JP2013040914A - Cold-cathode type ionization vacuum gauge with calibration function - Google Patents

Cold-cathode type ionization vacuum gauge with calibration function Download PDF

Info

Publication number
JP2013040914A
JP2013040914A JP2011206609A JP2011206609A JP2013040914A JP 2013040914 A JP2013040914 A JP 2013040914A JP 2011206609 A JP2011206609 A JP 2011206609A JP 2011206609 A JP2011206609 A JP 2011206609A JP 2013040914 A JP2013040914 A JP 2013040914A
Authority
JP
Japan
Prior art keywords
vacuum
calibration
calibration method
gauge
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011206609A
Other languages
Japanese (ja)
Other versions
JP2013040914A5 (en
Inventor
Yoshio Iijima
義雄 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO DENSHI KENKYUSHO KK
Original Assignee
TOYO DENSHI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO DENSHI KENKYUSHO KK filed Critical TOYO DENSHI KENKYUSHO KK
Priority to JP2011206609A priority Critical patent/JP2013040914A/en
Publication of JP2013040914A publication Critical patent/JP2013040914A/en
Publication of JP2013040914A5 publication Critical patent/JP2013040914A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for calibrating a measurement error caused by change of situation of a sensor, particularly a method for easy calibration of a cold-cathode type ionization vacuum gauge at a production field.SOLUTION: Displays of a measuring instrument 12 with correct display and a measuring instrument 1 with error are displayed in an E2 PROM data reference system, and calibration is performed in a state where both sensors are in the same atmosphere. Also, calibration of a cold-cathode type ionization vacuum gauge 1 is performed in a spot system.

Description

本発明は冷陰極形電離真空計の分野に属するThe present invention belongs to the field of cold cathode ionization gauges.

半導体製品、薄膜の製造、および冶金等の分野において、大気を遮断した容器内を真空雰囲気、またはガス雰囲気にする真空装置を用いる。このようなとき当該容器内の圧力、すなわち、真空度を知る必要があり、計測器として真空計が存在する。In the fields of semiconductor products, thin film manufacturing, metallurgy, and the like, a vacuum apparatus is used that places a vacuum or gas atmosphere inside a container that is shut off from the atmosphere. In such a case, it is necessary to know the pressure in the container, that is, the degree of vacuum, and a vacuum gauge exists as a measuring instrument.

一般に使用されている高真空領域真空計には様々な種類があるが冷陰極形電離真空計もその一種である。これにはペニング型、マグネトロン型、逆マグネトロン型、またそれぞれに複雑な補助電極をつけた高度の技術を有するものが多数使用されている。いずれも繊細な熱フィラメントを持たないため構造的に堅牢である。しかし放電を利用しているので時間的経過と共に内部に汚損を生じ、またこの汚損を除き再組立てしても、標準とする真空計との間に若干の計測値の差異を生じる。There are various types of high vacuum range vacuum gauges that are generally used, and the cold cathode ionization vacuum gauge is one type. For this, a Penning type, a magnetron type, a reverse magnetron type, and a number of highly sophisticated ones each having a complicated auxiliary electrode are used. None of them are structurally robust because they do not have delicate heat filaments. However, since electric discharge is used, internal contamination occurs with time, and even if reassembly is performed with the contamination removed, there is a slight difference in measured values from the standard vacuum gauge.

冷陰極形電離真空計の構成は、一部の大規模な製造ラインを除けば、表示機能を持つ本体、真空槽の内部または外部に機械的に固定され、真空槽と同一気圧に保たれている測定子、および本体と測定子を電子的に結合するためのケーブルの3部位よりなる。The structure of the cold cathode ionization vacuum gauge, except for some large-scale production lines, is mechanically fixed to the main body with a display function, inside or outside the vacuum chamber, and kept at the same atmospheric pressure as the vacuum chamber. And three parts of a cable for electronically coupling the main body and the measuring element.

本発明が解決しようとする課題Problems to be solved by the present invention

冷陰極形電離真空計に生じる測定値の差異、即ち誤差は測定子に起因する。
しかし従来の機器にはその誤差を除く簡便な方法はなかった。このような実態より、測定子によって生じる誤差を真空計本体によって補正する簡便な方法を、本発明の解決しようとする課題にした。
The difference in measurement value, that is, the error that occurs in the cold cathode ionization gauge is caused by the probe.
However, there was no simple method for removing such errors in conventional equipment. From such an actual situation, a simple method for correcting an error caused by the probe with the vacuum gauge main body is an object to be solved by the present invention.

課題を解決するための手段Means for solving the problem

以下の記述においては誤差を生じている真空計を被校正機と呼び、正しい真空度を示している真空計を標準機と呼ぶ。また両者の測定子は同一真空槽に取りつけ、同一圧力下に置く。In the following description, a vacuum gauge causing an error is called a machine to be calibrated, and a vacuum gauge showing the correct degree of vacuum is called a standard machine. Both probes are attached to the same vacuum chamber and placed under the same pressure.

以下の技術的記述は、冷陰極形電離真空計全般に及ぶが説明には図1に示す逆マグネトロン方式の冷陰極形電離真空計によって説明する。図右方上部は測定子の断面図1で排気管2によって真空槽に連結されている。リング状磁石3によって磁界が与えられ、イオンコレクタ4は円筒の両端にドーナツ状の円板を備え接地されている。陽極5は高電圧電源6により2000〜3000Vの高電位にあり、陽極に発生したマイナス電流は真空計本体中の増幅回路7と中央演算子を含む本体8に流入する。The following technical description covers all of the cold cathode ionization vacuum gauges, but the explanation will be made with the reverse magnetron type cold cathode ionization vacuum gauge shown in FIG. The upper right part of the figure is a cross-sectional view of the probe and is connected to the vacuum chamber by an exhaust pipe 2. A magnetic field is applied by the ring-shaped magnet 3, and the ion collector 4 is grounded with a donut-shaped disk at both ends of the cylinder. The anode 5 is at a high potential of 2000 to 3000 V by the high voltage power source 6, and the negative current generated at the anode flows into the main body 8 including the amplifier circuit 7 and the central operator in the main body of the vacuum gauge.

本体からの信号により表示器9は真空度を表示し、必要があればインターフェイス端子10より真空度に関するデータと信号を送出する。The display 9 displays the degree of vacuum in response to a signal from the main body, and if necessary, sends data and signals relating to the degree of vacuum from the interface terminal 10.

被校正機の校正は真空度の指示に必要な中央演算素子のコントロール下にあるメモリーテーブルの上書きにより行われる。そのとき被校正機は通常の計測状態になく、メモリーを書き換えられる状態に置く必要がある。このような状態を校正モードと呼び通常の測定時と異なるモードである。
校正モードに入るにはモード変更用のスイッチを設けてもよいが以下の記述はパネル面の操作スイッチを利用した方法である。校正は真空度を変化させながら行うので真空装置を高真空側から低真空側に変化させるか、またその逆方向にするか選定する必要がある。
Calibration of the machine to be calibrated is performed by overwriting a memory table under the control of the central processing element necessary for indicating the degree of vacuum. At that time, the machine to be calibrated is not in a normal measurement state, and it is necessary to place the memory in a state where it can be rewritten. Such a state is called a calibration mode, which is a mode different from normal measurement.
To enter the calibration mode, a mode change switch may be provided, but the following description is a method using an operation switch on the panel surface. Since calibration is performed while changing the degree of vacuum, it is necessary to select whether the vacuum apparatus is changed from the high vacuum side to the low vacuum side or vice versa.

このような要素があることからモード1とモード2を設けいずれの選択も可能なようにプログラムした。モードの変更は図2に示す本体正面のパネル釦を使用した。図2によりパネル面の概要を示す。
最上部窓は表示真空度の仮数部と乗数部である。測定開始時の操作は、POWERスイッチにより電源を入れた後、START釦により測定を開始し、STOP釦により計測を終る。P/T釦はTORR値を知りたい時に用いる。
Because of these factors, Mode 1 and Mode 2 were provided and programmed so that either selection was possible. The mode was changed using the panel button on the front of the main body shown in FIG. FIG. 2 shows an outline of the panel surface.
The uppermost window is a mantissa part and a multiplier part of the display vacuum degree. For the operation at the start of measurement, after the power is turned on by the POWER switch, the measurement is started by the START button, and the measurement is ended by the STOP button. The P / T button is used when it is desired to know the TORR value.

SET1〜SET4は希望の数値をSET POINTの三角釦により選定し、希望の真空度に達した時、背面パネルに信号を送出する。In SET1 to SET4, a desired numerical value is selected by a triangle button of SET POINT, and when a desired vacuum degree is reached, a signal is transmitted to the rear panel.

モード1と2はSTOP釦を押しながらPOWERスイッチをONにするか、P/T釦を押しながらPOWERスイッチをONにするかで選択できる。Modes 1 and 2 can be selected by turning on the POWER switch while pressing the STOP button or turning on the POWER switch while pressing the P / T button.

以下に述べる校正の3例はいずれも高真空から低真空に移行する方法のみについて記述しているが、このときE2PROMの上書きはアドレス下位より始まるようにプログラムされておりモード1と呼ぶ。
真空装置の構造によっては低真空から高真空に移行させ易い場合はモード2を選択すればよい。
All three examples of calibration described below describe only the method of shifting from high vacuum to low vacuum. At this time, overwriting of E2PROM is programmed to start from the lower address and is called mode 1.
Mode 2 may be selected when it is easy to shift from a low vacuum to a high vacuum depending on the structure of the vacuum apparatus.

課題を解決するための手段、その1Means for solving the problem, part 1

被校正機と標準機の測定子を同一圧力下におき、インターフェイス機能、例えばRS−232Cにより、両者を結線し校正を行う。The probe of the machine to be calibrated and the standard machine are placed under the same pressure, and both are connected and calibrated by an interface function, for example, RS-232C.

即ち図1左方の測定子11と本体12よりなる標準真空計のインターフェイス端子13と被校正機のインターフェイス端子10を図中点線のように結線する。校正はシェイクハンド方式により標準機より送られる。送信データはアスキーデータ方式により送信されるが、内容は真空度データのみで他の要素は含まない。That is, the interface terminal 13 of the standard vacuum gauge consisting of the probe 11 on the left side of FIG. 1 and the main body 12 and the interface terminal 10 of the machine to be calibrated are connected as shown by a dotted line in the figure. Calibration is sent from the standard machine by the shake hand method. The transmission data is transmitted by the ASCII data method, but the content is only vacuum degree data and does not include other elements.

他は送信できる状態にあるか否かを示す信号線、および被校正機より送る送信要求線の3要素のみである。Others are only three elements: a signal line indicating whether or not transmission is possible and a transmission request line sent from the device to be calibrated.

被校正機より標準機に送る送信要求は、被校正機を校正モードに入れSET1の表示窓にOKに相当する信号が表れ、STAT釦を押すことにより始まる。A transmission request sent from the device to be calibrated to the standard device starts when the device to be calibrated is put into the calibration mode, a signal corresponding to OK appears in the display window of SET1, and the STAT button is pressed.

上記状態において標準機よりは常時現在の真空度データをアスキーデータ方式によりRS−232Cより送信している。一方被校正機はその真の真空度データを常時受信し、決められた手順に従ってメモリに記録し、校正した真の真空度データをメモリーテーブル上に展開する。校正機の測定においては新しいテーブルを参照し測定結果とする。In the above state, the current vacuum degree data is always transmitted from the RS-232C by the ASCII data method from the standard machine. On the other hand, the machine to be calibrated always receives the true vacuum degree data, records it in the memory according to a predetermined procedure, and develops the calibrated true vacuum degree data on the memory table. In the measurement of the calibrator, the new table is referred to as the measurement result.

校正範囲を1.0E−5PASCALから1.0E0 PASCALの範囲で行う場合、標準機の表示が−5乗PASCAL台では被校正機の測定子には電流が流れ始めない。即ち放電が始まらない場合がある。このようなとき被校正機はE2PROMにLの字に相当するデータを送り測定子に電流が流れ始めてから標準機と等しいデータをメモリーテーブル上に展開する等のプログラムを用意する。When the calibration range is in the range of 1.0E-5 PASCAL to 1.0E0 PASCAL, current does not begin to flow through the probe of the machine to be calibrated when the standard machine display is the -5th power PASCAL stage. That is, the discharge may not start. In such a case, the machine to be calibrated prepares a program such as sending data corresponding to the letter L to the E2PROM and developing data equal to that of the standard machine on the memory table after the current begins to flow to the measuring element.

インターフェイスを利用して標準機より連続的に送られてくるデータによる自動校正する方法は、例えば測定範囲内で複数の固定ポイントを設定し、そのポイント間は数式による演算方式をとる場合においても活用できる。The method of automatic calibration using the data continuously sent from the standard machine using the interface is used even when, for example, a plurality of fixed points are set within the measurement range, and the calculation method using mathematical formulas between the points is used. it can.

課題を解決するための手段、その2Means for solving the problem, part 2

被校正機の校正に、標準機のインターフェイス機能を用いる方法で、校正モードに入れた時に以下の手動校正が行われるようプログラムされている。具体的には標準機の真空度表示を目視しながら被校正機の校正を行う。真空度指数の各一乗当り5点の固定ポイントを設定し、そのポイント間は数式による演算方式をとる。校正範囲は、1.0E−5PASCALから1.0E0 PASCALの範囲である。In the method of using the interface function of the standard machine for the calibration of the machine to be calibrated, the following manual calibration is programmed when entering the calibration mode. Specifically, the machine to be calibrated is calibrated while observing the vacuum level display of the standard machine. Five fixed points are set for each first power of the degree of vacuum index, and a calculation method using a mathematical formula is adopted between the points. The calibration range is from 1.0E-5 PASCAL to 1.0E0 PASCAL.

被校正と標準機のセンサーを同一真空槽に取りつける。Install the sensor to be calibrated and the standard sensor in the same vacuum chamber.

校正モードに入れる等、方法は手段1と同様である。校正モードにするとき、標準機の表示が1.0E−5PASCAL以上の高真空になるよう真空槽を調整する。The method is the same as that of the means 1 such as entering the calibration mode. When entering the calibration mode, adjust the vacuum chamber so that the standard display shows a high vacuum of 1.0E-5PASCAL or higher.

被校正機を校正モードにする。このとき表面パネル面のSET1に1、SET2には1.0−5の表示が現れる。Set the machine under calibration to calibration mode. At this time, 1 appears on SET1 and 1.0-5 appears on SET2 on the front panel surface.

真空槽のバルブを調整し、標準機の指示が1.0E−5PASCALを示したとき、パネル面のSTART釦を押す。Adjust the vacuum chamber valve and press the START button on the panel when the standard machine indicates 1.0E-5PASCAL.

次にパネル面のSE1とSET2には番号2と2.0−5の表示が現れる。Next, numbers 2 and 2.0-5 appear on SE1 and SET2 on the panel surface.

真空槽のバルブを調整し、標準機の指示が2.0E−5PASCALを示したとき、パネル面のSTART釦を押すAdjust the vacuum chamber valve and press the START button on the panel when the standard machine indicates 2.0E-5PASCAL.

以上の手法を1.0E0 PASCALまで順次行い校正が終るが、結果として測定より流入する値に対応した真空度が、被校正機のE2PROMテーブル上に展開される。The above method is sequentially performed until 1.0E0 PASCAL, and the calibration is completed. As a result, the degree of vacuum corresponding to the value flowing in from the measurement is developed on the E2PROM table of the machine to be calibrated.

高真空の範囲ではSTART釦を押したとき、SET1とSET2に表れる数字が点滅するときがある。この場合は測定子に放電電流が流れていない時である。
再度釦を押すと次の数字に進むので、真空槽の圧力を更に高くしてSTART釦を押す。
これを繰り返しSTART釦によりSET1、SET2の数字が点滅しなくなるまで圧力を高め、操作を進めれば1.0E0 PASCALまでの校正作業を終了する。
When the START button is pressed in the high vacuum range, the numbers appearing on SET1 and SET2 may blink. In this case, the discharge current does not flow through the probe.
Pressing the button again advances to the next number, so the pressure in the vacuum chamber is further increased and the START button is pressed.
By repeating this, the pressure is increased until the SET1 and SET2 numbers no longer flash with the START button. If the operation is advanced, the calibration operation up to 1.0E0 PASCAL is completed.

課題を解決するための手段、その3Means for solving the problem, part 3

課題を解決するための手段、その2に近い方法で、校正モードに入る方法は同じである。The method for entering the calibration mode is the same as the means for solving the problem, a method close to the second method.

手段2と相違する点は標準機の真空度が被校正機のSET2に表示される真空度に一致したとき、START釦を押さない方法である。例えば標準機が1.0E−5 PASCALで、被校正機のSET1に1、SET2に1.0−5が表示され被校正機の測定子に同一電流が数秒間保持されるとき、被校正機は1.0−5を自動認識し、次のSET2に2.0−5に変わる。The difference from the means 2 is that the START button is not pressed when the vacuum level of the standard machine matches the vacuum level displayed on the SET 2 of the machine to be calibrated. For example, when the standard machine is 1.0E-5 PASCAL, 1 is displayed in SET1 of the machine to be calibrated, 1.0-5 is displayed in SET2, and the same current is held in the probe of the machine to be calibrated for several seconds. Automatically recognizes 1.0-5 and changes to 2.0-5 in the next SET2.

更にバルブを調整し標準計の指示により槽内を2.0E−5PASCALに数秒間保持すれば2.0E−5PASCALに相当するデータは自動的に書き込まれる。これを順次行えば、手段2のようにSTART釦をその都度押すことなくROMテーブル上に展開される。Further, if the valve is adjusted and the inside of the tank is kept at 2.0E-5 PASCAL for several seconds according to the instruction of the standard meter, the data corresponding to 2.0E-5 PASCAL is automatically written. If this is carried out sequentially, it is developed on the ROM table without pressing the START button each time as in means 2.

上述の解決するための手段2、3により一乗当り5点の固定ポイントを設定し、そのポイント間を数式による演算方式により正しい真空度を表示することが可能になる。By the means 2 and 3 for solving the above, it is possible to set five fixed points per power and display the correct degree of vacuum between the points by a mathematical calculation method.

上述のその1、その2、その3のいずれの場合も校正作業を終った後、一旦電源を切り校正モードより抜け出した後に再度電源を入れれば、通常の真空度計測に戻ることが出来る。In any of the above-mentioned cases 1, 2, and 3, after the calibration work is completed, if the power is turned off and the power is turned on again after exiting the calibration mode, the normal vacuum degree measurement can be resumed.

冷陰極形電離真空計の校正方法の応用Application of calibration method for cold cathode ionization gauge

1.熱伝導真空計1. Thermal conductivity gauge

熱伝導真空計には熱電対真空計、定温度形ピラニ真空計など各種のものがある。いずれの場合も測定子内部にフィラメントを張り、これに電流を流すことにより加熱し、その温度変化に起る現象を読み取り、真空計とする装置である。There are various types of heat conduction vacuum gauges such as thermocouple vacuum gauges and constant temperature type Pirani vacuum gauges. In either case, the gauge is heated inside by passing a filament inside the probe, and the phenomenon that occurs in the temperature change is read to make a vacuum gauge.

熱伝導真空計の大きな欠点は経年変化によるフィラメントを原因とする線径の変化、およびフィラメントの表面状態の変化による感度変化である。この変化は真空度指示に誤差を生じるため校正を要する。また真空装置の状況によっては真空計本体と測定子を結ぶ連絡線を通常より延長する必要も生じる。このようなとき連結線の延長はフィラメントの温度を下げるため初期より真空度表示は誤差を生じることが予測されるため校正が必要となる。以後これら校正を要する真空計を被校正用真空計測定子と呼べば、被校正用真空計測定子と正確な標準値を表示する標準真空計の測定子を同一真空雰囲気中に取り付けることは容易である。A major drawback of the heat conduction vacuum gauge is a change in wire diameter caused by aging and a change in sensitivity due to a change in the surface state of the filament. Since this change causes an error in the degree of vacuum indication, calibration is required. Further, depending on the situation of the vacuum apparatus, it may be necessary to extend the connecting line connecting the vacuum gauge main body and the measuring element more than usual. In such a case, since the extension of the connecting line lowers the temperature of the filament, it is predicted that an error will occur in the degree of vacuum from the beginning, so that calibration is necessary. If these vacuum gauges that require calibration are called vacuum gauge gauges for calibration, it is easy to mount the gauge gauges for calibration and standard gauge gauges that display accurate standard values in the same vacuum atmosphere. .

従って事前に被校正機を校正モードにしインターフェイスを通じ標準真空計と被校正用真空計を接続し真空度を順次変化させれば、標準真空計より送られるアスキー方式の真空度データにより被校正用真空計の真空度表示に必要なE2ROMは上書きされ、被校正用真空計と標準真空計と同一真空度表示となり校正は終了する。Therefore, if the machine to be calibrated is set in the calibration mode in advance and the standard vacuum gauge and the vacuum gauge for calibration are connected through the interface and the degree of vacuum is changed sequentially, the vacuum for calibration is determined by the ASCII vacuum degree data sent from the standard vacuum gauge. The E2ROM necessary for displaying the vacuum level of the meter is overwritten, and the same vacuum level is displayed for the vacuum gauge for calibration and the standard vacuum gauge, and the calibration is completed.

2.熱電対形温度計2. Thermocouple thermometer

一般に使用されている熱電対形温度計にも、経年変化による熱電対の蒸発、または熱電対先端の感温部分の化学的変化等により誤差を生じる。また温度計測場所によっては、熱電対および温度補償導線を、より延長する場合もある。このようなとき誘導、その他により表示温度により誤差を生じることがあるため校正を要する。In general thermocouple type thermometers, an error is caused by evaporation of the thermocouple due to secular change or chemical change of the temperature sensitive portion at the tip of the thermocouple. Further, depending on the temperature measurement location, the thermocouple and the temperature compensating lead may be further extended. In such a case, an error may occur depending on the display temperature due to induction or the like, and calibration is required.

発熱体測温部に対し、熱電対先端の占める面積、体積がごく僅少であれば、表示が正確で標準とする温度計の熱電対先端と、被校正用温度計の熱電対先端を先に取りつけても両熱電対先端は同一温度になる。If the area and volume occupied by the thermocouple tip is very small compared to the heating element temperature measurement unit, display the thermocouple tip of the thermometer that is accurate and standard, and the thermocouple tip of the thermometer for calibration first. Even if installed, both thermocouple tips are at the same temperature.

上述の状態において、あらかじめ校正モードにした被校正用温度計と標準温度計をインターフェイスを通じ両者を結線し発熱温度を徐々に上昇させれば、標準温度計より送られるアスキー方式の温度データにより被校正温度計の温度表示に必要なE2PROMは上書きされ、被校正用温度計は標準温度計と同一温度表示となり、校正は終了する。In the above-mentioned state, if the thermometer for calibration and the standard thermometer that were previously set in the calibration mode are connected to each other through the interface and the heat generation temperature is gradually increased, the calibration is performed using the ASCII temperature data sent from the standard thermometer. The E2PROM necessary for the temperature display of the thermometer is overwritten, the thermometer for calibration becomes the same temperature display as the standard thermometer, and the calibration is completed.

以上に冷陰極形電離真空計の校正方法を他の測定器に応用した例について2例あげたがその他種々のものがある。In the above, two examples of applying the calibration method of the cold cathode ionization vacuum gauge to other measuring devices are given, but there are various other examples.

発明の効果Effect of the invention

表示が正確な計測器があり、誤差を持つ計測器の表示がE2PROMのデータ参照方式によって表示されており、センサーを同一雰囲気中に置くことが可能な計測器においては比較的容易に校正が可能であることを示すことが出来た。There is a measuring instrument with an accurate display, and the display of the measuring instrument with an error is displayed by the E2PROM data reference method, and it is possible to calibrate relatively easily in the measuring instrument that can put the sensor in the same atmosphere. I was able to show that.

校正を要する冷陰極形電離真空計と標準真空計の概要図である。It is a schematic diagram of a cold cathode ionization vacuum gauge and a standard vacuum gauge that require calibration. 校正を要する冷陰極形電離真空計の正面パネル図である。It is a front panel figure of the cold cathode type ionization vacuum gauge which requires calibration.

1 逆マグネトロン冷陰極形電離真空計測定子の断面部である。
2 逆マグネトロン冷陰極形電離真空計測定子の接続管である。
3 ドーナツ状磁石
4 陰極
5 陽極
6 高電圧電源
7 増幅器
8 中央演算素子を含む電子回路
9 表示器
10 被校正機インターフェイス端子
11 標準真空計測定子
12 標準真空計本体
13 標準真空計インターフェイス端子
1 A cross section of a reverse magnetron cold cathode ionization gauge gauge probe.
2 Connection tube of reverse magnetron cold cathode ionization vacuum gauge probe.
3 Donut-shaped magnet 4 Cathode 5 Anode 6 High-voltage power supply 7 Amplifier 8 Electronic circuit including central processing element 9 Display 10 Test machine interface terminal 11 Standard vacuum gauge probe 12 Standard vacuum gauge body 13 Standard vacuum gauge interface terminal

Claims (3)

インターフェイスを通じアスキー形式で送信されてくる正しい計測器データを、被校正機の表示に必要なテーブル上に展開されているE2PROMに上書きし、これをデータ参照し、新しい表示とする校正方法において、E2PROMアドレスの小さい方からの上書きとEP2ROMの大きい方からの上書きのいずれかを選択可能にした校正方法と計測器。In the calibration method of overwriting the correct instrument data transmitted in ASCII format through the interface on the E2PROM developed on the table necessary for the display of the machine to be calibrated, and referring to this data as a new display, E2PROM Calibration method and measuring instrument that can select either overwriting from the smaller address or overwriting from the larger EP2ROM. インターフェイスを通じアスキー形式で送信されてくる正しい真空度データを、被校正機の真空度表示に必要なテーブル上に展開されされているEP2ROMに上書きし、これをデータ参照し新しい表示とする校正方法において、高真空から低真空にして校正を行う方法と低真空から高真空にして校正する方法のいずれかを選択可能にした校正方法、および冷陰極形電離真空計。In the calibration method in which the correct vacuum degree data transmitted in ASCII format through the interface is overwritten on the EP2ROM developed on the table necessary for the vacuum degree display of the machine to be calibrated, and this is used as a new display by referring to the data. A calibration method capable of selecting either a calibration method from a high vacuum to a low vacuum or a calibration method from a low vacuum to a high vacuum, and a cold cathode ionization vacuum gauge. 中央演算素子の制御下にあるE2PROMにおいて、測定範囲の各乗数間を複数ポイントに分割し、その各点が目視による標準真空計の表示と一致したとき、各ポイントに新データを書き込み、各ポイント間を演算形式により求め、その結果を新真空度表示とする校正方法において、高真空から低真空にして校正を行う方法と、低真空から高真空にして校正する方法のいずれかを選択可能にした校正方法、および冷陰極形電離真空計。In E2PROM under the control of the central processing element, each multiplier of the measurement range is divided into multiple points, and when each point matches the visual display of the standard vacuum gauge, new data is written to each point. In the calibration method in which the interval is calculated by the calculation format and the result is displayed as the new vacuum level, either the method of calibrating from high vacuum to low vacuum or the method of calibrating from low vacuum to high vacuum can be selected Calibration method and cold cathode ionization gauge.
JP2011206609A 2011-08-15 2011-08-15 Cold-cathode type ionization vacuum gauge with calibration function Pending JP2013040914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206609A JP2013040914A (en) 2011-08-15 2011-08-15 Cold-cathode type ionization vacuum gauge with calibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206609A JP2013040914A (en) 2011-08-15 2011-08-15 Cold-cathode type ionization vacuum gauge with calibration function

Publications (2)

Publication Number Publication Date
JP2013040914A true JP2013040914A (en) 2013-02-28
JP2013040914A5 JP2013040914A5 (en) 2013-05-30

Family

ID=47889448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206609A Pending JP2013040914A (en) 2011-08-15 2011-08-15 Cold-cathode type ionization vacuum gauge with calibration function

Country Status (1)

Country Link
JP (1) JP2013040914A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253812A (en) * 1994-03-16 1995-10-03 Toshiba Corp Process instrumentation rack with calibration function
JPH1151757A (en) * 1997-08-01 1999-02-26 A & D Co Ltd Electronic weighing apparatus
JP2000065668A (en) * 1998-08-24 2000-03-03 Toshiba Corp Automatic calibrating device for pressure and differential pressure transmitter
JP2004198328A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Method and apparatus for measuring composition of multi-component mixed gas
JP2005188980A (en) * 2003-12-24 2005-07-14 Toyoda Mach Works Ltd Pressure sensor
JP2008523410A (en) * 2004-12-14 2008-07-03 ブルックス オートメーション インコーポレイテッド Method and apparatus for storing measurement data about vacuum gauge calibration parameters and vacuum gauge structure
JP2010534323A (en) * 2007-07-23 2010-11-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for calibrating and operating a measurement cell structure
JP2011205266A (en) * 2010-03-24 2011-10-13 Seiko Epson Corp Vibrating reed and vibrating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253812A (en) * 1994-03-16 1995-10-03 Toshiba Corp Process instrumentation rack with calibration function
JPH1151757A (en) * 1997-08-01 1999-02-26 A & D Co Ltd Electronic weighing apparatus
JP2000065668A (en) * 1998-08-24 2000-03-03 Toshiba Corp Automatic calibrating device for pressure and differential pressure transmitter
JP2004198328A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Method and apparatus for measuring composition of multi-component mixed gas
JP2005188980A (en) * 2003-12-24 2005-07-14 Toyoda Mach Works Ltd Pressure sensor
JP2008523410A (en) * 2004-12-14 2008-07-03 ブルックス オートメーション インコーポレイテッド Method and apparatus for storing measurement data about vacuum gauge calibration parameters and vacuum gauge structure
JP2010534323A (en) * 2007-07-23 2010-11-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for calibrating and operating a measurement cell structure
JP2011205266A (en) * 2010-03-24 2011-10-13 Seiko Epson Corp Vibrating reed and vibrating device

Similar Documents

Publication Publication Date Title
CN102803912B (en) Checking and approving online of temperature measuring point
JP6069415B2 (en) Method and apparatus for storing measurement data about vacuum gauge calibration parameters and vacuum gauge structure
US7299139B2 (en) Measuring gas meter and volume corrector accuracy
EP4097450B1 (en) Method for liquid and vapor wire exposure testing
CN108152325A (en) A kind of method based on Guarded hot plate calibration heat-flow meter method conductometer
KR20180027542A (en) Ionization pressure gauge with bias voltage and emission current control and measurement
JP2013040914A (en) Cold-cathode type ionization vacuum gauge with calibration function
JP2013040913A (en) Cold-cathode type ionization vacuum gauge with calibration function
KR20090014711A (en) Method of calibrating a pressure gauge and system for calibrating a pressure gauge using the same
JP2005062199A (en) Calibration method for humidity sensor, and humidity sensor using it
CN108534906A (en) A kind of multiple spot temperature and humidity test instrument and its application method
CN210039332U (en) Experimental device capable of adjusting temperature sensor to measure body temperature
JP2001324463A (en) Gas concentration detection sensor and gas concentration measuring apparatus
CN220166180U (en) Temperature correcting device for PCR detector
CN219369023U (en) Pressure gauge calibrating instrument
JP2011191284A (en) Hot-cathode type ionization vacuum gauge with cold-cathode type ionization vacuum gauge
EP4293366A1 (en) Signal processing circuit, controller, environment forming device, and signal processing method
CN116202596B (en) Gamma empty pipe count real-time correction method
CN213714583U (en) Full-automatic check gauge of analog quantity measuring instrument
CN117434115B (en) Temperature calibration method and matched calibration device for flue gas environment tester
JPH07128153A (en) Temperature detection apparatus
JP2020134330A (en) Heat conduction vacuum gauge
CN117782887A (en) Density measuring sensor
GB2609414A (en) Vacuum gauge assembly with orientation sensor
TW202232069A (en) Method for operating a group of pressure sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415