JP2013040833A - Testing apparatus and testing method - Google Patents

Testing apparatus and testing method Download PDF

Info

Publication number
JP2013040833A
JP2013040833A JP2011177384A JP2011177384A JP2013040833A JP 2013040833 A JP2013040833 A JP 2013040833A JP 2011177384 A JP2011177384 A JP 2011177384A JP 2011177384 A JP2011177384 A JP 2011177384A JP 2013040833 A JP2013040833 A JP 2013040833A
Authority
JP
Japan
Prior art keywords
voltage
distribution line
phase
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011177384A
Other languages
Japanese (ja)
Other versions
JP5843520B2 (en
Inventor
Yasuyuki Miyazaki
保幸 宮崎
Toshimitsu Kumazawa
俊光 熊澤
Yukio Takahashi
幸夫 鷹箸
Yasuhiro Noro
康宏 野呂
Daisuke Takeda
大輔 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011177384A priority Critical patent/JP5843520B2/en
Publication of JP2013040833A publication Critical patent/JP2013040833A/en
Application granted granted Critical
Publication of JP5843520B2 publication Critical patent/JP5843520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a testing apparatus and a testing method capable of efficiently evaluating influence on a power distribution system in an approximately actual state.SOLUTION: The testing apparatus includes a distribution line side voltage simulation device, a distribution line simulation circuit, a voltage detector, a voltage command generator, a conversion device, and a three-phase current amplifier. The distribution line side voltage simulation device generates a voltage obtained by reducing a distribution line side voltage of a transformer for actual power distribution at specified magnification. The distribution line simulation circuit is connected to the distribution line side voltage simulation device and electrically simulates a loss amount of power corresponding to the length of an actual distribution line. The voltage command generator is connected to the distribution line simulation circuit, includes a connection terminal connected to a tested device to be actually tested and generates a voltage command value from a voltage value of the distribution line simulation circuit detected by the voltage detector. The conversion device converts an inputted AC voltage into a three-phase AC voltage in accordance with the voltage command value and outputs the three-phase AC voltage from the connection terminal.

Description

本発明の実施形態は、配電系統に連系する自然エネルギーを利用する分散電源や需要家内の負荷装置および配電系統の運用を多種多様な系統条件の下で所定期間連続して、省スペース、省コストで試験する試験装置および試験方法に関する。   Embodiments of the present invention are designed to continuously operate a distributed power source that uses natural energy linked to a power distribution system, a load device in a customer, and a power distribution system under a variety of system conditions for a predetermined period of time. The present invention relates to a test apparatus and a test method for testing at cost.

従来の試験装置として、特許文献1には多種多様な配電系統を模擬して配電機器の総合動作試験を行うことができる試験装置が開示されている。   As a conventional test apparatus, Patent Document 1 discloses a test apparatus that can perform a comprehensive operation test of a distribution device by simulating various distribution systems.

特許文献1に示されている試験装置は任意の配電系統に配置された配電機器の総合動作試験を行うもので、電源を模擬する電源ユニットと変電所を模擬する変電所ユニットと配電線を模擬する配電線ユニットと負荷を模擬する負荷ユニットとから構成されている。   The test apparatus disclosed in Patent Document 1 performs a comprehensive operation test of a distribution device arranged in an arbitrary distribution system, and simulates a power supply unit that simulates a power supply, a substation unit that simulates a substation, and a distribution line. And a load unit that simulates a load.

この試験装置は、電源ユニット、変電所ユニット、配電線ユニットおよび負荷ユニットを適宜組合せて相互間を適宜配線で接続することにより任意の配電系統を模擬する配電系統模擬回路を形成し、これに配電機器として例えば区分開閉器とこの区分開閉器を制御する開閉器子局とを接続して、区分開閉器および開閉器子局の総合動作試験を行う。   This test apparatus forms a power distribution system simulation circuit that simulates an arbitrary power distribution system by appropriately combining power supply units, substation units, distribution line units, and load units and connecting them with appropriate wiring. For example, a segment switch and a switch slave station that controls the segment switch are connected as equipment, and a comprehensive operation test of the segment switch and the switch slave station is performed.

また、特許文献2には、配電系統に接続して使用される実機器を、省スペース、低コストで試験できる配電系統に接続する実機器の試験装置が開示されている。   Further, Patent Document 2 discloses a test apparatus for an actual device that connects an actual device that is used by being connected to the distribution system to a power distribution system that can be tested in a space-saving and low-cost manner.

配電系統を電子回路で模擬した配電系統模擬回路と実機器との間に設けるアクティブパワーインタフェースを、実機器側の電圧、電流を検出する電圧センサ及び電流センサと、この電圧VR、電流IRをn/m倍、N/M倍した電圧(n/m)VR、電流(N/M)IRが配電系統模擬回路側の電圧、電流となるように制御する電圧制御ユニットと、配電系統模擬回路側の電圧、電流を検出する電圧センサおよび電流センサと、この電圧VS、電流ISをそれぞれm/n倍、M/N倍した電圧(m/n)VS、電流(M/N)ISが電圧VR、電流IRとなるように制御する電流制御ユニットとで構成する。   An active power interface provided between a distribution system simulation circuit simulating a distribution system with an electronic circuit and an actual device, a voltage sensor and a current sensor for detecting the voltage and current on the actual device side, and the voltage VR and current IR are expressed as n Voltage control unit that controls the voltage (n / m) VR and current (N / M) IR multiplied by / m times and N / M times to be the voltage and current on the distribution system simulation circuit side, and the distribution system simulation circuit side The voltage sensor and current sensor for detecting the voltage and current, and the voltage (m / n) VS and the current (M / N) IS obtained by multiplying the voltage VS and current IS by m / n and M / N, respectively, are the voltage VR. And a current control unit that controls the current IR.

また、特許文献3には分散型電源を連系した配電系統の運用を所定期間にわたり実験的に試験することができる試験装置が開示されている。   Patent Document 3 discloses a test apparatus that can experimentally test the operation of a power distribution system interconnected with distributed power sources over a predetermined period.

送り出し電圧調整部は模擬的な配電系統へ送り出し電圧を供給する。複数の配電線路は、配電線として用いられる架空線を模擬的に等価な回路で表している。複数の開閉器は、送り出し電圧調整部と複数の配電線路との間、及び複数の配電線路間に接続される。また計測部は、複数の負荷回路と分散型電源部と、送り出し電圧調整部、配線線路、開閉器、負荷回路及び分散型電源出力部によりなる配電系統における電圧及び電流に関する値を計測する。制御部は、計測部からの電圧及び電流に関する計算値に基づいた試験をするために配電系統を制御する。   The sending voltage adjusting unit supplies the sending voltage to the simulated power distribution system. The plurality of distribution lines represent the overhead lines used as the distribution lines by a simulated equivalent circuit. The plurality of switches are connected between the delivery voltage adjusting unit and the plurality of distribution lines and between the plurality of distribution lines. The measurement unit measures values related to voltage and current in a power distribution system including a plurality of load circuits, a distributed power supply unit, a delivery voltage adjustment unit, a wiring line, a switch, a load circuit, and a distributed power output unit. The control unit controls the power distribution system to perform a test based on the calculated values related to the voltage and current from the measurement unit.

特開平8−205334号公報JP-A-8-205334 特開2005−134280号公報JP 2005-134280 A 特開2008−8766号公報JP 2008-8766 A

特許文献1で開示された従来の試験装置は、分散型電源や蓄電池を試験対象とした試験装置について開示したものではなく、分散型電源や蓄電池の系統連系による配電系統への影響や効果の検証という点での記載はない。   The conventional test apparatus disclosed in Patent Document 1 does not disclose a test apparatus for testing a distributed power source or a storage battery, but influences or effects on the distribution system due to the grid connection of the distributed power source or the storage battery. There is no description in terms of verification.

また、上記特許文献2は太陽光発電システムの実機器を電子回路で構成した配電系統模擬回路に直接接続して試験する試験装置について開示しているが、実機器と配電系統模擬回路との間に設けるアクティブパワーインタフェースをオペアンプや抵抗等の電子回路で構成しているため、容量の大きい実機器を接続した試験ができない課題がある。また配電系統模擬回路の負荷の大きさや場所等の設定条件変更等の開示がなく、配電系統の模擬条件を変更した場合の太陽光発電システムの実機器の試験を容易にできないという問題がある。   Moreover, although the said patent document 2 is disclosing about the test apparatus which directly connects and tests the real device of a photovoltaic power generation system to the power distribution system simulation circuit comprised with the electronic circuit, it is between an actual device and a power distribution system simulation circuit. Since the active power interface provided in the circuit is configured by an electronic circuit such as an operational amplifier or a resistor, there is a problem that it is impossible to perform a test in which an actual device having a large capacity is connected. Moreover, there is no disclosure of changing the setting conditions such as the load size and location of the distribution system simulation circuit, and there is a problem that it is not easy to test the actual device of the photovoltaic power generation system when the simulation conditions of the distribution system are changed.

また、上記特許文献3は、配電系統を模擬する配電線路手段に、分散型電源出力を模擬的に発生する分散型電源出力手段を接続して分散型電源を連系した配電系統の運用を所定期間で試験する試験装置を開示しており、分散型電源や負荷装置の実機器を接続した試験ができないという問題がある。   Further, the above-mentioned Patent Document 3 prescribes the operation of a distribution system in which a distributed power source is connected by connecting a distributed power output unit that simulates a distributed power output to a distribution line means that simulates a distribution system. There is a problem in that a test apparatus for testing in a period is disclosed, and a test in which a real device such as a distributed power source or a load apparatus is connected cannot be performed.

本発明が解決しようとする課題は、配電系統の構成や負荷の条件を容易に変更できる省スペースの模擬配電系統に、容量の大きい分散型電源や負荷装置の実機器を接続でき、さらに分散型電源や負荷装置の実機器の模擬配電系統への接続点を容易に変更して、所定期間の分散型電源や負荷装置の実機器の試験や分散型電源や負荷の出力変化等による配電系統への影響を実際に近い形で効率的に評価できる試験装置及び試験方法を提供することにある。   The problem to be solved by the present invention is that a large-capacity distributed power source and a load device can be connected to a space-saving simulated power distribution system that can easily change the configuration and load conditions of the power distribution system. Easily change the connection points of the power supply and load device to the simulated power distribution system to the power distribution system by testing the distributed power supply and load device real equipment for a predetermined period, changing the output of the distributed power supply and load, etc. It is an object of the present invention to provide a test apparatus and a test method that can efficiently evaluate the influence of the above in an almost realistic manner.

実施形態の試験装置は、配電線側電圧模擬装置、配電線模擬回路、電圧検出器、電圧指令生成器、変換装置、電流検出器、電流指令生成器、三相電流アンプを備える。前記配電線側電圧模擬装置は実配電用変圧器の配電線側電圧を、指定された倍率で縮小した電圧を発生する。前記配電線模擬回路は前記配電線側電圧模擬装置に接続され、実配電線の長さに応じた電力の損失量を電気的に模擬する。前記電圧検出器は前記配電線模擬回路の電圧値を検出する。前記電圧指令生成器は前記配電線模擬回路に接続され、実試験対象の被試験装置が接続された接続端子を有し、前記電圧検出器により検出された電圧値から電圧指令値を生成する。前記変換装置は前記電圧指令生成器により生成された前記電圧指令値に応じて、入力された交流電圧を三相交流電圧に変換して前記接続端子から出力する。前記電流検出器は前記接続端子を流れる電流値を検出する。前記電流指令生成器は前記電流検出器により検出された電流値から三相電流指令値を生成する。前記三相電流アンプは前記三相電流指令値に応じた三相電流を前記配電線模擬回路との間で入出力する。   The test apparatus of the embodiment includes a distribution line side voltage simulation device, a distribution line simulation circuit, a voltage detector, a voltage command generator, a conversion device, a current detector, a current command generator, and a three-phase current amplifier. The distribution line side voltage simulation device generates a voltage obtained by reducing the distribution line side voltage of the actual distribution transformer by a specified magnification. The distribution line simulation circuit is connected to the distribution line side voltage simulation device and electrically simulates the amount of power loss according to the length of the actual distribution line. The voltage detector detects a voltage value of the distribution line simulation circuit. The voltage command generator is connected to the distribution line simulation circuit, has a connection terminal to which a device under test to be tested is connected, and generates a voltage command value from the voltage value detected by the voltage detector. The converter converts the input AC voltage into a three-phase AC voltage according to the voltage command value generated by the voltage command generator, and outputs it from the connection terminal. The current detector detects a current value flowing through the connection terminal. The current command generator generates a three-phase current command value from the current value detected by the current detector. The three-phase current amplifier inputs / outputs a three-phase current corresponding to the three-phase current command value to / from the distribution line simulation circuit.

実施形態の試験装置の構成を示す図である。It is a figure which shows the structure of the test apparatus of embodiment. 配電線模擬回路の一例を示す構成図である。It is a block diagram which shows an example of a distribution line simulation circuit. 負荷分散電源模擬装置の一例を示す構成図である。It is a block diagram which shows an example of a load distribution power supply simulation device.

以下、図面を参照して、実施形態を詳細に説明する。図1は実施形態の試験装置の構成を示す図である。   Hereinafter, embodiments will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a test apparatus according to an embodiment.

図1に示すように、この実施形態の試験装置は、可変模擬電圧発生装置1と、配電線路を模擬する配電線模擬回路2と、負荷や分散型電源の電気入出力を模擬する1つ以上の負荷分散電源模擬装置3a、3b、3c、3dと、三相または単相の電圧源4と、連系装置5と、接続選択スイッチ6と、単相変圧器7と、三相被試験対象の三相被試験装置8と、単相被試験対象の単相被試験装置9と、運用管理装置50とを有している。   As shown in FIG. 1, the test apparatus of this embodiment includes a variable simulation voltage generator 1, a distribution line simulation circuit 2 that simulates a distribution line, and one or more that simulates electric input / output of a load or a distributed power source. Load distribution power supply simulation devices 3a, 3b, 3c, 3d, three-phase or single-phase voltage source 4, interconnection device 5, connection selection switch 6, single-phase transformer 7, and three-phase test object A three-phase device under test 8, a single-phase device under test 9 to be tested, and an operation management device 50.

可変模擬電圧発生装置1は、配電用変圧器の配電線側電圧を模擬する装置であり、実際の配電用変圧器の配電線側電圧を、運用管理装置50から指定された倍率で縮小した電圧を発生する配電線側電圧模擬装置として機能する。可変模擬電圧発生装置1は、実際の配電用変圧器の配電線側電圧が三相6.6kVとし、運用管理装置50から指定された倍率が例えば1/33倍とすると、単相200Vなどの電圧を発生する。   The variable simulation voltage generator 1 is a device that simulates the distribution line side voltage of the distribution transformer, and is a voltage obtained by reducing the actual distribution line side voltage of the distribution transformer at a magnification specified by the operation management apparatus 50. Functions as a distribution line side voltage simulation device. The variable simulation voltage generator 1 has a single-phase 200V or the like when the distribution line voltage of the actual distribution transformer is set to three-phase 6.6 kV and the magnification specified by the operation management device 50 is, for example, 1/33. Generate voltage.

配電線模擬回路2は、可変模擬電圧発生装置1と連系装置10および被試験対象の装置(三相被試験装置8および単相被試験装置9など)との間に接続されている。すなわち、配電線模擬回路2は可変模擬電圧発生装置1と被試験対象の装置(三相被試験装置8および単相被試験装置9など)との間に配線されるべき実際の配電線の長さに応じた電力の損失量(電力の減衰量または電力負荷)を電気的に模擬する回路である。配電線模擬回路2は、3つの配電線模擬回路2a、2b、2cから構成されている。   The distribution line simulation circuit 2 is connected between the variable simulation voltage generator 1, the interconnection device 10, and the device under test (such as the three-phase device under test 8 and the single-phase device under test 9). That is, the distribution line simulation circuit 2 is the length of the actual distribution line to be wired between the variable simulation voltage generator 1 and the device under test (such as the three-phase device under test 8 and the single-phase device under test 9). This is a circuit that electrically simulates the amount of power loss (power attenuation or power load) corresponding to the power loss. The distribution line simulation circuit 2 includes three distribution line simulation circuits 2a, 2b, and 2c.

負荷分散電源模擬装置3a、3b、3c、3dは、各配電線のエリア内の負荷や分散電源を模擬するものとする。   The load distribution power supply simulation devices 3a, 3b, 3c, and 3d are assumed to simulate a load and a distributed power supply in the area of each distribution line.

電圧源4は、連系装置5内の交直変換器20aに接続される。交直変換器20aが単相変換器の場合、電圧源4は単相交流を発生するものとする。また交直変換器20aが三相変換器の場合、電圧源4は三相交流を発生するものとする。連系装置5内の交直変換器20bは三相交流変換器とし、単相変圧器7に三相交流で接続される。   The voltage source 4 is connected to the AC / DC converter 20 a in the interconnection device 5. When the AC / DC converter 20a is a single-phase converter, the voltage source 4 generates a single-phase alternating current. When the AC / DC converter 20a is a three-phase converter, the voltage source 4 generates a three-phase alternating current. The AC / DC converter 20b in the interconnection device 5 is a three-phase AC converter, and is connected to the single-phase transformer 7 by a three-phase AC.

接続選択スイッチ6は、連系装置5と配電線模擬回路2の3つの回路2a、2b、2cとの接続先を切り替えて(選択して)接続する。つまり接続選択スイッチ6は、配電線模擬回路2a、2b、2cを切り替える回路切換スイッチである。これにより配電線模擬回路2全体としての抵抗とリアクタンスの値が可変される。   The connection selection switch 6 switches (selects) and connects the connection destinations of the interconnection device 5 and the three circuits 2 a, 2 b, and 2 c of the distribution line simulation circuit 2. That is, the connection selection switch 6 is a circuit changeover switch that switches between the distribution line simulation circuits 2a, 2b, and 2c. As a result, the resistance and reactance values of the distribution line simulation circuit 2 as a whole are varied.

単相変圧器7は、三相回路と単相回路を連系する回路である。三相被試験装置8および単相被試験装置9は、被試験対象となる実機または実機相当の装置である。   The single-phase transformer 7 is a circuit that interconnects a three-phase circuit and a single-phase circuit. The three-phase device under test 8 and the single-phase device under test 9 are actual devices to be tested or devices corresponding to actual devices.

運用管理装置50は、この試験装置における試験データの設定や各回路および装置間の時刻同期、試験中の計測データの収集および評価、試験の開始/停止の制御、接続選択スイッチ6の切替制御などの制御動作を行う。   The operation management device 50 sets the test data in this test device, synchronizes the time between each circuit and device, collects and evaluates the measurement data during the test, controls the start / stop of the test, and controls the switching of the connection selection switch 6. The control operation is performed.

運用管理装置50と、可変模擬電圧発生装置1と、配電線模擬回路2a、2b、2cと、負荷分散電源模擬装置3a、3b、3c、3dと、連系装置5と、接続選択スイッチ6と、三相被試験対象の三相被試験装置8と、単相被試験対象の単相被試験装置9とは、互いに情報を通信可能な通信網、例えばローカルネットワーク等の通信線60で接続されている。   Operation management device 50, variable simulation voltage generator 1, distribution line simulation circuits 2a, 2b, 2c, load distribution power simulation devices 3a, 3b, 3c, 3d, interconnection device 5, and connection selection switch 6 The three-phase device under test 8 to be tested and the single-phase device under test 9 are connected to each other via a communication line 60 such as a local network that can communicate information with each other. ing.

連系装置5は、変換装置10と、電流検出器11と、電流指令生成器12と、三相電流アンプ13と、電圧検出器14と、電圧指令生成器15とを有している。   The interconnection device 5 includes a conversion device 10, a current detector 11, a current command generator 12, a three-phase current amplifier 13, a voltage detector 14, and a voltage command generator 15.

連系装置5は、被試験対象の装置(三相被試験装置8および単相被試験装置9など)が接続された接続端子5aを有している。   The interconnection device 5 has a connection terminal 5a to which devices under test (three-phase device under test 8 and single-phase device under test 9) are connected.

変換装置10は、電圧指令生成器15により生成された電圧指令値に応じて、電圧源4から入力された交流電圧を三相交流電圧に変換して接続端子5aから出力する。   The conversion device 10 converts the AC voltage input from the voltage source 4 into a three-phase AC voltage according to the voltage command value generated by the voltage command generator 15, and outputs it from the connection terminal 5a.

電流検出器11は、接続端子5aに接続されており、接続端子5aに流れる電流を計測する。つまり電流検出器11は接続端子5aを流れる電流値を検出する。   The current detector 11 is connected to the connection terminal 5a and measures the current flowing through the connection terminal 5a. That is, the current detector 11 detects the current value flowing through the connection terminal 5a.

電流指令生成器12は、電流検出器11により計測(検出)された電流値から三相電流指令値を生成する。三相電流アンプ13は、三相電流指令値に応じた三相電流を配電線模擬回路2a、2b、2cとの間で入出力する。   The current command generator 12 generates a three-phase current command value from the current value measured (detected) by the current detector 11. The three-phase current amplifier 13 inputs / outputs a three-phase current corresponding to the three-phase current command value to / from the distribution line simulation circuits 2a, 2b, and 2c.

電圧検出器14は、三相電流アンプ13と配電線模擬回路2a、2b、2cとの間に発生する電圧を検出する。つまり電圧検出器14は配電線模擬回路2の電圧値を検出する。   The voltage detector 14 detects a voltage generated between the three-phase current amplifier 13 and the distribution line simulation circuits 2a, 2b, and 2c. That is, the voltage detector 14 detects the voltage value of the distribution line simulation circuit 2.

電圧指令生成器15は、電圧検出器14により計測(検出)された電圧値から電圧指令値を生成する。   The voltage command generator 15 generates a voltage command value from the voltage value measured (detected) by the voltage detector 14.

変換装置10は、2つの交直変換器20a、20bと直流コンデンサ21を有しており、交流電圧を直流電圧に変換する。変換装置10は、電圧指令生成器15により生成された電圧指令値に応じて、電圧源4から入力された交流電圧を三相交流電圧に変換して接続端子5aから出力する。   The converter 10 includes two AC / DC converters 20a and 20b and a DC capacitor 21, and converts an AC voltage into a DC voltage. The conversion device 10 converts the AC voltage input from the voltage source 4 into a three-phase AC voltage according to the voltage command value generated by the voltage command generator 15, and outputs it from the connection terminal 5a.

運用管理装置50は、予め設定された試験条件に応じて接続選択スイッチ6を切り替える。   The operation management device 50 switches the connection selection switch 6 in accordance with preset test conditions.

運用管理装置50は、変換装置10の接続端子5aに接続された三相被試験装置8および単相被試験装置9から、試験期間における配電電圧値の時系列データを取得して試験データとしてメモリなどの記憶装置に記憶しておき、記憶装置に記憶した時系列データを参照して需要電力と供給電力の関係がある一定の範囲に入るように可変模擬電圧発生装置1を制御して可変模擬電圧発生装置1が発生する電圧を配電線模擬回路2a、2b、2cに印加する。また記憶装置には試験用に各装置に提供するためのデータが記憶されているものとする。   The operation management device 50 acquires time-series data of distribution voltage values during the test period from the three-phase device under test 8 and the single-phase device under test 9 connected to the connection terminal 5a of the conversion device 10, and stores them as test data. The variable simulation voltage generator 1 is controlled so as to fall within a certain range in which the relationship between the demand power and the supply power is in reference to the time series data stored in the storage device. The voltage generated by the voltage generator 1 is applied to the distribution line simulation circuits 2a, 2b, and 2c. The storage device stores data to be provided to each device for testing.

また、運用管理装置50は、試験期間に対応する負荷や分散電源出力の有効電力値と無効電力値の時系列データを参照して、負荷分散電源模擬装置3a、3b、3c、3dに有効電力と無効電力を発生させて配線線模擬回路2a、2b、2cに印加し、三相被試験装置8および単相被試験装置9の電流出力および配線線模擬回路2a、2b、2cの電圧値を取得し、予め設定された閾値と比較し、比較結果を出力する。   In addition, the operation management device 50 refers to the load corresponding to the test period and the time series data of the active power value and the reactive power value of the distributed power supply output, and applies the active power to the load distributed power supply simulation devices 3a, 3b, 3c, 3d. And reactive power is generated and applied to the wiring line simulation circuits 2a, 2b and 2c, and the current outputs of the three-phase device under test 8 and the single-phase device under test 9 and the voltage values of the wiring line simulation circuits 2a, 2b and 2c are obtained. It is acquired, compared with a preset threshold value, and a comparison result is output.

続いて、この実施形態の試験装置の動作を説明する。
この実施形態の場合、可変模擬電圧発生装置1と1つ以上の配電線模擬回路2a、2b、2cのそれぞれは直列に接続されており、可変模擬電圧発生装置1で発生する三相交流電圧を三相の配電線模擬回路2a、2b、2cに印加する。
Subsequently, the operation of the test apparatus of this embodiment will be described.
In the case of this embodiment, each of the variable simulation voltage generator 1 and the one or more distribution line simulation circuits 2a, 2b, 2c is connected in series, and the three-phase AC voltage generated by the variable simulation voltage generator 1 is generated. Applied to the three-phase distribution line simulation circuits 2a, 2b and 2c.

可変模擬電圧発生装置1の三相交流電圧は配電線模擬回路2a、2b、2cの定格電圧を考慮して電圧を発生させる。   The three-phase AC voltage of the variable simulation voltage generator 1 generates a voltage in consideration of the rated voltages of the distribution line simulation circuits 2a, 2b and 2c.

可変模擬電圧発生装置1は試験開始前に運用管理装置50から通信線60を介して時刻同期信号と時系列電圧指令値データを入力して可変模擬電圧発生装置1内の時刻を運用管理装置50と同期させ時系列電圧指令値データを装置内に保存する。   The variable simulation voltage generator 1 inputs a time synchronization signal and time-series voltage command value data from the operation management device 50 via the communication line 60 before starting the test, and sets the time in the variable simulation voltage generation device 1 to the operation management device 50. The time series voltage command value data is stored in the apparatus in synchronization with the above.

次に運用管理装置50が発信する試験開始信号を入力した後、時刻に対応した時系列電圧指令値データに一致する電圧を出力すると同時に可変模擬電圧発生装置1の出力端で電圧値を計測し運用管理装置50で設定する計測時間毎に通信線60を介して運用管理装置50に送出する。運用管理装置50から通信線60を介して試験停止信号を入力すると可変模擬電圧発生装置1は停止し電圧出力値をゼロとする。   Next, after inputting the test start signal transmitted by the operation management device 50, the voltage matching the time-series voltage command value data corresponding to the time is output, and at the same time, the voltage value is measured at the output terminal of the variable simulation voltage generator 1. Each measurement time set by the operation management apparatus 50 is sent to the operation management apparatus 50 via the communication line 60. When a test stop signal is input from the operation management device 50 via the communication line 60, the variable simulation voltage generator 1 stops and sets the voltage output value to zero.

可変模擬電圧発生装置1は、この可変模擬電圧発生装置1から配電線模擬回路2a、2b、2c側への有効電力の出力と、配電線模擬回路2a、2b、2c側から可変模擬電圧発生装置1への有効電力の入力とが可能であるものとする。すなわち可変模擬電圧発生装置1は有効電力の出力と入力にそれぞれ対応できる。   The variable simulation voltage generator 1 outputs the active power from the variable simulation voltage generator 1 to the distribution line simulation circuits 2a, 2b, and 2c, and the variable simulation voltage generation apparatus from the distribution line simulation circuits 2a, 2b, and 2c. It is assumed that the active power to 1 can be input. That is, the variable simulation voltage generator 1 can correspond to the output and input of active power, respectively.

配電線模擬回路2a、2b、2cは定格電圧を実配電線の定格電圧の1/Mとし、定格電流を実配電線の定格電流の1/N倍とし、定格容量を実配電線の定格容量の1/(M×N)としたものとする。   Distribution line simulation circuits 2a, 2b and 2c have a rated voltage of 1 / M of the rated voltage of the actual distribution line, a rated current of 1 / N times the rated current of the actual distribution line, and a rated capacity of the actual distribution line. 1 / (M × N).

例えば、実配電線の定格電圧を6.6kV、定格電流を300Aとして、配電線模擬回路2a、2b、2cの定格電圧を200V、定格電流を10Aとすると、Mは33でNは30となり、配電線模擬回路2a、2b、2cの定格容量は実配電線の定格容量の1/990となる。   For example, assuming that the rated voltage of the actual distribution line is 6.6 kV, the rated current is 300 A, the rated voltage of the distribution line simulation circuits 2 a, 2 b, and 2 c is 200 V and the rated current is 10 A, M is 33 and N is 30; The rated capacity of the distribution line simulation circuits 2a, 2b, and 2c is 1/990 of the rated capacity of the actual distribution line.

また、実配電用変圧器の配電線側電圧が、例えば6.7kVの場合の模擬は、6.7k/6.6k×200=203.03となるので、実効値203.3Vの交流線間電圧を可変模擬電圧発生装置1で発生する。   Moreover, since the simulation when the distribution line side voltage of the actual distribution transformer is 6.7 kV, for example, is 6.7 k / 6.6 k × 200 = 203.03, between the AC lines having an effective value of 203.3 V A voltage is generated by the variable simulation voltage generator 1.

図2に示すように、例えば配電線模擬回路2aは、リアクトル31a、31b、31cと抵抗32a、32b、32cと距離変更スイッチ33a、33b、33cと電圧電流周波数センサ34a、34bとを有している。配電線模擬回路2a、2b、2cはそれぞれ実配電線の線路長akm相当の電力減衰量を実配電線と等価的に模擬する。   As shown in FIG. 2, for example, the distribution line simulation circuit 2a includes reactors 31a, 31b, and 31c, resistors 32a, 32b, and 32c, distance change switches 33a, 33b, and 33c, and voltage current frequency sensors 34a and 34b. Yes. The distribution line simulation circuits 2a, 2b, and 2c each equivalently simulate the power attenuation amount equivalent to the line length akm of the actual distribution line.

つまり、この配電線模擬回路2aには、模擬する定格電圧を実配電線の定格電圧の1/M、模擬する定格容量を実配電線の定格容量の1/(M×N)とするように抵抗値とリアクタンス値が設定されている。配電線模擬回路2a、2b、2cはこの条件下で実配電線を等価的に模擬する。
リアクトル31a、31b、31cと抵抗32a、32B、32cは電力減衰回路であり、距離変更スイッチ33a、33b、33cを開閉することで、リアクトル31a、31b、31cと抵抗32a、32B、32cの値の比率を一定に保持したまま、それぞれの素子の値を可変可能である。
That is, in this distribution line simulation circuit 2a, the rated voltage to be simulated is 1 / M of the rated voltage of the actual distribution line, and the rated capacity to be simulated is 1 / (M × N) of the rated capacity of the actual distribution line. Resistance and reactance values are set. Distribution line simulation circuits 2a, 2b, and 2c equivalently simulate actual distribution lines under these conditions.
Reactors 31a, 31b, and 31c and resistors 32a, 32B, and 32c are power attenuating circuits. By opening and closing distance change switches 33a, 33b, and 33c, the values of reactors 31a, 31b, and 31c and resistors 32a, 32B, and 32c are changed. The value of each element can be changed while keeping the ratio constant.

配電線模擬回路2a、2b、2cは、リアクトル31a、31b、31cと抵抗32a、32B、32cの値を可変することで、配電線の長さを変えた場合の配電線を模擬する。なお他の配電線模擬回路2b,2cの構成も同様である。   The distribution line simulation circuits 2a, 2b, and 2c simulate the distribution line when the length of the distribution line is changed by changing the values of the reactors 31a, 31b, and 31c and the resistors 32a, 32B, and 32c. The configurations of the other distribution line simulation circuits 2b and 2c are the same.

配電線模擬回路2aはリアクトル31aとリアクトル31bとリアクトル31cとで実配電線のakm相当のリアクトルを等価的に模擬する。   The distribution line simulation circuit 2a equivalently simulates a reactor corresponding to akm of the actual distribution line by the reactor 31a, the reactor 31b, and the reactor 31c.

同様に抵抗32aと抵抗32bと抵抗32cとで実配電線のakm相当の抵抗を等価的に模擬する。すなわち、配電線模擬回路2aは実配電線の長さに応じた電力の損失量(電力負荷)を電気的に模擬するものである。   Similarly, the resistance corresponding to akm of the actual distribution line is equivalently simulated by the resistor 32a, the resistor 32b, and the resistor 32c. That is, the distribution line simulation circuit 2a electrically simulates the amount of power loss (power load) according to the length of the actual distribution line.

ここでは、説明を簡易化するため、リアクトル31aとリアクトル31bとリアクトル31cの各リアクタンス値は等値とし、また抵抗32aと抵抗32bと抵抗32cの各抵抗値は等値とする。   Here, in order to simplify the description, the reactance values of the reactor 31a, the reactor 31b, and the reactor 31c are assumed to be equal, and the resistance values of the resistor 32a, the resistor 32b, and the resistor 32c are assumed to be equivalent.

図2の構成では、3つの距離変更スイッチ33a、33b、33cの開閉状態に応じて実配電線の線路長akm相当の配電線模擬を3等分した(a/3)km単位で、実配電線の線路長を離散的に変更できる。   In the configuration of FIG. 2, the distribution line simulation corresponding to the line length akm of the actual distribution line is divided into three equal parts according to the open / closed state of the three distance change switches 33a, 33b, 33c. The line length of the electric wire can be changed discretely.

例えば距離変更スイッチ33aを閉とし、距離変更スイッチ33bと距離変更スイッチ33cを開放する(「開」とする)と、リアクトル31aと抵抗32aは短絡され(2a/3)Kmの配電線模擬回路となる。   For example, when the distance change switch 33a is closed and the distance change switch 33b and the distance change switch 33c are opened ("open"), the reactor 31a and the resistor 32a are short-circuited (2a / 3) Km distribution line simulation circuit Become.

なお、図2の例では、3つの距離変更スイッチ33a、33b、33cを持つ構成について説明したが、距離変更スイッチの数は2つでも4つ以上であってもよく、距離変更スイッチは1つ以上あればよい。   In the example of FIG. 2, the configuration having the three distance change switches 33a, 33b, and 33c has been described. However, the number of distance change switches may be two or four, and one distance change switch is provided. That's all you need.

このように配電線模擬回路2a、2b、2cでは、配電線模擬回路2a、2b、2c内それぞれのn個の距離変更スイッチの開閉を行う(選択する)ことで、各配電線の線路長a km相当の模擬をn等分した0kmからakmを(a/n)km単位で各々離散的に変更でき、3つの配電線模擬回路2a、2b、2cで 0Kmらa kmまでの配電線路を(a/3)km刻みで模擬できる。   As described above, in the distribution line simulation circuits 2a, 2b, and 2c, by opening / closing (selecting) the n distance change switches in the distribution line simulation circuits 2a, 2b, and 2c, the line length a of each distribution line is selected. The km equivalent of 0 km to akm can be changed discretely in units of (a / n) km, and the distribution line route from 0 km to a km can be changed by three distribution line simulation circuits 2a, 2b, 2c ( a / 3) Can be simulated in steps of km.

配電線模擬回路2a、2b、2cの距離設定は試験開始前に運用管理装置50から配電線模擬回路2a、2b、2c内の距離変更スイッチ(配電線模擬回路2aの場合は33a、33b、33c)に対してスイッチ開閉指令を送り、距離変更スイッチ33a、33b、33cはスイッチ開閉指令に従いスイッチを開または閉の状態にする。   The distance setting of the distribution line simulation circuits 2a, 2b, and 2c is performed by the distance change switch in the distribution line simulation circuits 2a, 2b, and 2c (33a, 33b, and 33c in the case of the distribution line simulation circuit 2a) before starting the test. ) And a distance change switch 33a, 33b, 33c opens or closes the switch according to the switch open / close command.

また試験中は、配電線模擬回路2a、2b、2c内の電圧電流周波数センサ(配電線模擬回路2aの場合は電圧電流周波数センサ34a、34b)で計測される3相線間電圧と3相線電流と周波数の計測値とを運用管理装置50に予め設定された計測時間毎に運用管理装置50に通信線60を介して送出する。   Further, during the test, the three-phase line voltage and the three-phase line measured by the voltage / current frequency sensors in the distribution line simulation circuits 2a, 2b, and 2c (in the case of the distribution line simulation circuit 2a, the voltage / current frequency sensors 34a and 34b). Current and frequency measurement values are sent to the operation management apparatus 50 via the communication line 60 at every measurement time preset in the operation management apparatus 50.

1つ以上の配電線模擬回路2a、2b、2cに対し1つ以上の負荷分散電源模擬装置3a、3b、3c、3dが並列に接続される。   One or more load distribution power supply simulation devices 3a, 3b, 3c and 3d are connected in parallel to one or more distribution line simulation circuits 2a, 2b and 2c.

負荷分散電源模擬装置3a、3b、3cは、配電線に接続される負荷や分散電源の時系列の有効電力と無効電力を地域毎に時刻毎に合算した有効電力と無効電力を目標値として設定し、この有効電力目標値と無効電力目標値に相当する有効電力と無効電力とを配電線模擬回路2a、2b、2cとの接続点に発生するものである。   The load distribution power supply simulation devices 3a, 3b, and 3c set the active power and reactive power obtained by adding the time series active power and reactive power of the load connected to the distribution line and the distributed power supply for each region for each time as target values. The active power and the reactive power corresponding to the active power target value and the reactive power target value are generated at the connection points with the distribution line simulation circuits 2a, 2b, and 2c.

図3に示すように、負荷分散電源模擬装置3aは、データ保存装置41と、PQV検出器42と、電流指令生成器43と、三相電流アンプ44とを有している。
なおPQVとはPが有効電力を表しQが無効電力を表しVが三相線間電圧を表す略称である。
As shown in FIG. 3, the load distribution power supply simulation device 3 a includes a data storage device 41, a PQV detector 42, a current command generator 43, and a three-phase current amplifier 44.
PQV is an abbreviation where P represents active power, Q represents reactive power, and V represents a three-phase line voltage.

データ保存装置41には、試験開始前に運用管理装置50から通信線60を介して送出される負荷分散電源模擬装置3aが時刻に応じて入力または出力する有効電力値と無効電力値の試験期間に対応する時系列データが保存される。   The data storage device 41 includes a test period of active power values and reactive power values that are input or output according to time by the load distribution power supply simulation device 3a sent from the operation management device 50 via the communication line 60 before starting the test. The time series data corresponding to is saved.

また、データ保存装置41には、運用管理装置50からの時刻同期信号が入力されることで、運用管理装置50の時刻とデータ保存装置41の時刻との時刻同期が行われる。   In addition, the data storage device 41 receives a time synchronization signal from the operation management device 50, thereby synchronizing the time of the operation management device 50 with the time of the data storage device 41.

運用管理装置50が発信する試験開始信号が電流指令生成器43に入力されると、電流指令生成器43は、PQV検出器42で検出される負荷分散電源模擬装置3aの出力端子での有効電力計測値と無効電力計測値と、三相線間電圧計測値と、データ保存装置41から現時刻に負荷分散電源模擬装置3aが出力する有効電力の目標値と無効電力の目標値とを取り込む。   When the test start signal transmitted from the operation management device 50 is input to the current command generator 43, the current command generator 43 detects the active power at the output terminal of the load sharing power supply simulation device 3a detected by the PQV detector 42. The measurement value, the reactive power measurement value, the three-phase line voltage measurement value, and the active power target value and the reactive power target value output from the data storage device 41 by the load distribution power supply simulation device 3a at the current time are captured.

電流指令生成器43は、三相線間電圧値から有効電力目標値と無効電力目標値に追従する有効電力と無効電力を出力するに必要となる三相電流の振幅と三相線間電圧に対する三相電流の位相とからなる三相電流指令値を算出する。   The current command generator 43 generates the active power target value, the reactive power target value that follows the active power target value and the reactive power target value from the three-phase line voltage value, and the amplitude of the three-phase current required for outputting the reactive power and the three-phase line voltage. A three-phase current command value composed of the phase of the three-phase current is calculated.

試験中は、負荷分散電源模擬装置3a、3b、3c、3dで各々計測された有効電力計測値と無効電力計測値と三相線間電圧値とが、運用管理装置50で設定する計測時間毎に負荷分散電源模擬装置3a、3b、3c、3dから通信線60を介して運用管理装置50に送出される。   During the test, the active power measurement value, the reactive power measurement value, and the three-phase line voltage value respectively measured by the load distribution power supply simulation devices 3a, 3b, 3c, and 3d are measured every measurement time set by the operation management device 50. To the operation management apparatus 50 via the communication line 60 from the load distribution power supply simulation apparatuses 3a, 3b, 3c, and 3d.

三相電流アンプ44は三相電流指令値に相当する三相電流を出力する。なおこの三相電流アンプ44は電流を出力または入力でき、負荷分散電源模擬装置3aは有効電力出力と無効電力出力とをそれぞれ独立に正または負を組合せた4象限内の出力ができるものする。   The three-phase current amplifier 44 outputs a three-phase current corresponding to the three-phase current command value. The three-phase current amplifier 44 can output or input current, and the load distribution power supply simulation device 3a can output in the four quadrants in which the active power output and the reactive power output are independently combined with positive or negative.

負荷分散電源模擬装置3a、3b、3c、3dは保存する有効電力値と無効電力値の時系列データの現時刻に対応する目標値を読み出しながら入力あるいは出力する有効電力と無効電力を発生する。   The load distribution power supply simulation devices 3a, 3b, 3c, and 3d generate active power and reactive power that are input or output while reading target values corresponding to the current times of the time-series data of active power values and reactive power values to be stored.

負荷分散電源模擬装置3a、3b、3c、3dから配電線模擬回路2a、2b、2c側へ有効電力を出力すると負荷分散電源模擬装置3a、3b、3c、3dは配電系統へ有効電力を出力する分散電源発電装置の模擬装置となり、配電線模擬回路2a、2b、2c側から負荷分散電源模擬装置3a、3b、3c、3dへ有効電力を入力すると負荷分散電源模擬装置3a、3b、3c、3dは配電系統から有効電力を入力する負荷の模擬装置となる。   When the active power is output from the load distribution power supply simulation devices 3a, 3b, 3c, and 3d to the distribution line simulation circuits 2a, 2b, and 2c, the load distribution power supply simulation devices 3a, 3b, 3c, and 3d output the effective power to the distribution system. When the active power is input from the distribution line simulation circuits 2a, 2b, and 2c to the load distribution power supply simulation devices 3a, 3b, 3c, and 3d, the load distribution power generation simulation devices 3a, 3b, 3c, and 3d are realized. Becomes a load simulator that receives active power from the distribution system.

負荷分散電源模擬装置3a、3b、3c、3dの定格線間電圧は、配電線模擬回路2a、2b、2cの定格電圧と同等とし、配電線模擬回路2a、2b、2cの定格容量を実配電線の定格容量の1/(M×N)としたのと同様に運用管理装置50から負荷分散電源模擬装置3a、3b、3c、3dへ送信して保存する有効電力目標値と無効電力目標値の時系列データは実配電線での地域内の負荷や分散電源の有効電力と無効電力をそれぞれ時刻毎に合算した有効電力値と無効電力値の1/(M×N)とする。   The rated line voltage of the load distribution power supply simulation devices 3a, 3b, 3c and 3d is equivalent to the rated voltage of the distribution line simulation circuits 2a, 2b and 2c, and the rated capacity of the distribution line simulation circuits 2a, 2b and 2c is actually distributed. As with 1 / (M × N) of the rated capacity of the electric wire, the active power target value and the reactive power target value that are transmitted from the operation management device 50 to the load distribution power supply simulation devices 3a, 3b, 3c, and 3d and stored. The time series data is assumed to be 1 / (M × N) of the active power value and the reactive power value obtained by adding up the active power and reactive power of the local distribution load and the distributed power source for each time.

単相変圧器7は1次側を三相交流とし2次側を単相交流とし、連系装置5に接続されない単相変圧器7のもう一方の端子は単相交流とする。   In the single-phase transformer 7, the primary side is a three-phase alternating current, the secondary side is a single-phase alternating current, and the other terminal of the single-phase transformer 7 that is not connected to the interconnection device 5 is a single-phase alternating current.

ここでは説明を簡単化するため単相変圧器7の変圧比は1:1とする。単相変圧器7の連系装置5側の端子には三相交流の被試験対象となる三相被試験装置8を接続し、単相変圧器7のもう一方の端子には単相の被試験対象となる単相被試験装置9を接続する。   Here, in order to simplify the explanation, the transformation ratio of the single-phase transformer 7 is 1: 1. A three-phase device under test 8 to be tested for three-phase alternating current is connected to the terminal on the interconnection device 5 side of the single-phase transformer 7, and a single-phase transformer under test is connected to the other terminal of the single-phase transformer 7. A single-phase device under test 9 to be tested is connected.

三相被試験装置8と単相被試験装置9との合計容量は変換装置10の容量以下とすればよく、三相被試験装置8と単相被試験装置9を同時に接続することや、複数の負荷機器を同時に接続する、例えば単相被試験装置を戸建て需要家内の複数の家電品としてもよい。また三相被試験装置8と単相被試験装置9は冷蔵庫やテレビやエアコンや電子レンジなどの家電機器、および家庭用の太陽光発電装置や燃料電池等の自家発電装置であってもよい。   The total capacity of the three-phase device under test 8 and the single-phase device under test 9 may be equal to or less than the capacity of the conversion device 10, and the three-phase device under test 8 and the single-phase device under test 9 may be connected simultaneously, For example, a single-phase device under test may be used as a plurality of home appliances in a detached customer. The three-phase device under test 8 and the single-phase device under test 9 may be home appliances such as a refrigerator, a television, an air conditioner, and a microwave oven, and a home power generation device such as a household solar power generation device or a fuel cell.

この構成の試験装置では、運用管理装置50からの試験開始信号を通信線60を介して連系装置5に入力することで連系装置5は運転開始し、電圧源4の交流電圧を交直変換器20aで直流コンデンサ21の直流電圧が一定になるように制御しながら直流電圧に変換し、交直変換器20bは直流電圧から後述する交流電圧指令値に応じた交流電圧を出力する。   In the test apparatus having this configuration, when the test start signal from the operation management apparatus 50 is input to the interconnection apparatus 5 via the communication line 60, the interconnection apparatus 5 starts operation, and the AC voltage of the voltage source 4 is AC / DC converted. The converter 20a converts the DC voltage of the DC capacitor 21 into a DC voltage while controlling the DC capacitor 21 to be constant, and the AC / DC converter 20b outputs an AC voltage corresponding to an AC voltage command value described later from the DC voltage.

この交流電圧は三相被試験装置8に印加され、また単相変圧器7を介して単相交流に変換されて単相被試験装置9に印加される。三相被試験装置8と単相被試験装置9に流れる電流は変換装置10を介して電圧源4から入力あるいは電圧源4へ入力される。   This AC voltage is applied to the three-phase device under test 8, converted into a single-phase AC via the single-phase transformer 7, and applied to the single-phase device under test 9. The current flowing through the three-phase device under test 8 and the single-phase device under test 9 is input from the voltage source 4 or input to the voltage source 4 via the converter 10.

連系装置5内の電流検出器11では交直変換器20bと単相変圧器7との間を流れる三相電流を計測する。三相電流の計測値は各相毎に計測した3つの単相電流値とする。三相電流の計測値は電流指令生成器12へ送られる。   The current detector 11 in the interconnection device 5 measures a three-phase current flowing between the AC / DC converter 20 b and the single-phase transformer 7. The measured value of the three-phase current is three single-phase current values measured for each phase. The measured value of the three-phase current is sent to the current command generator 12.

電流指令生成器12では、入力された3つの単相電流計測値から三相電流アンプ13の三相電流の指令値を生成する。三相電流指令値は、U相、V相、W相の各相に対応する3つの指令値で構成される。
ここで、交直変換器20bと単相変圧器7の間の三相交流の線間定格電圧をA[V]とし、配電線模擬回路2a、2b、2cの三相交流の線間定格電圧をB[V]とした場合、電流指令生成器12で生成される三相電流アンプ13の三相電流指令値は、
三相電流アンプ13の三相電流指令値 (U相、V相、W相)=
電流指令生成器12で入力した単相電流計測値
(U相、V相、W相)/(M×N)×A/B
とする。
The current command generator 12 generates a command value for the three-phase current of the three-phase current amplifier 13 from the three input single-phase current measurement values. The three-phase current command value is composed of three command values corresponding to the U phase, V phase, and W phase.
Here, the three-phase AC line rated voltage between the AC / DC converter 20b and the single-phase transformer 7 is A [V], and the three-phase AC line rated voltage of the distribution line simulation circuits 2a, 2b and 2c is In the case of B [V], the three-phase current command value of the three-phase current amplifier 13 generated by the current command generator 12 is
Three-phase current command value of the three-phase current amplifier 13 (U phase, V phase, W phase) =
Single-phase current measurement value (U phase, V phase, W phase) / (M × N) × A / B input from the current command generator 12
And

三相電流指令値は三相電流アンプ13に送られ、三相電流アンプ13は三相電流指令値に相当する3つの単相電流からなる三相電流を出力する。   The three-phase current command value is sent to the three-phase current amplifier 13, and the three-phase current amplifier 13 outputs a three-phase current composed of three single-phase currents corresponding to the three-phase current command value.

なお、電流指令生成器12で入力した3つの単相電流計測値が不平衡状態の場合には、三相電流アンプ13から出力される三相電流は不平衡状態となる。この三相電流は接続選択スイッチ6で接続されている配電線模擬回路2a、2b、2cのいずれかの端子へ入力される。   When the three single-phase current measurement values input by the current command generator 12 are in an unbalanced state, the three-phase current output from the three-phase current amplifier 13 is in an unbalanced state. The three-phase current is input to any one of the distribution line simulation circuits 2a, 2b, and 2c connected by the connection selection switch 6.

接続選択スイッチ6の接点は、試験開始前に運用管理装置50から通信線60を介して接続選択スイッチ6に送信される接続情報に従い切り替えられ、接続される。つまり運用管理装置50からの制御により接続選択スイッチ6が切り替えられて、配電線模擬回路2a、2b、2cのいずれかが連系装置5と接続される。   The contacts of the connection selection switch 6 are switched and connected according to connection information transmitted from the operation management device 50 to the connection selection switch 6 via the communication line 60 before the start of the test. That is, the connection selection switch 6 is switched by the control from the operation management device 50, and any of the distribution line simulation circuits 2 a, 2 b, 2 c is connected to the interconnection device 5.

接続選択スイッチ6の接続点は、三相被試験装置8または単相被試験装置9を接続したい配電線上での接続点となる配電線模擬回路2のいずれかの端子に決定され、接続選択スイッチ6の接点を変更すると、三相被試験装置8や単相被試験装置9の配電線の接続位置を変更できる。   The connection point of the connection selection switch 6 is determined as one of the terminals of the distribution line simulation circuit 2 serving as a connection point on the distribution line to which the three-phase device under test 8 or the single-phase device under test 9 is to be connected. When the contact point 6 is changed, the connection positions of the distribution lines of the three-phase device under test 8 and the single-phase device under test 9 can be changed.

電圧検出器14は三相電流アンプ13の三相交流電圧値を計測し三相交流電圧値を電圧指令生成器15へ送る。三相交流電圧値は接続選択スイッチ6で接続されている配電線模擬回路2a、2b、2cのいずれかの端子の三相相線間電圧の実効値と等値である。   The voltage detector 14 measures the three-phase AC voltage value of the three-phase current amplifier 13 and sends the three-phase AC voltage value to the voltage command generator 15. The three-phase AC voltage value is equal to the effective value of the three-phase line voltage at any terminal of the distribution line simulation circuits 2a, 2b, and 2c connected by the connection selection switch 6.

電圧指令生成器15は、三相交流電圧値から交直変換器20bの交流電圧指令値を算出する。   The voltage command generator 15 calculates the AC voltage command value of the AC / DC converter 20b from the three-phase AC voltage value.

交直変換器20bと単相変圧器7の間の三相交流の線間定格電圧をA[V]とし、配電線模擬回路2a、2b、2cの三相交流の線間定格電圧をB[V]とすると、
電圧指令生成器15の交流電圧指令値=
(A/B)×三相電流アンプ13の三相交流電圧値………式
で示すことができ、この式により交流変換器20bの交流電圧指令値を算出する。
The three-phase AC line rated voltage between the AC / DC converter 20b and the single-phase transformer 7 is A [V], and the three-phase AC line rated voltage of the distribution line simulation circuits 2a, 2b, and 2c is B [V]. ]
AC voltage command value of voltage command generator 15 =
(A / B) × three-phase AC voltage value of the three-phase current amplifier 13... The AC voltage command value of the AC converter 20b is calculated by this equation.

このように三相被試験装置8または単相被試験装置9には連系装置5を接続する配電線模擬回路2a、2b、2cの接続端の線間電圧値を(A/B)倍に等価変換した線間電圧が印加される。   In this way, the line voltage value at the connection end of the distribution line simulation circuits 2a, 2b, 2c connecting the interconnection device 5 to the three-phase device under test 8 or the single-phase device under test 9 is multiplied by (A / B). The equivalent line voltage is applied.

すなわち電圧指令生成器15は、配電線模擬回路の電圧検出器14により検出された電圧値を(B/A)倍して変換装置10の電圧指令値を生成する。   That is, the voltage command generator 15 multiplies the voltage value detected by the voltage detector 14 of the distribution line simulation circuit (B / A) to generate the voltage command value of the converter 10.

また電流指令生成器12は、連系装置5内の電流検出器11により検出された接続端子5aの電流値を(B/(A×M×N))倍して三相電流アンプ13の三相電流指令値を生成する。   Further, the current command generator 12 multiplies the current value of the connection terminal 5 a detected by the current detector 11 in the interconnection device 5 by (B / (A × M × N)), and the three-phase current amplifier 13. A phase current command value is generated.

また三相被試験装置8または単相被試験装置9が電力供給源の場合、被試験装置からの電流は、各相電流値をA/(M×N×B)倍に等価変換した各相電流が接続選択スイッチ6で切り替えられて接点に接続された配電線模擬回路(配電線模擬回路2a、2b、2cのいずれか)から配電線模擬回路2へ入力される。   When the three-phase device under test 8 or the single-phase device under test 9 is a power supply source, the current from the device under test is equivalent to each phase obtained by equivalently converting each phase current value by A / (M × N × B) times. The current is switched by the connection selection switch 6 and input to the distribution line simulation circuit 2 from the distribution line simulation circuit (any one of the distribution line simulation circuits 2a, 2b, 2c) connected to the contacts.

試験中は三相被試験装置8や単相被試験装置9には三相被試験装置8や単相被試験装置9が接続される配電線位置の配電線電圧が連系装置5を介して等価変換されて三相被試験装置8や単相被試験装置9に印加され、電圧印加により生じる負荷電流が連系装置5を介して等価変換されて配電線模擬回路2に注入される。   During the test, the distribution line voltage at the distribution line position where the three-phase device under test 8 and the single-phase device under test 9 are connected to the three-phase device under test 8 and the single-phase device under test 9 via the interconnection device 5. The equivalent conversion is applied to the three-phase device under test 8 and the single-phase device under test 9, and the load current generated by the voltage application is equivalently converted via the interconnection device 5 and injected into the distribution line simulation circuit 2.

試験中には、接続選択スイッチ6の三相交流電圧と三相交流電流及び、交直変換器20b端の三相交流電圧と三相交流電流と、三相被試験装置8と単相被試験装置9の交流電圧と交流電流の各計測値(計測データ)が、運用管理装置50に予め設定された計測時間毎に通信線60を介して運用管理装置50へ送出され、内部の記憶装置に蓄積される。   During the test, the three-phase AC voltage and the three-phase AC current of the connection selection switch 6, the three-phase AC voltage and the three-phase AC current at the end of the AC / DC converter 20b, the three-phase device under test 8 and the single-phase device under test The measured values (measurement data) of the nine AC voltages and AC currents are sent to the operation management device 50 via the communication line 60 at every measurement time preset in the operation management device 50 and stored in the internal storage device. Is done.

運用管理装置50は、試験後に記憶装置に蓄積された試験時の計測データから、各時刻毎の配電線模擬回路2a、2b、2cの電圧値が規定範囲内であるかを確認し、負荷分散電源模擬装置3a、3b、3c、3d及び三相被試験装置8や単相被試験装置9の有効電力と無効電力の変化および配電線への接続点による配電線電圧への影響の有無を確認する。さらに三相被試験装置8や単相被試験装置9などの被試験装置の交流電圧と交流電流の各計測値を確認して被試験装置の故障や停止の有無を確認し、試験期間に渡る被試験装置の配電線接続時の問題発生の有無を確認する。なお、問題発生の有無の確認は自動であっても手動であってもよい。   The operation management device 50 confirms whether the voltage values of the distribution line simulation circuits 2a, 2b, and 2c at each time are within a specified range from the measurement data at the time of the test stored in the storage device after the test, and load distribution Confirm whether the power simulation devices 3a, 3b, 3c, 3d, the three-phase device under test 8 and the single-phase device under test 9 have changes in active power and reactive power, and whether there is an influence on the distribution line voltage due to the connection point to the distribution line To do. Furthermore, the measured values of the AC voltage and AC current of the device under test such as the three-phase device under test 8 and the single-phase device under test 9 are confirmed to check whether the device under test has failed or stopped, and over the test period. Check for problems when connecting the distribution line of the device under test. The confirmation of the occurrence of a problem may be automatic or manual.

このように運用管理装置50から送出して設定する試験条件(可変模擬電圧発生装置1の電圧値、配電線模擬装置2a、2b、2cの配電線距離、負荷分散電源模擬装置3a、3b、3c、3dの時系列の有効電力値と無効電力値、接続選択スイッチ6の接続点など)を試験毎に変更して配電線の条件(電力負荷:距離)を変更しながら三相被試験装置8や単相被試験装置9の系統接続試験を実施する。   Test conditions that are sent and set from the operation management device 50 in this way (voltage values of the variable simulation voltage generator 1, distribution line distances of distribution line simulation devices 2a, 2b, 2c, load distribution power supply simulation devices 3a, 3b, 3c 3d time series active power value and reactive power value, connection selection switch 6 connection point, etc.) are changed for each test to change the distribution line condition (power load: distance), and to the three-phase device under test 8 And a system connection test of the single-phase device under test 9 is performed.

このようにこの実施形態によれば、可変模擬電圧発生装置1に配電線模擬回路2a、2b、2cをm個直列に接続し、負荷分散電源模擬装置3a、3b、3c、3dをそれぞれ配電線模擬回路2a、2b、2cの端子にk個並列に接続し、可変模擬電圧発生装置で電圧を印加する構成では、配電線模擬回路2a、2b、2cの定格電圧を実配電線定格電圧の1/Mとし、配電線模擬回路2a、2b、2cの定格電流を実配電線定格電圧の1/Nとし、配電線の線路長を最長a×m kmとして刻みa/n kmで自由に変更でき、多様な配電線構成を自由に等価模擬することができる。   Thus, according to this embodiment, m distribution line simulation circuits 2a, 2b, and 2c are connected in series to the variable simulation voltage generator 1, and the load distribution power supply simulation devices 3a, 3b, 3c, and 3d are respectively connected to the distribution lines. In the configuration in which k terminals are connected in parallel to the terminals of the simulation circuits 2a, 2b, and 2c, and the voltage is applied by the variable simulation voltage generator, the rated voltage of the distribution line simulation circuits 2a, 2b, and 2c is 1 of the actual distribution line rated voltage. / M, the rated current of the distribution line simulation circuits 2a, 2b, 2c is 1 / N of the actual distribution line rated voltage, and the line length of the distribution line can be freely changed in increments of a / n km with a length of a × m km It is possible to freely simulate various distribution line configurations.

負荷分散電源模擬装置3a、3b、3c、3dで有効電力値と無効電力値の時系列データを実配電線での有効電力と無効電力の1/(M×N)として与えることで、定格容量が実配電線の定格容量に対して1/(M×N)の有効電力や無効電力を入出力する負荷や分散電源を配電線模擬回路2a、2b、2cの任意の端子にn個接続した配電系統を模擬することができる。   By giving the time series data of the active power value and reactive power value as 1 / (M × N) of the active power and reactive power in the actual distribution line in the load distribution power supply simulation devices 3a, 3b, 3c, 3d, the rated capacity Connected n loads / distributed power supplies that input / output 1 / (M × N) active power or reactive power to the rated capacity of the actual distribution line to any terminals of the distribution line simulation circuits 2a, 2b, 2c. The distribution system can be simulated.

このように配線線の線路長や配電線での負荷や分散電源の分布とその大きさを自由に変更でき、実配電線に対して容量を等価変換した多様な配電線構成を模擬できる。   Thus, the line length of the wiring line, the load on the distribution line, the distribution of the distributed power source and the size thereof can be freely changed, and various distribution line configurations in which the capacity is equivalently converted to the actual distribution line can be simulated.

負荷分散電源模擬装置3a、3b、3c、3dの有効電力値と無効電力値の時系列データを所定期間に対応する時間長分準備し、この時系列データを参照しながら負荷分散電源模擬装置3a、3b、3c、3dの有効電力値と無効電力値の入出力を時々刻々変化させ、かつ所定期間の実配電用変電所の電圧変化に対応するように可変模擬電圧発生装置1の電圧値を時々刻々変化させると実配電系統を等価的に容量変換した配電系統を所定期間模擬できる。   Time series data of active power values and reactive power values of the load distribution power supply simulation devices 3a, 3b, 3c, and 3d are prepared for a time length corresponding to a predetermined period, and the load distribution power supply simulation device 3a is referred to with reference to the time series data. The input and output of the active power value and the reactive power value of 3b, 3c, and 3d are changed every moment, and the voltage value of the variable simulation voltage generator 1 is set so as to correspond to the voltage change of the actual distribution substation for a predetermined period. If it is changed from time to time, it is possible to simulate a power distribution system obtained by equivalently converting the capacity of the actual power distribution system for a predetermined period.

さらに接続選択スイッチ6を介して連系装置5を配線線模擬回路2a、2b、2cの任意の端子に接続し、この接続点の線間電圧を配電線模擬回路2a、2b、2cの三相交流の線間定格電圧と交直変換器20bと単相変圧器7の間の三相交流の線間定格電圧との比率を考慮して等価変換した三相電圧を発生して三相被試験対象8に印加し、また単相変圧器7を介して単相化した単相電圧を単相被試験対象9に印加し、三相被試験対象8や単相被試験対象9への電圧印加時に発生する交直変換器20bと単相変圧器7の間の3相電流を配電線模擬回路2a、2b、2cの三相交流の定格電流と交直変換器20bと単相変圧器7の間の三相交流の定格電流との比率を考慮して接続選択スイッチ6で接続される配電線模擬回路2a、2b、2cの端子へ電流を注入することができる。   Further, the interconnection device 5 is connected to an arbitrary terminal of the wiring line simulation circuits 2a, 2b, 2c via the connection selection switch 6, and the line voltage at this connection point is set to the three-phase of the distribution line simulation circuits 2a, 2b, 2c. Three-phase voltage to be tested by generating equivalent three-phase voltage in consideration of the ratio between the AC line voltage rating and the three-phase AC line voltage rating between the AC / DC converter 20b and the single-phase transformer 7 The single-phase voltage applied to the single-phase transformer 7 is applied to the single-phase test object 9 and the voltage is applied to the three-phase test object 8 and the single-phase test object 9. The generated three-phase current between the AC / DC converter 20b and the single-phase transformer 7 is changed to the three-phase AC rated current of the distribution line simulation circuits 2a, 2b and 2c and the three-phase current between the AC / DC converter 20b and the single-phase transformer 7 The distribution line simulation circuits 2a, 2b, 2c connected by the connection selection switch 6 in consideration of the ratio with the rated current of the phase alternating current It is possible to inject current into the child.

これにより、配電線模擬回路2a、2b、2cで実配電線を等価的に模擬し実機相当の三相被試験装置8や単相被試験装置9を接続し、さらに実配電線の電圧変化に対応して等価的に変化する配電線模擬回路2a、2b、2cの電圧を三相被試験装置8や単相被試験装置9の定格電圧相当に等価変換して三相被試験装置8や単相被試験装置9に印加できるので、実配電線に三相被試験装置8や単相被試験装置9を接続した際の三相被試験装置8や単相被試験装置9の応答や特性を配電線模擬回路2a、2b、2cで試験し、その動作や性能を検証することができる。なお配電線模擬回路2a、2b、2cは上記のように配線線路長や負荷分布等の条件を変更できるので、様々な配電線構成で三相被試験装置8や単相被試験装置9を接続した試験を効率的に実施することができる。   As a result, the distribution line simulation circuits 2a, 2b, and 2c equivalently simulate the actual distribution line, connect the three-phase device under test 8 and the single-phase device under test 9 corresponding to the actual machine, and further change the voltage of the actual distribution line. Correspondingly changing the voltage of the distribution line simulation circuits 2a, 2b, and 2c equivalently equivalent to the rated voltage of the three-phase device under test 8 or the single-phase device under test 9 is equivalently converted. Since it can be applied to the device under test 9, the response and characteristics of the three-phase device under test 8 and the single-phase device under test 9 when the three-phase device under test 8 and the single-phase device under test 9 are connected to the actual distribution line can be obtained. It is possible to test the distribution line simulation circuits 2a, 2b, and 2c and verify the operation and performance. Since the distribution line simulation circuits 2a, 2b and 2c can change the conditions such as the wiring line length and load distribution as described above, the three-phase device under test 8 and the single-phase device under test 9 can be connected in various distribution line configurations. Can be carried out efficiently.

また配電線を等価模擬した回路を使用するので、実配電線相当の試験に比して省スペースで試験が可能である。   In addition, since a circuit simulating the equivalent of a distribution line is used, a test can be performed in a smaller space than a test equivalent to an actual distribution line.

さらに、実機相当の三相被試験装置8や単相被試験装置9に電圧を印加した際の電流を配電線模擬回路2の定格電流を考慮して等価変換して配電線模擬回路2に注入できる。これにより配電線模擬回路2では三相被試験装置8や単相被試験装置9の電圧と電流との関係である負荷特性を反映できるので、配電線模擬回路2での模擬精度を高く評価できる。   Further, the current when voltage is applied to the three-phase device under test 8 or the single-phase device under test 9 corresponding to the actual machine is equivalently converted in consideration of the rated current of the distribution line simulation circuit 2 and injected into the distribution line simulation circuit 2. it can. As a result, the distribution line simulation circuit 2 can reflect the load characteristic that is the relationship between the voltage and current of the three-phase device under test 8 and the single-phase device under test 9, so that the simulation accuracy in the distribution line simulation circuit 2 can be highly evaluated. .

また各装置からデータを収集して制御する運用管理装置50を設け、運用管理装置50は、変換装置10の接続端子5aに接続された被試験装置(三相被試験装置8や単相被試験装置9)から、試験期間における配電電圧値の時系列データを取得し、取得した時系列データを参照して需要電力と供給電力の関係がある一定の範囲に入るように可変模擬電圧発生装置1を制御して可変模擬電圧発生装置1が発生する電圧を配電線模擬回路に印加すると共に、試験期間に対応する負荷や分散電源出力の有効電力値と無効電力値の時系列データを参照して、負荷分散電源模擬装置3a,3b,3c,3dに有効電力と無効電力を発生させて配線線模擬回路2に印加し、三相被試験装置8や単相被試験装置9の電流出力および配電線模擬回路2の電圧値を取得し、予め設定された評価用の閾値と比較し、比較結果を出力する。これにより、配電線を模擬した配電線模擬回路2を実機に接続して試験を所定期間行うことで、実配線に、より近い形で試験の結果を総合的に評価することができる。   Further, an operation management device 50 that collects and controls data from each device is provided. The operation management device 50 is a device under test (three-phase device under test 8 or single-phase device under test) connected to the connection terminal 5a of the conversion device 10. The time series data of the distribution voltage value in the test period is acquired from the device 9), and the variable simulated voltage generator 1 is set so that the relationship between the demand power and the supplied power falls within a certain range with reference to the acquired time series data. The voltage generated by the variable simulation voltage generator 1 is applied to the distribution line simulation circuit by controlling the load and the time series data of the active power value and reactive power value of the distributed power source output corresponding to the test period. Then, active power and reactive power are generated in the load distribution power supply simulation devices 3a, 3b, 3c and 3d and applied to the wiring line simulation circuit 2, and the current output and distribution of the three-phase device under test 8 and the single-phase device under test 9 are distributed. Voltage of electric wire simulation circuit 2 It acquires, compared with a preset threshold for evaluation, and outputs a comparison result. Thereby, the result of the test can be comprehensively evaluated in a form closer to the actual wiring by connecting the distribution line simulation circuit 2 simulating the distribution line to the actual machine and performing the test for a predetermined period.

すなわち、配電系統の構成や負荷の条件を容易に変更できる省スペースの模擬配電系統に、容量の大きい分散型電源や負荷装置の実機器を接続でき、さらに分散型電源や負荷装置の実機器の模擬配電系統への接続点を容易に変更して、所定期間の分散型電源や負荷装置の実機器の試験や分散型電源や負荷の出力変化等による配電系統への影響を実際に近い形で効率的に評価することができる。   In other words, a large-capacity distributed power supply or load device can be connected to a space-saving simulated power distribution system that can easily change the distribution system configuration and load conditions. Easily change the connection point to the simulated power distribution system, and the effects on the power distribution system due to the test of the distributed power supply and load device actual equipment for a predetermined period and the output change of the distributed power supply and the load etc. It can be evaluated efficiently.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although the embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

また上記実施形態に示した各構成要素を、コンピュータのハードディスク装置などのストレージにインストールしたプログラムで実現してもよく、また上記プログラムを、コンピュータ読取可能な電子媒体:electronic mediaに記憶しておき、プログラムを電子媒体からコンピュータに読み取らせることで本発明の機能をコンピュータが実現するようにしてもよい。電子媒体としては、例えばCD−ROM等の記録媒体やフラッシュメモリ、リムーバブルメディア:Removable media等が含まれる。さらに、ネットワークを介して接続した異なるコンピュータに構成要素を分散して記憶し、各構成要素を機能させたコンピュータ間で通信することで実現してもよい。   Further, each component shown in the above embodiment may be realized by a program installed in a storage such as a hard disk device of a computer, and the program is stored in a computer-readable electronic medium: electronic media, The computer may realize the functions of the present invention by causing a computer to read a program from an electronic medium. Examples of the electronic medium include a recording medium such as a CD-ROM, flash memory, and removable media. Further, the configuration may be realized by distributing and storing components in different computers connected via a network, and communicating between computers in which the components are functioning.

1…可変電圧発生装置、2a、2b、2c…配電線模擬回路、3a、3b、3c、3d…負荷分散電源模擬装置、4…電圧源、5…連系装置、6…接続選択スイッチ、7…単相変圧器、8…被試験対象の三相被試験装置、9…被試験対象の単相被試験装置、10…変換装置、11…電流検出器、12…電流指令生成器、13…三相電流アンプ、14…電圧検出器、15…電圧指令生成器、20a、20b…交直変換器、21…直流コンデンサ、31a、31b、31c…リアクトル、32a、32B、32c…抵抗、33a、33b、33c…距離変更スイッチ、34a、34b…電圧電流周波数センサ、41…データ保存装置、42…PQV検出器、43…電流指令生成器、44…三相電流アンプ、50…運用管理装置、60…通信線。   DESCRIPTION OF SYMBOLS 1 ... Variable voltage generator, 2a, 2b, 2c ... Distribution line simulation circuit, 3a, 3b, 3c, 3d ... Load distribution power supply simulation device, 4 ... Voltage source, 5 ... Interconnection device, 6 ... Connection selection switch, 7 DESCRIPTION OF SYMBOLS ... Single phase transformer, 8 ... Three-phase device under test, 9 ... Single-phase device under test, 10 ... Conversion device, 11 ... Current detector, 12 ... Current command generator, 13 ... Three-phase current amplifier, 14 ... voltage detector, 15 ... voltage command generator, 20a, 20b ... AC / DC converter, 21 ... DC capacitor, 31a, 31b, 31c ... reactor, 32a, 32B, 32c ... resistor, 33a, 33b 33c ... Distance change switch 34a, 34b ... Voltage current frequency sensor 41 ... Data storage device 42 ... PQV detector 43 ... Current command generator 44 ... Three phase current amplifier 50 ... Operation management device 60 ... Communication line.

Claims (7)

実際の配電用変圧器の配電線側電圧を、指定倍率で縮小した電圧を発生する配電線側電圧模擬装置と、
前記配電線側電圧模擬装置に接続され、実際の配電線の長さに応じた電力の損失量を電気的に模擬する配電線模擬回路と、
前記配電線模擬回路の電圧値を検出する電圧検出器と、
前記配電線模擬回路に接続され、試験対象の被試験装置が接続された接続端子を有し、前記電圧検出器により検出された電圧値から電圧指令値を生成する電圧指令生成器と、
前記電圧指令生成器により生成された前記電圧指令値に応じて、入力された交流電圧を三相交流電圧に変換して前記接続端子から出力する変換装置と、
前記接続端子を流れる電流値を検出する電流検出器と、
前記電流検出器により検出された電流値から三相電流指令値を生成する電流指令生成器と、
前記三相電流指令値に応じた三相電流を前記配電線模擬回路との間で入出力する三相電流アンプと
を具備する試験装置。
A distribution line side voltage simulator that generates a voltage obtained by reducing the distribution line side voltage of the actual distribution transformer by a specified magnification;
A distribution line simulation circuit that is connected to the distribution line side voltage simulation device and electrically simulates the amount of power loss according to the length of the actual distribution line,
A voltage detector for detecting a voltage value of the distribution line simulation circuit;
A voltage command generator that is connected to the distribution line simulation circuit, has a connection terminal to which a device under test is connected, and generates a voltage command value from the voltage value detected by the voltage detector;
In accordance with the voltage command value generated by the voltage command generator, a conversion device that converts an input AC voltage into a three-phase AC voltage and outputs it from the connection terminal;
A current detector for detecting a current value flowing through the connection terminal;
A current command generator for generating a three-phase current command value from the current value detected by the current detector;
A test apparatus comprising a three-phase current amplifier that inputs and outputs a three-phase current corresponding to the three-phase current command value to and from the distribution line simulation circuit.
前記配電線模擬回路の定格電圧を実配電線の定格電圧の1/Mとし、定格電流を実配電線の定格電流の1/Nとし、前記配電線模擬回路の定格電圧をA[V]とし、前記変換装置の前記接続端子の定格電圧をB[V]とした場合、
前記電圧指令生成器は、
前記電圧検出器により検出された前記配電線模擬回路の電圧値を(B/A)倍して前記変換装置の電圧指令値を生成し、
前記電流指令生成器は、
前記電流検出器により検出された前記接続端子の電流値を(B/(A×M×N))倍して三相電流アンプの三相電流指令値を生成する
請求項1記載の試験装置。
The rated voltage of the distribution line simulation circuit is 1 / M of the rated voltage of the actual distribution line, the rated current is 1 / N of the rated current of the actual distribution line, and the rated voltage of the distribution line simulation circuit is A [V]. When the rated voltage of the connection terminal of the converter is B [V],
The voltage command generator is
(B / A) times the voltage value of the distribution line simulation circuit detected by the voltage detector to generate a voltage command value of the converter,
The current command generator is
The test apparatus according to claim 1, wherein the current value of the connection terminal detected by the current detector is multiplied by (B / (A × M × N)) to generate a three-phase current command value of a three-phase current amplifier.
有効電力値と無効電力値の時系列データを参照し、時刻に応じた有効電力と無効電力を発生する負荷や分散電源の出力を模擬する負荷分散電源模擬装置を具備する請求項1記載の試験装置。   2. The test according to claim 1, further comprising a load distribution power supply simulation device that refers to time series data of the active power value and the reactive power value and simulates a load that generates active power and reactive power according to time and an output of the distributed power source. apparatus. 前記配電線模擬回路は、
抵抗およびリアクタンスで構成された電力減衰回路を有し、前記抵抗と前記リアクタンスとの値の比率を一定に保持したまま、それぞれの素子の値を可変可能であり、前記抵抗と前記リアクタンスの値を可変することで、配電線の長さを変えた場合の配電線を模擬する請求項1記載の試験装置。
The distribution line simulation circuit is
It has a power attenuating circuit composed of a resistor and a reactance, and the value of each element can be varied while keeping the ratio of the value of the resistor and the reactance constant, and the value of the resistor and the reactance can be changed. The test apparatus according to claim 1, wherein the test apparatus simulates the distribution line when the length of the distribution line is changed by changing the length.
前記配電線模擬回路の抵抗とリアクタンスの値を可変するための回路切換スイッチと、
予め設定された試験条件に応じて前記回路切換スイッチを切り替える運用管理装置と
を具備する請求項1記載の試験装置。
A circuit switch for varying the resistance and reactance values of the distribution line simulation circuit;
The test apparatus according to claim 1, further comprising an operation management apparatus that switches the circuit changeover switch in accordance with a preset test condition.
前記運用管理装置は、
前記接続端子に接続された前記被試験装置から、試験期間における配電電圧値の時系列データを取得し、取得した時系列データを参照して需要電力と供給電力の関係がある一定の範囲に入るように前記配電線側電圧模擬装置を制御して前記配電線側電圧模擬装置が発生する電圧を前記配電線模擬回路に印加すると共に、前記試験期間に対応する負荷や分散電源出力の有効電力値と無効電力値の時系列データを参照して、前記負荷分散電源模擬装置に有効電力と無効電力を発生させて前記配線線模擬回路に印加し、前記被試験装置の電流出力および前記配電線模擬回路の電圧値を取得し、予め設定された閾値と比較し、比較結果を出力すること特徴とする請求項5記載の試験装置。
The operation management device includes:
Obtain time series data of distribution voltage values during the test period from the device under test connected to the connection terminal, and refer to the obtained time series data to enter a certain range where the relationship between demand power and supply power And controlling the distribution line side voltage simulation device to apply the voltage generated by the distribution line side voltage simulation device to the distribution line simulation circuit, and the effective power value of the load corresponding to the test period and the distributed power source output And reactive power value time series data, the load-distributed power supply simulation device generates active power and reactive power and applies them to the wiring line simulation circuit, and the current output of the device under test and the distribution line simulation 6. The test apparatus according to claim 5, wherein a voltage value of the circuit is acquired, compared with a preset threshold value, and a comparison result is output.
実際の配電用変圧器の配電線側電圧を、指定倍率で縮小した電圧を、配電線側電圧模擬装置が発生し、
前記配電線側電圧模擬装置に接続された配電線模擬回路が、実際の配電線の長さに応じた電力の損失量を電気的に模擬し、
前記配電線模擬回路の電圧値を電圧検出器が検出し、
前記配電線模擬回路に接続された電圧指令生成器が、試験対象の被試験装置が接続された接続端子を有し、前記検出された電圧値から電圧指令値を生成し、
生成された前記電圧指令値に応じて、入力された交流電圧を三相交流電圧に変換して前記被試験装置へ出力し、
前記接続端子を流れる電流値を電流検出器が検出し、
前記検出された電流値から電流指令生成器が三相電流指令値を生成し、
前記生成された三相電流指令値に応じた三相電流を三相電流アンプが前記配電線模擬回路との間で入出力する
ことを特徴とする試験方法。
The distribution line side voltage simulator generates a voltage obtained by reducing the distribution line side voltage of the actual distribution transformer by the specified magnification.
The distribution line simulation circuit connected to the distribution line side voltage simulator electrically simulates the amount of power loss according to the actual length of the distribution line,
A voltage detector detects the voltage value of the distribution line simulation circuit,
A voltage command generator connected to the distribution line simulation circuit has a connection terminal to which a device under test is connected, and generates a voltage command value from the detected voltage value,
In accordance with the generated voltage command value, the input AC voltage is converted into a three-phase AC voltage and output to the device under test,
A current detector detects a current value flowing through the connection terminal,
A current command generator generates a three-phase current command value from the detected current value,
A test method, wherein a three-phase current amplifier inputs / outputs a three-phase current corresponding to the generated three-phase current command value to / from the distribution line simulation circuit.
JP2011177384A 2011-08-15 2011-08-15 Test apparatus and test method Expired - Fee Related JP5843520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177384A JP5843520B2 (en) 2011-08-15 2011-08-15 Test apparatus and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177384A JP5843520B2 (en) 2011-08-15 2011-08-15 Test apparatus and test method

Publications (2)

Publication Number Publication Date
JP2013040833A true JP2013040833A (en) 2013-02-28
JP5843520B2 JP5843520B2 (en) 2016-01-13

Family

ID=47889378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177384A Expired - Fee Related JP5843520B2 (en) 2011-08-15 2011-08-15 Test apparatus and test method

Country Status (1)

Country Link
JP (1) JP5843520B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680239A (en) * 2013-12-04 2014-03-26 国家电网公司 Three-dimensional simulation system of 500kV transformer substation
CN104007337A (en) * 2014-05-08 2014-08-27 上海银音信息科技股份有限公司 Three-phase load monitoring device, system and power distribution cabinet
CN104198832A (en) * 2014-07-09 2014-12-10 中冶建工集团有限公司 Comprehensive inspecting and testing method for high voltage power transformer and distribution substation
CN105319466A (en) * 2015-10-26 2016-02-10 江苏省电力公司扬州供电公司 Medium voltage generating equipment simulated on-line detection test method
CN106556759A (en) * 2016-11-10 2017-04-05 国网湖北省电力公司咸宁供电公司 A kind of power distribution automation apparatus debugging method and debugging system
JP2020101496A (en) * 2018-12-25 2020-07-02 東京電力ホールディングス株式会社 Inspection method and testing device
CN113759199A (en) * 2021-09-26 2021-12-07 淮安苏达电气有限公司 Testing device and testing method for primary and secondary fusion equipment acting on power distribution network
CN113791290A (en) * 2021-08-17 2021-12-14 深圳市禾望电气股份有限公司 Three-phase power grid simulation device with independently controllable output phase voltages and control method thereof
CN115273586A (en) * 2022-05-23 2022-11-01 广西电网有限责任公司电力科学研究院 Semi-physical simulation feeder automation training system
CN115754397A (en) * 2022-10-31 2023-03-07 云南电网有限责任公司昆明供电局 Multifunctional testing system and method for seamlessly connecting high-precision calculation of electric quantity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205334A (en) * 1995-01-27 1996-08-09 Nissin Electric Co Ltd Testing system
JP2005134280A (en) * 2003-10-31 2005-05-26 Japan Science & Technology Agency Testing device for actual equipment connected to power distribution system
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2008008766A (en) * 2006-06-29 2008-01-17 Tokyo Electric Power Co Inc:The Testing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205334A (en) * 1995-01-27 1996-08-09 Nissin Electric Co Ltd Testing system
JP2005134280A (en) * 2003-10-31 2005-05-26 Japan Science & Technology Agency Testing device for actual equipment connected to power distribution system
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2008008766A (en) * 2006-06-29 2008-01-17 Tokyo Electric Power Co Inc:The Testing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680239B (en) * 2013-12-04 2016-09-14 国家电网公司 500kV transformer station Three-dimensional Simulation System
CN103680239A (en) * 2013-12-04 2014-03-26 国家电网公司 Three-dimensional simulation system of 500kV transformer substation
CN104007337B (en) * 2014-05-08 2023-05-09 上海银音信息科技股份有限公司 Three-phase load monitoring device, system and power distribution cabinet
CN104007337A (en) * 2014-05-08 2014-08-27 上海银音信息科技股份有限公司 Three-phase load monitoring device, system and power distribution cabinet
CN104198832A (en) * 2014-07-09 2014-12-10 中冶建工集团有限公司 Comprehensive inspecting and testing method for high voltage power transformer and distribution substation
CN105319466A (en) * 2015-10-26 2016-02-10 江苏省电力公司扬州供电公司 Medium voltage generating equipment simulated on-line detection test method
CN106556759A (en) * 2016-11-10 2017-04-05 国网湖北省电力公司咸宁供电公司 A kind of power distribution automation apparatus debugging method and debugging system
CN106556759B (en) * 2016-11-10 2018-12-21 国网湖北省电力公司咸宁供电公司 A kind of power distribution automation apparatus debugging method and debugging system
JP2020101496A (en) * 2018-12-25 2020-07-02 東京電力ホールディングス株式会社 Inspection method and testing device
JP7192487B2 (en) 2018-12-25 2022-12-20 東京電力ホールディングス株式会社 Inspection method and test equipment
CN113791290A (en) * 2021-08-17 2021-12-14 深圳市禾望电气股份有限公司 Three-phase power grid simulation device with independently controllable output phase voltages and control method thereof
CN113791290B (en) * 2021-08-17 2024-04-02 深圳市禾望电气股份有限公司 Three-phase power grid simulation device capable of independently controlling output voltages of all phases and control method thereof
CN113759199A (en) * 2021-09-26 2021-12-07 淮安苏达电气有限公司 Testing device and testing method for primary and secondary fusion equipment acting on power distribution network
CN115273586B (en) * 2022-05-23 2023-12-26 广西电网有限责任公司电力科学研究院 Semi-physical simulation feeder line automatic training system
CN115273586A (en) * 2022-05-23 2022-11-01 广西电网有限责任公司电力科学研究院 Semi-physical simulation feeder automation training system
CN115754397A (en) * 2022-10-31 2023-03-07 云南电网有限责任公司昆明供电局 Multifunctional testing system and method for seamlessly connecting high-precision calculation of electric quantity
CN115754397B (en) * 2022-10-31 2023-12-05 云南电网有限责任公司昆明供电局 Multifunctional testing system and method for seamless connection high-precision electric quantity calculation

Also Published As

Publication number Publication date
JP5843520B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5843520B2 (en) Test apparatus and test method
Hoke et al. An islanding detection test platform for multi-inverter islands using power HIL
CN110618330A (en) Current transformer detection platform and detection method
JP6419809B2 (en) Power storage system and characteristic parameter estimation method
Coppo et al. Voltage management in unbalanced low voltage networks using a decoupled phase-tap-changer transformer
Möller et al. Load model of electric vehicles chargers for load flow and unbalance studies
Marah et al. Impact of electric vehicle charging systems on low voltage distribution networks
JP6776763B2 (en) Test equipment
Alenius et al. Impedance-based stability analysis of multi-parallel inverters applying total source admittance
Baccino et al. Real-time hardware-in-the-loop modeling for microgrid applications
Woodman et al. Modeling harmonic impacts of electric vehicle chargers on distribution networks
Miller et al. Coordinated voltage control for multiple wind plants in Eastern Wyoming: Analysis and field experience
Forsyth et al. Challenges of modeling electrical distribution networks in real-time
Roeder et al. Analysis and improvement of lvdc-grid stability using circuit simulation and machine learning-a case study
CN105676025A (en) Detection artificial load for movable electric vehicle charger
Bogdan et al. Test environment for a novel medium voltage impedance measurement unit
Quester et al. Frequency behavior of an MMC test bench system
Weaver et al. Real-time Hardware-in-the-Loop simulation for optimal Dc microgrid control development
Mota et al. Harmonic-invariant scaling method for power electronic converters in power hardware-in-the-loop test beds
Ucer et al. Design and implementation of a hardware test-bed for real-time EV-grid integration analysis
CN211718504U (en) Alternating-current and direct-current function calibrator for insulation monitoring device
Ahmed et al. Grid-in-the-loop environment for stability investigation of converter-dominated distribution grids
Spina et al. Power hardware-in-the-loop testbeds for advances laboratory testing of smart grid applications: Power Hardware-in-the-Loop Testbeds für erweiterte Labortests von Smart-Grid-Anwendungen
Ledinger et al. Test device for electric vehicle grid integration
Farias et al. Microgrid Protection Testing Using a Relay-Hardware-in-the-Loop Testbed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R151 Written notification of patent or utility model registration

Ref document number: 5843520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees