノズルの位置とを調整して炉内におけるカーボンブラックの
滞留時間を特定範囲とすることによって、上述した様にカーボンブラックの24M4DBP吸収量と比表面積を特定範囲の値とし、結晶子サイズLcを過度に大きくせず特定の小さな値とし、且つカーボンブラック粒子表面の脱水素が進行した状態とすればよい。より具体的には、炉内温度を、通常1500℃〜2000℃、好ましくは1600℃〜1800℃とし、カーボンブラックの炉内滞留時間、即ち原料導入点から反応停止位置までの移動に要する時間(カーボンブラック原料導入位置距離と反応停止位置距離を移動するに要する時間)が、通常40ミリ秒〜500ミリ秒、好ましくは50ミリ秒〜200ミリ秒とすれば良い。また、炉内温度が1500℃を下回るような低温の場合には、炉内滞留時間が500ミリ秒を越えて5秒以下、好ましくは1秒〜3秒とすればよい。
For example, by adjusting the position of the carbon black raw material introduction nozzle in the second reaction zone described above and the position of the cooling water supply nozzle in the third reaction zone to make the carbon black residence time in the furnace a specific range, As described above, the carbon black 24M4DBP absorption amount and specific surface area are within a specific range, the crystallite size Lc is not excessively increased to a specific small value, and the dehydrogenation of the carbon black particle surface has progressed. That's fine. More specifically, the furnace temperature is usually 1500 ° C. to 2000 ° C., preferably 1600 ° C. to 1800 ° C., and the residence time of carbon black in the furnace, that is, the time required to move from the raw material introduction point to the reaction stop position ( The time required for moving the carbon black raw material introduction position distance and the reaction stop position distance) is usually 40 milliseconds to 500 milliseconds, preferably 50 milliseconds to 200 milliseconds. Further, in the case where the temperature in the furnace is lower than 1500 ° C., the residence time in the furnace exceeds 500 milliseconds and is 5 seconds or less, preferably 1 to 3 seconds.

本発明に係るカーボンブラックは、特に脱水素量が少ないので、その製造には炉内での高温燃焼ガス流の温度を1700℃以上の高温とする方法や、カーボンブラック原料供給ノズルよりも下流側で更に炉内に酸素を導入してカーボンブラック表面の水素等を燃焼させ、この反応熱で高温下の滞留時間を長くすることが好ましい。このような方法によって、カーボンブラックの表面近傍の結晶化とカーボンブラック内部の脱水素が効果的に行えるので好ましい。   Since the carbon black according to the present invention has a particularly small amount of dehydrogenation, its production is carried out by a method in which the temperature of the high-temperature combustion gas flow in the furnace is set to a high temperature of 1700 ° C. or more, or downstream of the carbon black raw material supply nozzle. Further, it is preferable to introduce oxygen into the furnace to burn hydrogen or the like on the surface of the carbon black and to extend the residence time at a high temperature with this reaction heat. Such a method is preferable because crystallization in the vicinity of the surface of the carbon black and dehydrogenation inside the carbon black can be effectively performed.

[正極の作成方法]
正極活物質層は、通常、本発明で用いる正極材料、本発明で用いる導電材、結着材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作成される。
[Method of making positive electrode]
The positive electrode active material layer is usually pressure-bonded to a positive electrode current collector obtained by mixing a positive electrode material used in the present invention, a conductive material used in the present invention, a binder and a thickener in a dry form into a sheet. Alternatively, these materials are dissolved or dispersed in a liquid medium to form a slurry, which is applied to the positive electrode current collector and dried.

〈正極活物質と導電材の混合割合〉
本願発明の正極活物質と導電材の混合割合(=導電材の質量/正極活物質の質量)としては、通常0.1%以上、好ましくは0.5%以上、さらに好ましくは1%以上、特に好ましくは1.5%以上、通常20%以下、好ましくは18%以下、さらに好ましくは15%以下、特に好ましくは10%以下である。この範囲であれば、充放電容量を維持しつつ充分に導電パスを確保できるため、好ましい。
<Mixing ratio of positive electrode active material and conductive material>
The mixing ratio of the positive electrode active material and the conductive material of the present invention (= the mass of the conductive material / the mass of the positive electrode active material) is usually 0.1% or more, preferably 0.5% or more, more preferably 1% or more, It is particularly preferably 1.5% or more, usually 20% or less, preferably 18% or less, more preferably 15% or less, and particularly preferably 10% or less. This range is preferable because a sufficient conductive path can be secured while maintaining the charge / discharge capacity.

[結着材]
正極活物質層の製造に用いる結着材としては、特に限定されず、塗布法の場合は、正極製造時に用いる液体媒体に対して溶解または分散される材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
[Binder]
The binder used for manufacturing the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that dissolves or disperses in the liquid medium used at the time of manufacturing the positive electrode may be used. , Polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose, and other resin polymers, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber, butadiene Rubber, rubbery polymer such as ethylene / propylene rubber, styrene / butadiene / styrene block copolymer and its hydrogenated product, EPDM (ethylene-propylene-diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer Polymer, styrene / isopre Thermoplastic elastomeric polymers such as styrene block copolymers and hydrogenated products thereof, syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymers, propylene / α-olefin copolymers, etc. Fluorine polymers such as soft resinous polymers, polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers, alkali metal ions (especially lithium ions) Examples thereof include a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.

本願発明の結着材の重量平均分子量は、下限としては、通常20万以上であることが好ましく、25万以上であることがさらに好ましく、27万以上で
あることがより好ましく、28万以上であることが最も好ましい。また、重量平均分子量が大きすぎると正極作製時のスラリーの不安定化を招くため、上限としては、通常60万以下であることが好ましく、55万以下であることがさらに好ましく、50万以下であることがより好ましく、45万以下であることが最も好ましい。
The lower limit of the weight average molecular weight of the binder of the present invention is usually preferably 200,000 or more, more preferably 250,000 or more, more preferably 270,000 or more, and 280,000 or more. Most preferably it is. Further, if the weight average molecular weight is too large, the slurry becomes unstable at the time of producing the positive electrode. Therefore, the upper limit is usually preferably 600,000 or less, more preferably 550,000 or less, and more preferably 500,000 or less. More preferably, it is most preferably 450,000 or less.

正極活物質層中の結着材の割合は、通常0.1重量%以上、好ましくは1重量%以上、更に好ましくは3重量%以上であり、通常80重量%以下、好ましくは60重量%以下、更に好ましくは40重量%以下、最も好ましくは10重量%以下である。結着材の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまうおそれがある。一方で、高すぎると、電池容量や導電性の低下につながるおそれがある。   The ratio of the binder in the positive electrode active material layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 3% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less. More preferably, it is 40% by weight or less, and most preferably 10% by weight or less. If the proportion of the binder is too low, the positive electrode active material cannot be sufficiently retained, and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, the battery capacity and the conductivity may be reduced.

〈導電材〉
導電材には前述したカーボンブラックを用いるが、それと併用して、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料の1種又は2種以上を混合して用いても良い。
なお、本発明に係るカーボンブラックによる効果を十分に得るために、導電材として、前述したカーボンブラック以外の導電材を含む場合、その割合は全導電材量の90重量%以下であることが好ましい。
<Conductive material>
The above-mentioned carbon black is used as the conductive material, but in combination with it, there is no metal material such as copper or nickel, graphite such as natural graphite or artificial graphite, carbon black such as acetylene black, needle coke, etc. One or more carbon materials such as regular carbon may be used in combination.
In order to sufficiently obtain the effect of the carbon black according to the present invention, when the conductive material includes a conductive material other than the carbon black described above, the ratio is preferably 90% by weight or less of the total conductive material amount. .

[導電材および結着材の組み合せ]
本願発明の正極は、導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たすことを特徴としている。
[Combination of conductive material and binder]
The positive electrode of the present invention satisfies the following formula (1) when the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S and the weight average molecular weight of the binder is M. It is characterized by that.

(S×M)/10000≦7500・・・(1)
(S×M)/10000の下限値としては、正極の極板強度を十分に保つ必要があることから、通常1500以上であることが好ましく、1700以上であることがさらに好ましく、1900以上であることがより好ましく、1930以上であることが最も好ましい。また、正極作製時のスラリー安定性を十分に確保する必要があるため、上限としては、通常7500以下であることを特徴としており、7300以下であることがさらに好ましく、7100以下であることがより好ましく、7000以下であることが最も好ましい。
(S × M) / 10000 ≦ 7500 (1)
The lower limit of (S × M) / 10000 is preferably 1500 or more, more preferably 1700 or more, and more preferably 1900 or more because the electrode plate strength of the positive electrode needs to be sufficiently maintained. More preferably, it is most preferably 1930 or more. Moreover, since it is necessary to ensure sufficient slurry stability at the time of producing the positive electrode, the upper limit is usually 7500 or less, more preferably 7300 or less, and more preferably 7100 or less. Preferably, it is most preferably 7000 or less.

〈液体媒体〉
スラリーを形成するための液体媒体としては、正極活物質であるリチウムニッケル系複合酸化物粉体、導電材、結着材、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に、水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化することが好ましい。
なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
<Liquid medium>
As a liquid medium for forming the slurry, a lithium nickel composite oxide powder, which is a positive electrode active material, a conductive material, a binder, and a thickener used as necessary may be dissolved or dispersed. As long as it is a possible solvent, the type is not particularly limited, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water and alcohol. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N -N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. Can be mentioned. In particular, when an aqueous solvent is used, it is preferable to add a dispersant in addition to the thickener and make a slurry using a latex such as SBR.
In addition, these solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

〈集電体〉
正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。また、形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
<Current collector>
As the material for the positive electrode current collector, metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbon materials such as carbon cloth and carbon paper are usually used. Of these, metal materials are preferable, and aluminum is particularly preferable. As for the shape, in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc. Etc. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape.

正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また通常100mm以下、好ましくは1mm以下、より好ましくは50μm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足するおそれがある一方で、上記範囲よりも厚いと、取り扱い性が損なわれるおそれがある。   When a thin film is used as the positive electrode current collector, its thickness is arbitrary, but it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 100 mm or less, preferably 1 mm or less, more preferably 50 μm or less. The range of is preferable. If the thickness is thinner than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.

正極活物質層中の正極材料としての本発明のリチウム遷移金属系化合物粉体の含有割合は、通常10重量%以上、好ましくは30重量%以上、更に好ましくは50重量%以上であり、通常99.9重量%以下、好ましくは99重量%以下である。正極活物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることがある。   The content of the lithium transition metal-based compound powder of the present invention as the positive electrode material in the positive electrode active material layer is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99%. .9% by weight or less, preferably 99% by weight or less. If the proportion of the lithium transition metal compound powder in the positive electrode active material layer is too large, the strength of the positive electrode tends to be insufficient, and if it is too small, the capacity may be insufficient.

また、正極活物質層の厚さは、通常10〜200μm程度である。
正極のプレス後の電極密度としては、下限としては、通常、2.2g/cm以上、好ましくは2.4g/cm以上、特に好ましくは2.6g/cm以上、上限としては、通常、4.2g/cm以下、好ましくは4.0g/cm以下、特に好ましくは3.8g/cm以下である。
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
かくして、本発明のリチウム二次電池用正極が調製できる。
The thickness of the positive electrode active material layer is usually about 10 to 200 μm.
As the electrode density after pressing of the positive electrode, the lower limit is usually 2.2 g / cm 3 or more, preferably 2.4 g / cm 3 or more, particularly preferably 2.6 g / cm 3 or more, and the upper limit is usually , 4.2 g / cm 3 or less, preferably 4.0 g / cm 3 or less, particularly preferably 3.8 g / cm 3 or less.
The positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.
Thus, the positive electrode for a lithium secondary battery of the present invention can be prepared.

〈本発明の正極が上述の効果をもたらす理由〉
本発明の正極が上述の効果をもたらす理由としては次のように推察される。
本発明で用いる導電材に関して、通常の分子量の結着材を用いて、活物質と混合して溶媒中でスラリー化すると、ゲル化をしてしまう。
それに対して、本発明に用いる結着材と導電材の組み合わせであれば、正極スラリーとしたときのゲル化を防止することができる。ゲル化を防止できる理由としては、未だ明らかではないが次のように推察される。即ち、窒素吸着比表面積が大きい、または平均粒子径が小さい、または揮発分が多い導電材を用いる場合、導電材から正極スラリーに持ち込まれる水分量が増加するため、正極スラリー中に含まれるNMPなどの有機溶剤などに対する結着材の溶解度が低下する。このとき、結着材の分子量が高いと、有機溶剤に対する十分な溶解度が確保されず、結着材が析出や結晶化することでスラリーの凝集など、ポットライフの低下が引き起こされる。また、導電材の窒素吸着比表面積が大きいことや平均粒子径が小さいことによって反応面積が増えるか、反応面積は同程度でも、揮発分が高いことにより、導電材と結着材が化学的に結合する反応などが促進され、正極スラリーの凝集などを引き起こし易くなる。このとき、結着材の分子量が高いと、導電材との結合点が少なくてもスラリー中における分散が阻害され易いため、ポットライフの低下が引き起こされる。これらの課題を解決するため、窒素吸着比表面積が大きい、または平均粒子径が小さい、または揮発分が多い導電材を用いる場合、正極の極板強度を十分に確保できる範囲内で、低分子量の結着材を用いる事で、正極スラリーの安定性を向上させることができ
る。
<Reason why the positive electrode of the present invention provides the above-mentioned effect>
The reason why the positive electrode of the present invention brings about the above-described effect is presumed as follows.
When the conductive material used in the present invention is mixed with an active material and slurried in a solvent using a normal molecular weight binder, gelation occurs.
On the other hand, if it is the combination of the binder used for this invention and an electrically conductive material, gelatinization when it is set as a positive electrode slurry can be prevented. Although it is not yet clear as a reason which can prevent gelation, it is guessed as follows. That is, when a conductive material having a large nitrogen adsorption specific surface area, a small average particle diameter, or a large amount of volatile matter is used, the amount of moisture brought into the positive electrode slurry from the conductive material increases, and therefore, NMP contained in the positive electrode slurry, etc. The solubility of the binder in the organic solvent is reduced. At this time, if the molecular weight of the binder is high, sufficient solubility in the organic solvent is not ensured, and the binder is precipitated or crystallized, thereby causing a decrease in pot life such as aggregation of slurry. In addition, the reaction area increases due to the large nitrogen adsorption specific surface area of the conductive material and the average particle size is small, or even if the reaction area is similar, the conductive material and the binder are chemically separated due to the high volatile content. The bonding reaction is promoted and the positive electrode slurry is likely to be aggregated. At this time, if the molecular weight of the binder is high, the dispersion in the slurry is easily hindered even if the number of bonding points with the conductive material is small, so that the pot life is reduced. In order to solve these problems, when using a conductive material having a large nitrogen adsorption specific surface area, a small average particle diameter, or a large amount of volatile matter, a low molecular weight within a range that can sufficiently ensure the electrode plate strength of the positive electrode. By using the binder, the stability of the positive electrode slurry can be improved.

[リチウム二次電池用負極]
次に、本発明のリチウム二次電池用正極のうち、リチウム二次電池用負極について説明する。
本発明におけるリチウム二次電池用負極は、通常、上述のリチウム二次電池用正極と同様に、負極集電体上に負極活物質層を形成して構成される。
[Negative electrode for lithium secondary battery]
Next, the negative electrode for lithium secondary batteries among the positive electrodes for lithium secondary batteries of this invention is demonstrated.
The negative electrode for a lithium secondary battery in the present invention is usually constituted by forming a negative electrode active material layer on a negative electrode current collector, similarly to the above-described positive electrode for a lithium secondary battery.

負極活物質層は、通常は正極活物質層の場合と同様に、負極活物質と導電材、さらには結着材と、必要に応じて増粘剤とを液体媒体でスラリー化したものを負極集電体に塗布し、乾燥することにより製造することができる。スラリーを形成する液体媒体や結着材、増粘剤、その他の導電材等としては、正極活物質層について上述したものと同様のものを同様の割合で使用することができる。   As in the case of the positive electrode active material layer, the negative electrode active material layer is usually a negative electrode obtained by slurrying a negative electrode active material, a conductive material, further a binder, and, if necessary, a thickener in a liquid medium. It can manufacture by apply | coating to a collector and drying. As the liquid medium, binder, thickener, and other conductive material forming the slurry, the same materials as those described above for the positive electrode active material layer can be used at the same ratio.

〈活物質〉
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、その種類に他に制限はないが、通常は安全性の高さの面から、リチウムを吸蔵、放出できる炭素材料が用いられる。
炭素材料としては、その種類に特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、或いはこれらピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ピッチ系炭素繊維等が挙げられる。中でも黒鉛が好ましく、特に好適には、種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛にピッチを含む黒鉛材料等であって、種々の表面処理を施したものが主として使用される。これらの炭素材料は、それぞれ1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
<Active material>
The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions, but it can usually occlude and release lithium from the viewpoint of high safety. A carbon material is used.
Although there is no restriction | limiting in particular as a carbon material, Graphite (graphite), such as artificial graphite and natural graphite, and the thermal decomposition thing of organic substance on various thermal decomposition conditions are mentioned. Examples of pyrolysis products of organic matter include coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, or carbide obtained by oxidizing these pitches, needle coke, pitch coke, phenol resin, crystalline cellulose, etc. And carbon materials obtained by partially graphitizing these, pitch-based carbon fibers, and the like. Among them, graphite is preferable, and particularly preferable is artificial graphite, purified natural graphite, or graphite material containing pitch in these graphites, which is manufactured by subjecting easy-graphite pitch obtained from various raw materials to high-temperature heat treatment. Therefore, those subjected to various surface treatments are mainly used. One of these carbon materials may be used alone, or two or more thereof may be used in combination.

負極活物質として黒鉛材料を用いる場合、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上、また、通常0.340nm以下、特に0.337nm以下であるものが好ましい。
また、黒鉛材料の灰分が、黒鉛材料の重量に対して通常1重量%以下、中でも0.5重量%以下、特に0.1重量%以下であることが好ましい。
When a graphite material is used as the negative electrode active material, the d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is usually 0.335 nm or more, and usually 0.340 nm or less, particularly What is 0.337 nm or less is preferable.
Further, the ash content of the graphite material is usually 1% by weight or less, particularly 0.5% by weight or less, and particularly preferably 0.1% by weight or less, based on the weight of the graphite material.

更に、学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)が、通常30nm以上、中でも50nm以上、特に100nm以上であることが好ましい。
また、レーザー回折・散乱法により求めた黒鉛材料のメジアン径が、通常1μm以上、中でも3μm以上、更には5μm以上、特に7μm以上、また、通常100μm以下、中でも50μm以下、更には40μm以下、特に30μm以下であることが好ましい。
Further, the crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, and particularly preferably 100 nm or more.
The median diameter of the graphite material determined by the laser diffraction / scattering method is usually 1 μm or more, especially 3 μm or more, more preferably 5 μm or more, especially 7 μm or more, and usually 100 μm or less, especially 50 μm or less, more preferably 40 μm or less, especially 40 μm or less. It is preferable that it is 30 micrometers or less.

また、黒鉛材料のBET法比表面積は、通常0.5m/g以上、好ましくは0.7m/g以上、より好ましくは1.0m/g以上、更に好ましくは1.5m/g以上、また、通常25.0m/g以下、好ましくは20.0m/g以下、より好ましくは15.0m/g以下、更に好ましくは10.0m/g以下である。 更に、黒鉛材料についてアルゴンレーザー光を用いたラマンスペクトル分析を行った場合に、1580〜1620cm−1の範囲で検出されるピークPの強度Iと、1350〜1370cm−1の範囲で検出されるピークPの強度Iとの強度比I/Iが、0以上0.5以下であるものが好ましい。また、ピークPの半価幅は26cm−1以下が好ましく、25cm−1以下がより好ましい。 Moreover, the BET specific surface area of the graphite material is usually 0.5 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2 / g or more, and further preferably 1.5 m 2 / g. or more, and usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g, more preferably 15.0 m 2 / g or less, still more preferably 10.0 m 2 / g or less. Further, when performing Raman spectroscopy using argon laser light for graphite material, and strength I A of the peak P A is detected in the range of 1580~1620Cm -1, it is detected in the range of 1350 -1 that intensity ratio I a / I B of the intensity I B of a peak P B is what is preferably 0 to 0.5. Further, the half width of the peak P A is preferably 26cm -1 or less, 25 cm -1 or less is more preferable.

なお、上述の各種の炭素材料の他に、リチウムの吸蔵及び放出が可能なその他の材料を負極活物質として用いることもできる。炭素材料以外の負極活物質の具体例としては、リチウムと合金を作る錫やケイ素等の元素およびその化合物、リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらの炭素材料以外の材料は、それぞれ1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。また、上述の炭素材料と組み合わせて用いても良い。   In addition to the various carbon materials described above, other materials capable of inserting and extracting lithium can be used as the negative electrode active material. Specific examples of the negative electrode active material other than the carbon material include elements such as tin and silicon that form an alloy with lithium and a compound thereof, and lithium alloys such as lithium simple substance and lithium aluminum alloy. One of these materials other than the carbon material may be used alone, or two or more thereof may be used in combination. Moreover, you may use in combination with the above-mentioned carbon material.

〈集電体〉
負極集電体の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されていることから好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
負極集電体として金属薄膜を使用する場合、その好適な厚さの範囲は、正極集電体について上述した範囲と同様である。
<Current collector>
As a material of the negative electrode current collector, a metal material such as copper, nickel, stainless steel, nickel-plated steel, or a carbon material such as carbon cloth or carbon paper is used. Among these, in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, etc., and in the case of a carbon material, a carbon plate, a carbon thin film, a carbon cylinder, etc. are mentioned. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape.
When a metal thin film is used as the negative electrode current collector, the preferred thickness range is the same as the range described above for the positive electrode current collector.

[リチウム二次電池]
次に、本発明のリチウム二次電池について説明する。
リチウム二次電池は、正極、負極、リチウム塩を電解塩とする非水電解質とを備え、正極が、上述した本発明のリチウム二次電池用正極であることを特徴とする。
本発明のリチウム二次電池はさらに正極と負極との間に、非水電解質を保持するセパレータを備えていても良い。正極と負極との接触による短絡を効果的に防止するには、このようにセパレータを介在させるのが望ましい。
本発明のリチウム二次電池は通常、上述した本発明のリチウム二次電池用正極および/または負極と、電解質と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
[Lithium secondary battery]
Next, the lithium secondary battery of the present invention will be described.
The lithium secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte using a lithium salt as an electrolytic salt, and the positive electrode is the above-described positive electrode for a lithium secondary battery of the present invention.
The lithium secondary battery of the present invention may further include a separator that holds the nonaqueous electrolyte between the positive electrode and the negative electrode. In order to effectively prevent a short circuit due to contact between the positive electrode and the negative electrode, it is desirable to interpose a separator in this way.
The lithium secondary battery of the present invention is usually produced by assembling the above-described positive electrode and / or negative electrode for the lithium secondary battery of the present invention, an electrolyte, and a separator used as necessary into an appropriate shape. . Furthermore, other components such as an outer case can be used as necessary.

〈電解質〉
電解質としては、例えば公知の有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等を用いることができるが、中でも有機電解液が好ましい。有機電解液は、有機溶媒に溶質(電解質)を溶解させて構成される。
ここで、有機溶媒の種類は特に限定されないが、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。代表的なものを列挙すると、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、4−メチル−2−ペンタノン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、ジメチルホルムアミド、ジメチルスルホキシド、リン酸トリメチル、リン酸トリエチル等が挙げられ、これらの単独若しくは2種類以上の混合溶媒が使用できる。
<Electrolytes>
As the electrolyte, for example, known organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes, and the like can be used. Among them, organic electrolytes are preferable. The organic electrolytic solution is configured by dissolving a solute (electrolyte) in an organic solvent.
Here, the type of the organic solvent is not particularly limited. For example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, amines, esters, amides, phosphoric acid An ester compound or the like can be used. Typical examples are dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1, 2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzonitrile, Examples include butyronitrile, valeronitrile, 1,2-dichloroethane, dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate, and the like alone or in combination. Mixed solvents can be used.

上述の有機溶媒には、電解塩を解離させるために、高誘電率溶媒を含めることが好ましい。ここで、高誘電率溶媒とは、25℃における比誘電率が20以上の化合物を意味する。高誘電率溶媒の中でも、エチレンカーボネート、プロピレンカーボネート、及び、それらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した化合物が、電解液中に
含まれることが好ましい。高誘電率溶媒の電解液に占める割合は、好ましくは10重量%以上、更に好ましくは20重量%以上、最も好ましくは30重量%以上である。高誘電率溶媒の含有量が上記範囲よりも少ないと、所望の電池特性が得られない場合がある。
The organic solvent described above preferably contains a high dielectric constant solvent in order to dissociate the electrolytic salt. Here, the high dielectric constant solvent means a compound having a relative dielectric constant of 20 or more at 25 ° C. Among the high dielectric constant solvents, it is preferable that ethylene carbonate, propylene carbonate, and compounds in which hydrogen atoms thereof are substituted with other elements such as halogen or alkyl groups are contained in the electrolytic solution. The proportion of the high dielectric constant solvent in the electrolytic solution is preferably 10% by weight or more, more preferably 20% by weight or more, and most preferably 30% by weight or more. If the content of the high dielectric constant solvent is less than the above range, desired battery characteristics may not be obtained.

電解塩の種類も特に限定されず、従来公知の任意の溶質を使用することができる。具体例としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等が挙げられる。これらの電解塩は任意の1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。 The type of the electrolytic salt is not particularly limited, and any conventionally known solute can be used. Specific examples include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2. , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 and the like. Any one of these electrolytic salts may be used alone, or two or more thereof may be used in any combination and ratio.

電解塩のリチウム塩は電解液中に、通常0.5mol/L以上、1.5mol/L以下となるように含有させる。この濃度が0.5mol/L未満でも1.5mol/Lを超えても電気伝導度が低下し、電池特性に悪影響を与えることがある。特に、下限としては0.75mol/L以上、上限として1.25mol/L以下が好ましい。
また、電解液には、ビニレンカーボネート、ビニルエチレンカーボネート、CO、NO、CO、SO等のガスやポリサルファイドS 2−など負極表面にリチウムイオンの効率良い充放電を可能にする良好な被膜を形成するための添加剤を、少量添加しても良い。
The lithium salt of the electrolytic salt is usually contained in the electrolytic solution so as to be 0.5 mol / L or more and 1.5 mol / L or less. Even if this concentration is less than 0.5 mol / L or more than 1.5 mol / L, the electric conductivity may be lowered, and the battery characteristics may be adversely affected. In particular, the lower limit is preferably 0.75 mol / L or more and the upper limit is 1.25 mol / L or less.
In addition, the electrolytic solution is good for enabling efficient charge and discharge of lithium ions on the negative electrode surface such as gas such as vinylene carbonate, vinyl ethylene carbonate, CO 2 , N 2 O, CO, SO 2 , and polysulfide S x 2− A small amount of an additive for forming a thick film may be added.

さらに、有機電解液中には、ジフルオロリン酸リチウムなど、サイクル寿命や出力特性の向上に効果を発揮する添加剤や、プロパンスルトンやプロペンスルトンなどの高温保存ガスの抑制に効果を発揮する添加剤を任意の割合で添加してもよい。
高分子固体電解質を使用する場合にも、その種類は特に限定されず、固体電解質として公知の任意の結晶質・非晶質の無機物を用いることができる。結晶質の無機固体電解質としては、例えば、LiI、LiN、Li1+xTi2−x(PO(J=Al、Sc、Y、La)、Li0.5−3xRE0.5+xTiO(RE=La、Pr、Nd、Sm)等が挙げられる。また、非晶質の無機固体電解質としては、例えば、4.9LiI−34.1LiO−61B、33.3LiO−66.7SiO等の酸化物ガラス等が挙げられる。これらは任意の1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で用いても良い。
Furthermore, in organic electrolytes, additives such as lithium difluorophosphate that are effective in improving cycle life and output characteristics, and additives that are effective in suppressing high-temperature storage gases such as propane sultone and propene sultone May be added at an arbitrary ratio.
Even when a polymer solid electrolyte is used, the type thereof is not particularly limited, and any known crystalline / amorphous inorganic substance can be used as the solid electrolyte. Examples of the crystalline inorganic solid electrolyte include LiI, Li 3 N, Li 1 + x J x Ti 2-x (PO 4 ) 3 (J = Al, Sc, Y, La), Li 0.5-3x RE 0. .5 + x TiO 3 (RE = La, Pr, Nd, Sm) and the like. Examples of the amorphous inorganic solid electrolyte include oxide glasses such as 4.9LiI-34.1Li 2 O-61B 2 O 5 and 33.3Li 2 O-66.7SiO 2 . Any one of these may be used alone, or two or more may be used in any combination and ratio.

〈セパレータ〉
電解質として前述の有機電解液を用いる場合には、電極同士の短絡を防止するために、正極と負極との間にセパレータが介装される。セパレータの材質や形状は特に制限されないが、使用する有機電解液に対して安定で、保液性に優れ、且つ、電極同士の短絡を確実に防止できるものが好ましい。好ましい例としては、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料の具体例としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が用いられる。特に、セパレータの重要な因子である化学的及び電気化学的な安定性の観点からは、ポリオレフィン系高分子が好ましく、電池におけるセパレータの使用目的の一つである自己閉塞温度の点からは、ポリエチレンが特に望ましい。
<Separator>
When the above-described organic electrolyte is used as the electrolyte, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes. The material and shape of the separator are not particularly limited, but those that are stable with respect to the organic electrolyte used, have excellent liquid retention properties, and can reliably prevent short-circuiting between electrodes are preferable. Preferable examples include microporous films, sheets, nonwoven fabrics and the like made of various polymer materials. Specific examples of the polymer material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene. In particular, from the viewpoint of chemical and electrochemical stability, which is an important factor for separators, polyolefin polymers are preferable. From the viewpoint of self-occluding temperature, which is one of the purposes of use of separators in batteries, polyethylene is preferred. Is particularly desirable.

ポリエチレンからなるセパレータを用いる場合、高温形状維持性の点から、超高分子ポリエチレンを用いることが好ましく、その分子量の下限は好ましくは50万、更に好ましくは100万、最も好ましくは150万である。他方、分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると流動性が低くなりすぎてしまい、加熱された時にセパレータの孔が閉塞しない場合があるからである。   When using a separator made of polyethylene, it is preferable to use ultra-high molecular weight polyethylene from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1,500,000. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the fluidity becomes too low, and the pores of the separator may not close when heated.

〈形状〉
本発明のリチウム二次電池の形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。
<shape>
The shape of the lithium secondary battery of the present invention is not particularly limited, and can be appropriately selected from various commonly employed shapes according to the application. Examples of commonly used shapes include a cylinder type with a sheet electrode and separator in a spiral shape, a cylinder type with an inside-out structure combining a pellet electrode and a separator, and a coin type with stacked pellet electrodes and a separator. Can be mentioned. The method for assembling the battery is not particularly limited, and can be appropriately selected from various commonly used methods according to the shape of the target battery.

〈満充電状態における正極の充電電位〉
本発明のリチウム二次電池は、以下の実施例においては、満充電状態における正極の充電電位が4.4V未満で使用しているが、4.4V(vs.Li/Li)以上となるように設計されている電池で使用することも可能である。即ち、本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体は、高い充電電位で充電するように設計されたリチウム二次電池として使用した場合においても、本願発明の効果を有効に発揮するはずである。
以上、本発明のリチウム二次電池の一般的な実施形態について説明したが、本発明のリチウム二次電池は上記実施形態に制限されるものではなく、その要旨を超えない限りにおいて、各種の変形を加えて実施することが可能である。
<Charge potential of the positive electrode when fully charged>
In the following examples, the lithium secondary battery of the present invention is used at a charging potential of the positive electrode in a fully charged state of less than 4.4 V, but becomes 4.4 V (vs. Li / Li + ) or more. It is also possible to use with a battery that is designed in such a way. That is, even when the lithium nickel manganese cobalt based composite oxide powder for a lithium secondary battery positive electrode material of the present invention is used as a lithium secondary battery designed to be charged at a high charging potential, the effect of the present invention is achieved. Should be effective.
The general embodiment of the lithium secondary battery of the present invention has been described above. However, the lithium secondary battery of the present invention is not limited to the above-described embodiment, and various modifications are possible as long as the gist thereof is not exceeded. Can be implemented.

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に制限されるものではない。
[物性の測定方法]
後述の各実施例及び比較例において製造されたリチウム遷移金属系化合物粉体の物性等は、各々次のようにして測定した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[Measurement method of physical properties]
The physical properties and the like of lithium transition metal-based compound powders produced in each Example and Comparative Example described below were measured as follows.

[活物質]
[物性の測定方法]
後述の各実施例及び比較例において製造されたリチウム遷移金属系化合物粉体の物性等は、各々次のようにして測定した。
<組成(Li/Ni/Mn/Co)>
ICP−AES分析により求めた。
[Active material]
[Measurement method of physical properties]
The physical properties and the like of lithium transition metal-based compound powders produced in each Example and Comparative Example described below were measured as follows.
<Composition (Li / Ni / Mn / Co)>
It was determined by ICP-AES analysis.

<添加元素(Mo,W,Nb,B,Sn)の定量>
ICP−AES分析により求めた。
<X線光電子分光法(XPS)による一次粒子表面の組成分析>
Physical Electronics社製 X線光電子分光装置「ESCA−5700」を用い、下記条件で行った。
<Quantification of additive elements (Mo, W, Nb, B, Sn)>
It was determined by ICP-AES analysis.
<Composition analysis of primary particle surface by X-ray photoelectron spectroscopy (XPS)>
The measurement was performed under the following conditions using an X-ray photoelectron spectrometer “ESCA-5700” manufactured by Physical Electronics.

X線源:単色化AlKα
分析面積:0.8mm径
取り出し角:65°
定量方法:Bls、Mn2p1/2、Co2p3/2、Ni2p3/2、W4f各ピークの面積を感度係数で補正。
X-ray source: Monochromatic AlKα
Analysis area: 0.8mm diameter
Extraction angle: 65 °
Determination method: Bls, Mn2p 1/2, Co2p 3/2 , Ni2p 3/2, corrected sensitivity coefficient and the area of W4f each peak.

<二次粒子のメジアン径およびd50>
公知のレーザー回折/散乱式粒度分布測定装置を用い、屈折率を1.60a−0.10iに設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%
ヘキサメタリン酸ナトリウム水溶液を用いて測定を行った。なお、超音波分散は行っていない。
<Median diameter of secondary particles and d50>
Using a known laser diffraction / scattering particle size distribution measuring apparatus, the refractive index was set to 1.60a-0.10i, and the particle diameter standard was measured as the volume standard. The dispersion medium is 0.1% by weight.
Measurement was performed using a sodium hexametaphosphate aqueous solution. Note that ultrasonic dispersion is not performed.

<平均一次粒子径>
30,000倍のSEM画像により求めた。
<嵩密度>
試料粉体4〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
<Average primary particle size>
It calculated | required from the SEM image of 30,000 times.
<Bulk density>
4 to 10 g of the sample powder was put into a 10 ml glass graduated cylinder, and the powder packing density when tapped 200 times with a stroke of about 20 mm was obtained.

<比表面積>
BET法により求めた。
<体積抵抗率>
粉体抵抗率測定装置(ダイアインスツルメンツ社製:ロレスターGP粉体低効率測定システムPD−41)を用い、試料重量3gとし、粉体用プローブユニット(四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mm)により、印加電圧リミッタを90Vとして、種々加圧下の粉体の体積抵抗率[Ω・cm]を測定し、40MPaの圧力下における体積抵抗率の値について比較した。
<Specific surface area>
Obtained by BET method.
<Volume resistivity>
Using a powder resistivity measurement device (Dia Instruments: Lorester GP powder low efficiency measurement system PD-41), the sample weight is 3 g, and a powder probe unit (four probe / ring electrode, electrode spacing 5.0 mm) The electrode resistivity is 1.0 mm, the sample radius is 12.5 mm, and the applied voltage limiter is 90 V. The volume resistivity [Ω · cm] of the powder under various pressures is measured, and the volume resistivity under a pressure of 40 MPa is measured. The values were compared.

<表面増強ラマンスペクトル(SERS)測定>
装置:Thermo Fisher Scientific製 Nicoret Almega XR
前処理:銀蒸着(10nm)
励起波長:532nm
励起出力:試料位置で0.1mW以下
解析方法:各ピークから直線バックグラウンドを除いた高さ及び半値幅を測定
スペクトル分解能:10cm−1
<Surface enhanced Raman spectrum (SERS) measurement>
Apparatus: Nicolet Almega XR manufactured by Thermo Fisher Scientific
Pretreatment: Silver deposition (10nm)
Excitation wavelength: 532 nm
Excitation output: 0.1 mW or less at sample position
Analysis method: Measure the height and half-value width excluding the linear background from each peak
Spectral resolution: 10 cm −1

<スラリー中の粉砕粒子のメジアン径>
公知のレーザー回折/散乱式粒度分布測定装置を用い、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
<Median diameter of pulverized particles in slurry>
Using a known laser diffraction / scattering particle size distribution measuring device, the refractive index was set to 1.24, and the particle diameter standard was measured as the volume standard. Further, a 0.1 wt% aqueous solution of sodium hexametaphosphate was used as a dispersion medium, and measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz).

<原料LiCO粉末の平均粒子径としてのメジアン径>
公知のレーザー回折/散乱式粒度分布測定装置(堀場製作所製、LA−920)を用い、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としてエチルアルコールを用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
<Median Diameter as Average Particle Diameter of Raw Material Li 2 CO 3 Powder>
Using a known laser diffraction / scattering particle size distribution measuring apparatus (LA-920, manufactured by Horiba, Ltd.), the refractive index was set to 1.24, and the particle diameter standard was measured as a volume standard. Further, ethyl alcohol was used as a dispersion medium, and measurement was performed after ultrasonic dispersion for 5 minutes (output 30 W, frequency 22.5 kHz).

<噴霧乾燥により得られた粒子状粉体の物性>
形態はSEM観察及び断面SEM観察により確認した。平均粒子径としてのメジアン径及び90%積算径(D90)は、公知のレーザー回折/散乱式粒度分布測定装置(堀場製作所製、LA−920)によって、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、0分、1分、3分、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。比表面積は、BET法により求めた。嵩密度は、試料粉体4〜6gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
<Physical properties of particulate powder obtained by spray drying>
The form was confirmed by SEM observation and cross-sectional SEM observation. The median diameter and 90% cumulative diameter (D 90 ) as the average particle diameter are set to a refractive index of 1.24 using a known laser diffraction / scattering particle size distribution measuring device (LA-920, manufactured by Horiba, Ltd.) The particle diameter standard was measured using the volume standard. Further, a 0.1 wt% sodium hexametaphosphate aqueous solution was used as a dispersion medium, and measurement was performed after 0 minutes, 1 minute, 3 minutes, and 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz). The specific surface area was determined by the BET method. The bulk density was determined as the powder packing density when 4 to 6 g of sample powder was put in a 10 ml glass graduated cylinder and tapped 200 times with a stroke of about 20 mm.

<AFMにより検出される化学的な吸着ポイント>
ポリアクリル酸で化学修飾したプローブを用いたAFM(ブルカー・エイエックスエス社製NanoscopeIII)によって、活物質表面の任意の箇所を4μm×4μmの面
積で走査し、画像データ(高さ像と位相像)を取得した。なお、プローブの修飾は以下の手順で行った。まず、材質がシリコンのプローブを0.1wt%のポリアクリル酸水溶液中に2〜3時間静置し、次にプローブを水溶液から取り出して1日程度風乾をすることで、プローブにポリアクリル酸を修飾した。また、AFMにおける走査は以下の条件で行う。走査速度は1Hz、観察点数は512×512ポイントとして画像データを取得した。
<Chemical adsorption points detected by AFM>
An arbitrary portion of the active material surface is scanned with an area of 4 μm × 4 μm by AFM (Nanoscope III manufactured by Bruker AXS) using a probe chemically modified with polyacrylic acid, and image data (height image and phase image) ). The modification of the probe was performed according to the following procedure. First, a probe made of silicon is left in a 0.1 wt% polyacrylic acid aqueous solution for 2 to 3 hours, and then the probe is taken out of the aqueous solution and air-dried for about one day, so that the polyacrylic acid is attached to the probe. Qualified. Further, scanning in AFM is performed under the following conditions. Image data was acquired with a scanning speed of 1 Hz and a number of observation points of 512 × 512 points.

次に、取得した画像データのうち、位相像について、画像解析ソフトImageProPlus(Media Cybernetics社製 (株)日本ローパー社販売)を用
いて平坦化処理と化学的な吸着ポイント抽出の自動閾値処理を行い、個数をカウントした。(ここで言う平坦化処理とは、画像から背景画像を作成し元画像から背景画像の減算処理を行うことにより、一様でない画像の背景をならしてフラットにする方法である。また、化学的な吸着ポイント抽出方法は、取得した画像において、濃度が明るく、面積が1000nm〜20000nmであり、真円度が0.0〜3.0であり、楕円短長軸比が1.0〜3.0かつ不均質度が0.05〜1.0である画像上のポイントを化学的な吸着ポイントとして個数カウントした。)活物質表面それぞれの任意の5箇所においてAFM走査による画像データの取得および取得した画像における平坦化処理と化学的な吸着ポイントの個数カウントを行い、カウントした化学的な吸着ポイントの数の平均値を求め、その値をもって化学的な状態を評価した際の値とした。
Next, among the acquired image data, the phase image is subjected to flattening processing and automatic threshold extraction processing of chemical adsorption points using image analysis software ImageProPlus (manufactured by Media Cybernetics Co., Ltd., Japan Roper). The number was counted. (The flattening process mentioned here is a method in which a background image is created from an image and a background image is subtracted from the original image to smooth the background of the non-uniform image and make it flat. in adsorption point extraction method, the acquired image, bright concentration, the area is 1000nm 2 ~20000nm 2, a circularity of 0.0 to 3.0, an ellipse short length axis ratio of 1.0 The number of points on the image having an inhomogeneity of ~ 3.0 and a non-homogeneity of 0.05 to 1.0 was counted as a chemical adsorption point. Perform the flattening process and count the number of chemical adsorption points in the acquired and acquired images, find the average value of the counted number of chemical adsorption points, and use that value to determine the chemical state And the value at the time of the value.

[リチウム遷移金属系化合物の製造]
(活物質の合成)
LiCO、NiCO、Mn、CoOOH、HBO、WOを、Li:Ni:Mn:Co:B:W=1.15:0.45:0.45:0.10:0.0025:0.015のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.5μmに粉砕した。
[Production of lithium transition metal compounds]
(Synthesis of active material)
Li 2 CO 3 , NiCO 3 , Mn 3 O 4 , CoOOH, H 3 BO 3 , WO 3 are mixed with Li: Ni: Mn: Co: B: W = 1.15: 0.45: 0.45: 0. After weighing and mixing to a molar ratio of 10: 0.0025: 0.015, pure water was added thereto to prepare a slurry. While stirring the slurry, the solid content in the slurry was pulverized to a median diameter of 0.5 μm using a circulating medium agitation type wet pulverizer.

次に、このスラリー(固形分含有量50重量%、粘度5500cp)を、四流体ノズル型スプレードライヤー(藤崎電気(株)製:MDP−690型)を用いて噴霧乾燥した。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末のメジアン径は17μmであった。この粉末をアルミナ製焼成鉢に仕込み、空気雰囲気下、650℃で2時間焼成(昇降温速度7.7℃/min.)した後、さらに1125℃で3.5時間焼成(昇降温速度7.7℃/min.)した後、解砕して、組成がLi1.15(Ni0.45Mn0.45Co0.10)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.1、y=0.00、z=0.15)を得た。この平均一次粒径は1μmで、メジアン径は10.0μm、嵩密度は2.1g/cc、BET比表面積は1.0m/gであった。 Next, this slurry (solid content 50 wt%, viscosity 5500 cp) was spray dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd .: MDP-690 type). The drying inlet temperature was 200 ° C. The median diameter of the particulate powder obtained by spray drying with a spray dryer was 17 μm. This powder was put into an alumina baking pot, fired at 650 ° C. for 2 hours in an air atmosphere (heating rate 7.7 ° C./min.), And further fired at 1125 ° C. for 3.5 hours (heating temperature rate 7. 7 ° C./min.) And then crushed to obtain a lithium nickel manganese cobalt composite oxide having a layered structure with a composition of Li 1.15 (Ni 0.45 Mn 0.45 Co 0.10 ) O 2 (x = 0.1, y = 0.00, z = 0.15). The average primary particle diameter was 1 μm, the median diameter was 10.0 μm, the bulk density was 2.1 g / cc, and the BET specific surface area was 1.0 m 2 / g.

また、本試料について、表面増強ラマンスペクトル(SERS)測定を行ったところ、900cm−1付近にピークトップを有していることを確認した。また、その半値幅は、78cm−1であった。600±50cm−1付近のピークの強度に対する800cm−1以上、1000cm−1以下のピークの強度は、0.65であった。 さらに、XPSにより表面のB及びW濃度を測定し、仕込みの組成比から全体のB及びW濃度を計算し、それらを比較したところ、Bについては50倍、Wについては10倍であった。
さらに、AFMにより検出される化学的な吸着ポイントとしては、86.6であった。
Moreover, when the surface enhancement Raman spectrum (SERS) measurement was performed about this sample, it confirmed having a peak top in 900 cm < -1 > vicinity. Moreover, the half value width was 78 cm < -1 >. 600 800 cm -1 or more to the intensity of the peak around ± 50 cm -1, the intensity of the 1000 cm -1 or less at the peak was 0.65. Further, the B and W concentrations on the surface were measured by XPS, and the overall B and W concentrations were calculated from the composition ratio of the preparations. When these were compared, the B was 50 times and the W was 10 times.
Furthermore, the chemical adsorption point detected by AFM was 86.6.

[スラリーの調整(実施例及び比較例)]
(実施例B1)
作製した正極活物質に、導電材、結着材およびNMPを、あわとり練太郎(THINKY製)を用いて混合し、正極スラリーを調製した。
[Preparation of slurry (Examples and Comparative Examples)]
(Example B1)
A conductive material, a binder, and NMP were mixed with the produced positive electrode active material using Nawataro Awatori (manufactured by THINKY) to prepare a positive electrode slurry.

導電材としてHIBLACK 40 B1(エボニック デグサ ジャパン製)、結着材としてPVdF結着材#1120(クレハ製)を用い、正極活物質/導電材/結着材が重量比で92/5/3となるように秤量した。ただし、PVdF結着材#1120については、NMP中に溶解させてある固形分が正極スラリーの全固形分重量に対して3wt%となるように秤量した。
混合の順序としては、まず導電材とNMPを混合し、次いで結着材を混合し、最後に正極活物質を混合した。全工程とも、混合は1000rpmで3分間行った。なお、導電材と最初に混合するNMPは、PVdF結着材から持ち込まれるNMP量も含め、正極スラリーの最終的なN/V比が60%となるように秤量した。
HIBLACK 40 B1 (manufactured by Evonik Degussa Japan) is used as the conductive material, PVdF binder # 1120 (manufactured by Kureha) is used as the binder, and the positive electrode active material / conductive material / binder is 92/5/3 by weight. Weighed so that However, PVdF binder # 1120 was weighed so that the solid content dissolved in NMP was 3 wt% with respect to the total solid content weight of the positive electrode slurry.
As the mixing order, first, the conductive material and NMP were mixed, then the binder was mixed, and finally the positive electrode active material was mixed. In all steps, mixing was performed at 1000 rpm for 3 minutes. The NMP mixed with the conductive material first was weighed so that the final N / V ratio of the positive electrode slurry was 60% including the amount of NMP brought in from the PVdF binder.

(実施例B2)
導電材として粉状アセチレンブラック(日本化学工業製)、結着材としてPVdF結着材#7208(クレハ製)を用いたこと以外は、実施例B1と同様の方法で正極スラリーを調製した。
(比較例B1)
結着材としてPVdF結着材#1710(クレハ製)を用いたこと以外は、実施例B1と同様の方法で正極スラリーを調製した。
(比較例B2)
結着材としてPVdF結着材#7208(クレハ製)を用いたこと以外は、実施例B1と同様の方法で正極スラリーを調製した。
(Example B2)
A positive electrode slurry was prepared in the same manner as in Example B1, except that powdered acetylene black (manufactured by Nippon Chemical Industry Co., Ltd.) was used as the conductive material and PVdF binder # 7208 (manufactured by Kureha) was used as the binder.
(Comparative Example B1)
A positive electrode slurry was prepared in the same manner as in Example B1, except that PVdF binder # 1710 (manufactured by Kureha) was used as the binder.
(Comparative Example B2)
A positive electrode slurry was prepared in the same manner as in Example B1, except that PVdF binder # 7208 (manufactured by Kureha) was used as the binder.

[スラリーの弾性変化挙動の測定]
調製したスラリーにおける弾性変化挙動を、レオメーター(Rheometric Scientific製)によって測定した。レオメーターの測定においては、Strain=100
%、Frequency=10に設定し、調液直後から15分後までの弾性変化率を測定した。調製直後のスラリーにおける弾性(A)と、調製後15分経過したスラリーにおける弾性(B)を比較し、以下の式(1)によって変化率を算出した。
式(1) B/A×100
上記、実施例1,2および比較例1,2で調整したスラリーの粘度挙動変化率を式(1)によって算出した値を表1に示す。
[Measurement of elastic change behavior of slurry]
The elastic change behavior in the prepared slurry was measured with a rheometer (manufactured by Rheometric Scientific). In the rheometer measurement, Strain = 100
%, Frequency = 10, and the elastic change rate from immediately after preparation to 15 minutes was measured. The elasticity (A) in the slurry immediately after the preparation and the elasticity (B) in the slurry after 15 minutes from the preparation were compared, and the rate of change was calculated by the following equation (1).
Formula (1) B / A × 100
Table 1 shows values obtained by calculating the viscosity behavior change rates of the slurries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 using Equation (1).

Figure 2013041807
Figure 2013041807

表1より、実施例では低かった粘度上昇率が、比較例では積算値との相関では説明がつかないほど高くなっていることが分かる。これは、スラリーがゲル化したことによる。   From Table 1, it can be seen that the viscosity increase rate, which was low in the examples, is so high that it cannot be explained by the correlation with the integrated value in the comparative example. This is due to the gelation of the slurry.

本発明のリチウム遷移金属系複合酸化物粉体を用いたリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、ペースメーカー、電動工具、自動車用動力源、軌道車両動力源、人工衛星用動力源等を挙げることができる。   The use of the lithium secondary battery using the lithium transition metal-based composite oxide powder of the present invention is not particularly limited, and can be used for various known uses. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. , Electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, motor, lighting equipment, toy, game machine, clock, strobe, camera, pacemaker, electric tool, automotive power source, track vehicle power source, artificial Examples include a power source for satellites.

Claims (13)

活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の窒素吸着比表面積(NSA)が70m/g以上であり、 導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たすリチウム二次電池用正極。
(S×M)/10000≦7500・・・(1)
A positive electrode for a lithium secondary battery containing an active material, a conductive material and a binder,
The conductive material has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more, the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S, and the weight of the binder A positive electrode for a lithium secondary battery that satisfies the following formula (1) when the average molecular weight is M.
(S × M) / 10000 ≦ 7500 (1)
活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の平均粒径が35nm以下であり、
導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たす
リチウム二次電池用正極。
(S×M)/10000≦7500・・・(1)
A positive electrode for a lithium secondary battery containing an active material, a conductive material and a binder,
The conductive material has an average particle size of 35 nm or less;
The positive electrode for a lithium secondary battery satisfying the following formula (1) when the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S and the weight average molecular weight of the binder is M .
(S × M) / 10000 ≦ 7500 (1)
活物質、導電材及び結着材を含有するリチウム二次電池用正極であって、
該導電材の揮発分が0.8%以上であり、
導電材の窒素吸着比表面積(NSA、単位:m/g)をS、該結着材の重量平均分子量をMとしたときに以下の式(1)を満たす
リチウム二次電池用正極。
(S×M)/10000≦7500・・・(1)
A positive electrode for a lithium secondary battery containing an active material, a conductive material and a binder,
The conductive material has a volatile content of 0.8% or more,
The positive electrode for a lithium secondary battery satisfying the following formula (1) when the nitrogen adsorption specific surface area (N 2 SA, unit: m 2 / g) of the conductive material is S and the weight average molecular weight of the binder is M .
(S × M) / 10000 ≦ 7500 (1)
結着材の重量平均分子量が60万以下である請求項1〜3のいずれか1項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein the binder has a weight average molecular weight of 600,000 or less. 結着材がPVdFである請求項1〜4のいずれか1項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to any one of claims 1 to 4, wherein the binder is PVdF. 導電材の窒素吸着比表面積(NSA)が70m/g以上である請求項1〜5のいずれか1項に記載のリチウム二次電池用正極。 The positive electrode for a lithium secondary battery according to claim 1, wherein the conductive material has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more. 導電材の平均粒径が35nm以下である請求項1〜6のいずれか1項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to any one of claims 1 to 6, wherein the conductive material has an average particle size of 35 nm or less. 導電材の揮発分が0.8%以上である請求項1〜7のいずれか1項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to claim 1, wherein the conductive material has a volatile content of 0.8% or more. 導電材がオイルファーネスカーボンブラックである請求項1〜8のいずれか1項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to claim 1, wherein the conductive material is oil furnace carbon black. 活物質重量に対する導電材の割合が0.5重量%以上、15重量%以下である請求項1〜9のいずれか1項に記載のリチウム二次電池用正極。   The ratio of the electrically conductive material with respect to the active material weight is 0.5 to 15 weight%, The positive electrode for lithium secondary batteries of any one of Claims 1-9. 活物質がリチウム遷移金属系複合酸化物を含有する請求項1〜10のいずれか1項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to any one of claims 1 to 10, wherein the active material contains a lithium transition metal composite oxide. 活物質が、表面増強ラマン分光スペクトルにおいて、800cm−1以上、1000cm−1以下にピークを有するものである請求項1〜11のいずれか1項に記載のリチウム二次電池用正極。 Active material, the surface-enhanced Raman spectrum, 800 cm -1 or more, a positive electrode for a lithium secondary battery according to any one of claims 1 to 11 and has a peak at 1000 cm -1 or less. 正極と、負極と、リチウム塩を含有する非水電解質とを含むリチウム二次電池であって、
正極が請求項1〜12のいずれか1項に記載のリチウム二次電池用正極であるリチウム二次電池。
A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium salt,
The lithium secondary battery whose positive electrode is a positive electrode for lithium secondary batteries of any one of Claims 1-12.
JP2012074406A 2011-07-15 2012-03-28 Positive electrode for lithium secondary battery and lithium secondary battery including the same Pending JP2013041807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074406A JP2013041807A (en) 2011-07-15 2012-03-28 Positive electrode for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011156715 2011-07-15
JP2011156715 2011-07-15
JP2012074406A JP2013041807A (en) 2011-07-15 2012-03-28 Positive electrode for lithium secondary battery and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
JP2013041807A true JP2013041807A (en) 2013-02-28

Family

ID=47890011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074406A Pending JP2013041807A (en) 2011-07-15 2012-03-28 Positive electrode for lithium secondary battery and lithium secondary battery including the same

Country Status (1)

Country Link
JP (1) JP2013041807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045314A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN113611911A (en) * 2021-07-30 2021-11-05 深圳新宙邦科技股份有限公司 Lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045314A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN105493330A (en) * 2013-09-30 2016-04-13 三洋电机株式会社 Non-aqueous electrolyte secondary battery
JPWO2015045314A1 (en) * 2013-09-30 2017-03-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN113611911A (en) * 2021-07-30 2021-11-05 深圳新宙邦科技股份有限公司 Lithium ion battery
CN113611911B (en) * 2021-07-30 2022-10-18 深圳新宙邦科技股份有限公司 Lithium ion battery

Similar Documents

Publication Publication Date Title
JP4475326B2 (en) Lithium transition metal-based compound powder, production method thereof, spray-dried body serving as a firing precursor thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5343347B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5359140B2 (en) Lithium transition metal compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2012038724A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5428251B2 (en) Lithium transition metal compound powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4613943B2 (en) Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
KR101562237B1 (en) Lithium transition metal-type compound powder
KR101858763B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2011083861A1 (en) Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP5135912B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2013093171A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2008270161A5 (en)
JP2009164140A5 (en)
JP2011108554A (en) Lithium transition metal based compound powder, its manufacturing method, and positive electrode material for lithium secondary battery and lithium secondary battery using it
JP5157071B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4826877B2 (en) Electrode for electrochemical device and lithium secondary battery using the same
WO2007116971A1 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP2009117261A (en) Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
JP6010902B2 (en) Lithium transition metal-based compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2013025887A (en) Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP2010278015A (en) Lithium-nickel-manganese-cobalt-based compound oxide powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, and positive electrode for lithium rechargeable battery, and lithium rechargeable battery using the powder
JP2012038680A (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery using the positive electrode active material and lithium secondary battery
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2013051078A (en) Electrode, and lithium secondary battery using the same