JP2013041219A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2013041219A
JP2013041219A JP2011179843A JP2011179843A JP2013041219A JP 2013041219 A JP2013041219 A JP 2013041219A JP 2011179843 A JP2011179843 A JP 2011179843A JP 2011179843 A JP2011179843 A JP 2011179843A JP 2013041219 A JP2013041219 A JP 2013041219A
Authority
JP
Japan
Prior art keywords
transfer
power supply
voltage
reference point
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011179843A
Other languages
Japanese (ja)
Inventor
Keigo Akiya
佳吾 秋屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011179843A priority Critical patent/JP2013041219A/en
Publication of JP2013041219A publication Critical patent/JP2013041219A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image forming apparatus that reduces an influence associating with application of discharge voltage on transfer current during image formation and supplies appropriate transfer current during reduced-interval transfer control.SOLUTION: A discharge power supply 8 has a discharge power supply reference point D3 that is a standard of voltage applied to discharge means 9 connected with the discharge power supply 8. A transfer power supply 7 has a transfer power supply reference point A3 that is a standard for voltage applied to transfer means 5 connected with the transfer power supply 7. A transfer current detection unit 7c is connected to the transfer power supply reference point A3, and the discharge power supply reference point D3 is connected with the transfer power supply reference point A3 directly without passing through the transfer current detection unit 7c.

Description

本発明は、像担持体上に形成したトナー像を記録材上に転写する転写手段と、像担持体に静電吸着した記録材を像担持体から分離するための分離手段と、を有する転写方式の画像形成装置に関する。   The present invention provides a transfer unit that transfers a toner image formed on an image carrier onto a recording material, and a separation unit that separates the recording material electrostatically attracted to the image carrier from the image carrier. The present invention relates to a type image forming apparatus.

電子写真方式のレーザビームプリンタ(LBP)や複写機等の画像形成装置は、画像情報を基に像担持体の表面にトナー像を形成担持し、その像を紙などの記録材に転写、定着することで画像形成物(コピー、プリント)として出力する。   An image forming apparatus such as an electrophotographic laser beam printer (LBP) or a copying machine forms and supports a toner image on the surface of an image carrier based on image information, and transfers and fixes the image onto a recording material such as paper. By doing so, it is output as an image formed product (copy, print).

中でも、転写手段への定電圧印加によって画像形成を行うような画像形成装置では、画像転写に必要な電流値を転写手段へ印加する際に、転写手段に生じる電圧値を基に定めることがある。   In particular, in an image forming apparatus that forms an image by applying a constant voltage to a transfer unit, when a current value necessary for image transfer is applied to the transfer unit, it may be determined based on a voltage value generated in the transfer unit. .

その手段は様々あるが、一つとして特許文献1中に示されている転写電圧接定方式がある。   There are various means, but one is a transfer voltage contact method disclosed in Patent Document 1.

この方式は、非画像領域又は記録紙間において、転写手段としての転写ローラに印加する転写電流値が予め設定した値となるように、転写電源を制御するものである。この方式は、転写ローラの周囲環境変化等に伴う特性変化やその他の要因による変化が生じても、トナー像を転写するために適した電流を供給することができる。   In this method, the transfer power source is controlled so that a transfer current value applied to a transfer roller as a transfer unit becomes a preset value between non-image areas or between recording sheets. This method can supply a current suitable for transferring a toner image even if a characteristic change caused by a change in the surrounding environment of the transfer roller or a change due to other factors occurs.

また、これらの制御に加えて、記録材を像担持体或いは中間転写体としての転写ベルト(転写ローラ)から分離するために、例えば除電針のような除電手段を設けている場合がある。特許文献2に示すように、記録材の搬送方向に対して下流側にコロナ放電器を用いた除電手段を配置し、転写部から排出された直後の記録材に、コロナ放電で発生させた荷電粒子を照射する画像形成装置も、その一つである。   In addition to these controls, there may be a case where a charge eliminating means such as a charge eliminating needle is provided to separate the recording material from a transfer belt (transfer roller) as an image carrier or an intermediate transfer member. As shown in Japanese Patent Application Laid-Open No. H10-260260, a charge removing unit using a corona discharger is disposed downstream of the recording material conveyance direction, and the charge generated by the corona discharge immediately after being discharged from the transfer portion. One example is an image forming apparatus that irradiates particles.

特開平11−95581号公報Japanese Patent Application Laid-Open No. 11-95581 特開2002−372874号公報JP 2002-372874 A

しかしながら、特許文献1に示されるように転写部と除電部を備えた構成において、上記の転写電圧接定方式を適応できない場合がある。   However, as shown in Patent Document 1, there is a case where the above-described transfer voltage determination method cannot be applied to a configuration including a transfer unit and a charge removal unit.

つまり、特許文献1に示された構成では、除電手段と転写手段が近接した配置にする必要がある。ここで、除電手段と転写手段にかける電圧は逆電位であることから、電位差はより大きなものとなる。そのため、除電手段で発生した荷電粒子の一部が転写手段へ流れ込むことで漏洩電流が発生し、本来転写手段で必要とする電流が得られなくなるため、印加する最適な電圧を印加することができない。   That is, in the configuration disclosed in Patent Document 1, it is necessary to dispose the charge eliminating unit and the transfer unit in proximity. Here, since the voltage applied to the charge eliminating unit and the transfer unit is a reverse potential, the potential difference becomes larger. For this reason, a part of the charged particles generated by the static elimination unit flows into the transfer unit, so that a leakage current is generated and the current that is originally required by the transfer unit cannot be obtained. Therefore, the optimum voltage to be applied cannot be applied. .

図1は、電子写真方式の画像形成装置の全体構成図であり、図2は、従来構成における転写電源と除電電源の接続形態略図である。   FIG. 1 is an overall configuration diagram of an electrophotographic image forming apparatus, and FIG. 2 is a schematic diagram of a connection configuration between a transfer power source and a neutralization power source in a conventional configuration.

本例にて、像担持体としての電子写真感光体1は、表面に感光体層を設けた回転ドラム型(以下、「感光ドラム」という。)とされる。感光ドラム1の回りには、帯電装置2、転写手段としてローラ状の接触転写部材(以下、「転写ローラ」という。)5、除電手段として除電針9を備えており、更に、転写ローラ5と除電針9へ電圧を供給する高圧回路6が配置されている。そして、記録材としての記録紙Pが、感光ドラム1と転写ローラ5によって矢印の方向に挟持搬送される。   In this example, the electrophotographic photosensitive member 1 as an image carrier is of a rotating drum type (hereinafter referred to as “photosensitive drum”) provided with a photosensitive layer on the surface. Around the photosensitive drum 1, a charging device 2, a roller-shaped contact transfer member (hereinafter referred to as “transfer roller”) 5 as a transfer unit, and a charge removal needle 9 as a charge removal unit are provided. A high voltage circuit 6 for supplying a voltage to the static elimination needle 9 is disposed. Then, the recording paper P as a recording material is nipped and conveyed in the direction of the arrow by the photosensitive drum 1 and the transfer roller 5.

図1に示すように、現状は転写電源7と除電電源8はそれぞれ独立して配置されている。この構成において、転写電源7、除電電源8に流れる電流の流れを、図2を用いて説明する。   As shown in FIG. 1, at present, the transfer power supply 7 and the charge removal power supply 8 are independently arranged. In this configuration, the flow of current flowing through the transfer power supply 7 and the charge removal power supply 8 will be described with reference to FIG.

電流の流れは、画像領域(印字動作時)と非画像領域(紙間或いは前回転)で異なる。印字動作時の転写電流は、転写正電源から転写ローラ5を示す抵抗118を通り、接地部、電流検出抵抗115、転写負電源基準点A1、転写負抵抗108、転写正電源基準点B1を経て、転写正電源へ戻る経路1がある。更に、転写電流には、転写正電源から挟持搬送されている記録紙Pを導電媒体として、搬送ガイド等を通り接地部へ流れる経路2がある。また、記録紙Pを導電媒体とした経路は除電電源8、転写ローラ5と除電針9間にも存在する。一つは、除電針9から記録紙Pを通り接地部、電流検出抵抗115、転写負電源基準点A1、転写負抵抗108、転写正電源基準点B1を経て、転写正電源へ戻る経路3である。更に、転写ローラ5から記録紙Pを媒体に除電電源8、除電電源基準点D1、転写負電源基準点A1、転写負抵抗108、転写正電源基準点B1を経て転写正電源へ戻る経路4である。   The current flow differs between the image area (during printing operation) and the non-image area (between paper or pre-rotation). The transfer current during the printing operation passes from the positive transfer power source through the resistor 118 indicating the transfer roller 5, and passes through the grounding portion, the current detection resistor 115, the negative transfer power source reference point A1, the negative transfer resistor 108, and the positive transfer power source reference point B1. There is a path 1 that returns to the positive transfer power source. Further, the transfer current has a path 2 that flows to the grounding portion through a conveyance guide or the like using the recording paper P that is nipped and conveyed from the positive transfer power source as a conductive medium. A path using the recording paper P as a conductive medium also exists between the static elimination power source 8, the transfer roller 5 and the static elimination needle 9. One is a path 3 that passes from the static elimination needle 9 through the recording paper P to the grounding portion, the current detection resistor 115, the transfer negative power supply reference point A1, the transfer negative resistance 108, and the transfer positive power supply reference point B1 to return to the transfer positive power supply. is there. Further, a path 4 returns from the transfer roller 5 to the transfer positive power supply through the recording paper P as a medium through the static elimination power supply 8, the static elimination power supply reference point D1, the transfer negative power supply reference point A1, the transfer negative resistance 108, and the transfer positive power supply reference point B1. is there.

次に、紙間における電流の流れである。転写電圧と除電電圧を同時に印加した場合、先に示した通り転写ローラ5と除電針9間には漏洩電流が発生することから、転写電流は転写正電源から転写ローラ5を示す抵抗118を通り、接地部、転写電流検出抵抗115、転写負電源基準点A1、転写負抵抗108、転写正電源基準点B1を経て、転写正電源へ戻る経路5と、転写正電源から除電針9への漏洩電流を示す疑似抵抗117を介し、除電抵抗112、除電電源基準点D1と接続した接地部、再度接地部より電流検出抵抗115、転写負電源基準点A1、転写負抵抗108、転写正電源基準点B1を経て、転写正電源へ戻る経路6の2種存在する。   Next, the flow of current between the sheets. When the transfer voltage and the static elimination voltage are applied simultaneously, a leakage current is generated between the transfer roller 5 and the static elimination needle 9 as described above. Therefore, the transfer current passes through the resistor 118 indicating the transfer roller 5 from the positive transfer power source. , Ground 5, transfer current detection resistor 115, transfer negative power supply reference point A 1, transfer negative resistance 108, transfer positive power supply reference point B 1, path 5 returning to the transfer positive power supply, and leakage from the transfer positive power supply to the static elimination needle 9 The grounding part connected to the static elimination resistor 112 and the static elimination power supply reference point D1 via the pseudo resistance 117 indicating the current, and again from the grounding part, the current detection resistor 115, the transfer negative power supply reference point A1, the transfer negative resistance 108, and the transfer positive power supply reference point There are two types of paths 6 that return to the positive transfer power source via B1.

経路6は転写電流検出部、即ち、電流検出抵抗115を通っているため、転写回路に流れる電流の値は、転写ローラ5と除電針9間に発生した漏洩電流が加算されてしまう。また、漏洩電流が転写負抵抗108を通ることによる電圧降下も影響する。したがって、転写電圧接定方式が正しく適用できない。   Since the path 6 passes through the transfer current detection unit, that is, the current detection resistor 115, the leakage current generated between the transfer roller 5 and the static elimination needle 9 is added to the value of the current flowing through the transfer circuit. In addition, a voltage drop due to leakage current passing through the transfer negative resistance 108 is also affected. Therefore, the transfer voltage determination method cannot be applied correctly.

転写電圧接定方式の実施は時間を要する。その時間は、記録紙間隔と所定の周速度(プロセススピード)で決定される紙間時間よりも長くなることがある。この場合は、紙間を伸ばして実施するなどの方策をとることがあるが、単位時間あたりの印字量、即ちスループットを低下させなくてはならない。   Implementation of the transfer voltage contact method takes time. The time may be longer than the paper interval time determined by the recording paper interval and a predetermined peripheral speed (process speed). In this case, measures may be taken such as extending the interval between sheets, but the printing amount per unit time, that is, throughput must be reduced.

ここで、特許文献1に示されたように、電流検知を行うタイミングで除電電圧を下げ、漏洩電流の影響を小さくする方法も考えられる。しかしこの場合、近年の画像形成装置の高速化に伴い、記録紙間を詰めて生産力を向上させるという「小紙間制御」を実施すると、次のような問題がある。つまり、転写電圧接定方式は転写部位が非画像領域であり、且つ除電手段である除電針に印加される電圧レベルが低いタイミングにおいて実施するという制約がある。そのため、小紙間制御での記録紙分離性を向上させるための除電電圧を紙間で印加し続けなくてはならなくなり、漏洩電流増大の懸念から適用できない。   Here, as shown in Patent Document 1, a method of reducing the effect of leakage current by reducing the static elimination voltage at the timing of current detection is also conceivable. However, in this case, with the recent increase in the speed of the image forming apparatus, there is the following problem when “small paper gap control” is performed in which the gap between recording papers is reduced to improve the productivity. That is, there is a restriction that the transfer voltage contact method is performed at a timing when the transfer site is a non-image area and the voltage level applied to the charge removal needle as the charge removal means is low. For this reason, it is necessary to continue to apply a static elimination voltage for improving the recording paper separation property in the small paper gap control between the paper sheets, which is not applicable due to an increase in leakage current.

本発明は、画像形成時において除電電圧の印加に伴う転写電流への影響を低減し、小紙間制御時においても適正な転写電流を供給できる画像形成装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an image forming apparatus capable of reducing an influence on a transfer current accompanying application of a static elimination voltage at the time of image formation, and supplying an appropriate transfer current even at the time of small paper sheet control.

上記目的は本発明に係る画像形成装置にて達成される。要約すれば、本発明は、
像担持体に形成されたトナー像を記録材に転写する転写手段と、
前記記録材の移動方向に対して前記転写手段の下流に配置され、前記像担持体に静電吸着した前記記録材を除電し、分離するための除電手段と、
前記転写手段へ電圧を供給する転写電源と、
前記除電手段へ電圧を供給する除電電源と、
前記転写手段に流れる電流値を検出する転写電流検出部と、
前記転写電流検出部が検出した電流値に基づき、前記転写電源の電圧を制御する制御部と、
を有する画像形成装置において、
前記除電電源は、前記除電電源に接続した前記除電手段へ印加する電圧の基準となる除電電源基準点を有し、前記転写電源は、前記転写電源に接続する前記転写手段へ印加する電圧の基準となる転写電源基準点を有し、
前記転写電流検出部は、前記転写電源基準点に接続されており、
前記除電電源基準点が前記転写電流検出部を介さずに直接に前記転写電源基準点に接続されていることを特徴とする画像形成装置である。
The above object is achieved by the image forming apparatus according to the present invention. In summary, the present invention
Transfer means for transferring a toner image formed on the image carrier to a recording material;
A neutralizing unit disposed downstream of the transfer unit with respect to the moving direction of the recording material, for neutralizing and separating the recording material electrostatically attracted to the image carrier;
A transfer power supply for supplying a voltage to the transfer means;
A static elimination power source for supplying a voltage to the static elimination means;
A transfer current detector for detecting a current value flowing through the transfer means;
A control unit for controlling the voltage of the transfer power source based on the current value detected by the transfer current detection unit;
In an image forming apparatus having
The neutralization power source has a neutralization power source reference point that serves as a reference for a voltage applied to the neutralization unit connected to the neutralization power source, and the transfer power source is a reference for a voltage applied to the transfer unit connected to the transfer power source Has a transfer power reference point
The transfer current detection unit is connected to the transfer power supply reference point,
The image forming apparatus is characterized in that the static elimination power supply reference point is directly connected to the transfer power supply reference point without passing through the transfer current detection unit.

本発明によれば、転写手段(例えば転写ローラ)と除電手段(例えば除電針)の間で漏洩電流が発生した場合においても、転写手段に与えるべき転写電流値を正確に検出することができることから、漏洩電流の発生の有無によらず、適切に転写電圧を設定することが可能となる。   According to the present invention, it is possible to accurately detect the transfer current value to be applied to the transfer unit even when a leakage current is generated between the transfer unit (for example, the transfer roller) and the charge removal unit (for example, the charge removal needle). Regardless of the occurrence of leakage current, it is possible to set the transfer voltage appropriately.

本発明に係る画像形成装置の一実施例の概略構成図である。1 is a schematic configuration diagram of an embodiment of an image forming apparatus according to the present invention. 従来構成における転写電源と除電電源の接続形態を説明する概略図である。It is the schematic explaining the connection form of the transfer power supply and static elimination power supply in a conventional structure. 本発明に係る画像形成装置の動作工程を説明する図である。It is a figure explaining the operation | movement process of the image forming apparatus which concerns on this invention. 本発明の第1の実施例における転写電源と除電電源の接続形態概略図である。FIG. 3 is a schematic diagram of a connection form between a transfer power source and a charge removal power source in the first embodiment of the present invention. 転写電源回路図である。It is a transfer power supply circuit diagram. 除電電源回路図である。It is a static elimination power supply circuit diagram. 長紙間搬送制御における転写電源及び除電電源の出力タイムチャートである。6 is an output time chart of a transfer power source and a neutralization power source in the inter-sheet conveyance control. 小紙間搬送制御における転写電源及び除電電源の出力タイムチャートである。6 is an output time chart of a transfer power source and a neutralization power source in conveyance control between small papers. 本発明の第2の実施例における転写電源と除電電源の接続形態概略図である。It is the connection form schematic of the transfer power supply and static elimination power supply in 2nd Example of this invention.

以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。   The image forming apparatus according to the present invention will be described below in more detail with reference to the drawings.

実施例1
図1に、本発明に係る画像形成装置の一実施例の全体構成を示す。本実施例にて画像形成装置は、電子写真プロセスを応用し、接触転写方式、ATVC方式、除電針による記録材の除電方式を用いている。
Example 1
FIG. 1 shows the overall configuration of an embodiment of an image forming apparatus according to the present invention. In this embodiment, the image forming apparatus applies an electrophotographic process and uses a contact transfer method, an ATVC method, and a charge eliminating method for a recording material using a charge eliminating needle.

(1)画像形成プロセス
図1を参照すると、本実施例にて画像形成装置は、上述したように、像担持体として表面に感光体層を設けた回転ドラム型の電子写真感光体、即ち、感光ドラム1を備えている。感光ドラム1の周りには、帯電手段としてローラ状の帯電装置、即ち、帯電ローラ2と、現像手段として現像スリーブ4aを備えた現像装置4と、転写手段としてローラ状の接触転写部材、即ち、転写ローラ5と、除電手段として除電針9と、を備えている。更に、感光ドラム1の周りには、感光ドラム1のクリーニング手段としてのクリーニング装置12が配置されている。
(1) Image Forming Process Referring to FIG. 1, in this embodiment, as described above, the image forming apparatus is a rotating drum type electrophotographic photosensitive member provided with a photosensitive layer on the surface as an image carrier. A photosensitive drum 1 is provided. Around the photosensitive drum 1, a roller-shaped charging device as a charging means, that is, a charging roller 2, a developing device 4 provided with a developing sleeve 4a as a developing means, and a roller-shaped contact transfer member as a transfer means, that is, A transfer roller 5 and a static elimination needle 9 as a static elimination means are provided. Further, around the photosensitive drum 1, a cleaning device 12 as a cleaning means for the photosensitive drum 1 is disposed.

図1を参照して画像形成プロセスを説明する。感光ドラム1は、矢印の方向に所定の周速度(プロセススピード)で回転駆動され、以下の作像プロセス(a)〜(g)が適用される。   The image forming process will be described with reference to FIG. The photosensitive drum 1 is rotationally driven in the direction of the arrow at a predetermined peripheral speed (process speed), and the following image forming processes (a) to (g) are applied.

(a)帯電:
回転駆動される感光ドラム1は、その表面が帯電装置(帯電ローラ)2によって所定の極性・電位に一様に帯電処理される。
(A) Charging:
The surface of the rotationally driven photosensitive drum 1 is uniformly charged to a predetermined polarity and potential by a charging device (charging roller) 2.

(b)露光:
次いで、その帯電処理面に画像情報書き込み手段として、不図示の画像露光手段による画像露光3がなされることで露光明部の帯電電位が減衰し、感光ドラム1の表面に露光画像情報に応じた静電潜像が形成される。画像露光手段は、画像変調されたレーザビームの走査露光装置、原稿画像の投影露光装置等とされる。
(B) Exposure:
Next, as the image information writing means on the charging processing surface, image exposure 3 is performed by an image exposure means (not shown), whereby the charged potential of the bright exposure area is attenuated, and the surface of the photosensitive drum 1 corresponds to the exposure image information. An electrostatic latent image is formed. The image exposure means is a scanning exposure device for an image-modulated laser beam, a projection exposure device for a document image, or the like.

(c)現像:
感光ドラム1の静電潜像が現像装置4の現像スリーブ4aにより、トナー像(顕画化像)として順次に可視画像化される。
(C) Development:
The electrostatic latent image on the photosensitive drum 1 is sequentially visualized as a toner image (visualized image) by the developing sleeve 4 a of the developing device 4.

(d)転写:
本実施例における転写手段は、ローラ状の接触転写部材、即ち、転写ローラ5を用いた接触方式の転写手段である。トナー像は、転写部位T(転写ニップ部、感光ドラム1と転写ローラ5両者の圧接ニップ部)において転写ローラ5により記録材としての記録紙Pに転写される。
(D) Transcription:
The transfer means in this embodiment is a contact-type transfer means using a roller-like contact transfer member, that is, a transfer roller 5. The toner image is transferred onto the recording paper P as a recording material by the transfer roller 5 at the transfer site T (transfer nip, pressure nip between both the photosensitive drum 1 and the transfer roller 5).

転写ローラ5は、金属製の芯金5aと、該芯金周りにローラ状に成形した導電性の弾性層を有したものである。転写ローラ5は、感光ドラム1に弾性層の弾性に抗して所定の押圧力をもって圧接させて転写部位Tを形成させてあり、感光ドラム1の回転に順方向に、感光ドラム1の回転周速度と同じ周速度で回転する。   The transfer roller 5 has a metal cored bar 5a and a conductive elastic layer formed in a roller shape around the cored bar. The transfer roller 5 is pressed against the photosensitive drum 1 against the elasticity of the elastic layer with a predetermined pressing force to form a transfer portion T. The transfer roller 5 rotates in the forward direction with respect to the rotation of the photosensitive drum 1. It rotates at the same peripheral speed as the speed.

記録紙Pは、不図示の給紙手段から給紙され、転写部位Tの手前側に配設した不図示のレジストローラ・転写ガイドを通って、転写部位Tに所定の制御タイミングにて給送される。レジストローラは、感光ドラム1の表面に形成されたトナー像の先端部が転写部位Tに到達したとき、記録紙Pの先端部も同時刻で転写部位Tに到達するように、記録紙Pを転写部位Tに給送させる。   The recording sheet P is fed from a sheet feeding unit (not shown), and is fed to the transfer part T at a predetermined control timing through a registration roller / transfer guide (not shown) disposed on the front side of the transfer part T. Is done. The registration roller moves the recording paper P so that when the leading edge of the toner image formed on the surface of the photosensitive drum 1 reaches the transfer site T, the leading edge of the recording paper P reaches the transfer site T at the same time. Feed to the transfer site T.

転写部位Tに給送された記録紙Pは、その表面が感光ドラム1に密着して転写部位Tを挟持搬送されていく。また、転写部位Tに記録紙Pの先端部が到達してから後端部が転写部位Tを抜け出るまでの間、転写ローラ5には芯金5aを介して、高圧電源6内の転写電源(転写バイアス印加手段)7から、所定の転写電圧が印加される。転写電圧は、トナー像の帯電極性と逆極性の電位とされる。記録紙Pが転写部位Tを挟持搬送されていく過程において、転写ローラ5によって形成される転写電界の作用及び転写部位Tにおける押圧力にて、感光ドラム1側のトナー像が記録紙P側に順次に転写されていく。   The recording paper P fed to the transfer portion T is transported while sandwiching the transfer portion T with its surface in close contact with the photosensitive drum 1. Also, during the period from when the leading end of the recording paper P reaches the transfer site T until the trailing edge exits the transfer site T, the transfer roller 5 is connected to the transfer power source (high voltage power source 6) via the cored bar 5a. A predetermined transfer voltage is applied from the transfer bias applying means 7. The transfer voltage is a potential having a polarity opposite to the charging polarity of the toner image. In the process in which the recording paper P is nipped and conveyed across the transfer portion T, the toner image on the photosensitive drum 1 side is moved to the recording paper P side by the action of the transfer electric field formed by the transfer roller 5 and the pressing force at the transfer portion T. Sequentially transferred.

本実施例では、特許文献1と同様の転写電圧設定を行う。具体的には、非画像領域又は記録紙間において、転写手段としての転写ローラに印加する転写電流値が予め設定した値となるように、転写電源を制御する方式である。以下、この方式をATVC方式として説明する。   In this embodiment, the transfer voltage setting similar to that of Patent Document 1 is performed. Specifically, the transfer power source is controlled so that a transfer current value applied to a transfer roller as a transfer unit becomes a preset value between non-image areas or between recording sheets. Hereinafter, this method will be described as an ATVC method.

(e)分離:
転写部位Tを通った記録紙Pは、感光ドラム1の面に静電吸着している。そこで、転写部位Tの記録紙排出側に、即ち、記録紙Pの移動方向に対し転写ローラ5の下流に配置され、且つ、転写ローラ5に隣接させて記録材除電手段として除電針9を配設している。この除電針9によって転写部材位Tを通って感光ドラム1の面に静電吸着している記録紙Pの除電を行うことで、感光ドラム1から記録紙Pの分離を促進させている。
(E) Separation:
The recording paper P that has passed through the transfer portion T is electrostatically adsorbed on the surface of the photosensitive drum 1. Therefore, the discharge needle 9 is arranged on the recording paper discharge side of the transfer portion T, that is, downstream of the transfer roller 5 with respect to the moving direction of the recording paper P and adjacent to the transfer roller 5 as a recording material discharging means. Has been established. The discharge of the recording paper P that is electrostatically attracted to the surface of the photosensitive drum 1 through the transfer member position T by the static elimination needle 9 facilitates the separation of the recording paper P from the photosensitive drum 1.

除電針9の頂部は転写部位Tからやや下方に位置し、除電針9には所定の除電電圧(転写ローラ5に対する転写電圧と逆極性の電位)が印加される。除電電圧は高圧電源6内の除電電源(除電バイアス印加手段)8から供給される。   The top of the static elimination needle 9 is located slightly below the transfer site T, and a predetermined static elimination voltage (potential having a polarity opposite to the transfer voltage for the transfer roller 5) is applied to the static elimination needle 9. The charge removal voltage is supplied from a charge removal power supply (charge removal bias applying means) 8 in the high voltage power supply 6.

(f)定着:
転写部位Tを出て、感光ドラム1の面から分離された記録紙Pは、搬送ガイド10に案内されて定着装置11に導入され、転写を受けたトナー像が永久固着画像として記録紙面に定着処理され、画像形成物(コピー、プリント)として排紙される。
(F) Fixing:
The recording paper P leaving the transfer portion T and separated from the surface of the photosensitive drum 1 is guided by the conveyance guide 10 and introduced into the fixing device 11, and the transferred toner image is fixed on the recording paper surface as a permanently fixed image. Processed and discharged as an image formed product (copy, print).

(g)クリーニング:
記録紙Pが分離された後の感光ドラム1表面は、クリーニング装置12によって残留トナーや紙粉等の付着物の除去を受けて清掃され、繰り返して画像形成に供される。
(G) Cleaning:
The surface of the photosensitive drum 1 from which the recording paper P has been separated is cleaned by the cleaning device 12 after removal of deposits such as residual toner and paper dust, and is repeatedly used for image formation.

画像形成方法として、例えば、帯電した感光体表面に画像情報のバックグラウンド部に対して露光し(バックグラウンド露光方式)、バックグラウンド部以外の部分を現像する正規現像方式がある。一方、逆に画像情報部に対して露光し(イメージ露光方式)、非露光部を現像する反転現像方式があり、それぞれの特徴を生かして用いられている。   As an image forming method, for example, there is a regular development method in which a charged photoconductor surface is exposed to a background portion of image information (background exposure method) and a portion other than the background portion is developed. On the other hand, there is a reversal development method in which the image information portion is exposed (image exposure method) and the non-exposed portion is developed, and each of the features is used.

本実施例の画像形成装置において、像担持体である感光ドラム1の1次帯電装置2による帯電処理の極性は負である。そして、感光ドラム1の表面に形成させた静電潜像の現像装置4によるトナー現像は、感光ドラム1の帯電処理極性と同極性の負極性のトナー(ネガトナー)を用いた反転現像方式である。現像装置4に、回転自在に取り付けられた現像スリーブ4a上にトナーが薄層コートされており、現像スリーブ4aには不図示の外部電源(現像電圧印加電源)より所定の現像電圧が加えられる。これにより、現像スリーブ4a上のトナーが静電潜像に対して感光ドラム1側に選択的に転移して静電潜像がトナーで反転現像される。転写電圧は正電位、除電電圧は負電位である。転写電源7と除電電源8に関しては、後に説明する。   In the image forming apparatus of the present embodiment, the polarity of the charging process by the primary charging device 2 of the photosensitive drum 1 which is an image carrier is negative. The toner development by the developing device 4 for the electrostatic latent image formed on the surface of the photosensitive drum 1 is a reversal developing method using negative toner (negative toner) having the same polarity as the charging processing polarity of the photosensitive drum 1. . A thin layer of toner is coated on a developing sleeve 4a rotatably attached to the developing device 4, and a predetermined developing voltage is applied to the developing sleeve 4a from an external power source (developing voltage application power source) (not shown). As a result, the toner on the developing sleeve 4a is selectively transferred to the photosensitive drum 1 side with respect to the electrostatic latent image, and the electrostatic latent image is reversely developed with the toner. The transfer voltage is a positive potential, and the charge removal voltage is a negative potential. The transfer power supply 7 and the charge removal power supply 8 will be described later.

(2)プリンタ動作工程
図3は、本実施例の画像形成装置、即ち、プリンタの動作図である。以下のA〜Gに、プリンタの動作工程を示す。
(2) Printer Operation Process FIG. 3 is an operation diagram of the image forming apparatus of this embodiment, that is, a printer. The following A to G show the operation steps of the printer.

A.前多回転行程:プリンタの電源投入後の所定時間、各アクチュエータを駆動させて、感光ドラム1を回転駆動させるとともに、所用のプロセス機器に準備動作をさせるための期間(プリンタウォームアップ期間)である。定着装置11はこの期間に所定の温度への立ち上げがなされる。   A. Pre-multi-rotation stroke: This is a period (printer warm-up period) for driving each actuator to drive the photosensitive drum 1 for a predetermined time after the printer power is turned on, and for the required process equipment to perform a preparatory operation. . The fixing device 11 is raised to a predetermined temperature during this period.

B.レディ状態(スタンバイ制御):定着装置11が所定温度に立ち上がり、所定の前多回転行程が終了すると、プリントリクエストがなければ各アクチュエータの駆動が停止され、プリンタはプリントリクエストがあるまで待機するレディ状態となる。このレディ状態において、定着装置11はスタンバイ制御に入り、所定の待機温度に維持される。   B. Ready state (standby control): When the fixing device 11 rises to a predetermined temperature and the predetermined multi-rotation stroke is completed, the drive of each actuator is stopped if there is no print request, and the printer waits until there is a print request. It becomes. In this ready state, the fixing device 11 enters standby control and is maintained at a predetermined standby temperature.

C.前回転行程:レディ状態からプリントリクエストがあると、各アクチュエータを再起動させて感光ドラム1を回転駆動させるとともに、プリント開始までの間、所用のプロセス機器にプリント前動作を実行させる期間である。この前回転行程において、定着装置11は定着可能な所定温度へ加熱される。   C. Pre-rotation process: This is a period in which, when there is a print request from the ready state, each actuator is restarted to rotate the photosensitive drum 1, and the pre-printing operation is executed by the required process equipment until the start of printing. In this pre-rotation stroke, the fixing device 11 is heated to a predetermined temperature at which fixing can be performed.

D.プリント工程:前回転工程が終了すると、引き続き各アクチュエータが駆動され、一枚目のプリント動作が実行される。連続プリントモードの場合は、プリント動作が繰り返されて所定の設定枚数n分のプリント工程が順次行われる。   D. Printing process: When the pre-rotation process is completed, each actuator is continuously driven, and the first printing operation is executed. In the case of the continuous printing mode, the printing operation is repeated and printing processes for a predetermined set number n are sequentially performed.

E.紙間工程:連続プリントモードにおいて、例えば一枚目の記録紙P1の後端が転写部位Tを通過した後、次の記録紙P2の先端が転写部位Tに到達するまでの転写部における非通紙期間であり、プリント枚数に応じてP3、P4と続く。   E. Inter-sheet process: In the continuous print mode, for example, after the trailing edge of the first recording paper P1 passes through the transfer site T, the non-passage in the transfer section until the leading edge of the next recording paper P2 reaches the transfer site T. It is a paper period, and continues with P3 and P4 according to the number of prints.

F.後回転工程:プリント動作工程が終了した後、しばらくの間は各アクチュエータの駆動を継続し、感光ドラム1のクリーニングを行う等、レディ状態へ移行するための動作を実行する期間である。   F. Post-rotation process: This is a period during which an operation for shifting to the ready state is performed, for example, the driving of each actuator is continued for a while after the printing operation process is completed, and the photosensitive drum 1 is cleaned.

G.レディ状態(スタンバイ制御):所定の後回転行程が終了すると、各アクチュエータの駆動が停止され、プリンタは次のプリントリクエストがあるまで待機するレディ状態となる。このとき、定着装置11はスタンバイ制御に入り、所定の待機温度に維持される。   G. Ready state (standby control): When a predetermined post-rotation stroke is completed, the driving of each actuator is stopped, and the printer enters a ready state in which it waits for a next print request. At this time, the fixing device 11 enters standby control and is maintained at a predetermined standby temperature.

上記において、前多回転行程直後にプリントリクエストがある場合には、引き続き前回転工程へ移行し、そのままプリントを行う。   In the above, if there is a print request immediately after the pre-multi-rotation stroke, the process continues to the pre-rotation process and printing is performed as it is.

(3)転写回路/除電回路
転写ローラ5に印加する転写電圧を生成する転写電源回路(転写回路)、及び除電針9に印加する除電電圧を生成する除電電源回路(除電回路)の構成を以下の1、2に説明する。図4は、本実施例における転写電源7と除電電源8の接続形態を示すものである。詳しくは後述するが、図4に示すように、本実施例にて、転写電源7は、正電圧を発生させる転写正電源7aと、負電圧を発生させる転写負電源7bと、を有している。また、転写正電源7aと転写負電源7bが転写手段(転写ローラ)5に対して、転写ローラ5、転写正電源7a、転写負電源7bの順に直列に接続されている。更に、転写負電源7bと転写正電源7aとの接続点電圧の基準となる転写負電源基準点A3が、転写電源7を流れる電流を検出する電流検出部7cと接続されている。
(3) Transfer Circuit / Static Removal Circuit The configuration of a transfer power supply circuit (transfer circuit) that generates a transfer voltage applied to the transfer roller 5 and a charge removal power supply circuit (charge removal circuit) that generates a charge removal voltage applied to the charge removal needle 9 are as follows. 1 and 2 will be described. FIG. 4 shows a connection form of the transfer power supply 7 and the charge removal power supply 8 in this embodiment. As will be described in detail later, as shown in FIG. 4, in this embodiment, the transfer power source 7 includes a transfer positive power source 7a that generates a positive voltage and a transfer negative power source 7b that generates a negative voltage. Yes. Further, a transfer positive power source 7a and a transfer negative power source 7b are connected in series to the transfer means (transfer roller) 5 in the order of the transfer roller 5, the transfer positive power source 7a, and the transfer negative power source 7b. Further, a transfer negative power supply reference point A3, which serves as a reference for a connection point voltage between the transfer negative power supply 7b and the transfer positive power supply 7a, is connected to a current detector 7c that detects a current flowing through the transfer power supply 7.

1:転写回路
図5は、転写電源回路図である。転写電源7は、本実施例では、上述のように、転写正電源7aの転写正回路と、転写負電源7bの転写負回路で構成されており、出力端子205から転写電圧が出力される。出力端子205は転写ローラ5に接続されており、転写ローラ5に高圧バイアスを印加できる構成になっている。
1: Transfer Circuit FIG. 5 is a transfer power supply circuit diagram. In this embodiment, the transfer power supply 7 is constituted by the transfer positive circuit of the transfer positive power supply 7a and the transfer negative circuit of the transfer negative power supply 7b as described above, and the transfer voltage is output from the output terminal 205. The output terminal 205 is connected to the transfer roller 5 so that a high voltage bias can be applied to the transfer roller 5.

転写回路の構成を以下に説明する。   The configuration of the transfer circuit will be described below.

回路は、制御部を構成するCPU13から出力される制御信号:CLK1/CLK2、CNT1/CNT2により制御され、所望のタイミングと所望のレベルで転写電圧を出力することができる。また、出力端子205から流れる転写電流のレベルに応じたアナログ信号:SNSが転写回路7から出力され、CPU13のアナログ/デジタル端子に入力されている。即ち、CPU13によって転写電流が検出できる構成となっている。   The circuit is controlled by control signals CLK1 / CLK2 and CNT1 / CNT2 output from the CPU 13 constituting the control unit, and can output a transfer voltage at a desired timing and a desired level. An analog signal SNS corresponding to the level of the transfer current flowing from the output terminal 205 is output from the transfer circuit 7 and input to the analog / digital terminal of the CPU 13. That is, the CPU 13 can detect the transfer current.

昇圧トランス201の1次側巻線は後述するトランジスタ211によって調整された電圧が印加されている。CPU13から出力されるクロック:CLK1が出力されると、FET210のスイッチング動作により昇圧トランス201が駆動し、2次側巻線に高圧交流電圧が発生する。発生した高圧交流電圧は、ダイオード202とコンデンサ204及び抵抗219によって整流され、出力端子205には正極の直流電圧(転写正電圧)が発生する。出力端子205の電圧は抵抗203、217、218によって分圧され、オペアンプ214の負極入力に接続されている。これを、転写正回路(転写正電源)7aとする。   A voltage adjusted by a transistor 211 described later is applied to the primary winding of the step-up transformer 201. When the clock CLK1 output from the CPU 13 is output, the step-up transformer 201 is driven by the switching operation of the FET 210, and a high-voltage AC voltage is generated in the secondary winding. The generated high-voltage AC voltage is rectified by the diode 202, the capacitor 204, and the resistor 219, and a positive DC voltage (transfer positive voltage) is generated at the output terminal 205. The voltage at the output terminal 205 is divided by resistors 203, 217, and 218 and connected to the negative input of the operational amplifier 214. This is a transfer positive circuit (transfer positive power supply) 7a.

また、CPU13から出力される制御信号:CLK2、CNT2により制御される回路の構成、動作は、上記と同様の動作を行うが、ダイオード202に対してダイオード202´を逆転させているため、負極の直流電圧(転写負電圧)が発生する。これを、転写負回路(転写負電源)7bとする。   Further, the configuration and operation of the circuit controlled by the control signals CLK2 and CNT2 output from the CPU 13 are the same as those described above, but the diode 202 'is reversed with respect to the diode 202. A DC voltage (transfer negative voltage) is generated. This is a transfer negative circuit (transfer negative power source) 7b.

上述のように、転写正電源(転写正回路)7aと転写負電源(転写負回路)7bは、同様の構成及び動作をなすので、以下に、転写正電源7aの転写正回路を代表として説明する。   As described above, the transfer positive power supply (transfer positive circuit) 7a and the transfer negative power supply (transfer negative circuit) 7b have the same configuration and operation. Therefore, the transfer positive circuit of the transfer positive power supply 7a will be described as a representative. To do.

CNT1信号はパルス幅変調(PWM:Pulse Width Modulation)されたパルス信号であり、抵抗216、コンデンサ215で構成されたローパスフィルタによって直流変換され、オペアンプ214の正極入力に入力される。オペアンプ214では、出力端子205の電圧レベルとCNT1信号のDUTY比によって設定される目標値との比較を行う。出力端子205の電圧レベルが目標値よりも低い場合は、オペアンプ214の出力端子電圧が上昇し、トランジスタ212のベース電流が大きくなることで、昇圧トランス201に印加される電圧が高くなる。これにより、出力端子205の電圧が上昇する。出力端子205の電圧レベルが目標値よりも高い場合は、オペアンプ214の出力端子の電圧が低下し、トランジスタ212のベース電流がだんだん小さくなることで、昇圧トランス201に印加される電圧が低くなる。これにより、出力端子205の電圧レベルが低下する。このような動作により、出力端子205の電圧レベルをCNT信号によって制御することができる。即ち、定電圧制御が可能である。   The CNT1 signal is a pulse signal that has been subjected to pulse width modulation (PWM), and is DC-converted by a low-pass filter including a resistor 216 and a capacitor 215 and input to the positive input of the operational amplifier 214. The operational amplifier 214 compares the voltage level of the output terminal 205 with the target value set by the DUTY ratio of the CNT1 signal. When the voltage level of the output terminal 205 is lower than the target value, the output terminal voltage of the operational amplifier 214 increases and the base current of the transistor 212 increases, so that the voltage applied to the step-up transformer 201 increases. As a result, the voltage at the output terminal 205 rises. When the voltage level of the output terminal 205 is higher than the target value, the voltage at the output terminal of the operational amplifier 214 decreases, and the base current of the transistor 212 gradually decreases, so that the voltage applied to the step-up transformer 201 decreases. As a result, the voltage level of the output terminal 205 decreases. With such an operation, the voltage level of the output terminal 205 can be controlled by the CNT signal. That is, constant voltage control is possible.

次に、転写電流検出部7cについて説明する。   Next, the transfer current detection unit 7c will be described.

転写電流検出は、昇圧トランス201の5番端子側に接続されたオペアンプ209、抵抗208、206、207で構成された回路(転写電流検出部)7cで検出される。   The transfer current detection is detected by a circuit (transfer current detection unit) 7c including an operational amplifier 209 and resistors 208, 206, and 207 connected to the fifth terminal side of the step-up transformer 201.

オペアンプ209の正極入力には、電源電圧:Vccが抵抗206、207によって分圧された電圧:Vt(転写電圧)が入力されている。昇圧トランス201の駆動により、出力端子205の電圧が上昇すると、出力端子205から出力する電流と同等レベルの電流が抵抗208に流れる。これにより、抵抗208の両端に電圧が発生し、オペアンプ209の出力、即ちSNS信号は下記の電圧レベルとなる。
SNS=Vt+Rs×Io (式1)
ここで、Rsは抵抗R208の抵抗値、Ioは出力端子205から出力される電流値である。
The positive input of the operational amplifier 209, the power supply voltage: V cc is the voltage divided by the resistors 206 and 207: V t (transfer voltage) is input. When the voltage at the output terminal 205 rises due to the drive of the step-up transformer 201, a current having a level equivalent to the current output from the output terminal 205 flows through the resistor 208. As a result, a voltage is generated across the resistor 208, and the output of the operational amplifier 209, that is, the SNS signal has the following voltage level.
SNS = Vt + Rs × Io (Formula 1)
Here, R s is the resistance value of the resistor R 208, and I o is the current value output from the output terminal 205.

SNSの電圧レベルと出力端子205から出力する電流の関係はCPU13内の非図示の記憶装置内に予め記憶されている。SNS信号に応じてCNT信号を調整することで、定電圧制御が可能となる。   The relationship between the voltage level of the SNS and the current output from the output terminal 205 is stored in advance in a storage device (not shown) in the CPU 13. Constant voltage control is possible by adjusting the CNT signal according to the SNS signal.

2:除電回路
図6は、除電電源回路図である。除電電源8の回路(除電回路)の基本構成は上記した転写電源7の転写負回路(転写負電源)7bと同様とされ、回路動作も等しい。除電電源回路図では、転写電源7と同じ回路構成部品には400のオーダーで、転写電源7の回路構成部品と同じ二桁の参照番号が付されている。
2: Static elimination circuit FIG. 6: is a static elimination power supply circuit diagram. The basic configuration of the circuit of the static elimination power source 8 (static elimination circuit) is the same as that of the transfer negative circuit (transfer negative power source) 7b of the transfer power source 7, and the circuit operation is also the same. In the static elimination power supply circuit diagram, circuit components that are the same as those of the transfer power supply 7 are given the same two-digit reference numbers as the circuit components of the transfer power supply 7 in the order of 400.

除電電源8の基本構成は、上述のように、転写負回路と同じであり、転写電源7と除電電源8は相反する電圧を発生させる。   As described above, the basic configuration of the static elimination power source 8 is the same as that of the transfer negative circuit, and the transfer power source 7 and the static elimination power source 8 generate contradictory voltages.

つまり、出力端子405から除電電圧が出力される。出力端子405は除電針9に接続されており、除電針9に高圧バイアスを印加できる構成になっている。除電回路はCPU13から出力される制御信号:CLK3、CNT3により制御され、所望のタイミングと所望のレベルで除電電圧を出力することができる。   That is, the static elimination voltage is output from the output terminal 405. The output terminal 405 is connected to the static elimination needle 9 so that a high voltage bias can be applied to the static elimination needle 9. The static elimination circuit is controlled by control signals CLK3 and CNT3 output from the CPU 13, and can output a static elimination voltage at a desired timing and a desired level.

(4)転写電源制御/除電電源制御
1:長紙間時における制御
長紙間時における転写電源7と除電電源8の制御方法を、以下に説明する。図7は、長紙間制御時における図4の回路動作を説明するためのタイミングチャートである。
(4) Transfer power source control / static discharge power source control 1: Control during long paper interval A control method of the transfer power source 7 and the neutralization power source 8 during long paper interval will be described below. FIG. 7 is a timing chart for explaining the circuit operation of FIG. 4 during the long paper interval control.

本実施例における画像形成装置では、導電性の転写ローラ5の製造時の抵抗ばらつきを抑えることが難しいうえ、雰囲気温度変化や耐久劣化によって抵抗値に変化が生じる。これに対して転写バイアスを定電流制御にした場合は、転写される画像の印字比率等によって転写電圧が変動してしまい、最適な転写が行われない。このため、ATVC方式を用いることで、この課題を回避している。   In the image forming apparatus according to the present embodiment, it is difficult to suppress variation in resistance when the conductive transfer roller 5 is manufactured, and the resistance value is changed due to change in ambient temperature or deterioration of durability. On the other hand, when the transfer bias is set to constant current control, the transfer voltage fluctuates depending on the printing ratio of the image to be transferred and optimal transfer cannot be performed. For this reason, this problem is avoided by using the ATVC method.

ATVCは主に非画像形成時、且つ除電電圧を印加していない時(紙間:領域A)に行われる。転写ローラ5に流れる電流が、予め設定された定電流値I0となるように転写電源7を制御し(定電流モード)、この時の印加電圧Vt0を検出する。この検出した印加電圧Vt0の値より、転写電圧Vtを決定する。 ATVC is performed mainly during non-image formation and when no static elimination voltage is applied (paper interval: area A). The transfer power source 7 is controlled so that the current flowing through the transfer roller 5 has a preset constant current value I 0 (constant current mode), and the applied voltage V t0 at this time is detected. The transfer voltage V t is determined from the detected value of the applied voltage V t0 .

例えば、以下の算出式を用いて、転写電圧Vtを算出、決定させる。
Vt=a×Vto+b (式2)
式2中に記載のa、bは、電圧値を決定するための定数であって、CPU13内の非図示の記憶装置内に予め記憶されている。
For example, the transfer voltage V t is calculated and determined using the following calculation formula.
Vt = a × Vto + b (Formula 2)
A and b described in Equation 2 are constants for determining the voltage value, and are stored in advance in a storage device (not shown) in the CPU 13.

このような方式で、転写部位が画像領域(通紙時)において上記決定の転写電圧Vtを定電圧制御で転写ローラ5に印加し、感光ドラム1から記録紙Pへトナー像の転写を実行させる。 In this manner, by applying a transfer voltage V t of the decision in the transfer site image area (during sheet passing) to the transfer roller 5 a constant voltage control, executes the transfer of the toner image from the photosensitive drum 1 to the recording paper P Let

プリントリクエストを受けた画像形成装置が前回転行程を始めると、転写電源7が定電流モードで立ち上げる(区間A1)。次いで、一枚目の記録紙P1の先端が転写部位Tへ到達する直前で転写電源7は定電圧モードで駆動し、このとき、記録紙P1の先端と転写ローラ5との分離性を向上させるために除電針9へ除電電圧を一時的に印加する(区間B)。記録紙P1に画像転写中においては、転写電圧を定電圧モードのまま最適な値まで上昇する(区間C1)。次区間(区間A2)において、画像転写が終了し、記録紙P1の後端へと差しかかったところで、転写電源7は定電流モードへと切り替え、記録紙P1の後端と転写ローラ5との分離性を向上させるために除電針9へ除電電圧を一時的に印加する。そして、記録紙P2の先端が転写部位Tへ到達する直前で、再度除電針9へと除電電圧を印加し、転写ローラ5との記録紙先端の分離性を高める。記録紙P2においても画像転写区間を経て、さらにはP3、P4と続いていく。   When the image forming apparatus that has received the print request starts the pre-rotation process, the transfer power supply 7 starts up in the constant current mode (section A1). Next, immediately before the leading edge of the first recording paper P1 reaches the transfer site T, the transfer power source 7 is driven in the constant voltage mode. At this time, the separation between the leading edge of the recording paper P1 and the transfer roller 5 is improved. Therefore, a static elimination voltage is temporarily applied to the static elimination needle 9 (section B). During image transfer to the recording paper P1, the transfer voltage rises to an optimal value while maintaining the constant voltage mode (section C1). In the next section (section A2), when the image transfer is completed and the recording paper P1 approaches the rear end, the transfer power source 7 switches to the constant current mode, and the rear end of the recording paper P1 and the transfer roller 5 are connected. In order to improve the separability, a static elimination voltage is temporarily applied to the static elimination needle 9. Then, immediately before the leading edge of the recording paper P2 reaches the transfer site T, a neutralizing voltage is applied to the static eliminating needle 9 again to improve the separation of the recording paper leading edge from the transfer roller 5. The recording paper P2 also passes through the image transfer section and then continues to P3 and P4.

次に、領域Aにおける転写電源7、除電電源8に流れる電流の流れを説明する。   Next, the flow of current flowing through the transfer power source 7 and the neutralization power source 8 in the region A will be described.

長紙間制御時は、紙間において除電電圧を印加しないことから、転写ローラ5と除電針9間に漏洩電流は流れないため、このタイミングにおいて転写回路に流れる電流を検出する。従って、転写電流は転写正電源7aから転写ローラ5を示す抵抗318を通り、接地部、電流検出抵抗315、転写負電源基準点A3、転写負抵抗308、転写正電源基準点B3を経て、転写正電源7aへ戻る経路7のみ存在する。プリント動作中に存在した記録紙Pを通って接地部へ流れる経路は、紙間であることから導電媒体が無くなるため存在しない。即ち、転写電流検出回路7cに流れる電流値は、転写ローラ5に流れる電流に応じた値となることから、所望のATVCの実施が可能となる。   At the time of long paper control, since no static elimination voltage is applied between the papers, no leakage current flows between the transfer roller 5 and the static elimination needle 9. Therefore, the current flowing through the transfer circuit is detected at this timing. Accordingly, the transfer current passes from the positive transfer power source 7a through the resistor 318 indicating the transfer roller 5, and passes through the grounding portion, the current detection resistor 315, the negative transfer power source reference point A3, the negative transfer resistance 308, and the positive transfer power source reference point B3. There is only a path 7 that returns to the positive power source 7a. There is no path through the recording paper P that exists during the printing operation to the grounding portion because it is between the papers, because there is no conductive medium. That is, since the value of the current flowing through the transfer current detection circuit 7c becomes a value corresponding to the current flowing through the transfer roller 5, a desired ATVC can be performed.

2:小紙間時における制御
小紙間時における転写電源7と除電電源8の制御方法を、以下に説明する。図8は、小紙間時における図4の回路動作を説明するためのタイミングチャートである。
2: Control during small paper spacing A method for controlling the transfer power supply 7 and the neutralization power supply 8 during small paper spacing will be described below. FIG. 8 is a timing chart for explaining the circuit operation of FIG.

基本的な制御方法としては、長紙間時における制御と変わりないが、長紙間制御と異なるのは、除電電源8の駆動方法である。   The basic control method is the same as the control during the long paper interval, but the driving method of the neutralization power supply 8 is different from the long paper interval control.

小紙間制御時における紙間(区間A2)は、除電電圧レベルが高い状態を維持する。この様な制御を行う理由は、長紙間時において除電電圧を紙後端と紙先端それぞれのタイミングで印加していたのに対し、紙間が短くなったことにより除電電圧のオフ時間が失われるからである。このように、紙間において除電電圧を印加し続けていることから、転写ローラ5と除電針9間には漏洩電流が発生する。即ち、転写電源7に流れた電流の一部が、転写ローラ5に近接する除電針9へと流れ込む現象が発生している。小紙間時においては、このタイミング(領域B)において転写回路、即ち、転写電流検出部7cに流れる電流検出を行う。   During the small paper gap control, the paper gap (section A2) maintains a high static elimination voltage level. The reason for performing such control is that the neutralization voltage was applied at the timing of the trailing edge of the paper and the leading edge of the paper during the interval between the long sheets, but the off time of the neutralization voltage was lost due to the shortening of the gap between the sheets. Because it is. As described above, since the static elimination voltage is continuously applied between the sheets, a leakage current is generated between the transfer roller 5 and the static elimination needle 9. In other words, a phenomenon has occurred in which a part of the current flowing to the transfer power source 7 flows into the static elimination needle 9 adjacent to the transfer roller 5. At the time of the small paper interval, the current flowing through the transfer circuit, that is, the transfer current detector 7c is detected at this timing (region B).

領域Bにおける転写電源7、除電電源8に流れる電流の流れを説明する。   The flow of current flowing through the transfer power supply 7 and the charge removal power supply 8 in the region B will be described.

先に示した通り転写ローラ5と除電針9間には漏洩電流が発生することから、転写電流は転写正電源7aから転写ローラ5を示す抵抗318を通り、接地部、電流検出抵抗315、転写負電源基準点A3、転写負抵抗308、転写正電源基準点B3を経て、転写正電源へ戻る経路8と、転写正電源7aから除電針9への漏洩電流を示す疑似抵抗317を介し、除電抵抗312、除電電源基準点D3、転写負電源基準点A3、転写負抵抗308転写正電源基準点B3を経て、転写正電源7aへ戻る経路9の2種存在する。   As described above, since a leakage current is generated between the transfer roller 5 and the charge eliminating needle 9, the transfer current passes from the positive transfer power source 7a through the resistor 318 indicating the transfer roller 5, and is connected to the grounding portion, the current detection resistor 315, and the transfer. Via the negative power supply reference point A3, the transfer negative resistance 308, the transfer positive power supply reference point B3, the path 8 returning to the transfer positive power supply, and the pseudo resistance 317 indicating the leakage current from the transfer positive power supply 7a to the charge removal needle 9 There are two types of paths 9 that go back to the transfer positive power supply 7a through the resistor 312, the static elimination power supply reference point D3, the transfer negative power supply reference point A3, and the transfer negative resistance 308 transfer positive power supply reference point B3.

経路9は転写電源7と除電電源8を通るループ状の経路を辿るため、本例にて転写回路、即ち、転写電流検出部7cに流れる電流の値は、長紙間時と同様に、転写ローラ5に流れる電流に応じた値となることから、所望のATVCの実施が可能となる。   Since the path 9 follows a loop-shaped path passing through the transfer power supply 7 and the charge removal power supply 8, in this example, the value of the current flowing through the transfer circuit, that is, the transfer current detection unit 7c, is the same as that between the sheets. Since the value corresponds to the current flowing through the roller 5, desired ATVC can be performed.

このように、転写電源基準点A3と除電電源基準点D3を並列に接続することで、即ち、転写電流検出部7cを介さずに、除電電源基準点D3を直接に転写電源基準点A3に接続される。これにより、転写ローラ5と除電針9間で発生した漏洩電流が電流検出部7cを介さずに回路内で収束するため、転写ローラ5に与えるべき転写電流値を適切に検出することができ、小紙間制御時においてもATVCを適用することが可能となる。   In this way, the transfer power supply reference point A3 and the discharge power supply reference point D3 are connected in parallel, that is, the discharge power supply reference point D3 is directly connected to the transfer power supply reference point A3 without passing through the transfer current detection unit 7c. Is done. Thereby, since the leakage current generated between the transfer roller 5 and the static elimination needle 9 converges in the circuit without passing through the current detection unit 7c, the transfer current value to be given to the transfer roller 5 can be appropriately detected. ATVC can be applied even during the small paper interval control.

なお、印字動作時についての電流の流れについては課題で説明した通り4種の電流経路を持つが、印字動作時にはATVCを適応しないことから、記録紙を媒体にした経路で電流が流れたとしても、定電圧制御を行う。   As described in the problem, the current flow during the printing operation has four types of current paths. However, since ATVC is not applied during the printing operation, even if the current flows through the path using the recording paper as a medium. Constant voltage control is performed.

本実施例によれば、転写手段である転写ローラ5と除電手段である除電針9の間で漏洩電流が発生した場合においても、転写ローラ5に与えるべき転写電流値を正確に検出することができることから、漏洩電流の発生の有無によらず、適切にATVCを行うことが可能となる。   According to the present embodiment, even when a leakage current is generated between the transfer roller 5 serving as the transfer unit and the neutralizing needle 9 serving as the charge eliminating unit, the transfer current value to be applied to the transfer roller 5 can be accurately detected. Therefore, ATVC can be appropriately performed regardless of whether or not leakage current is generated.

実施例2
以下に、本発明の第2の実施例について説明する。
Example 2
The second embodiment of the present invention will be described below.

図9は、第2の実施例における転写電源7及び除電電源8の接続形態略図である。本実施例2の画像形成装置における高圧電源6の基本構成は、第1の実施例の構成と同じであり、転写電源7と除電電源8の接続形態のみが、第1の実施例と異なる。   FIG. 9 is a schematic diagram of the connection form of the transfer power supply 7 and the charge removal power supply 8 in the second embodiment. The basic configuration of the high-voltage power supply 6 in the image forming apparatus according to the second embodiment is the same as that of the first embodiment, and only the connection form of the transfer power supply 7 and the charge removal power supply 8 is different from the first embodiment.

つまり、本実施例1の転写電源7及び除電電源8では、図4に示す実施例1においては回路構成部品には300のオーダーで二桁の参照番号が付されているが、本実施例2の転写電源7及び除電電源8では、同じ回路構成部品には500のオーダーで同じ二桁の参照番号が付されている。   In other words, in the transfer power supply 7 and the charge removal power supply 8 of the first embodiment, in the first embodiment shown in FIG. 4, the circuit components are given two-digit reference numbers in the order of 300. In the transfer power supply 7 and the neutralization power supply 8, the same circuit components are given the same two-digit reference numbers in the order of 500.

本実施例の構成は、転写正電源基準点B5と除電電源基準点D5とを接続する。このときの領域Bにおける転写電源7、除電電源8に流れる電流の流れを説明する。   In the configuration of this embodiment, the transfer positive power supply reference point B5 and the static elimination power supply reference point D5 are connected. The flow of current flowing through the transfer power supply 7 and the charge removal power supply 8 in the region B at this time will be described.

転写電流は転写正電源7aから転写ローラ5を示す抵抗518を通り、接地部、電流検出抵抗515、転写負電源基準点A5、転写負抵抗508、転写正電源基準点B5を経て、転写正電源7aへ戻る経路10と、転写正電源7aから除電針9への漏洩電流を示す疑似抵抗517を介し、除電抵抗512、除電電源基準点D5、転写正電源基準点B5を経て、転写正電源7aへ戻る経路11となる。   The transfer current passes from the transfer positive power supply 7a through the resistor 518 indicating the transfer roller 5, and passes through the grounding portion, the current detection resistor 515, the transfer negative power supply reference point A5, the transfer negative resistance 508, and the transfer positive power supply reference point B5. The transfer positive power supply 7a passes through the path 10 returning to 7a and the pseudo-resistance 517 indicating the leakage current from the transfer positive power supply 7a to the charge removal needle 9 through the charge removal resistor 512, the charge removal power supply reference point D5, and the transfer positive power supply reference point B5. It becomes the route 11 to return to.

このとき、経路11は転写負電源回路7bの抵抗508を介さないことから、第1の実施例の効果に加えて電圧降下による転写電流への影響も抑えることが可能となる。よって、転写回路7、即ち、転写電流検出部7cに流れる電流の値は、長紙間時と同様に、転写ローラ5に流れる電流に応じた値となることから、所望のATVCの実施が可能となる。   At this time, since the path 11 does not pass through the resistor 508 of the transfer negative power supply circuit 7b, in addition to the effect of the first embodiment, it is possible to suppress the influence on the transfer current due to the voltage drop. Therefore, since the value of the current flowing through the transfer circuit 7, that is, the transfer current detecting unit 7c is a value corresponding to the current flowing through the transfer roller 5, as in the case of the interval between long sheets, a desired ATVC can be performed. It becomes.

本実施例によれば、転写負電源回路7bの抵抗に漏洩電流が流れ込まない構成とすることで、転写ローラに至る経路での電圧降下の影響を抑えることができ、転写ローラ5に与える転写電流に適切に検出することができる。   According to the present embodiment, the configuration in which the leakage current does not flow into the resistance of the transfer negative power supply circuit 7b can suppress the influence of the voltage drop in the path to the transfer roller, and the transfer current applied to the transfer roller 5 Can be detected properly.

1 感光ドラム(像担持体)
2 帯電装置(帯電手段)
3 画像露光光
4 現像装置(現像手段)
5 転写ローラ(転写手段)
6 高圧電源
7 転写電源
7a 転写正電源
7b 転写負電源
7c 転写電流検出部
8 除電電源
9 除電針(除電手段)
13 CPU(制御部)
1 Photosensitive drum (image carrier)
2 Charging device (charging means)
3 Image exposure light 4 Developing device (developing means)
5 Transfer roller (transfer means)
6 High Voltage Power Supply 7 Transfer Power Supply 7a Transfer Positive Power Supply 7b Transfer Negative Power Supply 7c Transfer Current Detection Unit 8 Charge Removal Power Supply 9 Charge Removal Needle (Charge Removal Means)
13 CPU (control unit)

Claims (4)

像担持体に形成されたトナー像を記録材に転写する転写手段と、
前記記録材の移動方向に対して前記転写手段の下流に配置され、前記像担持体に静電吸着した前記記録材を除電し、分離するための除電手段と、
前記転写手段へ電圧を供給する転写電源と、
前記除電手段へ電圧を供給する除電電源と、
前記転写手段に流れる電流値を検出する転写電流検出部と、
前記転写電流検出部が検出した電流値に基づき、前記転写電源の電圧を制御する制御部と、
を有する画像形成装置において、
前記除電電源は、前記除電電源に接続した前記除電手段へ印加する電圧の基準となる除電電源基準点を有し、前記転写電源は、前記転写電源に接続する前記転写手段へ印加する電圧の基準となる転写電源基準点を有し、
前記転写電流検出部は、前記転写電源基準点に接続されており、
前記除電電源基準点が前記転写電流検出部を介さずに直接に前記転写電源基準点に接続されていることを特徴とする画像形成装置。
Transfer means for transferring a toner image formed on the image carrier to a recording material;
A neutralizing unit disposed downstream of the transfer unit with respect to the moving direction of the recording material, for neutralizing and separating the recording material electrostatically attracted to the image carrier;
A transfer power supply for supplying a voltage to the transfer means;
A static elimination power source for supplying a voltage to the static elimination means;
A transfer current detector for detecting a current value flowing through the transfer means;
A control unit for controlling the voltage of the transfer power source based on the current value detected by the transfer current detection unit;
In an image forming apparatus having
The neutralization power source has a neutralization power source reference point that serves as a reference for a voltage applied to the neutralization unit connected to the neutralization power source, and the transfer power source is a reference for a voltage applied to the transfer unit connected to the transfer power source Has a transfer power reference point
The transfer current detection unit is connected to the transfer power supply reference point,
The image forming apparatus, wherein the neutralization power supply reference point is directly connected to the transfer power supply reference point without passing through the transfer current detection unit.
前記転写電源は、正電圧を発生させる転写正電源と、負電圧を発生させる転写負電源と、を有し、
前記転写正電源と前記転写負電源が前記転写手段に対して、前記転写手段、前記転写正電源、前記転写負電源の順に直列に接続され、
前記転写負電源と前記転写正電源との接続点電圧の基準となる転写負電源基準点が前記電流検出部と接続されていることを特徴とする請求項1に記載の画像形成装置。
The transfer power source includes a transfer positive power source that generates a positive voltage and a transfer negative power source that generates a negative voltage.
The transfer positive power supply and the transfer negative power supply are connected in series to the transfer means in the order of the transfer means, the transfer positive power supply, and the transfer negative power supply.
The image forming apparatus according to claim 1, wherein a transfer negative power supply reference point serving as a reference of a connection point voltage between the transfer negative power supply and the transfer positive power supply is connected to the current detection unit.
前記除電電源基準点が前記転写負電源基準点と接続されていることを特徴とする請求項2に記載の画像形成装置。   The image forming apparatus according to claim 2, wherein the static elimination power supply reference point is connected to the transfer negative power supply reference point. 前記除電電源基準点が前記転写正電源基準点と接続されていることを特徴とする請求項2に記載の画像形成装置。   The image forming apparatus according to claim 2, wherein the static elimination power supply reference point is connected to the transfer positive power supply reference point.
JP2011179843A 2011-08-19 2011-08-19 Image forming apparatus Withdrawn JP2013041219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179843A JP2013041219A (en) 2011-08-19 2011-08-19 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179843A JP2013041219A (en) 2011-08-19 2011-08-19 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2013041219A true JP2013041219A (en) 2013-02-28

Family

ID=47889640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179843A Withdrawn JP2013041219A (en) 2011-08-19 2011-08-19 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2013041219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012708A (en) * 2013-06-28 2015-01-19 株式会社沖データ Power supply device and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012708A (en) * 2013-06-28 2015-01-19 株式会社沖データ Power supply device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2704277B2 (en) Image forming device
JP4372716B2 (en) Transfer device and image forming apparatus
JP6395377B2 (en) Image forming apparatus
US20190179239A1 (en) Image forming apparatus
US8831450B2 (en) Electrophotographic image forming apparatus controlling voltage and current in charging members
JP6340927B2 (en) Image forming apparatus and program
JP4227446B2 (en) Image forming apparatus
JP2018120219A (en) Image forming apparatus
JP2006220976A (en) Transfer device and image forming apparatus
JP2013041219A (en) Image forming apparatus
JP2008122626A (en) Image forming apparatus and transfer method
JP2018159867A (en) Image forming apparatus
JP7146487B2 (en) image forming device
JP2013033177A (en) Image formation apparatus
JP2016126031A (en) Image forming apparatus
JP2010276668A (en) Image forming apparatus
US11960226B2 (en) Image forming apparatus
JP6343969B2 (en) Image forming apparatus
US11852986B2 (en) Image forming apparatus
US10359715B2 (en) Image forming apparatus
JP2008309973A (en) Image forming apparatus
JP2004109386A (en) Transfer cleaning device
JP2022138353A (en) Image forming apparatus and image forming method
KR20230041615A (en) Image forming apparatus
JP2024010633A (en) Image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104