JP2013040576A - Steam system - Google Patents

Steam system Download PDF

Info

Publication number
JP2013040576A
JP2013040576A JP2011176871A JP2011176871A JP2013040576A JP 2013040576 A JP2013040576 A JP 2013040576A JP 2011176871 A JP2011176871 A JP 2011176871A JP 2011176871 A JP2011176871 A JP 2011176871A JP 2013040576 A JP2013040576 A JP 2013040576A
Authority
JP
Japan
Prior art keywords
steam
engine
pressure
reducing valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011176871A
Other languages
Japanese (ja)
Other versions
JP5427851B2 (en
Inventor
Yusuke Okamoto
裕介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Kobe Steel Ltd
Original Assignee
Miura Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Kobe Steel Ltd filed Critical Miura Co Ltd
Priority to JP2011176871A priority Critical patent/JP5427851B2/en
Publication of JP2013040576A publication Critical patent/JP2013040576A/en
Application granted granted Critical
Publication of JP5427851B2 publication Critical patent/JP5427851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To attain a long service life and an efficient operation of an apparatus by promptly and accurately detecting steam load to control the supply of steam to a steam engine, and by detecting and reducing start-stop frequencies of the steam engine and a device driven by the same.SOLUTION: The system includes a steam engine 3 for generating power by using steam. Steam is supplied to a second steam header 8 to which steam depressurized after being used by the steam engine 3 is supplied even when not the steam engine 3 but a bypass passage 13 is employed. The bypass passage 13 is provided with a pressure reducing valve 14. A flow rate of steam passing through the bypass passage 13 is detected by a steam flowmeter 17. After the steam engine 3 stops, the system restarts the supply of steam to the steam engine 3 on the basis of a detected signal of the steam flowmeter 17.

Description

本発明は、蒸気エンジンを用いて空気圧縮機などを駆動する蒸気システムに関するものである。   The present invention relates to a steam system for driving an air compressor or the like using a steam engine.

従来、下記特許文献1に開示されるように、蒸気エンジンを用いて空気圧縮機などを駆動する蒸気システムにおいて、蒸気エンジンの二次側の蒸気圧に基づき蒸気負荷を検知して、蒸気エンジンへの給蒸を制御することが知られている。   Conventionally, as disclosed in Patent Document 1 below, in a steam system that drives an air compressor or the like using a steam engine, the steam load is detected based on the steam pressure on the secondary side of the steam engine, and then sent to the steam engine. It is known to control steaming.

特開2009−236103号公報(請求項1−7)JP 2009-236103 A (Claim 1-7)

しかしながら、前記特許文献1に記載の発明では、蒸気圧に基づき蒸気負荷を検知するが、蒸気圧のみでは必ずしも蒸気負荷を迅速且つ正確に検知できないおそれがある。具体的には、蒸気エンジンの二次側の蒸気圧が高まったことで蒸気エンジンを停止後、再起動させる復帰条件の判定時、蒸気負荷があることを迅速且つ正確に検知できるのが望まれる。それにより、蒸気エンジンひいては圧縮機の発停回数を削減して、機器の長寿命化と、効率のよい運転とが可能になる。   However, although the steam load is detected based on the steam pressure in the invention described in Patent Document 1, the steam load may not always be detected quickly and accurately only by the steam pressure. Specifically, it is desirable to be able to quickly and accurately detect the presence of a steam load when determining a return condition for restarting after stopping the steam engine due to an increase in the steam pressure on the secondary side of the steam engine. . Thereby, the number of start and stop of the steam engine and the compressor can be reduced, and the life of the equipment can be extended and the operation can be performed efficiently.

本発明が解決しようとする課題は、蒸気負荷を迅速且つ正確に検知して蒸気エンジンへの給蒸を制御できる蒸気システムを提供することにある。   The problem to be solved by the present invention is to provide a steam system that can quickly and accurately detect the steam load and control the steam supply to the steam engine.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、蒸気を用いて動力を起こす蒸気エンジンと、この蒸気エンジンにて使用後の減圧蒸気が供給される箇所へ、前記蒸気エンジンを介することなく減圧弁を介して蒸気を供給するバイパス路と、このバイパス路を通る蒸気流量を検出する蒸気流量計と、前記蒸気エンジンの停止後、前記蒸気流量計の検出信号に基づき前記蒸気エンジンへの給蒸を再開する制御器とを備えることを特徴とする蒸気システムである。   The present invention has been made in order to solve the above-mentioned problems, and the invention according to claim 1 provides a steam engine that generates power using steam and decompressed steam after use in the steam engine. A bypass path for supplying steam to the location via the pressure reducing valve without passing through the steam engine, a steam flow meter for detecting the steam flow rate through the bypass path, and after the steam engine is stopped, And a controller that resumes steam supply to the steam engine based on a detection signal.

請求項1に記載の発明によれば、バイパス路を通る蒸気流量を蒸気流量計で検出することで、蒸気負荷を迅速且つ正確に検知して、蒸気エンジンへの給蒸を制御することができる。   According to the first aspect of the present invention, by detecting the flow rate of steam passing through the bypass passage with the steam flow meter, the steam load can be detected quickly and accurately, and steam supply to the steam engine can be controlled. .

請求項2に記載の発明は、前記蒸気エンジンへの給蒸路と前記蒸気エンジンからの排蒸路とが前記バイパス路で接続され、このバイパス路に、前記減圧弁と前記蒸気流量計とが設けられていることを特徴とする請求項1に記載の蒸気システムである。   According to a second aspect of the present invention, a steam supply path to the steam engine and an exhaust steam path from the steam engine are connected by the bypass path, and the pressure reducing valve and the steam flow meter are connected to the bypass path. The steam system according to claim 1, wherein the steam system is provided.

請求項2に記載の発明によれば、蒸気流量計をバイパス路に設置することで、バイパス路を通る蒸気流量を迅速且つ正確に検知して、蒸気エンジンへの給蒸を制御することができる。   According to the second aspect of the present invention, by installing the steam flow meter in the bypass passage, the steam flow rate passing through the bypass passage can be detected quickly and accurately, and the steam supply to the steam engine can be controlled. .

請求項3に記載の発明は、前記蒸気エンジンにて空気圧縮機が駆動され、この空気圧縮機からの圧縮空気路に、空気圧センサが設けられ、前記蒸気エンジンからの蒸気と前記減圧弁からの蒸気との合流蒸気の圧力を検出可能に、蒸気圧センサが設けられ、前記蒸気流量計、前記空気圧センサおよび前記蒸気圧センサの各検出信号に基づき、前記蒸気エンジンへの給蒸を制御することを特徴とする請求項1または請求項2に記載の蒸気システムである。   According to a third aspect of the present invention, an air compressor is driven by the steam engine, an air pressure sensor is provided in a compressed air passage from the air compressor, and the steam from the steam engine and the pressure reducing valve are A steam pressure sensor is provided so that the pressure of the steam combined with the steam can be detected, and steam supply to the steam engine is controlled based on detection signals of the steam flow meter, the air pressure sensor, and the steam pressure sensor. The steam system according to claim 1 or 2, wherein

請求項3に記載の発明によれば、蒸気エンジンにより圧縮空気を製造するシステムにおいて、圧縮空気負荷と蒸気負荷とを考慮して蒸気エンジンへの給蒸を制御することができる。   According to invention of Claim 3, in the system which manufactures compressed air with a steam engine, the steam supply to a steam engine can be controlled in consideration of compressed air load and steam load.

請求項4に記載の発明は、前記蒸気流量計の設置による流量検出に代えて、前記バイパス路またはその前後の配管に設けた固定圧損部の前後の差圧により流量を検出することを特徴とする請求項1〜3のいずれか1項に記載の蒸気システムである。   The invention according to claim 4 is characterized in that, instead of detecting the flow rate by installing the steam flow meter, the flow rate is detected by a differential pressure before and after a fixed pressure loss portion provided in the bypass passage or a pipe before and after the bypass passage. The steam system according to any one of claims 1 to 3.

請求項4に記載の発明によれば、蒸気流量計によらず、蒸気配管の固定圧損部の前後の差圧により制御することができる。   According to invention of Claim 4, it can control by the differential pressure before and behind the fixed pressure-loss part of steam piping irrespective of a steam flow meter.

請求項5に記載の発明は、前記減圧弁は、蒸気の減圧に伴う可動部を有し、前記蒸気流量計の設置による流量検出に代えて、前記可動部の動きにより流量を検出することを特徴とする請求項1〜3のいずれか1項に記載の蒸気システムである。   According to a fifth aspect of the present invention, the pressure reducing valve has a movable part that accompanies the decompression of steam, and detects the flow rate by the movement of the movable part instead of detecting the flow rate by installing the steam flow meter. It is a steam system of any one of Claims 1-3 characterized by the above-mentioned.

請求項5に記載の発明によれば、蒸気流量計によらず、減圧弁の可動部の動きにより制御することができる。   According to invention of Claim 5, it can control by the motion of the movable part of a pressure-reduction valve irrespective of a steam flowmeter.

請求項6に記載の発明は、前記蒸気流量計の設置による流量検出に代えて、前記減圧弁を作動させる流体の圧力により流量を検出することを特徴とする請求項1〜3のいずれか1項に記載の蒸気システムである。   The invention according to claim 6 is characterized in that the flow rate is detected by the pressure of the fluid that operates the pressure reducing valve, instead of detecting the flow rate by installing the steam flow meter. The steam system according to the item.

請求項6に記載の発明によれば、蒸気流量計によらず、減圧弁の作動流体の圧力により制御することができる。   According to invention of Claim 6, it can control by the pressure of the working fluid of a pressure reducing valve irrespective of a steam flow meter.

さらに、請求項7に記載の発明は、前記蒸気流量計の設置による流量検出に代えて、前記減圧弁の音、前記蒸気エンジンおよび前記減圧弁を介して蒸気使用設備へ蒸気を送るボイラの運転状況、前記蒸気使用設備の運転状況、または前記蒸気エンジンおよび前記減圧弁より下流側のドレン発生量により、蒸気の流量を検出することを特徴とする請求項1〜3のいずれか1項に記載の蒸気システムである。   Furthermore, in the invention according to claim 7, instead of detecting the flow rate by installing the steam flow meter, the sound of the pressure reducing valve, the operation of a boiler that sends steam to the steam using equipment via the steam engine and the pressure reducing valve The steam flow rate is detected based on a situation, an operating condition of the steam-using facility, or a drain generation amount downstream of the steam engine and the pressure reducing valve. The steam system.

請求項7に記載の発明によれば、流量計によらず、減圧弁の音、ボイラの運転状況、蒸気使用設備の運転状況、またはドレン発生量により制御することができる。   According to the seventh aspect of the present invention, the control can be performed by the sound of the pressure reducing valve, the operation status of the boiler, the operation status of the steam using facility, or the amount of drain generation, without using the flow meter.

本発明によれば、蒸気負荷を迅速且つ正確に検知して蒸気エンジンへの給蒸を制御することができる。これにより、蒸気エンジンひいては圧縮機の発停回数を削減して、機器の長寿命化と、効率のよい運転とを図ることができる。   According to the present invention, steam supply to a steam engine can be controlled by detecting the steam load quickly and accurately. Thereby, the number of start / stop of the steam engine and the compressor can be reduced, and the life of the device can be extended and the operation can be efficiently performed.

本発明の蒸気システムの一実施例を示す概略図である。It is the schematic which shows one Example of the steam system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の蒸気システム1の一実施例を示す概略図である。
本実施例の蒸気システム1は、ボイラ2、蒸気エンジン3および圧縮機4を備える。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the steam system 1 of the present invention.
A steam system 1 according to this embodiment includes a boiler 2, a steam engine 3, and a compressor 4.

蒸気エンジン3は、蒸気を用いて動力を起こす装置であり、その種類を特に問わないが、たとえばスクリュ式蒸気エンジンである。蒸気エンジン3は、給蒸路5から蒸気が供給され、排蒸路6へ蒸気を排出する。   The steam engine 3 is a device that generates power using steam, and the type thereof is not particularly limited, but is, for example, a screw-type steam engine. The steam engine 3 is supplied with steam from the steam supply path 5 and discharges steam to the exhaust steam path 6.

図示例の場合、ボイラ2からの蒸気は、第一蒸気ヘッダ7に供給され、この第一蒸気ヘッダ7の蒸気が、給蒸路5を介して蒸気エンジン3に供給される。一方、蒸気エンジン3からの蒸気は、排蒸路6を介して第二蒸気ヘッダ8に供給され、この第二蒸気ヘッダ8の蒸気が、各種の蒸気使用設備9に供給される。第二蒸気ヘッダ8内の圧力を検出するために、第二蒸気ヘッダ8には蒸気圧センサ10が設けられる。なお、第一蒸気ヘッダ7内の圧力は、ボイラ2により所望に維持される。   In the illustrated example, the steam from the boiler 2 is supplied to the first steam header 7, and the steam of the first steam header 7 is supplied to the steam engine 3 through the steam supply path 5. On the other hand, the steam from the steam engine 3 is supplied to the second steam header 8 through the exhaust steam path 6, and the steam of the second steam header 8 is supplied to various steam use facilities 9. In order to detect the pressure in the second steam header 8, a steam pressure sensor 10 is provided in the second steam header 8. The pressure in the first steam header 7 is maintained as desired by the boiler 2.

蒸気エンジン3への給蒸路5には、給蒸弁11が設けられる。この給蒸弁11の開閉により、蒸気エンジン3の作動の有無を切り替えることができる。また、給蒸弁11の開度調整により、蒸気エンジン3への給蒸量ひいては蒸気エンジン3の出力を調整することができる。   A steam supply valve 11 is provided in the steam supply path 5 to the steam engine 3. By opening and closing the steam supply valve 11, it is possible to switch the operation of the steam engine 3. Further, by adjusting the opening degree of the steam supply valve 11, the steam supply amount to the steam engine 3 and thus the output of the steam engine 3 can be adjusted.

蒸気エンジン3からの排蒸路6には、逆止弁12が設けられる。この逆止弁12により、蒸気エンジン3の停止時に、排蒸路6を介した蒸気エンジン3への蒸気の逆流を防止することができる。   A check valve 12 is provided in the exhaust steam path 6 from the steam engine 3. The check valve 12 can prevent the steam from flowing back to the steam engine 3 via the exhaust steam passage 6 when the steam engine 3 is stopped.

第一蒸気ヘッダ7と第二蒸気ヘッダ8とは、バイパス路13を介しても接続される。図示例の場合、第一蒸気ヘッダ7から蒸気エンジン3への給蒸路5の内、給蒸弁11よりも上流部と、蒸気エンジン3から第二蒸気ヘッダ8への排蒸路6の内、逆止弁12よりも下流部とが、バイパス路13で接続される。   The first steam header 7 and the second steam header 8 are also connected via the bypass 13. In the case of the illustrated example, in the steam supply path 5 from the first steam header 7 to the steam engine 3, in the upstream portion from the steam supply valve 11, and in the exhaust steam path 6 from the steam engine 3 to the second steam header 8. The downstream portion of the check valve 12 is connected by a bypass 13.

バイパス路13には、減圧弁14が設けられる。この減圧弁14は、その背圧(下流側の圧力)を所定圧力に維持するように、開閉または開度を調整する。本実施例では、減圧弁14は、背圧を所定圧力に維持するように、機械的に自力で動作する。但し、場合により、減圧弁14は、蒸気圧センサ10の検出圧力に基づき制御されてもよい。   A pressure reducing valve 14 is provided in the bypass path 13. The pressure reducing valve 14 adjusts the opening / closing or opening degree so as to maintain the back pressure (downstream pressure) at a predetermined pressure. In the present embodiment, the pressure reducing valve 14 is mechanically operated by itself so as to maintain the back pressure at a predetermined pressure. However, in some cases, the pressure reducing valve 14 may be controlled based on the pressure detected by the vapor pressure sensor 10.

蒸気エンジン3および減圧弁14において、蒸気は減圧される。それ故、第二蒸気ヘッダ8内の圧力は、第一蒸気ヘッダ7内の圧力よりも低圧である。蒸気使用設備9に応じて、第一蒸気ヘッダ7または第二蒸気ヘッダ8の蒸気が供給される。   In the steam engine 3 and the pressure reducing valve 14, the steam is decompressed. Therefore, the pressure in the second steam header 8 is lower than the pressure in the first steam header 7. Depending on the steam use equipment 9, the steam of the first steam header 7 or the second steam header 8 is supplied.

蒸気エンジン3により駆動される圧縮機4は、本実施例では空気圧縮機である。この場合、圧縮機4は、外気を吸入し圧縮して吐出する。圧縮機4から圧縮空気は、圧縮空気路15を介して、各種の圧縮空気利用機器(図示省略)へ送られる。圧縮空気路15には、圧縮空気の圧力を検出する空気圧センサ16が設けられる。   The compressor 4 driven by the steam engine 3 is an air compressor in this embodiment. In this case, the compressor 4 sucks in outside air, compresses it, and discharges it. Compressed air from the compressor 4 is sent to various types of compressed air utilization equipment (not shown) via the compressed air passage 15. The compressed air passage 15 is provided with an air pressure sensor 16 that detects the pressure of the compressed air.

蒸気エンジン3への給蒸は、蒸気圧センサ10の検出信号、および所望によりさらに空気圧センサ16の検出信号に基づき制御される。たとえば、以下のようにして制御される。なお、以下において、圧縮空気負荷は、たとえば、空気圧センサ16の検出圧力を監視して、下限空気圧を下回ると圧縮空気負荷があると検知でき、上限空気圧を上回ると圧縮空気負荷がない検知できる。また、蒸気負荷は、たとえば、蒸気圧センサ10の検出圧力を監視して、下限蒸気圧を下回ると蒸気負荷があると検知でき、上限蒸気圧を上回ると蒸気負荷がないと検知できる。   Steam supply to the steam engine 3 is controlled based on a detection signal from the steam pressure sensor 10 and, if desired, a detection signal from the air pressure sensor 16. For example, it is controlled as follows. In the following, the compressed air load can be detected, for example, by monitoring the pressure detected by the air pressure sensor 16 and detecting that there is a compressed air load when the air pressure falls below the lower limit air pressure, and detecting no compressed air load when the air pressure exceeds the upper air pressure. Further, the steam load can be detected, for example, by monitoring the detected pressure of the steam pressure sensor 10 and detecting that there is a steam load when the steam pressure falls below the lower limit steam pressure, and detecting that there is no steam load when the steam pressure exceeds the upper limit steam pressure.

(a)圧縮空気負荷および蒸気負荷がある場合には、蒸気エンジン3への給蒸を実行する。
(b)圧縮空気負荷および蒸気負荷がない場合には、蒸気エンジン3への給蒸を停止する。
(c)圧縮空気負荷がないが蒸気負荷がある場合には、蒸気エンジン3への給蒸を停止した状態で、バイパス路13を介して蒸気を供給する。
(d)圧縮空気負荷があるが蒸気負荷がない場合には、蒸気エンジン3への給蒸を停止した状態で、電動圧縮機(図示省略)により圧縮空気を供給する。あるいは、この場合も、蒸気エンジン3への給蒸を実行して、蒸気エンジン3により圧縮機4を駆動してもよい。
(A) When there is a compressed air load and a steam load, steam supply to the steam engine 3 is performed.
(B) When there is no compressed air load or steam load, steam supply to the steam engine 3 is stopped.
(C) When there is no compressed air load but there is a steam load, steam is supplied via the bypass 13 in a state where steam supply to the steam engine 3 is stopped.
(D) When there is a compressed air load but no steam load, compressed air is supplied by an electric compressor (not shown) in a state where steam supply to the steam engine 3 is stopped. Alternatively, in this case as well, steam supply to the steam engine 3 may be executed, and the compressor 4 may be driven by the steam engine 3.

ここで、蒸気負荷があるとの判定は、蒸気圧センサ10の検出圧力が下限蒸気圧まで下がることで判定する以外に、以下の方法によって判定することができる。すなわち、蒸気圧センサ10による場合も含めて、蒸気負荷があるとの判定方法として以下のものを挙げることができる。蒸気圧センサ10の検出圧力では蒸気負荷の迅速且つ正確な検知が困難な場合もあるので、その場合には、基本的にはバイパス路13を介した第二蒸気ヘッダ8への蒸気の流通があるか否かにより蒸気負荷を判定することになる。   Here, the determination that there is a steam load can be determined by the following method in addition to the determination that the detection pressure of the vapor pressure sensor 10 is lowered to the lower limit vapor pressure. That is, the following can be mentioned as a method for determining that there is a steam load, including the case of using the steam pressure sensor 10. In some cases, it is difficult to detect the steam load quickly and accurately with the detected pressure of the steam pressure sensor 10. In this case, basically, the steam is circulated to the second steam header 8 via the bypass 13. The steam load is determined depending on whether or not there is.

(1)蒸気圧センサ10の検出圧力が設定圧力以下になると、蒸気負荷があると判定する。なお、蒸気圧センサ10の設置箇所は、減圧弁14より下流であれば足り、必ずしも第二蒸気ヘッダ8である必要はない。 (1) When the detected pressure of the vapor pressure sensor 10 is equal to or lower than the set pressure, it is determined that there is a vapor load. In addition, the installation location of the vapor pressure sensor 10 is sufficient if it is downstream from the pressure reducing valve 14, and it is not always necessary to be the second vapor header 8.

(2)バイパス路13などに蒸気流量計17を設置し、バイパス路13を通る蒸気流量により蒸気負荷を判定する。この際、所定以上の蒸気流量があれば、蒸気負荷があると判定するのがよい。なお、図1では、第一蒸気ヘッダ7から蒸気エンジン3への給蒸路5の内、バイパス路13との分岐部よりも上流側に、蒸気流量計17を設置しているが、バイパス路13に蒸気流量計17を設置してもよい。その際、蒸気流量計17は、減圧弁14の上流側に設置してもよいし、下流側に設置してもよい。また、蒸気エンジン3から第二蒸気ヘッダ8への排蒸路6の内、逆止弁12よりも下流側(特にバイパス路13との合流部よりも下流側がよい)に、蒸気流量計17を設置してもよい。 (2) A steam flow meter 17 is installed in the bypass passage 13 and the like, and the steam load is determined based on the steam flow rate passing through the bypass passage 13. At this time, if there is a steam flow rate greater than or equal to a predetermined value, it may be determined that there is a steam load. In FIG. 1, the steam flow meter 17 is installed on the upstream side of the branching path with the bypass path 13 in the steam supply path 5 from the first steam header 7 to the steam engine 3. A steam flow meter 17 may be installed at 13. At that time, the steam flow meter 17 may be installed on the upstream side of the pressure reducing valve 14 or may be installed on the downstream side. In addition, a steam flow meter 17 is disposed downstream of the check valve 12 in the exhaust steam path 6 from the steam engine 3 to the second steam header 8 (especially, the downstream side is better than the junction with the bypass path 13). May be installed.

(3)第一蒸気ヘッダ7からバイパス路13を介した第二蒸気ヘッダ8への蒸気路において、固定圧損部(たとえばバルブ18またはオリフィス)の前後の差圧を検出し、その差圧の上昇により蒸気流量を判断してもよい。 (3) In the steam path from the first steam header 7 to the second steam header 8 via the bypass path 13, a differential pressure before and after the fixed pressure loss part (for example, the valve 18 or the orifice) is detected, and the differential pressure increases. The steam flow rate may be determined by

(4)減圧弁14の可動部(蒸気の減圧に伴う可動部であり、たとえばリフト部)の動き・可動量(たとえばリフト量)を検出して、減圧弁14の開閉状況から蒸気流量を判断してもよい。 (4) The movement / movable amount (for example, lift amount) of the movable portion of the pressure reducing valve 14 (which is a movable portion associated with the decompression of steam, for example, a lift portion) is detected, and the steam flow rate is determined from the opening / closing state of the pressure reducing valve May be.

(5)減圧弁14を作動させる流体の圧力により蒸気流量を判断してもよい。たとえば、減圧弁14が空圧式の場合、減圧弁14内部のダイヤフラム供給圧を検知し、減圧弁14の開閉状況から蒸気流量を判断してもよい。 (5) The steam flow rate may be determined by the pressure of the fluid that operates the pressure reducing valve 14. For example, when the pressure reducing valve 14 is pneumatic, the diaphragm supply pressure inside the pressure reducing valve 14 may be detected, and the steam flow rate may be determined from the open / closed state of the pressure reducing valve 14.

(6)減圧弁14の音により蒸気流量を判断してもよい。具体的には、減圧弁14の絞り膨張部近傍配管の音を測定し、高周波数音の発生により、減圧弁14の開閉から蒸気流量を判断してもよい。 (6) The steam flow rate may be determined from the sound of the pressure reducing valve 14. Specifically, the sound of the pipe in the vicinity of the throttle expansion portion of the pressure reducing valve 14 may be measured, and the steam flow rate may be determined from the opening / closing of the pressure reducing valve 14 by the generation of a high frequency sound.

(7)ボイラ2の運転状況により蒸気負荷を検知してもよい。具体的には、第二蒸気ヘッダ8へ蒸気を供給するボイラ2の起動状況、または台数制御されているボイラ2,2…の起動台数・起動状況により、バイパス路13を介した蒸気流通を判定してもよい。 (7) The steam load may be detected according to the operation status of the boiler 2. Specifically, the steam flow through the bypass 13 is determined based on the startup status of the boiler 2 that supplies steam to the second steam header 8 or the startup number and startup status of the boilers 2, 2. May be.

(8)蒸気使用設備9の運転状況により蒸気負荷を検知してもよい。具体的には、第二蒸気ヘッダ8内の蒸気を使用する蒸気使用設備9の動作信号、その蒸気使用設備9への蒸気供給弁19の作動信号により、蒸気負荷を判定してもよい。 (8) The steam load may be detected according to the operation status of the steam using facility 9. Specifically, the steam load may be determined based on the operation signal of the steam using facility 9 that uses the steam in the second steam header 8 and the operation signal of the steam supply valve 19 to the steam using facility 9.

(9)蒸気エンジン3および減圧弁14より下流側のドレン発生量により蒸気負荷を検知してもよい。具体的には、減圧弁14より下流側の蒸気ライン(図示例では第二蒸気ヘッダ8)に蒸気トラップ20を設け、蒸気トラップ20におけるドレン発生量を検知し、蒸気負荷を判定してもよい。 (9) The steam load may be detected from the amount of drain generated downstream from the steam engine 3 and the pressure reducing valve 14. Specifically, a steam trap 20 may be provided in a steam line (second steam header 8 in the illustrated example) on the downstream side of the pressure reducing valve 14, and the amount of drain generated in the steam trap 20 may be detected to determine the steam load. .

(10)上記(1)〜(9)の内、二以上の組合せを用いて蒸気負荷を検知してもよい。たとえば、(1)と(2)とを併用してもよい。複数の手法を併用する場合、各手法による蒸気負荷の検知をANDまたはORの条件として用いればよい。また、運転開始時の初期起動用と、運転中の再復帰用となど、状況に合わせて使い分けてもよい。 (10) The steam load may be detected using a combination of two or more of the above (1) to (9). For example, (1) and (2) may be used in combination. When a plurality of methods are used in combination, detection of the steam load by each method may be used as an AND or OR condition. Moreover, you may use properly according to a situation, such as for the initial starting at the time of a driving | operation start, and the object for the re-restoration during driving | operation.

図1では、蒸気圧センサ10、空気圧センサ16、蒸気流量計17の他、給蒸弁11が制御器21に接続されており、制御器21は、各センサ10,16,17の検出信号に基づき給蒸弁11を制御する。たとえば、制御器21は、各種条件により蒸気エンジン3を停止させた場合、蒸気流量計17および/または蒸気圧センサ10の検出信号に基づき、蒸気エンジン3への給蒸を再開する。蒸気流量計17の設置による流量検出に代えて、前記(3)〜(9)の構成を採用してもよい。また、蒸気エンジン3への給蒸の制御について、前述したように、空気圧センサ16による圧縮空気負荷を考慮してもよい。   In FIG. 1, the steam supply valve 11 is connected to the controller 21 in addition to the steam pressure sensor 10, the air pressure sensor 16, and the steam flow meter 17, and the controller 21 receives detection signals from the sensors 10, 16, and 17. Based on this, the steam supply valve 11 is controlled. For example, when the steam engine 3 is stopped due to various conditions, the controller 21 restarts steam supply to the steam engine 3 based on detection signals of the steam flow meter 17 and / or the steam pressure sensor 10. Instead of detecting the flow rate by installing the steam flow meter 17, the configurations (3) to (9) may be employed. Further, regarding the control of steam supply to the steam engine 3, as described above, the compressed air load by the air pressure sensor 16 may be taken into consideration.

本実施例の蒸気システム1によれば、上述した各方法により、減圧蒸気(第二蒸気ヘッダ8の蒸気)の使用負荷を判定することができる。これにより、蒸気エンジン3およびそれにより駆動される圧縮機4の発停回数を削減することができ、機器の長寿命化や起動時損失の削減を図ることができる。   According to the steam system 1 of the present embodiment, it is possible to determine the usage load of the decompressed steam (steam of the second steam header 8) by the above-described methods. As a result, the number of start / stop times of the steam engine 3 and the compressor 4 driven by the steam engine 3 can be reduced, and the life of the device can be extended and the loss at startup can be reduced.

本発明の蒸気システム1は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では蒸気エンジン3で圧縮機4を駆動させたが、蒸気エンジン3で駆動する装置は特に問わず、たとえばポンプや送風機などであってもよい。   The steam system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above embodiment, the compressor 4 is driven by the steam engine 3, but the device driven by the steam engine 3 is not particularly limited, and may be, for example, a pump or a blower.

1 蒸気システム
2 ボイラ
3 蒸気エンジン
4 圧縮機
5 給蒸路
6 排蒸路
7 第一蒸気ヘッダ
8 第二蒸気ヘッダ
9 蒸気使用設備
10 蒸気圧センサ
11 給蒸弁
12 逆止弁
13 バイパス路
14 減圧弁
15 圧縮空気路
16 空気圧センサ
17 蒸気流量計
18 バルブ
19 蒸気供給弁
20 蒸気トラップ
21 制御器
DESCRIPTION OF SYMBOLS 1 Steam system 2 Boiler 3 Steam engine 4 Compressor 5 Steam supply path 6 Exhaust steam path 7 First steam header 8 Second steam header 9 Steam use equipment 10 Steam pressure sensor 11 Steam supply valve 12 Check valve 13 Bypass path 14 Depressurization Valve 15 Compressed air passage 16 Air pressure sensor 17 Steam flow meter 18 Valve 19 Steam supply valve 20 Steam trap 21 Controller

Claims (7)

蒸気を用いて動力を起こす蒸気エンジンと、
この蒸気エンジンにて使用後の減圧蒸気が供給される箇所へ、前記蒸気エンジンを介することなく減圧弁を介して蒸気を供給するバイパス路と、
このバイパス路を通る蒸気流量を検出する蒸気流量計と、
前記蒸気エンジンの停止後、前記蒸気流量計の検出信号に基づき前記蒸気エンジンへの給蒸を再開する制御器と
を備えることを特徴とする蒸気システム。
A steam engine that generates power using steam;
A bypass path for supplying steam via a pressure reducing valve to a place where reduced pressure steam after use in this steam engine is supplied without passing through the steam engine;
A steam flow meter for detecting the steam flow rate through the bypass,
And a controller that resumes steam supply to the steam engine based on a detection signal of the steam flow meter after the steam engine is stopped.
前記蒸気エンジンへの給蒸路と前記蒸気エンジンからの排蒸路とが前記バイパス路で接続され、
このバイパス路に、前記減圧弁と前記蒸気流量計とが設けられている
ことを特徴とする請求項1に記載の蒸気システム。
The steam supply path to the steam engine and the exhaust steam path from the steam engine are connected by the bypass path,
The steam system according to claim 1, wherein the pressure reducing valve and the steam flow meter are provided in the bypass path.
前記蒸気エンジンにて空気圧縮機が駆動され、
この空気圧縮機からの圧縮空気路に、空気圧センサが設けられ、
前記蒸気エンジンからの蒸気と前記減圧弁からの蒸気との合流蒸気の圧力を検出可能に、蒸気圧センサが設けられ、
前記蒸気流量計、前記空気圧センサおよび前記蒸気圧センサの各検出信号に基づき、前記蒸気エンジンへの給蒸を制御する
ことを特徴とする請求項1または請求項2に記載の蒸気システム。
An air compressor is driven by the steam engine,
An air pressure sensor is provided in the compressed air path from the air compressor,
A steam pressure sensor is provided so that the pressure of the combined steam of the steam from the steam engine and the steam from the pressure reducing valve can be detected,
The steam system according to claim 1 or 2, wherein steam supply to the steam engine is controlled based on detection signals of the steam flow meter, the air pressure sensor, and the steam pressure sensor.
前記蒸気流量計の設置による流量検出に代えて、前記バイパス路またはその前後の配管に設けた固定圧損部の前後の差圧により流量を検出する
ことを特徴とする請求項1〜3のいずれか1項に記載の蒸気システム。
4. Instead of detecting the flow rate by installing the steam flow meter, the flow rate is detected by a differential pressure before and after a fixed pressure loss part provided in the bypass passage or a pipe before and after the bypass passage. The steam system according to item 1.
前記減圧弁は、蒸気の減圧に伴う可動部を有し、
前記蒸気流量計の設置による流量検出に代えて、前記可動部の動きにより流量を検出する
ことを特徴とする請求項1〜3のいずれか1項に記載の蒸気システム。
The pressure reducing valve has a movable part accompanying the pressure reduction of the steam,
The steam system according to any one of claims 1 to 3, wherein a flow rate is detected by a movement of the movable part instead of detecting a flow rate by installing the steam flow meter.
前記蒸気流量計の設置による流量検出に代えて、前記減圧弁を作動させる流体の圧力により流量を検出する
ことを特徴とする請求項1〜3のいずれか1項に記載の蒸気システム。
The steam system according to any one of claims 1 to 3, wherein the flow rate is detected by a pressure of a fluid that operates the pressure reducing valve, instead of detecting the flow rate by installing the steam flow meter.
前記蒸気流量計の設置による流量検出に代えて、前記減圧弁の音、前記蒸気エンジンおよび前記減圧弁を介して蒸気使用設備へ蒸気を送るボイラの運転状況、前記蒸気使用設備の運転状況、または前記蒸気エンジンおよび前記減圧弁より下流側のドレン発生量により、蒸気の流量を検出する
ことを特徴とする請求項1〜3のいずれか1項に記載の蒸気システム。
Instead of detecting the flow rate by installing the steam flow meter, the sound of the pressure reducing valve, the operating status of the boiler that sends steam to the steam using facility via the steam engine and the pressure reducing valve, the operating status of the steam using facility, or The steam system according to any one of claims 1 to 3, wherein a steam flow rate is detected from a drain generation amount downstream of the steam engine and the pressure reducing valve.
JP2011176871A 2011-08-12 2011-08-12 Steam system Active JP5427851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011176871A JP5427851B2 (en) 2011-08-12 2011-08-12 Steam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011176871A JP5427851B2 (en) 2011-08-12 2011-08-12 Steam system

Publications (2)

Publication Number Publication Date
JP2013040576A true JP2013040576A (en) 2013-02-28
JP5427851B2 JP5427851B2 (en) 2014-02-26

Family

ID=47889187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011176871A Active JP5427851B2 (en) 2011-08-12 2011-08-12 Steam system

Country Status (1)

Country Link
JP (1) JP5427851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217530A (en) * 2022-07-22 2022-10-21 西安西热锅炉环保工程有限公司 Steam-driven feed water pump steam source switching system and method adapting to deep peak regulation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355309A (en) * 1986-08-26 1988-03-09 Toshiba Corp Device for controlling steam turbine
JPS63113104A (en) * 1986-10-31 1988-05-18 Toshiba Corp Control device for steam turbine
JPH0299702A (en) * 1988-10-07 1990-04-11 Toshiba Corp Control device for turbine bypass valve
JPH05222904A (en) * 1991-12-17 1993-08-31 Toshiba Corp Control device for turbine exhaust condensing system
JPH0626306A (en) * 1992-07-09 1994-02-01 Toshiba Corp Drive mechanism for steam turbine steam valve
JPH07324603A (en) * 1994-05-31 1995-12-12 Toshiba Corp Controller for water feed turbine
JPH0953413A (en) * 1995-08-17 1997-02-25 Toshiba Corp Scale adhesion monitoring device
JP2003049601A (en) * 2001-08-06 2003-02-21 Mitsubishi Heavy Ind Ltd Steam turbine power generating system and flow meter calibration method in the same
JP2006002576A (en) * 2004-06-15 2006-01-05 Tlv Co Ltd Process steam controller utilizing steam turbine
JP2009236103A (en) * 2008-03-06 2009-10-15 Miura Co Ltd Steam system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355309A (en) * 1986-08-26 1988-03-09 Toshiba Corp Device for controlling steam turbine
JPS63113104A (en) * 1986-10-31 1988-05-18 Toshiba Corp Control device for steam turbine
JPH0299702A (en) * 1988-10-07 1990-04-11 Toshiba Corp Control device for turbine bypass valve
JPH05222904A (en) * 1991-12-17 1993-08-31 Toshiba Corp Control device for turbine exhaust condensing system
JPH0626306A (en) * 1992-07-09 1994-02-01 Toshiba Corp Drive mechanism for steam turbine steam valve
JPH07324603A (en) * 1994-05-31 1995-12-12 Toshiba Corp Controller for water feed turbine
JPH0953413A (en) * 1995-08-17 1997-02-25 Toshiba Corp Scale adhesion monitoring device
JP2003049601A (en) * 2001-08-06 2003-02-21 Mitsubishi Heavy Ind Ltd Steam turbine power generating system and flow meter calibration method in the same
JP2006002576A (en) * 2004-06-15 2006-01-05 Tlv Co Ltd Process steam controller utilizing steam turbine
JP2009236103A (en) * 2008-03-06 2009-10-15 Miura Co Ltd Steam system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217530A (en) * 2022-07-22 2022-10-21 西安西热锅炉环保工程有限公司 Steam-driven feed water pump steam source switching system and method adapting to deep peak regulation

Also Published As

Publication number Publication date
JP5427851B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US9334750B2 (en) Control of load rejection
JP4868423B2 (en) Method for permanently monitoring pressurized pipelines and piping systems carrying fluid media
JP5893098B2 (en) Method of operating a gas turbine power plant for carbon dioxide separation
WO2020095732A1 (en) Gas meter
JP5427851B2 (en) Steam system
KR20190099878A (en) Integrated pipe pressure control system for multiple pipeline
JP2019095340A (en) Device and method for estimating flow rate
JP2007147430A (en) Gas shut-off device
US8720201B2 (en) Method of monitoring an electronic engine control (EEC) to detect a loss of fuel screen open area
JP6087694B2 (en) Ultrasonic gas meter
JP5377391B2 (en) Sprinkler fire extinguishing equipment
JP6434537B2 (en) Apparatus for expanding steam and method for controlling the apparatus
KR101208129B1 (en) Apparatus for preventing water induction in steam turbines
JP2009191715A (en) Turbine control valve control device
JP2017004629A (en) Fuel cell power generation device
JP2019073975A (en) Fuel supply system and fuel supply method
JP2006316759A (en) Compression device
JP4918436B2 (en) Gas turbine fuel gas supply device
JP5153758B2 (en) Sprinkler fire extinguishing equipment
US20150323365A1 (en) Flow meter device
JP5306247B2 (en) Sprinkler fire extinguishing equipment
JP6520274B2 (en) Boiler equipment
JP2019073977A (en) Compressed air supply system, control system for compressed air supply system and control method for compressed air supply system
KR101127571B1 (en) Control system of multiple compressor
RU2296915C1 (en) Device for control of deaeration plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5427851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250