JP2013036640A - Direct contact type heat exchanger and polymer electrolyte fuel cell system using the same - Google Patents

Direct contact type heat exchanger and polymer electrolyte fuel cell system using the same Download PDF

Info

Publication number
JP2013036640A
JP2013036640A JP2011171246A JP2011171246A JP2013036640A JP 2013036640 A JP2013036640 A JP 2013036640A JP 2011171246 A JP2011171246 A JP 2011171246A JP 2011171246 A JP2011171246 A JP 2011171246A JP 2013036640 A JP2013036640 A JP 2013036640A
Authority
JP
Japan
Prior art keywords
gas
spiral
water
heat exchanger
direct contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011171246A
Other languages
Japanese (ja)
Other versions
JP5755526B2 (en
Inventor
Jun Udagawa
純 宇田川
Yasuhiro Arai
康弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2011171246A priority Critical patent/JP5755526B2/en
Publication of JP2013036640A publication Critical patent/JP2013036640A/en
Application granted granted Critical
Publication of JP5755526B2 publication Critical patent/JP5755526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact direct contact type heat exchanger of low pressure loss.SOLUTION: The direct contact type heat exchanger 1 includes a casing 2 including: a water inlet 5 through which humidifying water is supplied from a top part thereof; a water outlet 6 through which the humidifying water is discharged from a bottom part thereof; a gas inlet 3 through which the gas flows in from a side face thereof, and a gas outlet 4 through which the gas flows out from a position higher than the gas inlet 3 of the side face. A spiral plate 40 has a spiral part 41 disposed to be in contact with an inner periphery of the casing 2 and formed from a bottom part toward a top part of the casing 2 and from a first lap to an m-th lap (m is a number larger than 1) in sequence and spirally so that a gas flow passage and a water flow passage are formed. In the gas flow passage, the gas ascends while swirling from the gas inlet 3 and flows out of the gas outlet 4. The water flow passage is formed in a space where the gas flow passage is formed, and is formed in a direction opposite to the gas flow passage. In the water flow passage, the humidifying water descends while swirling from the water inlet 5 and is discharged from the water outlet 6.

Description

本発明の実施形態は、直接接触式熱交換器およびこれを用いた固体高分子型燃料電池システムに関する。   Embodiments described herein relate generally to a direct contact heat exchanger and a polymer electrolyte fuel cell system using the same.

固体高分子型燃料電池システムにおいて、電解質膜の乾燥による燃料電池スタックの劣化を防ぐために、一般的に燃料電池スタックに燃料ガスや酸化剤ガスを供給する前に、その燃料ガスや酸化剤ガスの加湿が行われる。燃料ガスや酸化剤ガスを燃料電池スタック外部で予め加湿すると、燃料電池スタック内部で燃料ガスや酸化剤ガスへ移動する水蒸気が減少する。また、これに伴って燃料電池スタックから失われる蒸発潜熱が低減される。その結果、燃料電池スタックを高い温度に保つ事ができる。燃料電池スタックの高温運転は、定置用燃料電池システムなどの電気エネルギーと熱エネルギーのコージェネレーションシステムにおいて、高い温度の熱回収を実現し、回収した熱エネルギーを湯として溜める貯湯槽の容量削減につながる。   In a polymer electrolyte fuel cell system, in order to prevent deterioration of the fuel cell stack due to drying of the electrolyte membrane, before supplying fuel gas or oxidant gas to the fuel cell stack, the fuel gas or oxidant gas is generally removed. Humidification is performed. When the fuel gas or oxidant gas is humidified in advance outside the fuel cell stack, water vapor that moves to the fuel gas or oxidant gas inside the fuel cell stack decreases. As a result, the latent heat of evaporation lost from the fuel cell stack is reduced. As a result, the fuel cell stack can be kept at a high temperature. High-temperature operation of the fuel cell stack achieves high-temperature heat recovery in electrical and thermal energy cogeneration systems such as stationary fuel cell systems, leading to a reduction in the capacity of hot water storage tanks that store the recovered thermal energy as hot water .

燃料電池スタックから排出される湿度の高いアノード排ガスやカソード排ガスを中空糸膜などの水分透過膜を介して燃料ガスや酸化剤ガスと間接的に接触させることによって、燃料ガスや酸化剤ガスを加湿できる。燃料電池システム内部を循環する純水を燃料ガスや酸化剤ガスの加湿に利用する事も可能である。この場合、たとえば燃料電池スタックの熱を回収して温度が上昇した電池冷却水などの純水を、水分透過膜を介して燃料ガスや酸化剤ガスと間接的に接触させる方法や、純水を燃料ガスや酸化剤ガスと直接接触させる方法がある。   Humidification of fuel gas and oxidant gas by contacting the exhaust gas of high humidity exhausted from the fuel cell stack and cathode exhaust gas with fuel gas and oxidant gas indirectly through a moisture permeable membrane such as a hollow fiber membrane. it can. It is also possible to use pure water circulating inside the fuel cell system for humidifying the fuel gas and the oxidant gas. In this case, for example, pure water such as battery cooling water whose temperature has risen by recovering the heat of the fuel cell stack is indirectly contacted with fuel gas or oxidant gas through the moisture permeable membrane, or pure water is used. There is a method of direct contact with fuel gas or oxidant gas.

純水を燃料ガスや酸化剤ガスと直接接触させる方法は直接接触式熱交換器という形で実現でき、流体を直接接触させる事で得られる高い熱伝達率が燃料ガスや酸化剤ガスの効果的な加湿につながる。また、燃料ガスや酸化剤ガスと電池冷却水を直接接触させると電池冷却水に含まれる二酸化炭素が燃料ガスや酸化剤ガスへ移動するため、純水ラインの二酸化炭素濃度を低く保つために必要であった脱炭酸塔を燃料電池システムから削除できる。   The method of bringing pure water into direct contact with fuel gas and oxidant gas can be realized in the form of a direct contact heat exchanger, and the high heat transfer coefficient obtained by direct contact with fluid is effective for fuel gas and oxidant gas. It leads to proper humidification. Also, if carbon dioxide contained in the battery cooling water moves to the fuel gas or oxidant gas when the fuel gas or oxidant gas is brought into direct contact with the battery cooling water, it is necessary to keep the carbon dioxide concentration in the pure water line low. Can be removed from the fuel cell system.

純水を用いて燃料ガスや酸化剤ガスを加湿する直接接触式熱交換器として、容器に溜めた純水の中にガスを通過させる方法がある。この方法は、必要な加湿能力に合わせた深さの水中に燃料ガスまたは酸化剤ガスを流すため、水頭圧分の高い圧力損失が燃料ガスまたは酸化剤ガスに伴う。また、純水をスプレーノズルなどからガスの流れの中に散水して直接接触を行う方法は、純水を噴霧する際に高い圧力損失(一流体ノズルの場合は純水の圧力損失、二流体ノズルの場合は燃料ガスまたは酸化剤ガスの圧力損失)が発生する。   As a direct contact heat exchanger for humidifying a fuel gas and an oxidant gas using pure water, there is a method of passing the gas through pure water stored in a container. In this method, since the fuel gas or the oxidant gas is flowed into the water having a depth corresponding to the required humidification capacity, a high pressure loss corresponding to the head pressure is accompanied by the fuel gas or the oxidant gas. In addition, the method of direct contact by spraying pure water into the gas flow from a spray nozzle or the like is a high pressure loss when spraying pure water (in the case of one fluid nozzle, the pressure loss of pure water, two fluids) In the case of a nozzle, a pressure loss of fuel gas or oxidant gas is generated.

圧力損失が低い直接接触式熱交換器として、充填材の表面で燃料ガスまたは酸化剤ガスと純水とを接触させる方式が挙げられる。この場合、燃料ガスまたは酸化剤ガスは筐体下部から上部へ充填材の隙間を通って流れ、純水は筐体上部から下部へ充填材に沿って流れる。しかし、ランダムに配置された充填材の表面では、純水が優先的に流れる流路が発生し、筐体全体に純水が分散しない。そのため、純水と接触せずに直接接触式熱交換器を通過する燃料ガスや酸化剤ガスの割合が大きくなる。その結果、十分な加湿能力を確保するためには機器の全長を高くする事が必要になる。   As a direct contact heat exchanger with low pressure loss, there is a method in which fuel gas or oxidant gas and pure water are brought into contact with each other on the surface of the filler. In this case, the fuel gas or the oxidant gas flows from the lower part of the casing to the upper part through the gap of the filler, and the pure water flows along the filler from the upper part of the casing to the lower part. However, a flow path through which pure water preferentially flows is generated on the surface of the randomly disposed filler, and the pure water is not dispersed throughout the casing. Therefore, the ratio of the fuel gas and oxidant gas that pass through the direct contact heat exchanger without contacting with pure water increases. As a result, it is necessary to increase the overall length of the device in order to ensure sufficient humidification capability.

特開2004−273350号公報JP 2004-273350 A 特開2004−31073号公報JP 2004-31073 A 特開2004−363027号公報JP 2004-363027 A 特開2007−227252号公報JP 2007-227252 A 特開2005−294116号公報JP-A-2005-294116

定置用燃料電池システムでは、燃料ガスや酸化剤ガスは通常ブロワによって昇圧されて燃料電池スタックに送り込まれる。このため、加湿装置の設置による燃料ガスラインや酸化剤ガスラインの圧力損失上昇はブロワ動力の拡大につながる。同じように、加湿装置による純水ラインの圧力損失上昇はポンプ動力に影響する。   In the stationary fuel cell system, the fuel gas and the oxidant gas are usually pressurized by a blower and sent to the fuel cell stack. For this reason, the increase in pressure loss of the fuel gas line and the oxidant gas line due to the installation of the humidifying device leads to expansion of blower power. Similarly, the increase in pressure loss in the pure water line by the humidifier affects the pump power.

燃料電池システムにおいて、補機動力の増加はシステム全体の発電効率の低下につながるため、ブロワやポンプの動力低減に向けた、加湿装置の圧力損失低減は重要な設計要素である。さらに、燃料電池システム内での加湿装置の設置スペースを削減するために、加湿装置を小型化することが望まれる。しかし、燃料ガスや酸化剤ガス加湿用の直接接触式熱交換器において、機器の低圧力損失化と小型化の両立が困難である。   In a fuel cell system, an increase in auxiliary power leads to a decrease in power generation efficiency of the entire system, so reducing the pressure loss of the humidifier for reducing the power of the blower and pump is an important design factor. Furthermore, in order to reduce the installation space of the humidifier in the fuel cell system, it is desired to reduce the size of the humidifier. However, in a direct contact heat exchanger for humidifying fuel gas and oxidant gas, it is difficult to achieve both low pressure loss and downsizing of equipment.

そこで、本発明が解決しようとする課題は、直接接触式熱交換器を小型化かつ低圧力損失化することである。   Therefore, the problem to be solved by the present invention is to reduce the size and the pressure loss of the direct contact heat exchanger.

実施形態の直接接触式熱交換器は、頂部から加湿水が供給される水入口と底部から前記加湿水が排出される水出口と側面からガスが流入するガス入口と前記側面の前記ガス入口よりも高い位置から前記ガスが流出するガス出口とが形成された筐体と、前記ガスが前記ガス入口から旋回しながら上昇して前記ガス出口から流出されるガス流路が形成され、かつ、前記加湿水が前記水入口から旋回しながら下降して前記水出口から排出され、前記ガス流路と同じ空間で反対向きの水流路が形成されるように、前記筐体の内周に接して前記筐体の底部から頂部に向かって1周目からm周目(mは2以上)まで順に螺旋状に形成されたm周分の螺旋部を有する螺旋板と、を具備することを特徴とする。   The direct contact heat exchanger of the embodiment includes a water inlet to which humidified water is supplied from the top, a water outlet from which the humidified water is discharged from the bottom, a gas inlet from which gas flows in from the side, and the gas inlet on the side. A housing formed with a gas outlet through which the gas flows out from a higher position, a gas flow path through which the gas rises while swirling from the gas inlet and flows out of the gas outlet, and The humidified water descends while swirling from the water inlet and is discharged from the water outlet, and is in contact with the inner periphery of the casing so as to form a water channel in the opposite direction in the same space as the gas channel. A spiral plate having a spiral portion corresponding to m turns formed in a spiral shape from the first turn to the mth turn (m is 2 or more) from the bottom to the top of the housing. .

また、実施形態の固体高分子型燃料電池システムは、直接接触式熱交換器と、前記直接接触式熱交換器で加湿されたガスが燃料極および酸化剤極のいずれかに供給される燃料電池スタックと、を具備し、前記直接接触式熱交換器は、頂部から加湿水が供給される水入口と底部から前記加湿水が排出される水出口と側面からガスが流入するガス入口と前記側面の前記ガス入口よりも高い位置から前記ガスが流出するガス出口とが形成された筐体と、前記ガスが前記ガス入口から旋回しながら上昇して前記ガス出口から流出されるガス流路が形成され、かつ、前記加湿水が前記水入口から旋回しながら下降して前記水出口から排出され、前記ガス流路と同じ空間で反対向きの水流路が形成されるように、前記筐体の内周に接して前記筐体の底部から頂部に向かって1周目からm周目(mは2以上の整数)まで順に螺旋状に形成されたm周分の螺旋部を有する螺旋板と、を具備することを特徴とする。   The solid polymer fuel cell system according to the embodiment includes a direct contact heat exchanger and a fuel cell in which gas humidified by the direct contact heat exchanger is supplied to either the fuel electrode or the oxidant electrode. The direct contact heat exchanger includes a water inlet to which humidified water is supplied from the top, a water outlet from which the humidified water is discharged from the bottom, a gas inlet from which gas flows in from the side, and the side A gas outlet through which the gas flows out from a position higher than the gas inlet and a gas flow path through which the gas ascends from the gas inlet and flows out of the gas outlet are formed. And the humidified water descends while swirling from the water inlet and is discharged from the water outlet, so that an opposite water channel is formed in the same space as the gas channel. The bottom of the housing in contact with the circumference m-th revolution from the first lap towards the top (m is an integer of 2 or more), characterized by comprising a helical plate with m rotations of the spiral portion formed in a spiral shape in order to, a.

本発明によれば、直接接触式熱交換器を小型化かつ低圧力損失化することができる。   According to the present invention, the direct contact heat exchanger can be reduced in size and reduced in pressure loss.

第1の実施形態に係る直接接触式熱交換器の立断面である。It is an elevation section of a direct contact type heat exchanger concerning a 1st embodiment. 図2は、図1のII−II矢視立断面図である。2 is a sectional view taken along the line II-II in FIG. 図1において水流路を示す図である。It is a figure which shows a water flow path in FIG. 図1においてガス流路を示す図である。It is a figure which shows a gas flow path in FIG. 第2の実施形態に係る直接接触式熱交換器であり、図1のV−V矢視平断面図である。It is a direct contact type heat exchanger which concerns on 2nd Embodiment, and is a VV arrow flat sectional view of FIG. 第3の実施形態に係る直接接触式熱交換器(n=2)の立断面である。It is an elevation section of a direct contact type heat exchanger (n = 2) concerning a 3rd embodiment. 図6において水流路を示す図である。It is a figure which shows a water flow path in FIG. 図6においてガス流路を示す図である。It is a figure which shows a gas flow path in FIG. 図6においてガス流路を示す図である。It is a figure which shows a gas flow path in FIG. 図6のX−X矢視平断面図である。FIG. 7 is a cross-sectional plan view taken along line XX in FIG. 6. 第3の実施形態に係る直接接触式熱交換器の変形例の立断面である。It is an elevation section of a modification of a direct contact type heat exchanger concerning a 3rd embodiment. 第4の実施形態に係る直接接触式熱交換器(n=2)の立断面図である。It is an elevation sectional view of a direct contact type heat exchanger (n = 2) concerning a 4th embodiment. 図12において水流路を示す図である。It is a figure which shows a water flow path in FIG. 図12においてガス流路を示す図である。It is a figure which shows a gas flow path in FIG. 第4の実施形態に係る直接接触式熱交換器(n=3)の立断面図である。It is an elevation sectional view of a direct contact type heat exchanger (n = 3) concerning a 4th embodiment. 第5の実施形態に係る直接接触式熱交換器であり、図12のXVI−XVI矢視平断面図である。It is a direct contact type heat exchanger concerning a 5th embodiment, and is a XVI-XVI arrow plane sectional view of Drawing 12. 第6の実施形態に係る直接接触式熱交換器である。It is a direct contact type heat exchanger concerning a 6th embodiment. 第7の実施形態に係る直接接触式熱交換器である。It is a direct contact type heat exchanger concerning a 7th embodiment. 各実施形態に係る直接接触式熱交換器に適用される固体高分子型燃料電池システムを示すブロック図である。It is a block diagram which shows the polymer electrolyte fuel cell system applied to the direct contact type heat exchanger which concerns on each embodiment.

本発明に係る直接接触式熱交換器の実施形態を、図面を参照して説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複する説明は省略する。   An embodiment of a direct contact heat exchanger according to the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

図19は、各実施形態に係る直接接触式熱交換器に適用される固体高分子型燃料電池システムの一例を示すブロック図である。図19に示されるように、固体高分子型燃料電池システムは、燃料処理装置100と、燃料電池スタック200と、を具備している。燃料処理装置100は、改質器102と、一酸化炭素(以下、CO)変成器103と、CO除去器104と、直接接触式熱交換器1Aおよび1Bと、を具備している。   FIG. 19 is a block diagram showing an example of a polymer electrolyte fuel cell system applied to the direct contact heat exchanger according to each embodiment. As shown in FIG. 19, the polymer electrolyte fuel cell system includes a fuel processing apparatus 100 and a fuel cell stack 200. The fuel processing apparatus 100 includes a reformer 102, a carbon monoxide (hereinafter, CO) converter 103, a CO remover 104, and direct contact heat exchangers 1A and 1B.

直接接触式熱交換器1Aは、可燃性の燃料ガスと水蒸気とを取り入れて、改質器102に供給する。改質器102は、直接接触式熱交換器1Aからの燃料ガスおよび水蒸気と空気とを取り入れて、水素を含む改質燃料ガスを生成する。CO変成器103は、改質器102で生成された改質燃料ガス中のCOを低減して、CO変成改質燃料ガスを生成する。CO除去器104は、CO変成器103により生成されたCO変成改質燃料ガスと、水蒸気と、空気とを取り入れて、COを選択的に酸化燃焼させて二酸化炭素にすることにより、COを除去したCO除去改質燃料ガスを生成する。このCO除去改質燃料ガスは燃料電池スタック200のアノード極に供給される。   The direct contact heat exchanger 1 </ b> A takes in combustible fuel gas and water vapor and supplies them to the reformer 102. The reformer 102 takes in the fuel gas, the water vapor, and the air from the direct contact heat exchanger 1A, and generates a reformed fuel gas containing hydrogen. The CO converter 103 reduces CO in the reformed fuel gas generated by the reformer 102 to generate a CO-converted reformed fuel gas. The CO remover 104 removes CO by taking CO modified reformed fuel gas, water vapor, and air generated by the CO converter 103 and selectively oxidizing and burning the CO to carbon dioxide. The produced CO removal reformed fuel gas is generated. This CO removal reformed fuel gas is supplied to the anode electrode of the fuel cell stack 200.

直接接触式熱交換器1Bは、空気と水蒸気とを取り入れて、空気を含む酸化剤ガスを生成する。この酸化剤ガスは燃料電池スタック200のカソード極に供給される。   The direct contact heat exchanger 1B takes in air and water vapor and generates an oxidant gas containing air. This oxidant gas is supplied to the cathode electrode of the fuel cell stack 200.

燃料電池スタック200は、カソード極に供給される酸化剤ガスとアノード極に供給される燃料ガス(CO除去改質燃料ガス)とが電気化学的に反応することにより、酸素と水素から水を生成する過程で電気エネルギーを発生させる。   The fuel cell stack 200 generates water from oxygen and hydrogen by an electrochemical reaction between an oxidant gas supplied to the cathode electrode and a fuel gas (CO removal reformed fuel gas) supplied to the anode electrode. Electric energy is generated in the process.

直接接触式熱交換器1Aおよび1Bは同じ構造である。このため、直接接触式熱交換器1Bについてのみ説明し、この場合、直接接触式熱交換器1Bに用いられるガスとして酸化剤ガスを例にし、本発明に係る直接接触式熱交換器の実施形態を説明する。また、以下の説明では直接接触式熱交換器1Bを単に直接接触式熱交換器1と称する。   The direct contact heat exchangers 1A and 1B have the same structure. Therefore, only the direct contact heat exchanger 1B will be described. In this case, an oxidant gas is used as an example of the gas used in the direct contact heat exchanger 1B, and the embodiment of the direct contact heat exchanger according to the present invention is described. Will be explained. In the following description, the direct contact heat exchanger 1B is simply referred to as a direct contact heat exchanger 1.

[第1の実施形態]
図1は、第1の実施形態に係る直接接触式熱交換器1の立断面である。図2は、図1のII−II矢視立断面図である。図3は、図1において水流路を示す図である。図4は、図1においてガス流路を示す図である。
[First Embodiment]
FIG. 1 is an elevational view of a direct contact heat exchanger 1 according to the first embodiment. 2 is a sectional view taken along the line II-II in FIG. FIG. 3 is a view showing a water flow path in FIG. FIG. 4 is a diagram showing a gas flow path in FIG.

図1に示されるように、本実施形態の直接接触式熱交換器1は、筐体2と、リキッドドレイナー7と、芯30と、螺旋板40とを具備している。   As shown in FIG. 1, the direct contact heat exchanger 1 of the present embodiment includes a housing 2, a liquid drainer 7, a core 30, and a spiral plate 40.

筐体2は、筒状、たとえば円筒型に形成されている。この筐体2は、筐体2の頂部には水入口5が形成され、加湿に用いられる加湿水20が水入口5から供給される。加湿水20は、純水であることが好ましい。筐体2の底部には水出口6が形成され、加湿水20が水出口6から排出される。筐体2の側面にはガス入口3が形成され、酸化剤ガスがガス入口3から流入する。筐体2の側面の頂部近く(少なくともガス入口3よりも高い位置)にはガス出口4が形成され、加湿された酸化剤ガスがガス出口4から流出する。   The housing 2 is formed in a cylindrical shape, for example, a cylindrical shape. In the housing 2, a water inlet 5 is formed at the top of the housing 2, and humidified water 20 used for humidification is supplied from the water inlet 5. The humidified water 20 is preferably pure water. A water outlet 6 is formed at the bottom of the housing 2, and humidified water 20 is discharged from the water outlet 6. A gas inlet 3 is formed on the side surface of the housing 2, and oxidant gas flows from the gas inlet 3. A gas outlet 4 is formed near the top of the side surface of the housing 2 (at least at a position higher than the gas inlet 3), and the humidified oxidant gas flows out from the gas outlet 4.

水出口6には、リキッドドレイナー7が設けられている。リキッドドレイナー7は、ガスの漏出を防止し、かつ、水の排出を可能にする。ここで、リキッドドレイナー7の代わりに、Uシールを設けてもよい。   A liquid drainer 7 is provided at the water outlet 6. The liquid drainer 7 prevents gas leakage and allows water to be discharged. Here, a U-seal may be provided instead of the liquid drainer 7.

芯30は、筒状、たとえば円筒型に形成されている。この芯30は、筐体2内に形成され、筐体2の底部から頂部に向かって延びている。   The core 30 is formed in a cylindrical shape, for example, a cylindrical shape. The core 30 is formed in the housing 2 and extends from the bottom of the housing 2 toward the top.

螺旋板40は、筐体2の内周に接して芯30の外周に巻きつけられながら筐体2の底部から頂部に向かって1周目からm周目(mは1より大きい数であるが、整数でなくてもよい。)まで順に螺旋状に形成されたm周分の螺旋部41を有している。   The spiral plate 40 is in contact with the inner periphery of the housing 2 and is wound around the outer periphery of the core 30 so that the first to mth turns from the bottom to the top of the housing 2 (where m is a number greater than 1). , It does not have to be an integer).

図2に示されるように、螺旋板40は、たとえば芯30に対する角度αが90度で設置され、芯30の外周に接する部分から筐体2の内周に接する部分に向かって平行に形成されている。   As shown in FIG. 2, the spiral plate 40 is installed, for example, at an angle α of 90 degrees with respect to the core 30, and is formed in parallel from a portion in contact with the outer periphery of the core 30 toward a portion in contact with the inner periphery of the housing 2. ing.

図3および図4に示されるように、この螺旋板40は、m周分の螺旋部41により、ガスがガス入口3から旋回しながら上昇してガス出口4から流出されるガス流路21を形成し、かつ、加湿水20が水入口5から旋回しながら下降して水出口6から排出され、ガス流路21と同じ空間で反対向きの水流路22を形成する。   As shown in FIGS. 3 and 4, this spiral plate 40 has a gas flow path 21 through which gas rises while turning from the gas inlet 3 and flows out from the gas outlet 4 by a spiral portion 41 of m circumferences. Then, the humidified water 20 descends while swirling from the water inlet 5 and is discharged from the water outlet 6, thereby forming a water channel 22 in the opposite direction in the same space as the gas channel 21.

水流路22における加湿水20の流れについて説明する。   The flow of the humidified water 20 in the water channel 22 will be described.

図3に示されるように、加湿水20は、水入口5から供給されると、まず、螺旋板40の最も高い位置のm周目の螺旋部41に落下し、その螺旋部41の上面を伝って芯30の外周を回りながら重力により下方に流れ、(m−1)周目の螺旋部41に伝わる。(m−1)周目の螺旋部41に流れた加湿水20は、その螺旋部41の上面を伝って芯30の外周を回りながら重力により下方に流れ、(m−2)周目の螺旋部41に伝わる。ここで、加湿水20が螺旋板40の上述の螺旋部41以外に位置する螺旋部41に伝わる場合でも、加湿水20の流れは上述と同様である。   As shown in FIG. 3, when the humidified water 20 is supplied from the water inlet 5, first, the humidified water 20 falls to the m-th spiral portion 41 at the highest position of the spiral plate 40, and the upper surface of the spiral portion 41 is removed. It travels downward by gravity while traveling around the outer periphery of the core 30, and is transmitted to the spiral portion 41 on the (m−1) th cycle. (M-1) The humidified water 20 that has flowed to the spiral part 41 of the circumference flows downward by gravity while traveling around the outer periphery of the core 30 along the upper surface of the spiral part 41, and (m-2) the spiral of the circumference Transmitted to part 41. Here, even when the humidified water 20 is transmitted to the spiral portion 41 other than the spiral portion 41 of the spiral plate 40, the flow of the humidified water 20 is the same as described above.

このようにして、水流路22において、加湿水20は、水入口5から旋回しながら下降して水出口6から排出される。   In this way, in the water flow path 22, the humidified water 20 descends while turning from the water inlet 5 and is discharged from the water outlet 6.

次に、ガス流路21における酸化剤ガスの流れについて説明する。   Next, the flow of the oxidant gas in the gas flow path 21 will be described.

図4に示されるように、酸化剤ガスは、ガス入口3から供給されて、まず、螺旋板40の1周目の螺旋部41と2周目の螺旋部41との間に流れる。1周目の螺旋部41と2周目の螺旋部41との間の酸化剤ガスは、芯30の外周を回りながら上昇し、2周目の螺旋部41と3周目の螺旋部41との間に流れる。ここで、ガスが螺旋板40の上述の2個の螺旋部41以外に位置する2個の螺旋部41の間に伝わる場合でも、ガスの流れは上述と同様である。   As shown in FIG. 4, the oxidant gas is supplied from the gas inlet 3 and first flows between the spiral portion 41 of the first round and the spiral portion 41 of the second round of the spiral plate 40. The oxidant gas between the first-round spiral portion 41 and the second-round spiral portion 41 rises while rotating around the outer periphery of the core 30, and the second-round spiral portion 41 and the third-round spiral portion 41 Flowing between. Here, even when the gas is transmitted between the two spiral portions 41 other than the two spiral portions 41 of the spiral plate 40, the gas flow is the same as described above.

このようにして、ガス流路21において、酸化剤ガスは、ガス入口3から旋回しながら上昇してガス出口4から排出される。この際、酸化剤ガスは、螺旋板40の上に保持された加湿水20と接触する。これにより、酸化剤ガスは加湿される。加湿された酸化剤ガスは、燃料電池の酸化剤極に供給される。   Thus, in the gas flow path 21, the oxidant gas rises while turning from the gas inlet 3 and is discharged from the gas outlet 4. At this time, the oxidizing gas comes into contact with the humidified water 20 held on the spiral plate 40. Thereby, the oxidant gas is humidified. The humidified oxidant gas is supplied to the oxidant electrode of the fuel cell.

本実施形態において、螺旋板40が筐体2の内周に接して芯30の外周に巻きつけられながら螺旋状に形成されているため、ガス流路の圧力損失の増加にはほとんど寄与しない上に、効果的に酸化剤ガスの加湿および加湿水20と酸化剤ガスとの間での全熱交換を実現する。その結果、加湿能力が増大し、それに伴って小型化が可能になる。したがって、本実施形態によれば、低圧力損失かつ小型の直接接触式熱交換器1を提供できる。   In the present embodiment, the spiral plate 40 is spirally formed while being wound around the outer periphery of the core 30 in contact with the inner periphery of the housing 2, and therefore hardly contributes to an increase in pressure loss in the gas flow path. In addition, the humidification of the oxidant gas and the total heat exchange between the humidified water 20 and the oxidant gas are effectively realized. As a result, the humidifying capacity increases, and accordingly, downsizing is possible. Therefore, according to this embodiment, the low pressure loss and a small direct contact type heat exchanger 1 can be provided.

特に、固体高分子型燃料電池システムにおける直接接触式熱交換器では、加湿水20の流量が非常に小さく、かつ、流れるガスの流量が非常に大きいため、低圧力損失への要求は高い。たとえば筐体2内に平行な板を複数枚設けて加湿水20と酸化剤ガスとを蛇行させる方法では、酸化剤ガスが筐体の内側面に衝突する際に、若干、圧力損失が生じるが、本実施形態のように筐体2内に芯30と螺旋板40とを設けて加湿水20と酸化剤ガスとを旋回させる方法では、酸化剤ガスが筐体の内側面に衝突することによる圧力損失を防止または低減することができる。このため、本実施形態の直接接触式熱交換器1が有効である。   In particular, in the direct contact heat exchanger in the polymer electrolyte fuel cell system, the flow rate of the humidified water 20 is very small and the flow rate of the flowing gas is very large, so that the demand for low pressure loss is high. For example, in the method of providing a plurality of parallel plates in the housing 2 and causing the humidified water 20 and the oxidant gas to meander, there is a slight pressure loss when the oxidant gas collides with the inner surface of the housing. In the method of providing the core 30 and the spiral plate 40 in the housing 2 and turning the humidified water 20 and the oxidant gas as in the present embodiment, the oxidant gas collides with the inner surface of the housing. Pressure loss can be prevented or reduced. For this reason, the direct contact type heat exchanger 1 of this embodiment is effective.

また、本実施形態において、螺旋板40の2個の螺旋部41の間隔が狭すぎると、2個の螺旋部41の間を加湿水20が完全に塞いでしまい、酸化剤ガスが2個の螺旋部41の間を通過できなくなる可能性がある。そこで、2個の螺旋部41の間隔は、5mm〜20mm程度が適切である。   Moreover, in this embodiment, when the space | interval of the two spiral parts 41 of the spiral plate 40 is too narrow, the humidified water 20 will completely block between the two spiral parts 41, and the oxidant gas will be two. There is a possibility that it cannot pass between the spiral portions 41. Therefore, the interval between the two spiral portions 41 is appropriately about 5 mm to 20 mm.

また、本実施形態においては、酸化剤ガスを加湿する直接接触式熱交換器1について説明したが、燃料ガスを加湿する場合にも適用可能である。   Moreover, in this embodiment, although the direct contact type heat exchanger 1 which humidifies oxidant gas was demonstrated, it is applicable also when humidifying fuel gas.

[第2の実施形態]
図5は、第2の実施形態に係る直接接触式熱交換器1であり、図1のV−V矢視平断面図である。
[Second Embodiment]
FIG. 5 is a direct contact heat exchanger 1 according to the second embodiment, and is a cross-sectional view taken along line VV in FIG. 1.

図5に示されるように、本実施形態の直接接触式熱交換器1は、第1の実施形態の構成に対して筐体2、芯30および螺旋板40の形状が異なる。筐体2と芯30は、その厚み方向の面が扁平型になるように形成されている。螺旋板40は、筐体2と芯30の形状に合わせて、筐体2の内周に接して芯30の外周に巻きつけられながら螺旋状に形成されている。   As shown in FIG. 5, the direct contact heat exchanger 1 of the present embodiment is different in the shapes of the housing 2, the core 30 and the spiral plate 40 from the configuration of the first embodiment. The housing 2 and the core 30 are formed so that the surfaces in the thickness direction are flat. The spiral plate 40 is formed in a spiral shape while being wound around the outer periphery of the core 30 in contact with the inner periphery of the casing 2 in accordance with the shapes of the casing 2 and the core 30.

第1の実施形態と同様に、水流路22において、加湿水20は、螺旋板40の1周分の螺旋部41の上面を伝って芯30の外周を回りながら、その螺旋部41の真下の螺旋部41に伝わる。   As in the first embodiment, in the water flow path 22, the humidified water 20 travels around the outer periphery of the core 30 along the upper surface of the spiral portion 41 for one round of the spiral plate 40, and is directly below the spiral portion 41. It is transmitted to the spiral part 41.

ガス流路21において、酸化剤ガスは、螺旋板40の1周分の螺旋部41の上に芯30の外周を回りながら上昇し、その螺旋部41の真上の螺旋部41に流れる。   In the gas flow path 21, the oxidant gas rises while turning around the outer periphery of the core 30 on the spiral portion 41 of one turn of the spiral plate 40 and flows to the spiral portion 41 directly above the spiral portion 41.

本実施形態において、筐体2と芯30の厚み方向の面を扁平型に引き伸ばすことにより、第1の実施形態に比べて水流路22とガス流路21とを延長することができる。その結果、加湿能力がさらに増大し、直接接触式熱交換器1の性能を向上させることができる。   In this embodiment, the water flow path 22 and the gas flow path 21 can be extended compared with 1st Embodiment by extending the surface of the thickness direction of the housing | casing 2 and the core 30 to a flat type. As a result, the humidifying capacity is further increased, and the performance of the direct contact heat exchanger 1 can be improved.

[第3の実施形態]
図6は、第3の実施形態に係る直接接触式熱交換器1の立断面である。図7は、図6において水流路を示す図である。図8および図9は、図6においてガス流路を示す図である。
[Third Embodiment]
FIG. 6 is an elevational section of the direct contact heat exchanger 1 according to the third embodiment. FIG. 7 is a diagram showing the water flow path in FIG. 8 and 9 are diagrams showing gas flow paths in FIG.

図6に示されるように、本実施形態の直接接触式熱交換器1では、第1および第2の実施形態に対して、螺旋板40の数と芯30の形状とが異なる。本実施形態の直接接触式熱交換器1では、螺旋板40は、n個(nは2以上の整数)設けられている。ここで、螺旋板40の個数nは2であるものとする。ここで、2個の螺旋板40を第1螺旋板40aおよび第2螺旋板40bと称する。   As shown in FIG. 6, in the direct contact heat exchanger 1 of the present embodiment, the number of spiral plates 40 and the shape of the core 30 are different from those of the first and second embodiments. In the direct contact heat exchanger 1 of the present embodiment, n spiral plates 40 (n is an integer of 2 or more) are provided. Here, it is assumed that the number n of the spiral plates 40 is two. Here, the two spiral plates 40 are referred to as a first spiral plate 40a and a second spiral plate 40b.

第1螺旋板40aおよび第2螺旋板40bは、筐体2の内周に接して芯30の外周に巻きつけられながら筐体2の底部から頂部に向かって1周目からm周目まで順に螺旋状に形成されたm周分の螺旋部41を有している。具体的には、第1螺旋板40aおよび第2螺旋板40bが設けられる場合、(2×m)周分の螺旋部41が筐体2の内周に接して芯30の外周に巻きつけられる。この場合、(2×m)周分の螺旋部41のうちの奇数周分の螺旋部41は、第1螺旋板40aが有するm周分の螺旋部41であり、(2×m)周分の螺旋部41のうちの偶数周分の螺旋部41は、第2螺旋板40bが有するm周分の螺旋部41である。   The first spiral plate 40 a and the second spiral plate 40 b are in order from the first to the m-th cycle from the bottom to the top of the housing 2 while being wound around the outer periphery of the core 30 in contact with the inner periphery of the housing 2. It has the spiral part 41 for m circumferences formed in a spiral. Specifically, when the first spiral plate 40 a and the second spiral plate 40 b are provided, the spiral portion 41 of (2 × m) circumferences is wound around the outer periphery of the core 30 in contact with the inner periphery of the housing 2. . In this case, the odd-numbered spiral portions 41 of the (2 × m) spiral portions 41 are m spiral portions 41 of the first spiral plate 40a, and (2 × m) spiral portions 41 are included. Among the spiral portions 41, the spiral portions 41 for the even number of turns are the spiral portions 41 for the m turns of the second spiral plate 40b.

芯30には、第1螺旋板40aおよび第2螺旋板40bのそれぞれにおける各周分の螺旋部41のそれぞれに対して、芯30の厚み方向に貫通する貫通孔31が設けられている。   The core 30 is provided with a through hole 31 penetrating in the thickness direction of the core 30 with respect to each of the spiral portions 41 of each circumference in each of the first spiral plate 40a and the second spiral plate 40b.

図7に示されるように、その貫通孔31の各々は、第1螺旋板40aおよび第2螺旋板40bのそれぞれにおける各周分の螺旋部41のうちの1周分の螺旋部41の第1地点から1周分の螺旋部41の真下の螺旋部41の第2地点まで芯30内で繋ぎ、1周分の螺旋部41の上面を加湿水20が1周しないうちに真下の螺旋部41に加湿水20を伝える。第1螺旋板40aおよび第2螺旋板40bは、水入口5から供給される加湿水20がその上面と貫通孔31とに流れることにより1つの水流路22を形成する。   As shown in FIG. 7, each of the through holes 31 has a first spiral portion 41 corresponding to one of the spiral portions 41 corresponding to each of the first spiral plate 40 a and the second spiral plate 40 b. From the point to the second point of the spiral part 41 just below the spiral part 41 for one turn, the core 30 is connected within the core 30 before the humidified water 20 makes one round of the upper surface of the spiral part 41 for one round. Tell humidified water 20 to The first spiral plate 40 a and the second spiral plate 40 b form one water flow path 22 when the humidified water 20 supplied from the water inlet 5 flows to the upper surface and the through hole 31.

図8および図9に示されるように、第1螺旋板40aおよび第2螺旋板40bは、一対一に対応した2個のガス流路21、すなわち、第1ガス流路21aおよび第2ガス流路21bを形成する。   As shown in FIGS. 8 and 9, the first spiral plate 40a and the second spiral plate 40b have two gas flow paths 21 corresponding to one to one, that is, the first gas flow path 21a and the second gas flow. A path 21b is formed.

水流路22における加湿水20の流れについて説明する。   The flow of the humidified water 20 in the water channel 22 will be described.

図7に示されるように、加湿水20は、水入口5から供給されると、まず、第2螺旋板40bのm周目の螺旋部41に落下し、その螺旋部41の上面を伝って芯30の外周を1周しないうちに、第1螺旋板40aのm周目の螺旋部41と第2螺旋板40bのm周目の螺旋部41とを繋ぐ貫通孔31により、第1螺旋板40aのm周目の螺旋部41に伝わる。第1螺旋板40aのm周目の螺旋部41に流れた加湿水20は、その螺旋部41の上面を伝って芯30の外周を1周しないうちに、第2螺旋板40bの(m−1)周目の螺旋部41と第1螺旋板40aのm周目の螺旋部41とを繋ぐ貫通孔31により、第2螺旋板40bの(m−1)周目の螺旋部41に伝わる。ここで、加湿水20が螺旋板40の上述の螺旋部41以外に位置する螺旋部41に伝わる場合でも、加湿水20の流れは上述と同様である。   As shown in FIG. 7, when the humidified water 20 is supplied from the water inlet 5, first, the humidified water 20 falls to the m-th spiral portion 41 of the second spiral plate 40 b and travels along the upper surface of the spiral portion 41. The first spiral plate is formed by the through-hole 31 that connects the m-th spiral portion 41 of the first spiral plate 40a and the m-th spiral portion 41 of the second spiral plate 40b before making one round of the outer periphery of the core 30. It is transmitted to the spiral part 41 of the m-th circumference of 40a. The humidified water 20 that has flowed into the m-th spiral portion 41 of the first spiral plate 40a travels along the upper surface of the spiral portion 41 and does not make one round of the outer periphery of the core 30 until the (m− 1) It is transmitted to the (m−1) -round spiral portion 41 of the second spiral plate 40b through the through-hole 31 that connects the spiral portion 41 of the circumference and the m-th spiral portion 41 of the first spiral plate 40a. Here, even when the humidified water 20 is transmitted to the spiral portion 41 other than the spiral portion 41 of the spiral plate 40, the flow of the humidified water 20 is the same as described above.

このようにして、水流路22において、加湿水20は、第1螺旋板40aおよび第2螺旋板40bの上面と貫通孔31とに流れることにより、水入口5から旋回しながら下降して水出口6から排出される。   In this way, in the water flow path 22, the humidified water 20 descends while swirling from the water inlet 5 by flowing through the upper surfaces of the first spiral plate 40 a and the second spiral plate 40 b and the through hole 31. 6 is discharged.

次に、第1ガス流路21aおよび第2ガス流路21bにおける酸化剤ガスの流れについて説明する。   Next, the flow of the oxidant gas in the first gas channel 21a and the second gas channel 21b will be described.

図8に示されるように、第1ガス流路21aにおいて、酸化剤ガスは、ガス入口3から供給されたとき、第1螺旋板40aの1周目の螺旋部41と第2螺旋板40bの1周目の螺旋部41との間に流れる。その酸化剤ガスは、芯30の外周を回りながら上昇し、第1螺旋板40aの2周目の螺旋部41と第2螺旋板40bの2周目の螺旋部41との間に流れる。ここで、ガスが上述の2個の螺旋部41以外に位置する2個の螺旋部41の間に伝わる場合でも、ガスの流れは上述と同様である。   As shown in FIG. 8, in the first gas flow path 21a, when the oxidant gas is supplied from the gas inlet 3, the first spiral plate 41a has a first spiral portion 41 and a second spiral plate 40b. It flows between the spiral portion 41 of the first round. The oxidant gas ascends around the outer periphery of the core 30 and flows between the second spiral portion 41 of the first spiral plate 40a and the second spiral portion 41 of the second spiral plate 40b. Here, even when the gas is transmitted between the two spiral portions 41 other than the two spiral portions 41 described above, the gas flow is the same as described above.

また、図9に示されるように、第2ガス流路21bにおいて、酸化剤ガスは、ガス入口3から供給されたとき、第2螺旋板40bの1周目の螺旋部41と第1螺旋板40aの2周目の螺旋部41との間に流れる。その酸化剤ガスは、芯30の外周を回りながら上昇し、第2螺旋板40bの2周目の螺旋部41と第1螺旋板40aの3周目の螺旋部41との間に流れる。ここで、ガスが上述の2個の螺旋部41以外に位置する2個の螺旋部41の間に伝わる場合でも、ガスの流れは上述と同様である。   As shown in FIG. 9, when the oxidant gas is supplied from the gas inlet 3 in the second gas flow path 21 b, the first spiral plate 41 and the first spiral plate 41 of the second spiral plate 40 b. It flows between the spiral portion 41 of the second round of 40a. The oxidant gas rises while rotating around the outer periphery of the core 30 and flows between the second spiral portion 41 of the second spiral plate 40b and the third spiral portion 41 of the first spiral plate 40a. Here, even when the gas is transmitted between the two spiral portions 41 other than the two spiral portions 41 described above, the gas flow is the same as described above.

このようにして、第1ガス流路21aにおいて、酸化剤ガスは、ガス入口3から旋回し、かつ、第2ガス流路21bの1周分の螺旋部41を飛ばしながら、上昇してガス出口4から排出される。同時に、第2ガス流路21bにおいて、酸化剤ガスは、ガス入口3から旋回し、かつ、第1ガス流路21aの1周分の螺旋部41を飛ばしながら、上昇してガス出口4から排出される。この際、酸化剤ガスは、第1螺旋板40aおよび第2螺旋板40bの上に保持された加湿水20と接触する。これにより、酸化剤ガスは加湿される。加湿された酸化剤ガスは、燃料電池の酸化剤極に供給される。   In this way, in the first gas flow path 21a, the oxidant gas swirls from the gas inlet 3 and rises while skipping the spiral portion 41 for one turn of the second gas flow path 21b. 4 is discharged. At the same time, in the second gas flow path 21b, the oxidant gas swirls from the gas inlet 3 and rises and discharges from the gas outlet 4 while flying the spiral portion 41 for one turn of the first gas flow path 21a. Is done. At this time, the oxidizing gas comes into contact with the humidified water 20 held on the first spiral plate 40a and the second spiral plate 40b. Thereby, the oxidant gas is humidified. The humidified oxidant gas is supplied to the oxidant electrode of the fuel cell.

加湿水20と酸化剤ガスの流れについて、さらに詳しく説明する。図10は、図6のX−X矢視平断面図である。   The flow of the humidified water 20 and the oxidant gas will be described in more detail. 10 is a cross-sectional view taken along the line XX of FIG.

1周分の螺旋部41の領域は、第1領域42と、第2領域43とに分けられる。第1領域42は、図10中の第1地点Aから第2地点Bまでの領域であり、1周分の螺旋部41上のガス流路21と水流路22との両方の流路に用いられる。第2領域43は、図10中の第3地点Cから第4地点Dまでの領域であり、1周分の螺旋部41上のガス流路21のみ用いられる。ここで、第1領域42の流路の長さは第2領域43の流路の長さよりも長く、第1領域42の流路の高さは第2領域43の流路の高さよりも高い。   The area of the spiral portion 41 for one round is divided into a first area 42 and a second area 43. The first region 42 is a region from the first point A to the second point B in FIG. 10, and is used for both the gas channel 21 and the water channel 22 on the spiral portion 41 for one round. It is done. The second region 43 is a region from the third point C to the fourth point D in FIG. 10, and only the gas flow path 21 on the spiral portion 41 for one round is used. Here, the flow path length of the first area 42 is longer than the flow path length of the second area 43, and the height of the flow path of the first area 42 is higher than the height of the flow path of the second area 43. .

水流路22において、加湿水20は、1周分の螺旋部41の第1地点Aに設けられた貫通孔31から1周分の螺旋部41の上面を伝い、芯30の外周を1周しないうちに第2地点Bまで流れ、1周分の螺旋部41の真下の螺旋部41に設けられた貫通孔31に伝わる。第1ガス流路21aおよび第2ガス流路21bにおいて、酸化剤ガスは、1周分の螺旋部41の第2地点Bから第1地点Aに流れ、1周分の螺旋部41の2周真上の螺旋部41の第3地点Cから第4地点Dに流れる。   In the water flow path 22, the humidified water 20 travels from the through hole 31 provided at the first point A of the spiral portion 41 for one round to the upper surface of the spiral portion 41 for one round and does not make one round of the outer periphery of the core 30. It flows to the 2nd point B inside, and is transmitted to the through-hole 31 provided in the spiral part 41 just under the spiral part 41 for one round. In the first gas flow path 21a and the second gas flow path 21b, the oxidant gas flows from the second point B of the spiral portion 41 for one turn to the first point A, and is rotated twice by the spiral portion 41 for one turn. It flows from the third point C to the fourth point D of the spiral portion 41 directly above.

本実施形態において、第1螺旋板40aおよび第2螺旋板40bは、一対一に対応して第1ガス流路21aおよび第2ガス流路21bを形成しているため、第1実施形態に比べて2倍のガス流路の断面積を確保し、ガスの圧力損失を大幅に削減する。したがって、本実施形態によれば、さらなる低圧力損失かつ小型の直接接触式熱交換器1を提供できる。   In the present embodiment, the first spiral plate 40a and the second spiral plate 40b form the first gas flow path 21a and the second gas flow path 21b in a one-to-one correspondence with each other, and therefore, compared with the first embodiment. This ensures a gas gas cross-sectional area that is twice that of the gas flow and greatly reduces gas pressure loss. Therefore, according to this embodiment, a further low pressure loss and a small direct contact heat exchanger 1 can be provided.

また、本実施形態において、芯30に設けられた貫通孔31により1つの水流路22を形成しているため、水入口5を1つだけしか設置できない場合に有効である。   Further, in the present embodiment, since one water flow path 22 is formed by the through hole 31 provided in the core 30, it is effective when only one water inlet 5 can be installed.

また、本実施形態において、図10に示される第2領域43上で加湿水20が第4地点Dから第3地点Cに流れないように、第2領域43の勾配を変えてもよい。図11は、第3の実施形態に係る直接接触式熱交換器1の変形例の立断面である。図11に示されるように、第2領域43は、ガス流路21が下り勾配になるように形成されている。これにより、第2領域43上で加湿水20が第4地点Dから第3地点Cに流れずに、確実に加湿水20が貫通孔31に流れ、図7に示されるような水流路22を確保することができる。   In the present embodiment, the gradient of the second region 43 may be changed so that the humidified water 20 does not flow from the fourth point D to the third point C on the second region 43 shown in FIG. FIG. 11 is an elevational section of a modification of the direct contact heat exchanger 1 according to the third embodiment. As shown in FIG. 11, the second region 43 is formed so that the gas flow path 21 has a downward slope. Accordingly, the humidified water 20 does not flow from the fourth point D to the third point C on the second region 43, but the humidified water 20 surely flows to the through hole 31, and the water flow path 22 as shown in FIG. Can be secured.

[第4の実施形態]
図12は、第4の実施形態に係る直接接触式熱交換器1の立断面図である。図13は、図12において水流路を示す図である。図14は、図12においてガス流路を示す図である。
[Fourth Embodiment]
FIG. 12 is an elevational sectional view of the direct contact heat exchanger 1 according to the fourth embodiment. FIG. 13 is a view showing the water flow path in FIG. FIG. 14 is a diagram showing a gas flow path in FIG.

図12に示されるように、本実施形態の直接接触式熱交換器1では、第1の実施形態に対して、螺旋板40の数と水入口5の数とが異なる。本実施形態の直接接触式熱交換器1では、螺旋板40および水入口5は、n個(nは2以上の整数)設けられている。ここで、螺旋板40および水入口5の個数nは2であるものとする。2個の螺旋板40を第1螺旋板40aおよび第2螺旋板40bと称し、2個の水入口5を第1水入口5aおよび第2水入口5bと称する。   As shown in FIG. 12, in the direct contact heat exchanger 1 of the present embodiment, the number of spiral plates 40 and the number of water inlets 5 are different from those of the first embodiment. In the direct contact heat exchanger 1 of the present embodiment, n (n is an integer of 2 or more) spiral plates 40 and water inlets 5 are provided. Here, the number n of the spiral plate 40 and the water inlet 5 is assumed to be two. The two spiral plates 40 are referred to as a first spiral plate 40a and a second spiral plate 40b, and the two water inlets 5 are referred to as a first water inlet 5a and a second water inlet 5b.

第1螺旋板40aおよび第2螺旋板40bは、筐体2の内周に接して芯30の外周に巻きつけられながら筐体2の底部から頂部に向かって1周目からm周目まで順に螺旋状に形成されたm周分の螺旋部41を有している。具体的には、第1螺旋板40aおよび第2螺旋板40bが設けられる場合、(2×m)周分の螺旋部41が筐体2の内周に接して芯30の外周に巻きつけられる。この場合、(2×m)周分の螺旋部41のうちの奇数周分の螺旋部41は、第1螺旋板40aが有するm周分の螺旋部41であり、(2×m)周分の螺旋部41のうちの偶数周分の螺旋部41は、第2螺旋板40bが有するm周分の螺旋部41である。   The first spiral plate 40 a and the second spiral plate 40 b are in order from the first to the m-th cycle from the bottom to the top of the housing 2 while being wound around the outer periphery of the core 30 in contact with the inner periphery of the housing 2. It has the spiral part 41 for m circumferences formed in a spiral. Specifically, when the first spiral plate 40 a and the second spiral plate 40 b are provided, the spiral portion 41 of (2 × m) circumferences is wound around the outer periphery of the core 30 in contact with the inner periphery of the housing 2. . In this case, the odd-numbered spiral portions 41 of the (2 × m) spiral portions 41 are m spiral portions 41 of the first spiral plate 40a, and (2 × m) spiral portions 41 are included. Among the spiral portions 41, the spiral portions 41 for the even number of turns are the spiral portions 41 for the m turns of the second spiral plate 40b.

第1水入口5aおよび第2水入口5bは、第1螺旋板40aおよび第2螺旋板40bに一対一に対応して設けられている。   The first water inlet 5a and the second water inlet 5b are provided in one-to-one correspondence with the first spiral plate 40a and the second spiral plate 40b.

図13に示されるように、第1螺旋板40aおよび第2螺旋板40bは、それらと一対一に対応する第1水入口5aおよび第2水入口5bから供給される加湿水20がその上面に流れることにより2個の水流路22、すなわち、第1水流路22aおよび第2水流路22bを形成する。   As shown in FIG. 13, the first spiral plate 40 a and the second spiral plate 40 b have humidified water 20 supplied from the first water inlet 5 a and the second water inlet 5 b corresponding to the first spiral plate 40 a and the second spiral plate 40 b on their upper surfaces. By flowing, two water channels 22, that is, a first water channel 22a and a second water channel 22b are formed.

図14に示されるように、第1螺旋板40aおよび第2螺旋板40bは、それぞれが一対一に対応して2個のガス流路21、すなわち、第1ガス流路21aおよび第2ガス流路21bを形成する。   As shown in FIG. 14, the first spiral plate 40a and the second spiral plate 40b correspond to the two gas flow paths 21, that is, the first gas flow path 21a and the second gas flow, one to one. A path 21b is formed.

第1水流路22aおよび第2水流路22bにおける加湿水20の流れについて説明する。   The flow of the humidified water 20 in the first water channel 22a and the second water channel 22b will be described.

図13に示されるように、第1水流路22aにおいて、加湿水20は、第1水入口5aから供給されると、まず、第1螺旋板40aのm周目の螺旋部41に落下し、その螺旋部41の上面を伝って芯30の外周を回りながら重力により下方に流れ、第1螺旋板40aの(m−1)周目の螺旋部41に伝わる。第1螺旋板40aの(m−1)周目の螺旋部41に流れた加湿水20は、その螺旋部41の上面を伝って芯30の外周を回りながら重力により下方に流れ、第1螺旋板40aの(m−2)周目の螺旋部41に伝わる。ここで、加湿水20が第1螺旋板40aの上述の螺旋部41以外に位置する螺旋部41に伝わる場合でも、加湿水20の流れは上述と同様である。   As shown in FIG. 13, in the first water flow path 22a, when the humidified water 20 is supplied from the first water inlet 5a, first, it falls to the m-th spiral portion 41 of the first spiral plate 40a, It flows downward along the upper surface of the spiral portion 41 by gravity while turning around the outer periphery of the core 30 and is transmitted to the spiral portion 41 of the (m−1) th round of the first spiral plate 40a. The humidified water 20 that has flowed through the spiral portion 41 of the (m−1) th round of the first spiral plate 40a flows downward along the outer periphery of the core 30 along the upper surface of the spiral portion 41, and flows downward by gravity. It is transmitted to the spiral portion 41 on the (m-2) th circumference of the plate 40a. Here, even when the humidified water 20 is transmitted to the spiral portion 41 other than the spiral portion 41 of the first spiral plate 40a, the flow of the humidified water 20 is the same as described above.

第2水流路22bにおいて、加湿水20は、第2水入口5bから供給されると、まず、第2螺旋板40bのm周目の螺旋部41に落下し、その螺旋部41の上面を伝って芯30の外周を回りながら重力により下方に流れ、第2螺旋板40bの(m−1)周目の螺旋部41に伝わる。第2螺旋板40bの(m−1)周目の螺旋部41に流れた加湿水20は、その螺旋部41の上面を伝って芯30の外周を回りながら重力により下方に流れ、第2螺旋板40bの(m−2)周目の螺旋部41に伝わる。ここで、加湿水20が第2螺旋板40bの上述の螺旋部41以外に位置する螺旋部41に伝わる場合でも、加湿水20の流れは上述と同様である。   In the second water flow path 22b, when the humidified water 20 is supplied from the second water inlet 5b, it first falls to the m-th spiral portion 41 of the second spiral plate 40b and travels along the upper surface of the spiral portion 41. Then, while flowing around the outer periphery of the core 30, it flows downward by gravity and is transmitted to the (m−1) -th spiral portion 41 of the second spiral plate 40 b. The humidified water 20 that has flowed through the spiral portion 41 of the (m−1) th round of the second spiral plate 40b flows downward along the outer surface of the core 30 along the upper surface of the spiral portion 41, and flows downward due to gravity. It is transmitted to the spiral portion 41 on the (m-2) th circumference of the plate 40b. Here, even when the humidified water 20 is transmitted to the spiral portion 41 other than the above-described spiral portion 41 of the second spiral plate 40b, the flow of the humidified water 20 is the same as described above.

このようにして、第1水流路22aにおいて、加湿水20は、第1水入口5aから旋回し、かつ、第2水流路22bの1周分の螺旋部41を飛ばしながら、下降して水出口6から排出される。同時に、第2水流路22bにおいて、加湿水20は、第2水入口5bから旋回し、かつ、第1水流路22aの1周分の螺旋部41を飛ばしながら、下降して水出口6から排出される。   In this manner, in the first water flow path 22a, the humidified water 20 swirls from the first water inlet 5a and descends while skipping the spiral portion 41 for one turn of the second water flow path 22b. 6 is discharged. At the same time, in the second water flow path 22b, the humidified water 20 is swung from the second water inlet 5b, and descends and discharges from the water outlet 6 while skipping the spiral portion 41 for one turn of the first water flow path 22a. Is done.

次に、第1ガス流路21aおよび第2ガス流路21bにおける酸化剤ガスの流れについて説明する。   Next, the flow of the oxidant gas in the first gas channel 21a and the second gas channel 21b will be described.

図14に示されるように、第1ガス流路21aにおいて、酸化剤ガスは、ガス入口3から供給されたとき、第1螺旋板40aの1周目の螺旋部41と第2螺旋板40bの1周目の螺旋部41との間に流れる。その酸化剤ガスは、芯30の外周を回りながら上昇し、第1螺旋板40aの2周目の螺旋部41と第2螺旋板40bの2周目の螺旋部41との間に流れる。ここで、ガスが上述の2個の螺旋部41以外に位置する2個の螺旋部41の間に伝わる場合でも、ガスの流れは上述と同様である。   As shown in FIG. 14, when the oxidant gas is supplied from the gas inlet 3 in the first gas flow path 21a, the first spiral plate 41a has a spiral portion 41 and a second spiral plate 40b. It flows between the spiral portion 41 of the first round. The oxidant gas ascends around the outer periphery of the core 30 and flows between the second spiral portion 41 of the first spiral plate 40a and the second spiral portion 41 of the second spiral plate 40b. Here, even when the gas is transmitted between the two spiral portions 41 other than the two spiral portions 41 described above, the gas flow is the same as described above.

第2ガス流路21bにおいて、酸化剤ガスは、ガス入口3から供給されたとき、第2螺旋板40bの1周目の螺旋部41と第1螺旋板40aの2周目の螺旋部41との間に流れる。その酸化剤ガスは、芯30の外周を回りながら上昇し、第2螺旋板40bの2周目の螺旋部41と第1螺旋板40aの3周目の螺旋部41との間に流れる。ここで、ガスが上述の2個の螺旋部41以外に位置する2個の螺旋部41の間に伝わる場合でも、ガスの流れは上述と同様である。   In the second gas channel 21b, when the oxidant gas is supplied from the gas inlet 3, the first spiral portion 41 of the second spiral plate 40b and the second spiral portion 41 of the first spiral plate 40a Flowing between. The oxidant gas rises while rotating around the outer periphery of the core 30 and flows between the second spiral portion 41 of the second spiral plate 40b and the third spiral portion 41 of the first spiral plate 40a. Here, even when the gas is transmitted between the two spiral portions 41 other than the two spiral portions 41 described above, the gas flow is the same as described above.

このようにして、第1ガス流路21aにおいて、酸化剤ガスは、ガス入口3から旋回し、かつ、第2ガス流路21bの1周分の螺旋部41を飛ばしながら、上昇してガス出口4から排出される。同時に、第2ガス流路21bにおいて、酸化剤ガスは、ガス入口3から旋回し、かつ、第1ガス流路21aの1周分の螺旋部41を飛ばしながら、上昇してガス出口4から排出される。この際、酸化剤ガスは、第1螺旋板40aおよび第2螺旋板40bの上に保持された加湿水20と接触する。これにより、酸化剤ガスは加湿される。加湿された酸化剤ガスは、燃料電池の酸化剤極に供給される。   In this way, in the first gas flow path 21a, the oxidant gas swirls from the gas inlet 3 and rises while skipping the spiral portion 41 for one turn of the second gas flow path 21b. 4 is discharged. At the same time, in the second gas flow path 21b, the oxidant gas swirls from the gas inlet 3 and rises and discharges from the gas outlet 4 while flying the spiral portion 41 for one turn of the first gas flow path 21a. Is done. At this time, the oxidizing gas comes into contact with the humidified water 20 held on the first spiral plate 40a and the second spiral plate 40b. Thereby, the oxidant gas is humidified. The humidified oxidant gas is supplied to the oxidant electrode of the fuel cell.

本実施形態において、第1螺旋板40aおよび第2螺旋板40bは、一対一に対応して第1ガス流路21aおよび第2ガス流路21bを形成しているため、第1実施形態に比べて2倍のガス流路の断面積を確保し、ガスの圧力損失を大幅に削減する。したがって、本実施形態によれば、さらなる低圧力損失かつ小型の直接接触式熱交換器1を提供できる。   In the present embodiment, the first spiral plate 40a and the second spiral plate 40b form the first gas flow path 21a and the second gas flow path 21b in a one-to-one correspondence with each other, and therefore, compared with the first embodiment. This ensures a gas gas cross-sectional area that is twice that of the gas flow and greatly reduces gas pressure loss. Therefore, according to this embodiment, a further low pressure loss and a small direct contact heat exchanger 1 can be provided.

また、本実施形態において、nが2である場合、2個の水入口5は、一対一に対応して2個の水流路22を形成し、その2個の水流路22は、2個のガス流路21に対応しているため、水入口5を複数個設置できる場合に有効である。   Moreover, in this embodiment, when n is 2, the two water inlets 5 form two water flow paths 22 corresponding to one to one, and the two water flow paths 22 are two pieces. Since it corresponds to the gas flow path 21, it is effective when a plurality of water inlets 5 can be installed.

また、本実施形態において、nを2としているが、3以上でもよい。図15は、n=3における直接接触式熱交換器1の立断面図である。すなわち、螺旋板40および水入口5の個数nは3である。3個の螺旋板40を第1〜第3螺旋板40a〜40cと称し、3個の水入口5を第1〜第3水入口5a〜5cと称する。第1〜第3水入口5a〜5cは、第1〜第3螺旋板40a〜40cに一対一に対応して設けられている。第1〜第3螺旋板40a〜40cは、一対一に対応する第1〜第3水入口5a〜5cから供給される加湿水20がその上面に流れることにより3個の水流路22(図示しない)を形成する。第1〜第3螺旋板40a〜40cは、一対一に対応して3個のガス流路21(図示しない)を形成する。   In the present embodiment, n is 2, but may be 3 or more. FIG. 15 is an elevational sectional view of the direct contact heat exchanger 1 at n = 3. That is, the number n of the spiral plate 40 and the water inlet 5 is three. The three spiral plates 40 are referred to as first to third spiral plates 40a to 40c, and the three water inlets 5 are referred to as first to third water inlets 5a to 5c. The first to third water inlets 5a to 5c are provided in one-to-one correspondence with the first to third spiral plates 40a to 40c. The first to third spiral plates 40a to 40c have three water flow paths 22 (not shown) when the humidified water 20 supplied from the first to third water inlets 5a to 5c corresponding to one to one flows on the upper surface thereof. ). The first to third spiral plates 40a to 40c form three gas passages 21 (not shown) corresponding one to one.

このように、nが3である場合でも、3個の螺旋板40は、一対一に対応して3個のガス流路21を形成しているため、第1の実施形態に比べて3倍のガス流路の断面積を確保し、ガスの圧力損失を大幅に削減する。また、3個の水入口5は、一対一に対応して3個の水流路22を形成し、その3個の水流路22は、3個のガス流路21に対応しているため、第3の実施形態に対して加湿能力がさらに増大する。   Thus, even when n is 3, since the three spiral plates 40 form the three gas flow paths 21 corresponding to one to one, the three spiral plates 40 are three times as compared with the first embodiment. The cross-sectional area of the gas flow path is secured, and the gas pressure loss is greatly reduced. Further, the three water inlets 5 form three water flow paths 22 corresponding one-to-one, and the three water flow paths 22 correspond to the three gas flow paths 21, so The humidification capacity is further increased with respect to the third embodiment.

[第5の実施形態]
図16は、第5の実施形態に係る直接接触式熱交換器1であり、図12のXVI−XVI矢視平断面図である。
[Fifth Embodiment]
FIG. 16 is the direct contact heat exchanger 1 according to the fifth embodiment, and is a cross-sectional plan view taken along arrow XVI-XVI in FIG. 12.

図16に示されるように、本実施形態の直接接触式熱交換器1は、第4の実施形態の構成に対して筐体2、芯30および螺旋板40の形状が異なる。筐体2と芯30は、その厚み方向の面が扁平型になるように形成されている。螺旋板40は、筐体2と芯30の形状に合わせて、筐体2の内周に接して芯30の外周に巻きつけられながら螺旋状に形成されている。   As shown in FIG. 16, the direct contact heat exchanger 1 of the present embodiment is different from the configuration of the fourth embodiment in the shapes of the housing 2, the core 30 and the spiral plate 40. The housing 2 and the core 30 are formed so that the surfaces in the thickness direction are flat. The spiral plate 40 is formed in a spiral shape while being wound around the outer periphery of the core 30 in contact with the inner periphery of the casing 2 in accordance with the shapes of the casing 2 and the core 30.

第4の実施形態と同様に、第1水流路22aにおいて、加湿水20は、第1螺旋板40aの1周分の螺旋部41の上面を伝って芯30の外周を回りながら、第1螺旋板40aの1周分の螺旋部41の真下の螺旋部41に伝わる。第2水流路22bにおいて、加湿水20は、第2螺旋板40bの1周分の螺旋部41の上面を伝って芯30の外周を回りながら、第2螺旋板40bの1周分の螺旋部41の真下の螺旋部41に伝わる。   As in the fourth embodiment, in the first water flow path 22a, the humidified water 20 travels around the outer periphery of the core 30 along the upper surface of the spiral portion 41 for one turn of the first spiral plate 40a, and the first spiral. It is transmitted to the spiral portion 41 directly below the spiral portion 41 for one round of the plate 40a. In the second water flow path 22b, the humidified water 20 travels around the outer periphery of the core 30 along the upper surface of the spiral portion 41 for one turn of the second spiral plate 40b, and spirals for one turn of the second spiral plate 40b. It is transmitted to the spiral portion 41 directly below 41.

第1ガス流路21aにおいて、酸化剤ガスは、第1螺旋板40aの1周分の螺旋部41の上に芯30の外周を回りながら上昇し、第1螺旋板40aの1周分の螺旋部41の真上の螺旋部41に流れる。第2ガス流路21bにおいて、酸化剤ガスは、第2螺旋板40bの1周分の螺旋部41の上に芯30の外周を回りながら上昇し、第2螺旋板40bの1周分の螺旋部41の真上の螺旋部41に流れる。   In the first gas flow path 21a, the oxidant gas rises while rotating around the outer periphery of the core 30 on the spiral portion 41 of one turn of the first spiral plate 40a, and the spiral of one turn of the first spiral plate 40a. It flows to the spiral portion 41 directly above the portion 41. In the second gas flow path 21b, the oxidant gas rises while rotating around the outer periphery of the core 30 on the spiral portion 41 of one turn of the second spiral plate 40b, and the spiral of one turn of the second spiral plate 40b. It flows to the spiral portion 41 directly above the portion 41.

本実施形態において、筐体2と芯30の厚み方向の面を扁平型に引き伸ばすことにより、第4の実施形態に比べて第1水流路22aおよび第2水流路22bと第1ガス流路21aおよび第2ガス流路21bとを延長することができる。その結果、加湿能力がさらに増大し、直接接触式熱交換器1の性能を向上させることができる。   In the present embodiment, the first water flow path 22a, the second water flow path 22b, and the first gas flow path 21a are compared with the fourth embodiment by extending the thickness direction surfaces of the housing 2 and the core 30 in a flat shape. And the 2nd gas flow path 21b can be extended. As a result, the humidifying capacity is further increased, and the performance of the direct contact heat exchanger 1 can be improved.

[第6の実施形態]
図17は、第6の実施形態に係る直接接触式熱交換器1である。
[Sixth Embodiment]
FIG. 17 shows a direct contact heat exchanger 1 according to the sixth embodiment.

第1〜第5の実施形態における螺旋板40(図2参照)は、芯30に対する角度αが90度で設置され、芯30の外周に接する部分から筐体2の内周に接する部分に向かって平行に形成されている。   The spiral plate 40 (see FIG. 2) in the first to fifth embodiments is installed with an angle α with respect to the core 30 of 90 degrees, and extends from a portion in contact with the outer periphery of the core 30 to a portion in contact with the inner periphery of the housing 2. Are formed in parallel.

一方、本実施形態の直接接触式熱交換器1では、図17に示されるように、第1〜第5の実施形態に対して螺旋板40の形状が異なる。螺旋板40は、芯30に対する角度αが90度より小さく設置され、芯30の外周に接する部分から筐体2の内周に接する部分に向かって上り勾配で形成されている。   On the other hand, in the direct contact heat exchanger 1 of the present embodiment, as shown in FIG. 17, the shape of the spiral plate 40 is different from that of the first to fifth embodiments. The spiral plate 40 is installed with an angle α with respect to the core 30 smaller than 90 degrees, and is formed with an upward slope from a portion in contact with the outer periphery of the core 30 toward a portion in contact with the inner periphery of the housing 2.

本実施形態において、螺旋板40が芯30から上り勾配になるように形成されているため、加湿水20が芯30と螺旋板40との接点に沿って流れ、たとえ螺旋板40と筐体2との間に隙間が生じても、その隙間から加湿水20が筐体2の底部へ流れることを抑制することができる。したがって、本実施形態によれば、高性能かつ低圧力損失かつ小型の直接接触式熱交換器1を提供できる。   In this embodiment, since the spiral plate 40 is formed so as to rise upward from the core 30, the humidified water 20 flows along the contact point between the core 30 and the spiral plate 40. Even if a gap occurs between the two, the humidified water 20 can be prevented from flowing from the gap to the bottom of the housing 2. Therefore, according to the present embodiment, it is possible to provide a high-performance, low pressure loss and small direct contact heat exchanger 1.

[第7の実施形態]
図18は、第7の実施形態に係る直接接触式熱交換器1である。
[Seventh Embodiment]
FIG. 18 is a direct contact heat exchanger 1 according to the seventh embodiment.

第1〜第5の実施形態における螺旋板40(図2参照)は、芯30に対する角度αが90度で設置され、芯30の外周に接する部分から筐体2の内周に接する部分に向かって平行に形成されている。また、第6の実施形態における螺旋板40(図17参照)は、上述のように、芯30に対する角度αが90度より小さく設置され、芯30の外周に接する部分から筐体2の内周に接する部分に向かって上り勾配で形成されている。   The spiral plate 40 (see FIG. 2) in the first to fifth embodiments is installed with an angle α with respect to the core 30 of 90 degrees, and extends from a portion in contact with the outer periphery of the core 30 to a portion in contact with the inner periphery of the housing 2. Are formed in parallel. Further, as described above, the spiral plate 40 (see FIG. 17) in the sixth embodiment is installed with an angle α with respect to the core 30 smaller than 90 degrees, and the inner periphery of the housing 2 from the portion in contact with the outer periphery of the core 30. It is formed with an ascending slope toward the portion in contact with.

一方、本実施形態の直接接触式熱交換器1では、図18に示されるように、第1〜第6の実施形態に対して、螺旋板40の材質が異なる。螺旋板40の幅は、芯30の外周と筐体2の内周との間の長さよりも長く、螺旋板40には、芯30の外周と筐体2の内周との間に配置されるときに変形することにより、芯30の外周と筐体2の内周との隙間を埋める材料が用いられる。   On the other hand, in the direct contact heat exchanger 1 of the present embodiment, as shown in FIG. 18, the material of the spiral plate 40 is different from that of the first to sixth embodiments. The width of the spiral plate 40 is longer than the length between the outer periphery of the core 30 and the inner periphery of the housing 2, and the spiral plate 40 is disposed between the outer periphery of the core 30 and the inner periphery of the housing 2. A material that fills the gap between the outer periphery of the core 30 and the inner periphery of the housing 2 is used by being deformed.

本実施形態において、たとえば頂部がまだ筐体2に設置されていない状態で、芯30を上から筐体2内に設置し、そのあとに螺旋板40を上から筐体2内に設置するときに、螺旋板40の幅が芯30の外周と筐体2の内周との間の長さよりも長いため、螺旋板40が筐体2の内側面と芯30の外周との間で変形しながら、筐体2の内側面と芯30の外周との両方に接触する。その結果、螺旋板40と筐体2との間に隙間が生じないため、その隙間から加湿水20が筐体2の底部へ流れることもない。したがって、本実施形態によれば、高性能かつ低圧力損失かつ小型の直接接触式熱交換器1を提供できる。   In the present embodiment, for example, when the core 30 is installed in the housing 2 from the top and the spiral plate 40 is installed in the housing 2 from the top after the top is not installed in the housing 2 yet. Further, since the width of the spiral plate 40 is longer than the length between the outer periphery of the core 30 and the inner periphery of the housing 2, the spiral plate 40 is deformed between the inner surface of the housing 2 and the outer periphery of the core 30. However, it contacts both the inner surface of the housing 2 and the outer periphery of the core 30. As a result, since no gap is generated between the spiral plate 40 and the housing 2, the humidified water 20 does not flow from the gap to the bottom of the housing 2. Therefore, according to the present embodiment, it is possible to provide a high-performance, low pressure loss and small direct contact heat exchanger 1.

また、本実施形態において、第6の実施形態のように螺旋板40が芯30の外周に接する部分から筐体2の内周に接する部分に向かって上り勾配で形成されることにより、加湿水20が芯30と螺旋板40との接点に沿って流れ、第1〜第6の実施形態に対して加湿能力がさらに増大する。   In the present embodiment, as in the sixth embodiment, the spiral plate 40 is formed with an upward slope from the portion in contact with the outer periphery of the core 30 toward the portion in contact with the inner periphery of the housing 2, so that the humidified water. 20 flows along the contact point between the core 30 and the spiral plate 40, and the humidifying capacity is further increased as compared with the first to sixth embodiments.

[他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、また各実施形態の特徴を組み合わせることができる。たとえば、第6の実施形態の螺旋板40については第1〜第5の実施形態のいずれにも適用可能である。また、第7の実施形態の螺旋板40については第1〜第6の実施形態のいずれにも適用可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other Embodiments]
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, modifications, and features of the embodiments can be combined without departing from the spirit of the invention. . For example, the spiral plate 40 of the sixth embodiment can be applied to any of the first to fifth embodiments. The spiral plate 40 of the seventh embodiment can be applied to any of the first to sixth embodiments. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 … 直接接触式熱交換器
1A … 直接接触式熱交換器
1B … 直接接触式熱交換器
2 … 筐体
3 … ガス入口
4 … ガス出口
5 … 水入口
5a … 第1水入口
5b … 第2水入口
6 … 水出口
7 … リキッドドレイナー
20 … 加湿水
21 … ガス流路
21a … 第1ガス流路
21b … 第2ガス流路
22 … 水流路
22a … 第1水流路
22b … 第2水流路
30 … 芯
31 … 貫通孔
40 … 螺旋板
40a … 第1螺旋板
40b … 第2螺旋板
40c … 第3螺旋板
41 … 螺旋部
100 … 燃料処理装置
102 … 改質器
103 … 一酸化炭素(CO)変成器
104 … CO除去器
200 … 燃料電池スタック
DESCRIPTION OF SYMBOLS 1 ... Direct contact type heat exchanger 1A ... Direct contact type heat exchanger 1B ... Direct contact type heat exchanger 2 ... Case 3 ... Gas inlet 4 ... Gas outlet 5 ... Water inlet 5a ... First water inlet 5b ... Second Water inlet 6 ... Water outlet 7 ... Liquid drainer 20 ... Humidified water 21 ... Gas flow path 21a ... First gas flow path 21b ... Second gas flow path 22 ... Water flow path 22a ... First water flow path 22b ... Second water flow path DESCRIPTION OF SYMBOLS 30 ... Core 31 ... Through-hole 40 ... Spiral plate 40a ... 1st spiral plate 40b ... 2nd spiral plate 40c ... 3rd spiral plate 41 ... Spiral part 100 ... Fuel processor 102 ... Reformer 103 ... Carbon monoxide (CO ) Transformer 104 ... CO remover 200 ... Fuel cell stack

Claims (11)

頂部から加湿水が供給される水入口と、底部から前記加湿水が排出される水出口と、側面からガスが流入するガス入口と、前記側面の前記ガス入口よりも高い位置から前記ガスが流出するガス出口とが形成された筐体と、
前記ガスが前記ガス入口から旋回しながら上昇して前記ガス出口から流出されるガス流路が形成され、かつ、前記加湿水が前記水入口から旋回しながら下降して前記水出口から排出され、前記ガス流路と同じ空間で反対向きの水流路が形成されるように、前記筐体の内周に接して前記芯の外周に巻きつけられながら前記筐体の底部から頂部に向かって1周目からm周目(mは2以上)まで順に螺旋状に形成されたm周分の螺旋部を有する螺旋板と、
を具備することを特徴とする直接接触式熱交換器。
The gas flows out from a water inlet to which humidified water is supplied from the top, a water outlet from which the humidified water is discharged from the bottom, a gas inlet from which gas flows in from the side, and a position higher than the gas inlet on the side. A housing formed with a gas outlet,
A gas flow path is formed in which the gas rises while swirling from the gas inlet and flows out from the gas outlet, and the humidified water descends while swirling from the water inlet and is discharged from the water outlet, One round from the bottom to the top of the casing while being wound around the outer periphery of the core in contact with the inner periphery of the casing so that a water channel in the opposite direction is formed in the same space as the gas channel A spiral plate having a spiral portion of m turns formed in order from the eye to the mth turn (m is 2 or more);
The direct contact type heat exchanger characterized by comprising.
前記筐体内に形成され、前記筐体の底部から頂部に向かって延びる芯と、
前記螺旋板は、前記m周分の螺旋部が前記筐体の内周に接して前記芯の外周に巻きつけられながら螺旋状に形成されている、
ことを特徴とする請求項1に記載の直接接触式熱交換器。
A core formed in the housing and extending from the bottom to the top of the housing;
The spiral plate is formed in a spiral shape while being wound around the outer periphery of the core in contact with the inner periphery of the housing, the spiral portion for the m circumferences,
The direct contact type heat exchanger according to claim 1.
前記筐体と前記芯の厚み方向の面は扁平型である、
ことを特徴とする請求項2に記載の直接接触式熱交換器。
Surfaces in the thickness direction of the housing and the core are flat.
The direct contact heat exchanger according to claim 2, wherein:
前記螺旋板は、n個(nは2以上の整数)設けられ、
前記n個の螺旋板は、一対一に対応してn個の前記ガス流路を形成する、
ことを特徴とする請求項2または請求項3に記載の直接接触式熱交換器。
The spiral plate is provided n (n is an integer of 2 or more),
The n helical plates form the n gas flow paths corresponding one-to-one.
The direct contact heat exchanger according to claim 2 or claim 3, wherein
前記水入口は、前記n個の螺旋板の各々に対して設けられ、
前記n個の螺旋板は、一対一に対応するn個の前記水入口から供給される前記加湿水がその上面に流れることによりn個の前記水流路を形成する、
ことを特徴とする請求項4に記載の直接接触式熱交換器。
The water inlet is provided for each of the n spiral plates;
The n spiral plates form n water flow paths by flowing the humidified water supplied from the n water inlets corresponding to the one-to-one on the upper surface thereof.
The direct contact heat exchanger according to claim 4, wherein:
前記芯には、前記n個の螺旋板のそれぞれにおける各周分の螺旋部のそれぞれに対して、前記芯の厚み方向に貫通する貫通孔が設けられ、
前記貫通孔の各々は、前記n個の螺旋板のそれぞれにおける各周分の螺旋部のうちの1周分の螺旋部の第1地点から前記1周分の螺旋部の真下の螺旋部の第2地点まで前記芯内で繋ぎ、前記1周分の螺旋部の上面を前記加湿水が1周しないうちに前記真下の螺旋部に前記加湿水を伝え、
前記1周分の螺旋部の領域は、前記1周分の螺旋部上の前記ガス流路と前記水流路との両方の流路に用いられる第1領域と、前記1周分の螺旋部上の前記ガス流路のみ用いられる第2領域とに分けられ、
前記n個の螺旋板は、前記水入口から供給される前記加湿水がその上面と前記貫通孔とに流れることにより1つの前記水流路を形成する、
ことを特徴とする請求項4に記載の直接接触式熱交換器。
The core is provided with a through-hole penetrating in the thickness direction of the core with respect to each of the spiral portions of each circumference in each of the n spiral plates,
Each of the through-holes includes a first portion of a spiral portion immediately below the spiral portion corresponding to one turn from a first point of the spiral portion corresponding to one turn among the spiral portions corresponding to each of the n spiral plates. Connected in the core up to two points, before the humidified water makes one round on the upper surface of the spiral portion for one round, the humidified water is transmitted to the spiral portion directly below,
The region of the spiral portion for one turn includes a first region used for both the gas channel and the water channel on the spiral portion for one turn, and the spiral portion for the one turn. Divided into a second region used only for the gas flow path,
The n spiral plates form one water flow path when the humidified water supplied from the water inlet flows through the upper surface and the through hole.
The direct contact heat exchanger according to claim 4, wherein:
前記第1領域の流路の長さは前記第2領域の流路の長さよりも長く、
前記第1領域の流路の高さは前記第2領域の流路の高さよりも高い、
ことを特徴とする請求項6に記載の直接接触式熱交換器。
The flow path length of the first region is longer than the flow path length of the second region,
The height of the flow path of the first region is higher than the height of the flow path of the second region,
The direct contact heat exchanger according to claim 6.
前記第2領域は、前記ガス流路が下り勾配になるように形成されている、
ことを特徴とする請求項7に記載の直接接触式熱交換器。
The second region is formed so that the gas flow path has a downward slope.
The direct contact heat exchanger according to claim 7.
前記螺旋板は、前記芯の外周に接する部分から前記筐体の内周に接する部分に向かって上り勾配で形成される、
ことを特徴とする請求項2ないし請求項8のいずれか1項に記載の直接接触式熱交換器。
The spiral plate is formed with an upward slope from a portion in contact with the outer periphery of the core toward a portion in contact with the inner periphery of the housing.
The direct contact heat exchanger according to any one of claims 2 to 8, wherein the heat exchanger is a direct contact heat exchanger.
前記螺旋板の幅は、前記芯の外周と前記筐体の内周との間の長さよりも長く、
前記螺旋板には、前記芯の外周と前記筐体の内周との間に配置されるときに変形することにより、前記芯の外周と前記筐体の内周との隙間を埋める材料が用いられる、
ことを特徴とする請求項2ないし請求項9のいずれか1項に記載の直接接触式熱交換器。
The width of the spiral plate is longer than the length between the outer periphery of the core and the inner periphery of the housing,
The spiral plate is made of a material that fills a gap between the outer periphery of the core and the inner periphery of the housing by being deformed when disposed between the outer periphery of the core and the inner periphery of the housing. Be
The direct contact heat exchanger according to any one of claims 2 to 9, wherein the heat exchanger is a direct contact heat exchanger.
燃料極および酸化剤極を有する燃料電池スタックと、
前記燃料電池スタックの燃料極および酸化剤極のいずれかに供給するためのガスを加湿する直接接触式熱交換器と、
を具備し、
前記直接接触式熱交換器は、
頂部から加湿水が供給される水入口と、底部から前記加湿水が排出される水出口と、側面からガスが流入するガス入口と、前記側面の前記ガス入口よりも高い位置から前記ガスが流出するガス出口とが形成された筐体と、
前記ガスが前記ガス入口から旋回しながら上昇して前記ガス出口から流出されるガス流路が形成され、かつ、前記加湿水が前記水入口から旋回しながら下降して前記水出口から排出され、前記ガス流路と同じ空間で反対向きの水流路が形成されるように、前記筐体の内周に接して前記筐体の底部から頂部に向かって1周目からm周目(mは2以上の整数)まで順に螺旋状に形成されたm周分の螺旋部を有する螺旋板と、
を具備することを特徴とする固体高分子型燃料電池システム。
A fuel cell stack having a fuel electrode and an oxidant electrode;
A direct contact heat exchanger for humidifying a gas to be supplied to either the fuel electrode or the oxidant electrode of the fuel cell stack;
Comprising
The direct contact heat exchanger is
The gas flows out from a water inlet to which humidified water is supplied from the top, a water outlet from which the humidified water is discharged from the bottom, a gas inlet from which gas flows in from the side, and a position higher than the gas inlet on the side. A housing formed with a gas outlet,
A gas flow path is formed in which the gas rises while swirling from the gas inlet and flows out from the gas outlet, and the humidified water descends while swirling from the water inlet and is discharged from the water outlet, The first to mth rounds (m is 2) from the bottom to the top of the casing in contact with the inner periphery of the casing so that a water channel in the opposite direction is formed in the same space as the gas channel. A spiral plate having a spiral portion of m circumferences formed in order in a spiral manner up to the above integer),
A solid polymer fuel cell system comprising:
JP2011171246A 2011-08-04 2011-08-04 Direct contact heat exchanger and polymer electrolyte fuel cell system using the same Active JP5755526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171246A JP5755526B2 (en) 2011-08-04 2011-08-04 Direct contact heat exchanger and polymer electrolyte fuel cell system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171246A JP5755526B2 (en) 2011-08-04 2011-08-04 Direct contact heat exchanger and polymer electrolyte fuel cell system using the same

Publications (2)

Publication Number Publication Date
JP2013036640A true JP2013036640A (en) 2013-02-21
JP5755526B2 JP5755526B2 (en) 2015-07-29

Family

ID=47886412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171246A Active JP5755526B2 (en) 2011-08-04 2011-08-04 Direct contact heat exchanger and polymer electrolyte fuel cell system using the same

Country Status (1)

Country Link
JP (1) JP5755526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096481A1 (en) 2017-11-17 2019-05-23 Audi Ag Humidification system, and fuel cell system comprising a humidification system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827262B1 (en) * 1968-05-20 1973-08-21
JPS5490648A (en) * 1977-12-28 1979-07-18 Masahiko Izumi Refrigerator
JPS54122460A (en) * 1978-03-16 1979-09-22 Masahiko Izumi Refrigerator and air conditioner
JPS58145331A (en) * 1982-02-23 1983-08-30 Mitsubishi Heavy Ind Ltd Cooler for molding sand
JPS5918384A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Liquid/liquid direct contact type heat exchanger
JPH11148782A (en) * 1997-11-14 1999-06-02 Tlv Co Ltd Vapor condenser
JP2005093357A (en) * 2003-09-19 2005-04-07 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell humidifier
JP2005241226A (en) * 2004-02-27 2005-09-08 Toyota Motor Corp Gas humidification device, and fuel cell system
JP2006266580A (en) * 2005-03-23 2006-10-05 Honda Motor Co Ltd Gas cooling device and gas cooling method
JP2010082594A (en) * 2008-10-02 2010-04-15 National Agriculture & Food Research Organization Environmental control method and device for organism deodorizing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827262B1 (en) * 1968-05-20 1973-08-21
JPS5490648A (en) * 1977-12-28 1979-07-18 Masahiko Izumi Refrigerator
JPS54122460A (en) * 1978-03-16 1979-09-22 Masahiko Izumi Refrigerator and air conditioner
JPS58145331A (en) * 1982-02-23 1983-08-30 Mitsubishi Heavy Ind Ltd Cooler for molding sand
JPS5918384A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Liquid/liquid direct contact type heat exchanger
JPH11148782A (en) * 1997-11-14 1999-06-02 Tlv Co Ltd Vapor condenser
JP2005093357A (en) * 2003-09-19 2005-04-07 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell humidifier
JP2005241226A (en) * 2004-02-27 2005-09-08 Toyota Motor Corp Gas humidification device, and fuel cell system
JP2006266580A (en) * 2005-03-23 2006-10-05 Honda Motor Co Ltd Gas cooling device and gas cooling method
JP2010082594A (en) * 2008-10-02 2010-04-15 National Agriculture & Food Research Organization Environmental control method and device for organism deodorizing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096481A1 (en) 2017-11-17 2019-05-23 Audi Ag Humidification system, and fuel cell system comprising a humidification system
DE102017220633A1 (en) 2017-11-17 2019-05-23 Volkswagen Ag Humidification system and fuel cell system with a humidification system
US11837758B2 (en) 2017-11-17 2023-12-05 Volkswagen Ag Humidification system, and fuel cell system comprising a humidification system

Also Published As

Publication number Publication date
JP5755526B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5674808B2 (en) Humidifier for fuel cell
US20110165477A1 (en) Desulfurizer
JP2009099437A (en) Fuel cell module
JP6213893B2 (en) Solid oxide fuel cell device
JP6415962B2 (en) Fuel cell cartridge and fuel cell module
JP2021120156A (en) Assembly type cartridge block and hollow fiber membrane module including the same
JP2017076609A (en) Fuel cell module including heat exchanger and method for actuating such module
JP5206206B2 (en) Fuel cell system
JP6037749B2 (en) Fuel cell module
JP2017033652A (en) Solid oxide type fuel battery stack, solid oxide type fuel battery module and solid oxide type fuel battery system
JP5710527B2 (en) Fuel cell stack and fuel cell system
JP5755526B2 (en) Direct contact heat exchanger and polymer electrolyte fuel cell system using the same
KR20190081735A (en) Fuel cell membrane humidifier capable of controlling flow direction of fluid
JP5809365B2 (en) Humidification heat exchanger for fuel cells
JP2009087849A (en) Fuel cell system
JP5755525B2 (en) Direct contact heat exchanger and polymer electrolyte fuel cell system using the same
RU2325011C1 (en) Fuel elements system
JP2008084646A (en) Fuel cell system
ITMI971871A1 (en) ION EXCHANGE MEMBRANE FUEL CELL WITH PERIPHERAL COOLING
JP6084494B2 (en) Heat storage device
KR101421355B1 (en) Fuel humidifier
JP2009076216A (en) Fuel cell power generation system, and water circulating system thereof
JP2007005133A (en) Steam generator and fuel cell
JP5743097B2 (en) Solid oxide fuel cell and method for cooling solid oxide fuel cell when stopped
JP2018137092A (en) Fuel cell and combined power generating system, and operational method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350