JP2013036859A - Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask - Google Patents

Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask Download PDF

Info

Publication number
JP2013036859A
JP2013036859A JP2011173286A JP2011173286A JP2013036859A JP 2013036859 A JP2013036859 A JP 2013036859A JP 2011173286 A JP2011173286 A JP 2011173286A JP 2011173286 A JP2011173286 A JP 2011173286A JP 2013036859 A JP2013036859 A JP 2013036859A
Authority
JP
Japan
Prior art keywords
neutron shielding
shielding material
base member
oxide film
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011173286A
Other languages
Japanese (ja)
Inventor
Masanori Kihata
正法 木畑
Yuji Saito
雄二 齋藤
Motoji Tsubota
基司 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011173286A priority Critical patent/JP2013036859A/en
Publication of JP2013036859A publication Critical patent/JP2013036859A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a neutron shielding material which suppresses gas generation and the occurence of swelling and which is excellent in neutron absorption capacity even while being used under water.SOLUTION: A neutron shielding material 10 is constituted by a base member 11 having the composition of a B-Al alloy, a cladding material 12 which has the composition of an Al alloy except for the B-Al alloy or an Al single body and which clads the base member 11, and an oxide film 13 provided on a surface of the cladding material.

Description

本発明は、ボロン(B)が添加されたアルミニウム合金を用いた中性子遮蔽材、その製造方法、及び使用済核燃料の貯蔵ラック並びに輸送キャスクに関する。   The present invention relates to a neutron shielding material using an aluminum alloy to which boron (B) is added, a method for producing the same, a storage rack for spent nuclear fuel, and a transport cask.

原子炉を一定期間運転した後に炉心から排出される使用済核燃料は、再処理が行われるまでの間、発電所内に設置された貯蔵プール内の貯蔵ラックに収容され、発生する崩壊熱がプール水により除去される。   Spent nuclear fuel discharged from the core after a certain period of operation of the nuclear reactor is housed in a storage rack in the storage pool installed in the power plant until reprocessing, and the decay heat generated is stored in the pool water. Is removed.

近年、貯蔵プールの収容能力が逼迫しており、貯蔵プール内のスペースを有効活用して貯蔵容量を増加させて対応している。また、発電所の外に大型の中間貯蔵施設が設置され、そこに使用済核燃料は乾式で保管される。
これら使用済核燃料の貯蔵ラック、輸送キャスク及び収容キャニスタには、中性子の遮蔽能力を有するボロン(B)が添加されたステンレス鋼(B−SUS)が、中性子遮蔽材として日本国内で一般に使用されている。
In recent years, the capacity of the storage pool has become tight, and the storage capacity has been increased by effectively utilizing the space in the storage pool. In addition, a large intermediate storage facility is installed outside the power plant, where spent nuclear fuel is stored dry.
In these spent nuclear fuel storage racks, transport casks, and storage canisters, stainless steel (B-SUS) added with boron (B) having a neutron shielding ability is generally used in Japan as a neutron shielding material. Yes.

一方において、ボロンが添加されたアルミニウム合金(B−Al)は、熱伝導率が約240W/m・Kであり、B−SUS材(約17W/m・K)と比較して冷却性能が格段に優れる。更に、B−Alは、B−SUSと比較して比重が1/3程度と軽量であるために、輸送コストを著しく低減できる。
このために欧米においては、B−Alが、中性子遮蔽材に使用されており、日本国内においても適用を検討している(例えば、特許文献1〜3)。
On the other hand, the aluminum alloy (B-Al) to which boron is added has a thermal conductivity of about 240 W / m · K, and the cooling performance is significantly higher than that of the B-SUS material (about 17 W / m · K). Excellent. Furthermore, since B-Al is lightweight with a specific gravity of about 1/3 compared to B-SUS, the transportation cost can be significantly reduced.
For this reason, B-Al is used as a neutron shielding material in Europe and the United States, and its application is also examined in Japan (for example, Patent Documents 1 to 3).

特開2005−10000号公報Japanese Patent Laid-Open No. 2005-10000 特開2007−155664号公報JP 2007-155664 A 特開2007−33242号公報JP 2007-33242 A

しかし、水中でB−Alを使用した場合に、ガス発生や表面膨れが発生する現象が、アメリカ合衆国原子力規制委員会(NRC:U.S.Nuclear Regulatory Commission)の報告(NRC INFORMATION NOTICE 2009-26)により確認されている。   However, when B-Al is used in water, the phenomenon of gas generation and surface bulging has been confirmed by a report from the US Nuclear Regulatory Commission (NRC) (NRC INFORMATION NOTICE 2009-26). ing.

また、中性子遮蔽材として水中でB−Alを使用した場合、Al単体で使用する場合よりも、発生ガス総量が増えるだけでなく次式の水和反応に基づく水素発生量も増加してしまう(後述の実施例参照)。
2Al+2OH-+6H2O→2Al(OH)4-+3H2
In addition, when B-Al is used in water as a neutron shielding material, not only the total amount of generated gas is increased, but also the amount of hydrogen generated based on the hydration reaction of the following formula is increased as compared with the case where Al is used alone ( (See Examples below).
2Al + 2OH + 6H 2 O → 2Al (OH) 4 + + 3H 2

爆発性ガスである水素の発生を抑制するためには、表面に強固な酸化被膜を形成して上式で示されるAlの水和反応を抑制する対処法が考えられる。Alの表面に酸化被膜を形成する一般的方法としては、アルマイト処理やベーマイト処理が挙げられる。
しかし、B−Alにアルマイト処理やベーマイト処理を行なうと、表面のボロン化合物が抜け落ち、酸化被膜が形成されないといった課題がある。さらに中性子吸収能力を有するボロンが抜け落ちることで中性子吸収能力が低下するといった課題がある。
In order to suppress the generation of hydrogen, which is an explosive gas, a possible countermeasure is to form a strong oxide film on the surface and suppress the Al hydration reaction represented by the above formula. As a general method for forming an oxide film on the surface of Al, alumite treatment or boehmite treatment may be mentioned.
However, when alumite treatment or boehmite treatment is performed on B-Al, there is a problem that the boron compound on the surface falls off and an oxide film is not formed. Furthermore, there is a problem that the neutron absorption ability is lowered due to dropping of boron having the neutron absorption ability.

本発明はこのような事情を考慮してなされたもので、水中で使用してもガス発生や表面膨れの発生が抑制されかつ中性子吸収能力に優れる中性子遮蔽材、その製造方法、及び使用済核燃料の貯蔵ラック並びに輸送キャスクを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and a neutron shielding material that is excellent in neutron absorption ability, in which generation of gas and surface swelling is suppressed even when used in water, and a method for producing the same, and spent nuclear fuel It is an object to provide a storage rack and a transport cask.

中性子遮蔽材において、B−Al合金の組成を有するベース部材と、B−Al合金以外のAl合金又はAl単体の組成を有し前記ベース部材を被覆する被覆材と、前記被覆材の表面に設けられる酸化被膜と、を備えることを特徴とする。   In a neutron shielding material, a base member having a B-Al alloy composition, a coating material having a composition of an Al alloy other than B-Al alloy or Al alone, and covering the base member, and provided on the surface of the coating material And an oxide film.

本発明によれば、水中で使用してもガス発生や表面膨れの発生が抑制されかつ中性子吸収能力に優れる中性子遮蔽材、その製造方法、及び使用済核燃料の貯蔵ラック並びに輸送キャスクが提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses it in water, generation | occurrence | production of gas and surface swelling is suppressed, and the neutron shielding material which is excellent in neutron absorption capability, its manufacturing method, the storage rack of used nuclear fuel, and a transport cask are provided. .

(A)本発明に係る中性子遮蔽材の実施形態を示す図、(B)その断面図。(A) The figure which shows embodiment of the neutron shielding material which concerns on this invention, (B) The sectional drawing. 本発明に係る中性子遮蔽材の製造方法の実施形態を示すフローチャート。The flowchart which shows embodiment of the manufacturing method of the neutron shielding material which concerns on this invention. 冷間圧延法による中性子遮蔽材の製造方法を示す工程図。Process drawing which shows the manufacturing method of the neutron shielding material by the cold rolling method. (A)他の実施形態に係る中性子遮蔽材を示す図、(B)その断面図。(A) The figure which shows the neutron shielding material which concerns on other embodiment, (B) The sectional drawing. (A)他の実施形態に係る中性子遮蔽材を示す図、(B)その断面図。(A) The figure which shows the neutron shielding material which concerns on other embodiment, (B) The sectional drawing. 本発明に係る貯蔵ラックの実施形態を示す斜視図。The perspective view which shows embodiment of the storage rack which concerns on this invention. 本発明に係る輸送キャスクの実施形態を示す斜視図。The perspective view which shows embodiment of the transport cask which concerns on this invention. 水中に浸漬させたサンプルのガス発生量測定器の概要図。The schematic diagram of the gas generation amount measuring device of the sample immersed in water. (A)および(B)はサンプルの水中浸漬時間とガス発生量の関係を示すグラフおよび表。(A) and (B) are the graph and table | surface which show the relationship between the time of immersion of a sample in water, and gas generation amount.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように中性子遮蔽材10は、B−Al合金の組成を有するベース部材11と、B−Al合金以外のAl合金又はAl単体の組成を有しベース部材11を被覆する被覆材12と、この被覆材12の表面に設けられる酸化被膜13と、から構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the neutron shielding material 10 includes a base member 11 having a B—Al alloy composition and a covering material 12 having a composition of an Al alloy other than the B—Al alloy or Al alone and covering the base member 11. And an oxide film 13 provided on the surface of the covering material 12.

ベース部材11は、軽量で高熱伝導率であるアルミニウムが主成分であり、中性子断面積の大きなホウ素の同位体(10B)が0.4〜2wt%の範囲で添加されている。ここで、ホウ素の添加率が0.4wt%よりも小さいと、ベース部材11の中性子遮蔽効果が低減し、2wt%を超えるとベース部材11の放熱効果が低下してしまう。
また、アルミニウムに添加されているホウ素は、ホウ素の金属微粒子がアルミニウムのマトリックス中に分散される場合の他に、炭化ホウ素(B4C)の粉末が分散される場合もある。
The base member 11 is mainly made of aluminum, which is lightweight and has high thermal conductivity, and is doped with boron isotope ( 10 B) having a large neutron cross section in a range of 0.4 to 2 wt%. Here, if the boron addition rate is less than 0.4 wt%, the neutron shielding effect of the base member 11 is reduced, and if it exceeds 2 wt%, the heat dissipation effect of the base member 11 is reduced.
Boron added to aluminum may contain boron carbide (B 4 C) powder as well as boron metal fine particles dispersed in an aluminum matrix.

被覆材12は、ベース部材11を構成するB−Al合金の原料であるAl単体やJIS規格の1000系の純アルミニウムを用いる場合の他に、7000系のジュラルミン等のB−Al合金以外のAl合金を用いることができる。
つまり、被覆材12は、後述するアルマイト処理やベーマイト処理により、安定して緻密な酸化被膜13が表面に形成されるAl系材料であれば好適に用いることができる。
In addition to the case of using Al alone, which is a raw material of the B-Al alloy constituting the base member 11, or JIS standard 1000 series pure aluminum, the covering material 12 is made of Al other than B-Al alloy such as 7000 series duralumin. Alloys can be used.
That is, the covering material 12 can be suitably used as long as it is an Al-based material on which a stable and dense oxide film 13 is formed on the surface by an alumite treatment or a boehmite treatment described later.

また被覆材12の厚さは、0.1〜2mmの範囲に含まれることが望ましい。
被覆材12の厚さが0.1mm未満であると傷や衝撃等による剥がれが生じ易くなり、また加工の際に損傷が生じ易くなる。そして、被覆材12の厚さが2mmを超えると、中性子遮蔽材10の中性子遮蔽能力が低下してしまう。
The thickness of the covering material 12 is desirably included in the range of 0.1 to 2 mm.
When the thickness of the covering material 12 is less than 0.1 mm, peeling due to scratches or impacts is likely to occur, and damage is likely to occur during processing. And when the thickness of the coating | covering material 12 exceeds 2 mm, the neutron shielding capability of the neutron shielding material 10 will fall.

図2に示すように中性子遮蔽材の製造方法は、まず、所定形状にベース部材11を成形する工程(S11)を経る。次に、ベース部材11の外表面に、被覆材12を、冷間圧延法、摩擦撹拌接合法、溶射法、粉末焼結法及び粉末押出法のいずれかにより被覆加工する工程(S12)を経る。そして、被覆材12の表面にアルマイト法又はベーマイト法により酸化被膜を形成することにより耐食性を付与する(S13)。   As shown in FIG. 2, the neutron shielding material manufacturing method first undergoes a step (S11) of forming the base member 11 into a predetermined shape. Next, the outer surface of the base member 11 is subjected to a step (S12) of coating the coating material 12 by any one of a cold rolling method, a friction stir welding method, a thermal spraying method, a powder sintering method, and a powder extrusion method. . Then, corrosion resistance is imparted by forming an oxide film on the surface of the covering material 12 by an alumite method or a boehmite method (S13).

図3は、冷間圧延法による被覆加工の実施例を示す工程図である。
板厚11mmのB−Alの両面に、B−Alの母材と同材のAlを3mm厚で被せ、圧延率30%で1パス目の冷間圧延を行った。その結果、トータルの板厚12mmのうちB−Alが板厚8mm、その両外側のAlが板厚2mmとなった。
2パス目は圧延率25%で冷間圧延を行い、トータルの板厚9mmのうちB−Alが板厚7mm、その両外側のAlが板厚1mmとなった。
3パス目は圧延率15%で冷間圧延を行い、トータルの板厚7.6mmのうちB−Alが板厚6mm、その両外側のAlが板厚0.8mmとなった。
最後の4パス目は圧延率34%で冷間圧延を行い、トータルの板厚を5mmのうちB−Alが板厚4mm、その両外側のAlが板厚0.5mmとなった。
FIG. 3 is a process diagram showing an example of coating processing by a cold rolling method.
The B-Al base material and the same Al material were covered with a thickness of 3 mm on both sides of 11 mm thick B-Al, and the first cold rolling was performed at a rolling rate of 30%. As a result, out of the total plate thickness of 12 mm, B-Al had a plate thickness of 8 mm, and Al on both outer sides thereof had a plate thickness of 2 mm.
In the second pass, cold rolling was performed at a rolling rate of 25%. Of the total plate thickness of 9 mm, B-Al had a plate thickness of 7 mm, and Al on both outer sides thereof had a plate thickness of 1 mm.
In the third pass, cold rolling was performed at a rolling rate of 15%, and out of the total plate thickness of 7.6 mm, B-Al had a plate thickness of 6 mm, and Al on both outer sides thereof had a plate thickness of 0.8 mm.
In the final fourth pass, cold rolling was performed at a rolling rate of 34%, and B-Al was 4 mm in thickness with a total thickness of 5 mm, and Al on both outer sides was 0.5 mm in thickness.

ここで、圧延率は次式で示されるものとする。
圧延率(%)=(元厚−圧延後の板厚)/元厚×100
Here, a rolling rate shall be shown by following Formula.
Rolling ratio (%) = (original thickness−sheet thickness after rolling) / original thickness × 100

次に酸化被膜13(図1)の形成処理(S13;図2)について説明する。
被覆材12が被覆された状態のベース部材11を、ベーマイト処理により、高温純水中に約2時間浸漬してその表面に酸化被膜13を形成させる。
なお、ベーマイト法は、このように高温の純水に浸漬させる場合の他に、飽和水蒸気中で処理する場合もある。
Next, the formation process (S13; FIG. 2) of the oxide film 13 (FIG. 1) will be described.
The base member 11 covered with the covering material 12 is immersed in high-temperature pure water for about 2 hours by boehmite treatment to form an oxide film 13 on the surface thereof.
The boehmite method may be treated in saturated steam in addition to the case of being immersed in high-temperature pure water as described above.

酸化被膜の他の形成処理方法として、アルマイト処理が挙げられる。
アルマイト処理とは、アルミニウムの陽極酸化による被膜の形成方法である。陽極酸化とは、対象となる材料(被覆材12が被覆された状態のベース部材11)を陽極として、主に強酸を電解液として水の電気分解を実行することである。
アルマイト処理用の電解液としては硫酸を用いるのが主流であるが、蓚酸などの有機酸やクロム酸、リン酸などが使われることもある。
陽極酸化処理の際の、通電時間や電流密度を変えることにより酸化被膜13の厚さを制御することができる。
As another method for forming an oxide film, anodizing may be mentioned.
Anodizing is a method for forming a film by anodizing aluminum. Anodization is to perform electrolysis of water mainly using a target material (base member 11 covered with the covering material 12) as an anode and mainly using a strong acid as an electrolyte.
As an electrolytic solution for alumite treatment, sulfuric acid is mainly used, but organic acids such as oxalic acid, chromic acid, phosphoric acid and the like are sometimes used.
The thickness of the oxide film 13 can be controlled by changing the energization time and the current density during the anodizing treatment.

次に、酸化被膜13の効果について概説する。
仮に、B−Alベース部材11にAl被覆材12のみを被覆させた状態で水中において使用した場合は、Al表面に自然酸化被膜が形成されることになる。
この自然酸化被膜は、水分が存在すると水和反応によりポーラス状の水和酸化物層が比較的厚く成長する。
Next, the effect of the oxide film 13 will be outlined.
If the B-Al base member 11 is used in water with only the Al coating material 12 coated, a natural oxide film is formed on the Al surface.
In this natural oxide film, when water is present, a porous hydrated oxide layer grows relatively thick due to a hydration reaction.

しかし、この水和酸化物層は、緻密性及び安定性に欠けるために、隙間からアルミニウムの腐食(孔食)が進行する。
このアルミニウムの孔食は、その近傍に存在する金属間化合物やその他の欠陥部にClが吸着して水和酸化物層を可溶化し、アルミニウムの表面腐食をさらに進行させる。またこの際に、酸素ガスや窒素ガス以外に水素ガスも発生することが知られている。
However, since this hydrated oxide layer lacks denseness and stability, corrosion (pitting corrosion) of aluminum proceeds from the gap.
This pitting corrosion of aluminum causes Cl − to be adsorbed on intermetallic compounds and other defects existing in the vicinity thereof, solubilizing the hydrated oxide layer, and further advances the surface corrosion of aluminum. At this time, it is known that hydrogen gas is also generated in addition to oxygen gas and nitrogen gas.

そして、B−Alベース部材11のみを水中において使用した場合は、後述するようにH2及びその他のガスの発生量がさらに増大してしまう。また、B−Alベース部材11に直接的に酸化被膜13を形成させようとしても、表面のボロン化合物が抜け落ち、酸化被膜を形成させることができない。 Then, the case of using only B-Al base member 11 in the water, the amount of H 2 and other gases as will be described later will be further increased. Further, even if the oxide film 13 is directly formed on the B—Al base member 11, the boron compound on the surface falls off and the oxide film cannot be formed.

図4や図5に示すように、ベース部材11の表面は、曲面や複雑形状を有する場合がある。この場合、被覆材12は、冷間圧延法を採用することはできないが、摩擦撹拌接合法、溶射法、粉末焼結法及び粉末押出法のいずれかの方法によりベース部材11の表面に設けることができる。   As shown in FIGS. 4 and 5, the surface of the base member 11 may have a curved surface or a complicated shape. In this case, the coating material 12 cannot adopt the cold rolling method, but is provided on the surface of the base member 11 by any one of the friction stir welding method, the thermal spraying method, the powder sintering method, and the powder extrusion method. Can do.

摩擦撹拌接合法(FSW:Friction Stir Welding)とは、分離している接合対象の境界部分に、工具を回転させながら強い力で押し付けて、摩擦熱により境界部分を軟化、塑性流動させて一体化させる接合法である。
本実施形態においては、被覆材12の素材を厚さ0.1〜2mmの箔状体とし、この箔状体でB−Alベース部材11を包み、箔状体の縁端を貼りあわせるように接合することでベース部材11を被覆する。
With Friction Stir Welding (FSW), the tool is rotated with a strong force against the boundary part to be welded, and the boundary part is softened and plastically flowed by frictional heat. This is a joining method.
In the present embodiment, the material of the covering material 12 is a foil-like body having a thickness of 0.1 to 2 mm, the B-Al base member 11 is wrapped with the foil-like body, and the edges of the foil-like body are bonded together. The base member 11 is covered by bonding.

溶射法(Thermal spraying)とは、被覆材12の素材を加熱溶融してベース部材11に直接吹き付けて、被覆材12を形成する方法である。熱源には燃焼炎、プラズマ(アーク放電)などが用いられ、被覆材12の素材は液滴化されて、高速ガス流などによってベース部材11の表面に吹き付けられ、この液滴粒子が凝固し密着することにより被覆材12が形成される。なお、固相粒子を高速で吹き付けることで被覆材12を形成する場合もある。溶射法による中性子遮蔽材の製造方法は、容易でかつ低コストであるといった長所を有する。   Thermal spraying is a method of forming the coating material 12 by heating and melting the material of the coating material 12 and directly spraying the material on the base member 11. A combustion flame, plasma (arc discharge), or the like is used as a heat source, and the material of the covering material 12 is made into droplets and sprayed onto the surface of the base member 11 by a high-speed gas flow or the like. By doing so, the covering material 12 is formed. The coating material 12 may be formed by spraying solid phase particles at a high speed. The manufacturing method of the neutron shielding material by the thermal spraying method has an advantage that it is easy and low in cost.

粉末焼結法は、ベース部材11の表面に被覆材12の素材粉末の仮焼結体を乗せて、400〜700℃の連続炉にて本焼結を行い被覆材12を形成する方法である。
もしくは、ベース部材11と被覆材12とを一体的に焼結成形する方法もある。この方法では、等方圧加圧法(HIP)もしくは冷間等方圧加圧法(CIP)により、Al粉末及びB4C粉末の混合体からベース部材11のB−Alビレットを製作する。
このB−Alビレットの外側に被覆材12の素材粉末を塗付し、更にCIPもしくはHIP処理を行い複合化ビレットを製作する。この複合化ビレットを300℃で加熱焼結させ仮焼結体を製作、その後400〜700℃にて本焼結を行い中性子遮蔽材を製造する。
The powder sintering method is a method of forming the covering material 12 by placing a temporary sintered body of the raw material powder of the covering material 12 on the surface of the base member 11 and performing main sintering in a continuous furnace at 400 to 700 ° C. .
Alternatively, there is a method in which the base member 11 and the covering material 12 are integrally sintered. In this method, the B-Al billet of the base member 11 is manufactured from a mixture of Al powder and B 4 C powder by an isotropic pressure pressing method (HIP) or a cold isostatic pressing method (CIP).
The powder of the covering material 12 is applied to the outside of the B-Al billet, and further subjected to CIP or HIP treatment to produce a composite billet. The composite billet is heated and sintered at 300 ° C. to produce a temporary sintered body, and then subjected to main sintering at 400 to 700 ° C. to produce a neutron shielding material.

粉末押出法は、原料粉末にバインダを加えて塑性流動体にしたものを、目的形状を有する金型に圧力を加えて注入する。得られた成形体は、加熱炉に入れてバインダを蒸発させて金属だけを残す仮焼結を行い、さらに焼結炉に移して、金属を本焼結する。   In the powder extrusion method, a plastic fluid obtained by adding a binder to raw material powder is injected by applying pressure to a mold having a target shape. The obtained molded body is put into a heating furnace, the binder is evaporated, preliminarily sintered to leave only the metal, and further transferred to a sintering furnace to perform main sintering of the metal.

図6は、中性子遮蔽材を用いて作製された使用済核燃料の貯蔵ラック30である。
貯蔵ラック30には、板状の中性子遮蔽材10a(図1)を成形加工してなる角筒31が、千鳥格子状に配置されている。クレーン(図示略)により原子炉の炉心から取り出された複数の使用済の燃料集合体(図示略)は、これら角筒31の各々に挿入される。
この貯蔵ラック30は、発電所内に設けられている貯蔵プール(図示略)に配置され、角筒31に収容された使用済の燃料集合体は、ここで一定期間貯蔵され、使用済核燃料の崩壊熱が除去される。
FIG. 6 is a spent nuclear fuel storage rack 30 made using a neutron shielding material.
In the storage rack 30, rectangular tubes 31 formed by molding the plate-like neutron shielding material 10a (FIG. 1) are arranged in a staggered pattern. A plurality of spent fuel assemblies (not shown) taken out from the reactor core by a crane (not shown) are inserted into each of the square tubes 31.
The storage rack 30 is arranged in a storage pool (not shown) provided in the power plant, and the spent fuel assembly accommodated in the square tube 31 is stored for a certain period of time, and the spent nuclear fuel collapses. Heat is removed.

図7は、中性子遮蔽材を用いて作製された使用済核燃料の輸送キャスク40の部分カットモデルを示している。
貯蔵ラック30(図6)において崩壊熱を減衰させた燃料集合体は、再処理工場等に輸送するための輸送キャスク40に詰め替えられる。この輸送キャスク40には、板状の中性子遮蔽材10aを成形加工してなる燃料バスケット41が設けられ、燃料集合体42が収容される。
FIG. 7 shows a partial cut model of a spent nuclear fuel transport cask 40 made using a neutron shielding material.
The fuel assembly in which decay heat is attenuated in the storage rack 30 (FIG. 6) is refilled into a transport cask 40 for transport to a reprocessing plant or the like. The transport cask 40 is provided with a fuel basket 41 formed by molding a plate-like neutron shielding material 10a, and a fuel assembly 42 is accommodated therein.

本発明の実施例及び比較例による実験データを示し、本発明の効果を確認する。
サンプル26として、中性子遮蔽材10(図1)のようにB−Alベース部材11、Al被覆材12及び酸化被膜13を備える実施例と、このうち酸化被膜13を省略した比較例1(Al)と、さらにAl被覆材12を省略した比較例2(B−Al)とを準備する。
なお、B−Alの表面に直接的に酸化被膜を形成する比較例については、前述した通り、表面のボロン化合物が抜け落ちて安定した酸化被膜が形成されないことから検証を行っていない。
The experimental data by the Example and comparative example of this invention are shown, and the effect of this invention is confirmed.
As a sample 26, an example including a B-Al base member 11, an Al coating material 12, and an oxide film 13 as in the neutron shielding material 10 (FIG. 1), and Comparative Example 1 (Al) in which the oxide film 13 is omitted. And the comparative example 2 (B-Al) which abbreviate | omitted Al coating | covering material 12 is prepared.
In addition, the comparative example in which the oxide film is directly formed on the surface of B-Al is not verified since the boron compound on the surface falls off and a stable oxide film is not formed as described above.

図8は、水中に浸漬させたサンプル26のガス発生量測定器20を示している。
このガス発生量測定器20は、内圧が大気圧となるように通気孔25を有する容器22と、この容器22の外側に封止端21aを有し内側にテーパー状の開口端21bを有する透明管21と、容器22の内部に収容された純水の温度計23が30℃になるように温度保持する温調部24と、から構成される。
FIG. 8 shows the gas generation amount measuring device 20 of the sample 26 immersed in water.
This gas generation amount measuring device 20 has a container 22 having a vent hole 25 so that the internal pressure becomes atmospheric pressure, and a transparent end having a sealing end 21a outside the container 22 and a tapered opening end 21b inside. The pipe 21 and the temperature control part 24 which hold | maintains temperature so that the thermometer 23 of the pure water accommodated in the inside of the container 22 may be 30 degreeC are comprised.

図9(A)は、透明管21の封止端21aまで純水を行きわたらせた状態でサンプル26を投入した時点からスタートし、約250時間にわたり、サンプル26(実施例、比較例1、比較例2)の各々のガス発生量を測定した結果である。
これによると、比較例1(Al)及び比較例2(B−Al)は浸漬直後にガスの発生はないが、約25時間後にはガスが発生し、その後80時間まで急激に発生、200時間までガス発生は続いた。
これに対し、実施例(B−Al+酸化被膜)は、浸漬時間を1000時間まで延長してもガス発生は認められなかった。
FIG. 9A starts from the time when the sample 26 is put in a state in which pure water is distributed to the sealing end 21a of the transparent tube 21, and the sample 26 (Example, Comparative Example 1, Comparative Example) is observed over about 250 hours. It is the result of having measured each gas generation amount of Example 2).
According to this, in Comparative Example 1 (Al) and Comparative Example 2 (B-Al), no gas was generated immediately after immersion, but gas was generated after about 25 hours, and then rapidly generated up to 80 hours, then 200 hours. Gas generation continued until.
On the other hand, in the example (B-Al + oxide film), no gas generation was observed even when the immersion time was extended to 1000 hours.

図9(B)に示すように、サンプル26の単位表面積当りのガス発生量を導いたところ、B−Al(比較例2)において9.55×10-4ml/cm2、Al(比較例1)において5.82×10-4ml/cm2、B−Al+酸化被膜(実施例)は計測不能という結果となった。
この発生ガスを分析したところ、酸素、窒素以外に水素ガスが含まれており、水素ガス濃度はB−Al(比較例2)において1.1%、Al(比較例1)において0.5%という結果が得られた。
As shown in FIG. 9 (B), when the amount of gas generated per unit surface area of the sample 26 was derived, 9.55 × 10 −4 ml / cm 2 in B-Al (Comparative Example 2), Al (Comparative Example) In 1), 5.82 × 10 −4 ml / cm 2 and B-Al + oxide film (Example) were unable to be measured.
When this generated gas was analyzed, hydrogen gas was contained in addition to oxygen and nitrogen, and the hydrogen gas concentration was 1.1% for B-Al (Comparative Example 2) and 0.5% for Al (Comparative Example 1). The result was obtained.

以上の実験結果より、水中使用による腐食によりB−Alは、Alよりも多くのガスを発生し、とりわけ水素の発生量が多くなることが判った。これは、B−Alの表面に析出しているボロン化合物の影響によるものと考えられる。さらに、水中使用においてガス発生を伴うB−Al及びAlでは、その表面に水和反応に起因する白い点状の腐食跡が確認された。
これに対し、実施例のようにB−Alのベース材にAlを被覆させてさらに表面に酸化被膜を形成させたものは、水中使用による腐食痕及びガス発生は観測されなかった。
From the above experimental results, it has been found that B-Al generates more gas than Al due to corrosion due to use in water, and in particular, the amount of hydrogen generated increases. This is considered to be due to the influence of the boron compound precipitated on the surface of B-Al. Furthermore, in B-Al and Al accompanied by gas generation when used underwater, white spot-like corrosion marks resulting from the hydration reaction were confirmed on the surface.
On the other hand, as in the example, the B-Al base material coated with Al and further formed with an oxide film on the surface did not show corrosion marks and gas generation due to underwater use.

以上述べた少なくともひとつの実施形態の中性子遮蔽材によれば、水中で使用してもガス発生が抑制されかつ中性子吸収能力に優れるために、使用済核燃料の貯蔵ラック及び輸送キャスクにとって好適な構成材料が提供される。   According to the neutron shielding material of at least one embodiment described above, since the gas generation is suppressed even when used in water and the neutron absorption capability is excellent, the constituent material suitable for the storage rack and the transport cask for spent nuclear fuel. Is provided.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10(10a,10b,10c)…中性子遮蔽材、11…ベース部材、12…被覆材、13…酸化被膜、20…ガス発生量測定器、21…透明管、21a…封止端、21b…開口端、22…容器、23…温度計、24…温調部、25…通気孔、26…サンプル、30…貯蔵ラック、31…角筒、40…輸送キャスク、41…燃料バスケット、42…燃料集合体。   10 (10a, 10b, 10c) ... neutron shielding material, 11 ... base member, 12 ... coating material, 13 ... oxide film, 20 ... gas generation amount measuring device, 21 ... transparent tube, 21a ... sealed end, 21b ... opening End, 22 ... Container, 23 ... Thermometer, 24 ... Temperature control part, 25 ... Vent, 26 ... Sample, 30 ... Storage rack, 31 ... Square tube, 40 ... Transport cask, 41 ... Fuel basket, 42 ... Fuel assembly body.

Claims (6)

B−Al合金の組成を有するベース部材と、
B−Al合金以外のAl合金又はAl単体の組成を有し前記ベース部材を被覆する被覆材と、
前記被覆材の表面に設けられる酸化被膜と、を備えることを特徴とする中性子遮蔽材。
A base member having a B-Al alloy composition;
A coating material that has a composition of an Al alloy other than B-Al alloy or Al alone and covers the base member;
A neutron shielding material comprising: an oxide film provided on a surface of the coating material.
前記被覆材の厚さは、0.1〜2mmの範囲に含まれることを特徴とする請求項1に記載の中性子遮蔽材。   The neutron shielding material according to claim 1, wherein a thickness of the covering material is included in a range of 0.1 to 2 mm. 請求項1又は請求項2に記載の中性子遮蔽材を、冷間圧延法、摩擦撹拌接合法、溶射法、粉末焼結法及び粉末押出法のいずれかにより製造することを特徴とする中性子遮蔽材の製造方法。   The neutron shielding material according to claim 1 or 2 is produced by any one of a cold rolling method, a friction stir welding method, a thermal spraying method, a powder sintering method, and a powder extrusion method. Manufacturing method. アルマイト法又はベーマイト法により前記被覆材の表面に酸化被膜を形成することを特徴とする請求項3に記載の中性子遮蔽材の製造方法。   4. The method for producing a neutron shielding material according to claim 3, wherein an oxide film is formed on the surface of the coating material by an alumite method or a boehmite method. 請求項1又は請求項2に記載の中性子遮蔽材を用いた使用済核燃料の貯蔵ラック。   A storage rack for spent nuclear fuel using the neutron shielding material according to claim 1. 請求項1又は請求項2に記載の中性子遮蔽材を用いた使用済核燃料の輸送キャスク。   A transport cask for spent nuclear fuel using the neutron shielding material according to claim 1.
JP2011173286A 2011-08-08 2011-08-08 Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask Withdrawn JP2013036859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173286A JP2013036859A (en) 2011-08-08 2011-08-08 Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173286A JP2013036859A (en) 2011-08-08 2011-08-08 Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask

Publications (1)

Publication Number Publication Date
JP2013036859A true JP2013036859A (en) 2013-02-21

Family

ID=47886602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173286A Withdrawn JP2013036859A (en) 2011-08-08 2011-08-08 Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask

Country Status (1)

Country Link
JP (1) JP2013036859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101079A1 (en) * 2019-11-19 2021-05-27 한국재료연구원 Metal-clad steel sheet for neutron shielding and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101079A1 (en) * 2019-11-19 2021-05-27 한국재료연구원 Metal-clad steel sheet for neutron shielding and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6082810B2 (en) Tubular body and method for producing tubular body
JP3207841B1 (en) Aluminum composite powder and method for producing the same, aluminum composite material, spent fuel storage member and method for producing the same
KR102573613B1 (en) Corrosion-resistant and wear-resistant coating on zirconium alloy cladding
JP2009520876A (en) Corrosion resistant neutron absorption coating
CN112144008B (en) Method for improving high-temperature-resistant liquid metal corrosion resistance of oxide dispersion strengthened steel through pre-oxidation
US20170200514A1 (en) Nuclear fuel rod for fast reactors including metallic fuel slug coated with protective coating layer and fabrication method thereof
JP2013036859A (en) Neutron shielding material, manufacturing method therefor, storage rack for spent nuclear fuel, and transport cask
JPH07301687A (en) Coating pipe
JP2012093282A (en) Core melt holding device
JP2002311187A (en) Production method for radioactive material storing member and billet for extrusion molding
KR910003286B1 (en) Zirconium alloy barrier having improved corrosion resistance
JP5783495B2 (en) Control member for light water reactor
JP2014025785A (en) Core melt holding device
US20200082951A1 (en) Nuclear fuel elements and methods of preserving a nuclear fuel
CN111020655B (en) Preparation method and application of zirconium alloy material with chromium coating
US5761263A (en) Nuclear fuel rod and method of manufacturing the same
Kim et al. Ceramic plasma‐spray‐coated graphite crucible for injection casting of fast reactor fuel slugs
JP4625239B2 (en) High temperature fuel assembly for increasing the temperature of the cooling water outlet in boiling water reactors
JP3259577B2 (en) Nuclear fuel and method for producing the same
JPS6036654A (en) Treatment of zirconium alloy in autoclave
JP2007155664A (en) Basket material for cask for use in spent nuclear fuel
KR20210095478A (en) Nuclear fuel cladding with composite coating layer and method for manufacturing the same
Feng et al. A novel approach on designing ultrahigh burnup metallic TWR fuels: Upsetting the current technological limits
Galvin The use of M (n+ 1) AX (n) Phases in accident tolerant fuel cladding
Zinn et al. Feasibility Report: Fast Neutron Pile for a Test of Conversion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104