JP2013034998A - Method for manufacturing power transmission device - Google Patents

Method for manufacturing power transmission device Download PDF

Info

Publication number
JP2013034998A
JP2013034998A JP2011170567A JP2011170567A JP2013034998A JP 2013034998 A JP2013034998 A JP 2013034998A JP 2011170567 A JP2011170567 A JP 2011170567A JP 2011170567 A JP2011170567 A JP 2011170567A JP 2013034998 A JP2013034998 A JP 2013034998A
Authority
JP
Japan
Prior art keywords
power transmission
mating surface
large gear
transmission member
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011170567A
Other languages
Japanese (ja)
Inventor
Kazunobu Omiya
和宣 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2011170567A priority Critical patent/JP2013034998A/en
Publication of JP2013034998A publication Critical patent/JP2013034998A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Gear Transmission (AREA)
  • Retarders (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a power transmission device in which a gear wheel and a power transmission member are joined with high strength in a simple process.SOLUTION: The method for manufacturing the power transmission device 1 with a ring gear 10 and a hub member 20 integrally formed with the same rotation axis O1 as the center includes a mating surface forming process for forming a first mating surface 12 of conical shape at the ring gear 10, forming a second mating surface 24 of conical shape mating with the first mating surface 12, at the hub member 20, forming a protrusion 14 at the ring gear 10, and forming a ring groove 26 in the hub member 20; a joining process for energizing the ring gear 10 and the hub member 20 in the abutting state of the protrusion 14 and the bottom face 26a of the ring groove 26 while placing the first mating surface 12 and the second mating surface 24 to face each other, and joining the protrusion 14 to the bottom face 26a of the ring groove 26 by electric resistance welding; and a pressing process for pressing the ring gear 10 and the hub member 20 in a relatively approaching direction to bring the first mating surface 12 and the second mating surface 24 into close contact.

Description

本発明は、大歯車(リングギヤ等)と動力伝達部材(ハブ部材、デフケース等)とを備える動力伝達装置の製造方法に関する。   The present invention relates to a method for manufacturing a power transmission device including a large gear (ring gear, etc.) and a power transmission member (hub member, differential case, etc.).

例えば、二輪車において、内燃機関で発生した動力は、チェーンや推進軸を介して、後輪(駆動輪)に伝達される。推進軸を介して伝達する場合、後輪と同軸に終減速装置を設け、推進軸の動力を前記終減速装置内で略90°偏向させている。
このような終減速装置は、推進軸の動力が入力されるドライブピニオンと、動力伝達装置と、を備えて構成され、動力伝達装置は、ドライブピニオンが噛合するリングギヤと、リングギヤと一体であって、後輪と同一の回転軸周りに回転するハブ部材(動力伝達部材)と、を備えて構成される。そして、ドライブピニオンとリングギヤとの噛合部には、一般には、ベベルギヤ(かさ歯車)の歯面が形成される。
For example, in a two-wheeled vehicle, power generated by an internal combustion engine is transmitted to rear wheels (drive wheels) via a chain and a propulsion shaft. When transmitting through the propulsion shaft, a final reduction gear is provided coaxially with the rear wheel, and the power of the propulsion shaft is deflected by approximately 90 ° within the final reduction gear.
Such a final reduction gear is configured to include a drive pinion to which the power of the propulsion shaft is input and a power transmission device, and the power transmission device is integral with the ring gear and the ring gear with which the drive pinion meshes. And a hub member (power transmission member) that rotates around the same rotation axis as the rear wheel. In general, a tooth surface of a bevel gear (bevel gear) is formed at a meshing portion between the drive pinion and the ring gear.

ここで、リングギヤとハブ部材とは、ハブ部材の一部をリングギヤに圧入した後、スプライン嵌合(結合)することにより、周方向における相対回転を防止している。また、軸方向における抜け止めとして、圧入後のスプライン軸(リングギヤに挿入されるハブ部材の一部)を加締めている。このように、圧入後に加締めていたので、リングギヤとハブ部材との固定に工数を要している。   Here, the ring gear and the hub member prevent relative rotation in the circumferential direction by press-fitting a part of the hub member into the ring gear and then performing spline fitting (coupling). Further, as a retaining in the axial direction, the spline shaft after press-fitting (a part of the hub member inserted into the ring gear) is caulked. Thus, since it crimped after press-fit, man-hours are required for fixation with a ring gear and a hub member.

一方、四輪車において、内燃機関で発生した動力は、例えば、変速機、推進軸(プロペラシャフト)を介して、左右の後輪(駆動輪)の中央に設けられた終減速装置に入力される。終減速装置は、推進軸の動力が入力されるドライブピニオンと、ドライブピニオンが噛合し、その動力を90°偏向させ後記するデフケースに固定されハイポイドギヤ等から成るリングギヤと、デフ装置(デファレンシャル装置、差動装置)と、を備えて構成される。デフ装置は、カーブを走行した場合に左右の後輪を差動回転させるため装置であり、鋳造製又は鍛造製のデフケース(動力伝達部材)と、これに収容されたデフギヤ(ピニオンギヤ、サイドギヤ)と、を備えて構成される。   On the other hand, in a four-wheeled vehicle, the power generated by the internal combustion engine is input to a final reduction device provided at the center of the left and right rear wheels (drive wheels) via, for example, a transmission and a propeller shaft. The The final reduction gear is composed of a drive pinion to which the power of the propulsion shaft is input and a drive pinion that meshes with the drive pinion and deflects the power by 90 ° and is fixed to a differential case to be described later. Moving device). The differential device is a device for differentially rotating the left and right rear wheels when traveling on a curve, a cast or forged differential case (power transmission member), and a differential gear (pinion gear, side gear) accommodated therein , And is configured.

ここで、リングギヤとデフケースとは、例えば、デフケースの外周面にフランジを形成し、リングギヤをデフケースに外嵌した後、リングギヤと前記フランジとをボルトで締結することで一体化している。したがって、前記ボルトは、動力伝達の一部を担うことになるので、高強度材料で形成されることが必要となり、また、前記ボルトは、高い締め付けで締結することが必要であるので、これらの組み付け作業は煩雑となっている。   Here, the ring gear and the differential case are integrated by, for example, forming a flange on the outer peripheral surface of the differential case, fitting the ring gear to the differential case, and then fastening the ring gear and the flange with a bolt. Therefore, since the bolt is responsible for a part of power transmission, it is necessary to be formed of a high-strength material, and the bolt needs to be fastened with high tightening. The assembly work is complicated.

そこで、このような問題を解決するため、リングギヤと動力伝達部材(ハブ部材、デフケース)とを、レーザービーム溶接や電子ビーム溶接で一体化する技術が提案されている(特許文献1〜3参照)。また、レーザービーム溶接及び電子ビーム溶接よりも動力伝達装置の生産性を高めるため、電気抵抗溶接で一体化する技術が提案されている(特許文献4参照)。   Therefore, in order to solve such a problem, a technique has been proposed in which the ring gear and the power transmission member (hub member, differential case) are integrated by laser beam welding or electron beam welding (see Patent Documents 1 to 3). . Further, in order to increase the productivity of the power transmission device over laser beam welding and electron beam welding, a technique of integrating by electric resistance welding has been proposed (see Patent Document 4).

特開2010−180976号公報JP 2010-180976 A 特開2010−242930号公報JP 2010-242930 A 特開2011−47420号公報JP 2011-47420 A 特開2011−98358号公報JP 2011-98358 A

ところで、特許文献4において、リングギヤとデフケースとの嵌合長さは、平歯車であるリングギヤの噛合い反力を考慮して決定されている。
ここで、リングギヤをかさ歯車(ベベルギヤ)に変更した構成とした場合、軸方向(リングギヤ及びデフケースの回転軸方向)に作用する反力が大きくなるので、リングギヤとデフケースとの嵌合長さを大きくする必要があるが、このように嵌合長さを大きくすると、リングギヤとデフケースとを接合するためのエネルギ(接合エネルギ)が増大するうえに、生産性が低下する虞がある。
Incidentally, in Patent Document 4, the fitting length between the ring gear and the differential case is determined in consideration of the meshing reaction force of the ring gear that is a spur gear.
Here, when the ring gear is changed to a bevel gear (bevel gear), the reaction force acting in the axial direction (in the direction of the rotation axis of the ring gear and the differential case) increases, so the fitting length between the ring gear and the differential case is increased. However, when the fitting length is increased in this way, energy (joining energy) for joining the ring gear and the differential case increases, and productivity may be lowered.

また、この構成では、リングギヤの中空部にデフケースを圧入していくにつれて、リングギヤとデフケースとの接触面積が増加し、これに伴って接合エネルギが増大する虞がある。   Further, in this configuration, as the differential case is press-fitted into the hollow portion of the ring gear, the contact area between the ring gear and the differential case increases, and the joining energy may increase accordingly.

さらに、この構成では、リングギヤとデフケースとを電気抵抗溶接機に取り付けた後、リングギヤとデフケースとを接触させた段階において、電気抵抗溶接機に対してのリングギヤ及びデフケースの取付中心のずれや、リングギヤ及びデフケースの接触面の加工誤差等により、両部材の接触範囲が周方向において均一とならない虞がある。そして、このように接触範囲が周方向に不均一であると、周方向において、通電量・発熱量のばらつきが生じ、これにより、溶融量(溶け込み量)が不均一となり、リングギヤの中心とデフケースとの中心とがずれてしまう虞がある。   Further, in this configuration, after the ring gear and the differential case are attached to the electric resistance welder, when the ring gear and the differential case are brought into contact with each other, the center of the ring gear and the differential case with respect to the electric resistance welder is displaced, the ring gear In addition, the contact range of both members may not be uniform in the circumferential direction due to processing errors on the contact surface of the differential case. If the contact range is not uniform in the circumferential direction in this way, there will be variations in the amount of electricity and heat generated in the circumferential direction, resulting in a non-uniform melt amount (penetration amount) and the center of the ring gear and the differential case. There is a risk that the center will be shifted.

さらにまた、電気抵抗溶接において発生したバリが製造後に残ってしまい、このバリが動力伝達装置の使用中に脱落し、ギヤが噛み込んでしまうと、ギヤの強度が低下する虞がある。   Furthermore, if the burrs generated in the electric resistance welding remain after the manufacture, and the burrs fall off during use of the power transmission device and the gears are engaged, the strength of the gears may be reduced.

そこで、本発明は、簡素な工程で大歯車と動力伝達部材とを高強度で接合する動力伝達装置の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the power transmission device which joins a large gear and a power transmission member with high intensity | strength by a simple process.

前記課題を解決するための手段として、本発明は、大歯車と動力伝達部材とを備え、前記大歯車と前記動力伝達部材とが一体で構成され同一の回転軸を中心とする動力伝達装置の製造方法であって、前記大歯車に前記回転軸を中心とする円錐状の第1合わせ面を形成し、前記動力伝達部材に前記回転軸を中心とし前記第1合わせ面と合わさる円錐状の第2合わせ面を形成し、前記大歯車及び前記動力伝達部材の一方に他方に向かって突出する突出部を形成し、前記大歯車及び前記動力伝達部材の他方に前記突出部に対向する凹部を形成する合わせ面形成工程と、前記第1合わせ面と前記第2合わせ面とを対向させつつ、前記突出部と前記凹部の底面とを突き合わせた状態で、前記大歯車及び前記動力伝達部材に通電し、前記突出部と前記凹部の底面とを電気抵抗溶接で接合する接合工程と、軸方向において前記大歯車と前記動力伝達部材とを相対的に近づく向きで押圧し、前記第1合わせ面と前記第2合わせ面とを密着させる押圧工程と、を含むことを特徴とする動力伝達装置の製造方法である。   As means for solving the above-mentioned problems, the present invention provides a power transmission device comprising a large gear and a power transmission member, wherein the large gear and the power transmission member are configured integrally and centered on the same rotating shaft. In the manufacturing method, a conical first mating surface centered on the rotation shaft is formed on the large gear, and a conical first mating surface is formed on the power transmission member about the rotation shaft. Forming two mating surfaces, forming a protruding portion protruding toward the other on one of the large gear and the power transmission member, and forming a recess facing the protruding portion on the other of the large gear and the power transmission member The large gear and the power transmission member are energized in a state where the projecting portion and the bottom surface of the recess are abutted with each other while the mating surface forming step is opposed to the first mating surface and the second mating surface. The protrusion and the recess A joining step for joining the bottom surface by electric resistance welding, and pressing the large gear and the power transmission member in a relatively close direction in the axial direction to bring the first mating surface and the second mating surface into close contact with each other. And a pressing step. A method of manufacturing a power transmission device, comprising:

ここで、「円錐状」は、「円錐台状」も含むものとする。
また、「前記第1合わせ面と前記第2合わせ面とを密着させる」は、第1合わせ面と第2合わせ面とがその全体で相互に密着するだけでなく、後記するように、線状等の部分的に密着する形態を含む。
Here, “conical shape” includes “conical shape”.
In addition, “adhering the first mating surface and the second mating surface” means not only that the first mating surface and the second mating surface are in close contact with each other, but also a linear shape as described later. And the like, which are partially adhered to each other.

このような構成によれば、合わせ面形成工程において、大歯車に円錐状の第1合わせ面を形成し、動力伝達部材に円錐状の第2合わせ面を形成すると共に、大歯車及び動力伝達部材の一方に突出部を形成し、他方に凹部を形成する。   According to such a configuration, in the mating surface forming step, the conical first mating surface is formed on the large gear, the conical second mating surface is formed on the power transmission member, and the large gear and the power transmission member. A protrusion is formed on one of the two and a recess is formed on the other.

そして、接合工程において、第1合わせ面と第2合わせ面とを対向させつつ、突出部と凹部の底面とを突き合わせた状態で、大歯車及び動力伝達部材に通電する。そうすると、大歯車及び動力伝達部材の間では、突出部と凹部の底面との突き合わせ部のみに通電し、その抵抗に基づいて突き合わせ部が発熱する、つまり、突き合わせ部において通電に伴い抵抗熱が発生する。これにより、突き合わせ部を構成する突出部と凹部の底面とが軟化及び塑性流動し、突出部と凹部の底面とが電気抵抗溶接される。   And in a joining process, it supplies with electricity to a large gearwheel and a power transmission member in the state which faced the 1st mating surface and the 2nd mating surface, and the projection part and the bottom face of the crevice. Then, between the large gear and the power transmission member, only the abutting portion between the protruding portion and the bottom surface of the concave portion is energized, and the abutting portion generates heat based on the resistance. To do. Thereby, the protrusion part which comprises a butt | matching part, and the bottom face of a recessed part soften and plastically flow, and an electrical resistance welding is carried out to a protrusion part and the bottom face of a recessed part.

そして、通電を停止し、前記突き合わせ部が完全に固体化する前に、押圧工程において、軸方向において大歯車と動力伝達部材とを相対的に近づく向きで押圧し、第1合わせ面と第2合わせ面とを密着させることにより、大歯車と動力伝達部材との中心を一致させながら接合できる。
なお、突き合わせ部(接合部)は、例えばその後常温まで自然冷却され、突出部等を形成する金属は凝固し接合面が形成される。
Then, before energization is stopped and the abutting portion is completely solidified, in the pressing step, the large gear and the power transmission member are pressed in a relatively approaching direction in the axial direction, and the first mating surface and the second mating surface are pressed. By bringing the mating surfaces into close contact with each other, the large gear and the power transmission member can be joined while matching the centers thereof.
The abutting portion (joining portion) is then naturally cooled to room temperature, for example, and the metal forming the projecting portion is solidified to form a joining surface.

ここで、第1合わせ面と第2合わせ面とは、製造後の回転軸を中心とする円錐状の面であるから、押圧工程において、第1合わせ面と第2合わせ面とを密着させ、その間の隙間を無くすことにより、大歯車の中心軸と、動力伝達部材の中心軸とが一致することになる。よって、大歯車とその相手ギヤ(ドライブピニオンのギヤ部等)との間において、噛合いにずれが発生することはない。   Here, since the first mating surface and the second mating surface are conical surfaces centering on the rotation axis after manufacture, in the pressing step, the first mating surface and the second mating surface are brought into close contact with each other, By eliminating the gap between them, the central axis of the large gear coincides with the central axis of the power transmission member. Therefore, there is no deviation in meshing between the large gear and its counterpart gear (such as the gear portion of the drive pinion).

また、抵抗熱によって突出部が軟化しバリが発生するが、このバリは突出部の相手側(他方側)の凹部内で発生し、製造後の動力伝達装置の外表面に現れず、動力伝達装置の使用中に脱落する虞も無い。   In addition, the protrusion softens and burr is generated by resistance heat, but this burr is generated in the recess on the other side (the other side) of the protrusion, and does not appear on the outer surface of the power transmission device after manufacturing. There is no risk of falling off during use of the device.

前記課題を解決するための手段として、本発明は、大歯車と動力伝達部材とを備え、前記大歯車と前記動力伝達部材とが一体で構成され同一の回転軸を中心とする動力伝達装置の製造方法であって、前記大歯車に前記回転軸を中心とする円錐状の第1合わせ面を形成し、前記動力伝達部材に前記回転軸を中心とし前記第1合わせ面と合わさる円錐状の第2合わせ面を形成し、前記大歯車に第1凹部を形成し、前記動力伝達部材に前記第1凹部と対向する第2凹部を形成する合わせ面形成工程と、前記第1合わせ面と前記第2合わせ面とを対向させつつ、前記第1凹部と前記第2凹部とで接合補助部材を挟み、前記第1凹部の第1底面と前記接合補助部材と突き合わせた状態、かつ、前記第2凹部の第2底面と前記接合補助部材とを突き合わせた状態で、前記大歯車及び前記動力伝達部材に通電し、前記第1凹部の第1底面及び前記接合補助部材と前記第2凹部の第2底面及び前記接合補助部材とをそれぞれ電気抵抗溶接で接合する接合工程と、軸方向において前記大歯車と前記動力伝達部材とを相対的に近づく向きで押圧し、前記第1合わせ面と前記第2合わせ面とを密着させる押圧工程と、を含むことを特徴とする動力伝達装置の製造方法である。   As means for solving the above-mentioned problems, the present invention provides a power transmission device comprising a large gear and a power transmission member, wherein the large gear and the power transmission member are configured integrally and centered on the same rotating shaft. In the manufacturing method, a conical first mating surface centered on the rotation shaft is formed on the large gear, and a conical first mating surface is formed on the power transmission member about the rotation shaft. A mating surface forming step of forming two mating surfaces, forming a first recess in the large gear, and forming a second recess facing the first recess in the power transmission member; and the first mating surface and the first A state in which the joining assisting member is sandwiched between the first recess and the second recess while the two mating surfaces are opposed to each other, the first bottom surface of the first recess and the joining assisting member are abutted, and the second recess The second bottom surface of the steel and the joining auxiliary member In this state, the large gear and the power transmission member are energized, and the first bottom surface of the first recess and the joining auxiliary member are joined to the second bottom surface of the second recess and the joining auxiliary member by electric resistance welding, respectively. And a pressing step of pressing the large gear and the power transmission member in a relatively approaching direction in the axial direction so that the first mating surface and the second mating surface are brought into close contact with each other. It is the manufacturing method of the power transmission device characterized.

このような構成によれば、合わせ面形成工程において、大歯車に円錐状の第1合わせ面を形成し、動力伝達部材に円錐状の第2合わせ面を形成し、大歯車に第1凹部を形成し、動力伝達部材に第2凹部を形成する。   According to such a configuration, in the mating surface forming step, the conical first mating surface is formed on the large gear, the conical second mating surface is formed on the power transmission member, and the first recess is formed on the large gear. And forming a second recess in the power transmission member.

そして、接合工程において、第1合わせ面と第2合わせ面とを対向させつつ、第1凹部と第2凹部とで接合補助部材を挟み、第1凹部の第1底面と接合補助部材とを突き合わせた状態、かつ、第2凹部の第2底面と接合補助部材とを突き合わせた状態で、大歯車及び前記動力伝達部材に通電する。そうすると、大歯車及び動力伝達部材の間では、接合補助部材のみを経由するように、つまり、第1凹部の第1底面及び接合補助部材の第1突き合わせ部と、第2凹部の第2底面及び接合補助部材の第2突き合わせ部とを経由するように通電し、その抵抗に基づいて第1突き合わせ部及び第2突き合わせ部が発熱する、つまり、第1突き合わせ部及び第2突き合わせ部において通電に伴い抵抗熱が発生する。これにより、第1突き合わせ部を構成する接合補助部材及び第1凹部の第1底面と、第2突き合わせ部を構成する接合補助部材及び第2凹部の第2底面とが、それぞれ軟化及び塑性流動し、接合補助部材及び第1凹部の第1底面と、接合補助部材及び第2凹部の第2底面とが、それぞれ電気抵抗溶接される。   In the joining step, the first auxiliary surface and the second auxiliary surface are made to face each other, the auxiliary bonding member is sandwiched between the first concave portion and the second concave portion, and the first bottom surface of the first concave portion and the auxiliary auxiliary member are butted together. The large gear and the power transmission member are energized in a state where the second bottom surface of the second recess and the joining auxiliary member are abutted with each other. Then, between the large gear and the power transmission member, only through the joining auxiliary member, that is, the first bottom surface of the first recess and the first butting portion of the joining auxiliary member, the second bottom surface of the second recess, and Energization is performed so as to pass through the second butting portion of the joining auxiliary member, and the first butting portion and the second butting portion generate heat based on the resistance. Resistance heat is generated. As a result, the joining auxiliary member constituting the first abutting portion and the first bottom surface of the first recess, and the joining assisting member constituting the second abutting portion and the second bottom surface of the second recess soften and plastically flow, respectively. The first auxiliary bottom surface of the joining auxiliary member and the first concave portion and the second bottom surface of the auxiliary joining member and the second concave portion are electrically resistance welded, respectively.

そして、通電を停止し、前記突き合わせ部が完全に固体化する前に、押圧工程において、軸方向において大歯車と動力伝達部材とを相対的に近づく向きで押圧し、第1合わせ面と第2合わせ面とを密着させることにより、大歯車と動力伝達部材との中心を一致させながら接合できる。
ここで、第1合わせ面と第2合わせ面とは、製造後の回転軸を中心とする円錐状の面であるから、押圧工程において、第1合わせ面と第2合わせ面とを密着させ、その間の隙間を無くすことにより、大歯車の中心軸と、動力伝達部材の中心軸とが一致することになる。よって、大歯車とその相手ギヤ(ドライブピニオンのギヤ部等)との間において、噛合いにずれが発生することはない。
Then, before energization is stopped and the abutting portion is completely solidified, in the pressing step, the large gear and the power transmission member are pressed in a relatively approaching direction in the axial direction, and the first mating surface and the second mating surface are pressed. By bringing the mating surfaces into close contact with each other, the large gear and the power transmission member can be joined while matching the centers thereof.
Here, since the first mating surface and the second mating surface are conical surfaces centering on the rotation axis after manufacture, in the pressing step, the first mating surface and the second mating surface are brought into close contact with each other, By eliminating the gap between them, the central axis of the large gear coincides with the central axis of the power transmission member. Therefore, there is no deviation in meshing between the large gear and its counterpart gear (such as the gear portion of the drive pinion).

また、抵抗熱によって接合補助部材が軟化しバリが発生するが、このバリは相手側の第1凹部又は第2凹部内で発生し、製造後の動力伝達装置の外表面に現れず、動力伝達装置の使用中に脱落する虞も無い。   In addition, the joining auxiliary member softens due to resistance heat, and burrs are generated. These burrs are generated in the first concave portion or the second concave portion on the mating side and do not appear on the outer surface of the power transmission device after manufacture, and power transmission There is no risk of falling off during use of the device.

また、前記動力伝達装置の製造方法において、前記回転軸に対する前記第1合わせ面の第1傾斜角度と、前記回転軸に対する前記第2合わせ面の第2傾斜角度とは、異ならせることも可能である。   Further, in the method for manufacturing the power transmission device, the first inclination angle of the first mating surface with respect to the rotating shaft and the second inclination angle of the second mating surface with respect to the rotating shaft may be different from each other. is there.

このような構成によれば、第1合わせ面の第1傾斜角度と、第2合わせ面の第2傾斜角度とが異なるので、第1合わせ面と第2合わせ面との接触部(合わせ部)は、線状、つまり、回転軸を中心とする円周状となる。
これにより、押圧工程において、軸方向において大歯車と動力伝達部材とを相対的に近づく向きで押圧すると、その押圧力が前記線状の接触部に集中し、大歯車及び/又は動力伝達部材が、前記接触部において弾性変形又は塑性変形し易くなる。したがって、軸方向において、大歯車と動力伝達部材とが相対的に近づき易くなる。
According to such a configuration, since the first inclination angle of the first mating surface and the second inclination angle of the second mating surface are different, the contact portion (matching portion) between the first mating surface and the second mating surface. Is linear, that is, circumferential around the rotation axis.
Thus, in the pressing step, when the large gear and the power transmission member are pressed in a direction relatively approaching in the axial direction, the pressing force is concentrated on the linear contact portion, and the large gear and / or the power transmission member is The contact portion is easily elastically deformed or plastically deformed. Therefore, in the axial direction, the large gear and the power transmission member are relatively easily approached.

よって、大歯車の表面であって第1合わせ面以外で動力伝達部材に対向する第1対向面(後記する実施形態では背面13)が、動力伝達部材に当接(接触)し密着し易くなる。これと同様に、動力伝達部材の表面であって第2合わせ面以外で大歯車に対向する第2対向面(後記する実施形態ではフランジ面25a)が、大歯車に当接(接触)し密着し易くなる。   Therefore, the first facing surface (the back surface 13 in the embodiment described later) that faces the power transmission member other than the first mating surface, which is the surface of the large gear, comes into contact (contact) with the power transmission member and is easily adhered. . Similarly, a second opposing surface (a flange surface 25a in the embodiment described later) that is the surface of the power transmission member and faces the large gear other than the second mating surface abuts (contacts) the large gear and is in close contact therewith. It becomes easy to do.

このようにして、製造後の動力伝達装置において、大歯車の第1対向面が動力伝達部材に密着し、動力伝達部材の第2対向面が大歯車に密着した構成となるので、例えば、大歯車が、大歯車の回転軸が動力伝達部材の回転軸から倒れる方向(大歯車の回転軸と動力伝達部材の回転軸とが離れる方向)に、噛合い反力を受けたとしても、大歯車は動力伝達部材に対して倒れ難くなり、大歯車の回転軸と動力伝達部材の回転軸とがずれ難くなる。
なお、第1対向面、第2対向面は、後記する実施形態のように、押圧方向(回転軸)に対して直交する面であることが好ましく、また、軸方向において、第1対向面と第2対向面とが対向して配置され、第1対向面と第2対向面とが密着する構成であることが好ましい。
Thus, in the power transmission device after manufacture, the first opposing surface of the large gear is in close contact with the power transmission member, and the second opposing surface of the power transmission member is in close contact with the large gear. Even if the gear receives a meshing reaction force in a direction in which the rotation shaft of the large gear falls from the rotation shaft of the power transmission member (a direction in which the rotation shaft of the large gear and the rotation shaft of the power transmission member are separated) Is less likely to fall with respect to the power transmission member, and the rotation shaft of the large gear and the rotation shaft of the power transmission member are difficult to shift.
In addition, it is preferable that a 1st opposing surface and a 2nd opposing surface are surfaces orthogonal to a press direction (rotation axis) like embodiment mentioned later, and, in an axial direction, it is the 1st opposing surface and It is preferable that the second facing surface is disposed so as to face the first facing surface and the second facing surface is in close contact with each other.

また、前記動力伝達装置の製造方法において、縦断面視において、前記第1合わせ面及び前記第2合わせ面の一方は、他方に向かって円弧状で突出していることが好ましい。   In the method of manufacturing the power transmission device, it is preferable that one of the first mating surface and the second mating surface protrudes in an arc shape toward the other in a longitudinal sectional view.

このような構成によれば、第1合わせ面及び第2合わせ面の一方は、他方に向かって円弧状で突出しているので、第1合わせ面と第2合わせ面との接触部(合わせ部)は、線状、つまり、回転軸を中心とする円周状となる。
これにより、押圧工程において、軸方向において大歯車と動力伝達部材とを相対的に近づく向きで押圧すると、その押圧力が前記線状の接触部に集中し、大歯車及び/又は動力伝達部材が、前記接触部において弾性変形又は塑性変形し易くなる。したがって、軸方向において、大歯車と動力伝達部材とが相対的に近づき易くなる。
According to such a configuration, since one of the first mating surface and the second mating surface protrudes in an arc shape toward the other, a contact portion (matching portion) between the first mating surface and the second mating surface. Is linear, that is, circumferential around the rotation axis.
Thus, in the pressing step, when the large gear and the power transmission member are pressed in a direction relatively approaching in the axial direction, the pressing force is concentrated on the linear contact portion, and the large gear and / or the power transmission member is The contact portion is easily elastically deformed or plastically deformed. Therefore, in the axial direction, the large gear and the power transmission member are relatively easily approached.

よって、大歯車の表面であって第1合わせ面以外で動力伝達部材に対向する第1対向面(後記する実施形態では背面13)が、動力伝達部材に当接(接触)し密着し易くなる。これと同様に、動力伝達部材の表面であって第2合わせ面以外で大歯車に対向する第2対向面(後記する実施形態ではフランジ面25a)が、大歯車に当接(接触)し密着し易くなる。   Therefore, the first facing surface (the back surface 13 in the embodiment described later) that faces the power transmission member other than the first mating surface, which is the surface of the large gear, comes into contact (contact) with the power transmission member and is easily adhered. . Similarly, a second opposing surface (a flange surface 25a in the embodiment described later) that is the surface of the power transmission member and faces the large gear other than the second mating surface abuts (contacts) the large gear and is in close contact therewith. It becomes easy to do.

このようにして、製造後の動力伝達装置において、大歯車の第1対向面が動力伝達部材に密着し、動力伝達部材の第2対向面が大歯車に密着した構成となるので、例えば、大歯車が、大歯車の回転軸が動力伝達部材の回転軸から倒れる方向(大歯車の回転軸と動力伝達部材の回転軸とが離れる方向)に、噛合い反力を受けたとしても、大歯車は動力伝達部材に対して倒れ難くなり、大歯車の回転軸と動力伝達部材の回転軸とがずれ難くなる。
なお、第1対向面、第2対向面は、後記する実施形態のように、押圧方向(回転軸)に対して直交する面であることが好ましく、また、軸方向において、第1対向面と第2対向面とが対向して配置され、第1対向面と第2対向面とが密着する構成であることが好ましい。
Thus, in the power transmission device after manufacture, the first opposing surface of the large gear is in close contact with the power transmission member, and the second opposing surface of the power transmission member is in close contact with the large gear. Even if the gear receives a meshing reaction force in a direction in which the rotation shaft of the large gear falls from the rotation shaft of the power transmission member (a direction in which the rotation shaft of the large gear and the rotation shaft of the power transmission member are separated) Is less likely to fall with respect to the power transmission member, and the rotation shaft of the large gear and the rotation shaft of the power transmission member are difficult to shift.
In addition, it is preferable that a 1st opposing surface and a 2nd opposing surface are surfaces orthogonal to a press direction (rotation axis) like embodiment mentioned later, and, in an axial direction, it is the 1st opposing surface and It is preferable that the second facing surface is disposed so as to face the first facing surface and the second facing surface is in close contact with each other.

また、前記動力伝達装置の製造方法において、前記動力伝達部材は、駆動輪が取り付けられるハブ部材であることが好ましい。   In the method for manufacturing a power transmission device, the power transmission member is preferably a hub member to which drive wheels are attached.

このような構成によれば、大歯車と、駆動輪と同軸線上に配置されるハブ部材とを良好に接合できる。   According to such a configuration, it is possible to satisfactorily join the large gear and the hub member disposed on the coaxial line with the drive wheel.

また、前記動力伝達装置の製造方法において、前記動力伝達部材は、デフケースであることが好ましい。   In the method for manufacturing the power transmission device, the power transmission member is preferably a differential case.

このような構成によれば、大歯車と、デフケースとを良好に接合できる。   According to such a configuration, the large gear and the differential case can be satisfactorily joined.

本発明によれば、簡素な工程で大歯車と動力伝達部材とを高強度で接合する動力伝達装置の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the power transmission device which joins a large gear and a power transmission member with high intensity | strength by a simple process can be provided.

第1実施形態に係る二輪車用の動力伝達装置を備える終減速装置の断面図であり、回転軸O1を通る縦断面図である。It is sectional drawing of the final reduction gear provided with the power transmission device for two-wheeled vehicles which concerns on 1st Embodiment, and is a longitudinal cross-sectional view which passes along rotating shaft O1. (a)は、第1実施形態に係る動力伝達装置の縦断面図であり、(b)は、(a)の拡大図である。(A) is a longitudinal cross-sectional view of the power transmission device according to the first embodiment, and (b) is an enlarged view of (a). (a)は、第1実施形態に係る動力伝達装置の製造方法を説明する縦断面図であって接合前(電気抵抗溶接前)を示しており、(b)は、(a)の拡大図である。(A) is the longitudinal cross-sectional view explaining the manufacturing method of the power transmission device which concerns on 1st Embodiment, Comprising: Before joining (before electric resistance welding), (b) is an enlarged view of (a). It is. (a)は、第1実施形態に係る動力伝達装置の製造方法を説明する縦断面図であって接合後(電気抵抗溶接後)、押圧前を示しており、(b)は、(a)の拡大図である。(A) is the longitudinal cross-sectional view explaining the manufacturing method of the power transmission device which concerns on 1st Embodiment, Comprising: After joining (after electrical resistance welding), it has shown before pressing, (b) is (a). FIG. (a)は、第2実施形態に係る動力伝達装置の縦断面図であり、(b)は、(a)の拡大図である。(A) is a longitudinal cross-sectional view of the power transmission device according to the second embodiment, and (b) is an enlarged view of (a). (a)は、第3実施形態に係る動力伝達装置の縦断面図であり、(b)は、(a)の拡大図である。(A) is a longitudinal cross-sectional view of the power transmission device which concerns on 3rd Embodiment, (b) is an enlarged view of (a). (a)は、第4実施形態に係る動力伝達装置の縦断面図であり、(b)は、(a)の拡大図である。(A) is a longitudinal cross-sectional view of the power transmission device which concerns on 4th Embodiment, (b) is an enlarged view of (a). 第5実施形態に係る四輪車用の動力伝達装置を備える終減速装置の縦断面図である。It is a longitudinal cross-sectional view of the final reduction gear provided with the power transmission device for four-wheeled vehicles which concerns on 5th Embodiment.

≪第1実施形態≫
第1実施形態について、図1〜図4を参照して説明する。
ここでは、動力伝達装置が二輪車(車両)の後輪部分に適用された構成を例示する。そして、明確に説明するため、図1〜図4に「前後左右」を付す。なお、「前後左右」は、二輪車の「前後左右」に対応している。また、図1〜図4において、リングギヤ10とハブ部材20との隙間は大きめに記載している。
<< First Embodiment >>
A first embodiment will be described with reference to FIGS.
Here, a configuration in which the power transmission device is applied to a rear wheel portion of a two-wheeled vehicle (vehicle) is illustrated. And in order to demonstrate clearly, "front and rear, right and left" are attached | subjected to FIGS. Note that “front / rear / left / right” corresponds to “front / rear / left / right” of a motorcycle. Moreover, in FIGS. 1-4, the clearance gap between the ring gear 10 and the hub member 20 is described rather large.

≪終減速装置の構成≫
終減速装置100は、推進軸(図示しない)に連結され前後方向に延びるドライブピニオン110と、動力伝達装置1とを備え、推進軸の動力を略90°偏向させつつ減速して、動力伝達装置1を構成するハブ部材20に伝達する装置である。
≪Configuration of final reduction gear≫
The final reduction gear 100 includes a drive pinion 110 that is connected to a propulsion shaft (not shown) and extends in the front-rear direction, and the power transmission device 1. 1 is a device for transmitting to the hub member 20 constituting the member 1.

ドライブピニオン110は、車体に固定されたケース115に、軸受116を介して、回転自在に支持されている。ドライブピニオン110の前端は、適宜な連結機構を介して推進軸(図示しない)の後端と連結され、推進軸の動力がドライブピニオン110に入力されるようになっている。   The drive pinion 110 is rotatably supported by a case 115 fixed to the vehicle body via a bearing 116. The front end of the drive pinion 110 is connected to the rear end of a propulsion shaft (not shown) via an appropriate connection mechanism, and the power of the propulsion shaft is input to the drive pinion 110.

ドライブピニオン110のギヤ部111は、後記するリングギヤ10のギヤ部11と噛合している。   The gear part 111 of the drive pinion 110 meshes with a gear part 11 of the ring gear 10 described later.

≪動力伝達装置の構成≫
動力伝達装置1の構成を説明する。
動力伝達装置1は、リングギヤ10(大歯車)と、ハブ部材20(動力伝達部材)とを備えている。そして、リングギヤ10とハブ部材20とは、後記する突起14(突出部)と環溝26の底面26aとが電気抵抗溶接すると共に、第1合わせ面12と第2合わせ面24とが密着することで一体化している。なお、リングギヤ10とハブ部材20とは、同一の回転軸O1を中心としており、この回転軸O1は、後輪の回転中心でもある。また、リングギヤ10、ハブ部材20等、動力伝達装置1を構成する部品は、例えば、鋼製である。ただし、鋼製に限定されず、通電可能な材料であればよく、また、異なる材質、例えば軽量化を図るべく、アルミニウム合金としてもよい。
≪Power transmission device configuration≫
The configuration of the power transmission device 1 will be described.
The power transmission device 1 includes a ring gear 10 (large gear) and a hub member 20 (power transmission member). The ring gear 10 and the hub member 20 are such that a protrusion 14 (protrusion), which will be described later, and a bottom surface 26a of the annular groove 26 are electrically resistance-welded and the first mating surface 12 and the second mating surface 24 are in close contact with each other. It is integrated with. The ring gear 10 and the hub member 20 are centered on the same rotation axis O1, and this rotation axis O1 is also the rotation center of the rear wheel. Moreover, the parts which comprise the power transmission device 1, such as the ring gear 10 and the hub member 20, are made of steel, for example. However, the material is not limited to steel, and any material that can be energized may be used, and a different material, for example, an aluminum alloy may be used to reduce weight.

<リングギヤ>
リングギヤ10は、リング状を呈する部品であって、その中空部にハブ部材20が差し込まれ、ハブ部材20に固定されている。リングギヤ10のギヤ部11は、ドライブピニオン110のギヤ部111に噛合している。
<Ring gear>
The ring gear 10 is a ring-shaped component, and a hub member 20 is inserted into a hollow portion thereof and fixed to the hub member 20. The gear portion 11 of the ring gear 10 meshes with the gear portion 111 of the drive pinion 110.

リングギヤ10の内周面は、第1合わせ面12を構成している。第1合わせ面12は、回転軸O1を中心とした円錐台状(円錐状)の面、つまり、その右端側が縮径したテーパ面である。すなわち、第1合わせ面12の内径は、左側から右側に進むにつれて、徐々に小さくなっている。   The inner peripheral surface of the ring gear 10 constitutes a first mating surface 12. The first mating surface 12 is a frustoconical (conical) surface with the rotation axis O1 as the center, that is, a tapered surface whose right end is reduced in diameter. That is, the inner diameter of the first mating surface 12 is gradually reduced from the left side to the right side.

リングギヤ10のハブ部材20側は、回転軸O1と直交する方向で広がると共にリング状を呈し平坦な背面13(第1対向面)となっており、背面13は後記するフランジ面25aと対向している。そして、背面13にはハブ部材20に向けて突出すると共に回転軸O1を中心としたリング状(環状)の突起14が形成されており、突起14は、後記する環溝26に収容されると共に、環溝26内でその底面26aと溶着(接合)し、ハブ部材20と接合されている。   The hub member 20 side of the ring gear 10 spreads in a direction orthogonal to the rotation axis O1 and has a ring shape to form a flat back surface 13 (first facing surface). The back surface 13 faces a flange surface 25a described later. Yes. A rear surface 13 is formed with a ring-shaped (annular) protrusion 14 centering on the rotation axis O1 and protruding toward the hub member 20, and the protrusion 14 is accommodated in an annular groove 26 described later. In the annular groove 26, the bottom surface 26 a is welded (joined) and joined to the hub member 20.

<ハブ部材>
ハブ部材20は、駆動輪である後輪のホイール(図示しない)が取り付けられる部品である。ハブ部材20は、左側(一端側)から右側(他端側)に向かって、大径部21と、縮径部22と、小径部23とを備えている。そして、大径部21が、軸受31、31を介して、ケース32に回転自在に支持されており、小径部23が、軸受33を介して、ケース32に回転自在に支持されている。なお、大径部21の左側の端面に、前記ホイールが取り付けられる。
<Hub member>
The hub member 20 is a component to which a rear wheel (not shown) as a driving wheel is attached. The hub member 20 includes a large diameter portion 21, a reduced diameter portion 22, and a small diameter portion 23 from the left side (one end side) toward the right side (the other end side). The large diameter portion 21 is rotatably supported by the case 32 via the bearings 31, 31, and the small diameter portion 23 is rotatably supported by the case 32 via the bearing 33. The wheel is attached to the left end surface of the large diameter portion 21.

縮径部22は、右側(他端側)に向かうにつれて徐々に縮径した円錐台状を呈しており、その外周面は第2合わせ面24を構成している。第2合わせ面24は、回転軸O1を中心とした円錐台状(円錐状)の面、つまり、その右端側が縮径したテーパ面である。すなわち、第2合わせ面24の外径は、左側から右側に進むにつれて、徐々に小さくなっている。   The reduced diameter portion 22 has a truncated cone shape that gradually decreases in diameter toward the right side (the other end side), and an outer peripheral surface thereof constitutes a second mating surface 24. The second mating surface 24 is a frustoconical surface (conical shape) centered on the rotation axis O1, that is, a tapered surface whose diameter is reduced on the right end side. That is, the outer diameter of the second mating surface 24 is gradually reduced from the left side to the right side.

ここで、第1実施形態では、回転軸O1を通る縦断面視において、回転軸O1に対する第1合わせ面12の第1傾斜角度θ1と、回転軸O1に対する第2合わせ面24の第2傾斜角度θ2とは、等しくなっている(θ1=θ2、図2(b)、図3(b)参照)。そして、第1合わせ面12と、第2合わせ面24とは、面全体で相互に密着している。   Here, in the first embodiment, in a longitudinal sectional view passing through the rotation axis O1, the first inclination angle θ1 of the first mating surface 12 with respect to the rotation axis O1 and the second inclination angle of the second mating surface 24 with respect to the rotation axis O1. It is equal to θ2 (θ1 = θ2, see FIGS. 2B and 3B). The first mating surface 12 and the second mating surface 24 are in close contact with each other over the entire surface.

大径部21の右側(縮径部22側)には、リング状のフランジ25が形成されている。そして、フランジ25の右面(リングギヤ10側面)は、フランジ面25a(第2対向面)を構成しており、このフランジ面25aは、回転軸O1と直交する方向で広がると共にリング状を呈する平坦な面であり、前記した背面13と対向している。   A ring-shaped flange 25 is formed on the right side (the reduced diameter portion 22 side) of the large diameter portion 21. The right surface (side surface of the ring gear 10) of the flange 25 forms a flange surface 25a (second opposing surface). The flange surface 25a is flat in a direction that is orthogonal to the rotation axis O1 and has a ring shape. It is a surface and faces the back surface 13 described above.

また、フランジ面25aには、前記した突起14に対向し回転軸O1を中心とする環状かつ凹状の環溝26(凹部)が形成されている。そして、環溝26は、突起14を収容している。
なお、ハブ部材20側に環状の突起を形成し、リングギヤ10側に環状の溝を形成する構成としてもよい。
Further, an annular and concave annular groove 26 (concave portion) is formed on the flange surface 25a so as to face the above-described protrusion 14 and center on the rotation axis O1. The annular groove 26 accommodates the protrusion 14.
An annular protrusion may be formed on the hub member 20 side and an annular groove may be formed on the ring gear 10 side.

≪動力伝達装置の製造方法≫
次に、動力伝達装置1の製造方法を説明する。
動力伝達装置1の製造方法は、合わせ面を形成する合わせ面形成工程と、リングギヤ10とハブ部材20とを電気抵抗溶接する接合工程と、リングギヤ10とハブ部材20とを押圧する押圧工程(アプセット工程)と、を含む。
≪Power transmission device manufacturing method≫
Next, a method for manufacturing the power transmission device 1 will be described.
The manufacturing method of the power transmission device 1 includes a mating surface forming step for forming a mating surface, a joining step for electrical resistance welding of the ring gear 10 and the hub member 20, and a pressing step for pressing the ring gear 10 and the hub member 20 (upset). Step).

<合わせ面形成工程>
図3に示すように、リングギヤ10の内周面に第1合わせ面12を形成し、ハブ部材20の外周面に第2合わせ面24を形成する。第1合わせ面12は、母体となるリングギヤの内周面を、例えば、旋盤によって、研削・研磨することで形成する。第2合わせ面24は、母体となるハブ部材の外周面を、例えば、旋盤によって、研削・研磨することで形成する。
<Mating surface forming process>
As shown in FIG. 3, the first mating surface 12 is formed on the inner circumferential surface of the ring gear 10, and the second mating surface 24 is formed on the outer circumferential surface of the hub member 20. The first mating surface 12 is formed by grinding and polishing the inner peripheral surface of the ring gear serving as a base, for example, with a lathe. The second mating surface 24 is formed by grinding and polishing the outer peripheral surface of the hub member serving as a base, for example, with a lathe.

また、リングギヤ10のハブ部材20側に、研削等によって、リング状の突起14及び背面13を形成する。なお、リング状の突起14に代えて、例えば、周方向において所定間隔で突起を形成してもよい。
一方、ハブ部材20のフランジ25のフランジ面25aに、研削等によって、環状の環溝26を形成する。
Moreover, the ring-shaped protrusion 14 and the back surface 13 are formed on the hub member 20 side of the ring gear 10 by grinding or the like. Instead of the ring-shaped protrusions 14, for example, protrusions may be formed at predetermined intervals in the circumferential direction.
On the other hand, an annular groove 26 is formed on the flange surface 25a of the flange 25 of the hub member 20 by grinding or the like.

ここで、背面13からの突起14の突出高さと、フランジ面25aからの環溝26の深さは、軸方向において、リングギヤ10とハブ部材20とを近づけた場合において、第1合わせ面12と第2合わせ面24とが接触する前に、突起14が環溝26の底面26aに接触し突き合わさるように形成される。また、環溝26の溝幅(径方向幅)は、径方向における突起14の厚さ(径方向長さ)よりも大きく形成される。   Here, the protrusion height of the protrusion 14 from the back surface 13 and the depth of the annular groove 26 from the flange surface 25a are the same as the first mating surface 12 when the ring gear 10 and the hub member 20 are brought close to each other in the axial direction. Before the second mating surface 24 comes into contact, the projection 14 is formed so as to contact and abut the bottom surface 26 a of the annular groove 26. The groove width (radial width) of the annular groove 26 is formed larger than the thickness (radial length) of the protrusion 14 in the radial direction.

<接合工程(電気抵抗溶接工程)>
リングギヤ10とハブ部材20とを電気抵抗溶接機(図示しない)に取り付け、リングギヤ10とハブ部材20とを同一の回転軸O1上に配置しながら、軸方向において相対的に近づけ、第1合わせ面12と第2合わせ面24との間に隙間を形成しつつ対向させながら、突起14と環溝26の底面26aとを第1押圧力P1で突き合せる。すなわち、環状の突起14を環溝26に差し込み、突起14を環溝26に収容し、突起14の左側端と環溝26の底面26aとが突き合わさった状態とする。
<Jointing process (electric resistance welding process)>
The ring gear 10 and the hub member 20 are attached to an electric resistance welder (not shown), and the ring gear 10 and the hub member 20 are relatively close to each other in the axial direction while being arranged on the same rotation axis O1, and the first mating surface. The projection 14 and the bottom surface 26a of the annular groove 26 are abutted with each other by the first pressing force P1 while facing each other while forming a gap between the first mating surface 24 and the second mating surface 24. That is, the annular protrusion 14 is inserted into the annular groove 26, the protrusion 14 is accommodated in the annular groove 26, and the left end of the protrusion 14 and the bottom surface 26 a of the annular groove 26 are in contact with each other.

なお、電気抵抗溶接機は、例えば、リングギヤ10の右側に配置されリングギヤ10を左向きに押すと共に第1電極となるリング状の第1治具と、ハブ部材20の左側に配置されハブ部材20を右向きに押すと共に第2電極となる第2治具と、第1治具及び第2治具に接合用の高電流を供給する電源装置(交流電源等)と、第1治具及び第2治具を相対的に近づく向きで押圧する押圧手段(油圧装置等)と、を備えている。   The electric resistance welder is, for example, arranged on the right side of the ring gear 10 to push the ring gear 10 leftward and to serve as a first electrode, and on the left side of the hub member 20, the hub member 20. A second jig that pushes right and becomes a second electrode; a power supply device (such as an AC power supply) that supplies a high current for bonding to the first jig and the second jig; and the first jig and the second jig. Pressing means (such as a hydraulic device) that presses the tool in a relatively approaching direction.

このように第1合わせ面12と第2合わせ面24とが隙間を隔てて対向し、突起14と底面26aとが突き合わさった状態で、電気抵抗溶接機(図示しない)から、リングギヤ10及びハブ部材20に通電させる。そうすると、リングギヤ10及びハブ部材20が前記電源装置に対して電気的に直列で接続された状態となり、電源装置からの高電流が、リングギヤ10とハブ部材20との間において、突起14と底面26aとが突き合わさった突き合わせ部のみを流れることになる。   In this manner, with the first mating surface 12 and the second mating surface 24 facing each other with a gap and the projection 14 and the bottom surface 26a butting each other, an electric resistance welder (not shown) is used to connect the ring gear 10 and the hub. The member 20 is energized. Then, the ring gear 10 and the hub member 20 are electrically connected in series to the power supply device, and a high current from the power supply device causes the protrusion 14 and the bottom surface 26a to be interposed between the ring gear 10 and the hub member 20. Will flow only through the butted part.

そうすると、図4(a)、図4(b)に示すように、突起14と環溝26の底面26aとが突き合わさった突き合せ部において、通電に伴う抵抗熱が発生する。そして、この抵抗熱によって、突起14と環溝26の底面26aとが、軟化・溶融し、この突き合せ部において、リングギヤ10とハブ部材20とが接合(電気抵抗溶接)する。   Then, as shown in FIGS. 4A and 4B, resistance heat is generated due to energization at the abutting portion where the protrusion 14 and the bottom surface 26a of the annular groove 26 abut each other. The resistance heat softens and melts the protrusion 14 and the bottom surface 26a of the annular groove 26, and the ring gear 10 and the hub member 20 are joined (electrical resistance welding) at the abutting portion.

なお、この段階では、図4(b)に示すように、第1合わせ面12と第2合わせ面24との間には、僅かに隙間が残っている。   At this stage, a slight gap remains between the first mating surface 12 and the second mating surface 24 as shown in FIG.

<押圧工程>
その後、リングギヤ10及びハブ部材20への通電を停止する。そして、突起14と環溝26の底面26aとの突き合わせ部(接合部、溶着部)が完全に固体化する前に、第1押圧力P1より高い第2押圧力P2(P2>P1)で、リングギヤ10及びハブ部材20の一方を他方に対して押圧し、リングギヤ10とハブ部材20とを相対的に近づける。
<Pressing process>
Thereafter, power supply to the ring gear 10 and the hub member 20 is stopped. Then, before the butted portion (joint portion, welded portion) between the protrusion 14 and the bottom surface 26a of the annular groove 26 is completely solidified, the second pressing force P2 (P2> P1) higher than the first pressing force P1 One of the ring gear 10 and the hub member 20 is pressed against the other to bring the ring gear 10 and the hub member 20 relatively close together.

そうすると、図2(a)、図2(b)に示すように、第1合わせ面12と第2合わせ面24とが密着してリングギヤ10とハブ部材20の中心が一致する。これと同時に、突起14と環溝26の底面26aとの接合部においては、突起14と環溝26との間に介在している不純物が、環溝26内であってその接合部の外へ押し出されることで、リングギヤ10とハブ部材20との接合がより確実なものとなる。
なお、前記外へ押し出された不純物は、環溝26内でカール状のバリとなり、外部に露出しない。
Then, as shown in FIGS. 2A and 2B, the first mating surface 12 and the second mating surface 24 are brought into close contact with each other so that the centers of the ring gear 10 and the hub member 20 coincide with each other. At the same time, at the junction between the projection 14 and the bottom surface 26a of the annular groove 26, impurities intervening between the projection 14 and the annular groove 26 are inside the annular groove 26 and out of the junction. By being pushed out, the joining of the ring gear 10 and the hub member 20 becomes more reliable.
The impurities pushed out to the outside become curled burrs in the annular groove 26 and are not exposed to the outside.

<その他の工程>
その後、一体化したリングギヤ10及びハブ部材20を、常温(例えば25℃)まで自然冷却すると、突き合わせ部を形成する金属は凝固し接合面が形成され、動力伝達装置1を得る。
<Other processes>
Thereafter, when the integrated ring gear 10 and the hub member 20 are naturally cooled to room temperature (for example, 25 ° C.), the metal forming the butt portion is solidified to form a joint surface, and the power transmission device 1 is obtained.

≪動力伝達装置の製造方法の効果≫
このような動力伝達装置1の製造方法によれば、次の効果を得る。
第1合わせ面12と第2合わせ面24とは、製造後の回転軸O1を中心とする円錐台状の面であるから、第1合わせ面12と第2合わせ面24とが押圧工程によって密着することにより、つまり、リングギヤ10とハブ部材20とを相対的に近づけるにつれて、リングギヤ10の中心軸と、ハブ部材20の中心軸とが、回転軸O1に近づき、一致する。これにより、例えば、リングギヤ10とドライブピニオン110との間において、噛合いにずれが発生することはない。
≪Effect of manufacturing method of power transmission device≫
According to the manufacturing method of such a power transmission device 1, the following effects are obtained.
Since the 1st mating surface 12 and the 2nd mating surface 24 are frustoconical surfaces centering on the rotation axis O1 after manufacture, the 1st mating surface 12 and the 2nd mating surface 24 contact | adhere by a press process. By doing so, that is, as the ring gear 10 and the hub member 20 are relatively moved closer, the center axis of the ring gear 10 and the center axis of the hub member 20 approach the rotation axis O1 and coincide with each other. Thereby, for example, there is no deviation in meshing between the ring gear 10 and the drive pinion 110.

また、第1合わせ面12と第2合わせ面24とが接触せず、突起14と底面26aとが突き合わさった状態で通電するので、抵抗熱を部分的に発生させ、突き合わせ部を効率的に昇温できる。よって、電気抵抗溶接に要する電気エネルギ(接合エネルギ)を抑えることができる。   In addition, since the first mating surface 12 and the second mating surface 24 are not in contact with each other, and the projection 14 and the bottom surface 26a are in contact with each other, the energization is performed partially, so that the resistance heat is partially generated and the butting portion is efficiently formed. The temperature can be raised. Therefore, electric energy (bonding energy) required for electric resistance welding can be suppressed.

さらに、突起14において電気抵抗溶接する際に生じるバリは、ハブ部材20の溝状の環溝26内で形成されるので、動力伝達装置1の外部に現れず、バリの脱落によるギヤ噛合部への噛み込み等の不良の心配も無い。
また、従来におけるリンクギヤへのハブ部材のスプライン軸の圧入後の加締めも不要となり、動力伝達装置1の生産性が向上する。
Further, since the burr generated when electric resistance welding is performed on the protrusion 14 is formed in the groove-shaped annular groove 26 of the hub member 20, it does not appear outside the power transmission device 1, but to the gear meshing portion due to the removal of the burr. There is no worry about defects such as biting.
Further, the conventional caulking after press-fitting the spline shaft of the hub member into the link gear becomes unnecessary, and the productivity of the power transmission device 1 is improved.

≪第1実施形態−変形例≫
以上、本発明の一実施形態について説明したが、本発明はこれに限定されず、後記する形態の構成と適宜に組み合わせてもよいし、また、次のように変更してもよい。なお、後記する形態についても同様である。
<< First Embodiment-Modification >>
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, You may combine suitably with the structure of the form mentioned later, and may be changed as follows. The same applies to the forms described later.

前記した実施形態では、図3に示すように、リングギヤ10に環状の突起14(突出部)を形成し、ハブ部材20に環状の環溝26(凹部)を形成したが、その他に例えば、リングギヤ10に環溝を形成し、ハブ部材20に突起を形成してもよい。また、リングギヤ10に突起14に加えて環溝を形成し、ハブ部材20に環溝26に加えて前記環溝に対応した突起を形成してもよい。   In the above-described embodiment, as shown in FIG. 3, the ring gear 10 is formed with the annular protrusion 14 (protrusion), and the hub member 20 is formed with the annular ring groove 26 (recess). An annular groove may be formed in 10 and a protrusion may be formed in the hub member 20. Further, an annular groove may be formed on the ring gear 10 in addition to the protrusion 14, and a protrusion corresponding to the annular groove may be formed on the hub member 20 in addition to the annular groove 26.

前記した実施形態では、突起14が回転軸O1を中心とする環状である構成を例示したが、その他に例えば、周方向において所定間隔をあけて複数のボス(突出部)を形成してもよい。また、複数のボス(突出部)は、同一の円周上で並んでいる必要は無く、径方向においてずれていてもよいし、多重円周状で並んでいてもよい。
この場合において、複数のボスの相手側の凹部は、ボスに対向するように形成すればよい。つまり、凹部は、環状である必要は無く、突出部に対応して形成すればよい。
In the above-described embodiment, the configuration in which the protrusion 14 has an annular shape with the rotation axis O1 as the center has been illustrated. However, for example, a plurality of bosses (projections) may be formed at predetermined intervals in the circumferential direction. . Further, the plurality of bosses (projections) do not have to be arranged on the same circumference, and may be displaced in the radial direction, or may be arranged in a multiple circumference.
In this case, the other-side concave portions of the plurality of bosses may be formed so as to face the bosses. That is, the concave portion does not need to be annular, and may be formed corresponding to the protruding portion.

前記した実施形態では、ハブ部材20がリングギヤ10を貫通した構成を例示したが、貫通しない構成でもよい。すなわち、リングギヤ10のハブ部材20側に、円錐状の穴を形成し、この穴の周面を第1合わせ面としてもよい。   In the above-described embodiment, the configuration in which the hub member 20 penetrates the ring gear 10 is illustrated, but a configuration in which the hub member 20 does not penetrate may be used. That is, a conical hole may be formed on the hub member 20 side of the ring gear 10 and the peripheral surface of this hole may be used as the first mating surface.

前記した実施形態では、動力伝達部材がハブ部材20である構成を例示したが、これに限定されることはない。
前記した実施形態では、リングギヤ10に動力が入力される構成を例示したが、ハブ部材20に動力が入力される構成でもよい。
In the above-described embodiment, the configuration in which the power transmission member is the hub member 20 is illustrated, but the configuration is not limited thereto.
In the above-described embodiment, the configuration in which power is input to the ring gear 10 is illustrated, but a configuration in which power is input to the hub member 20 may be used.

≪第2実施形態≫
第2実施形態について、図5を参照して説明する。なお、第1実施形態と異なる部分を説明する。
<< Second Embodiment >>
A second embodiment will be described with reference to FIG. In addition, a different part from 1st Embodiment is demonstrated.

動力伝達装置1の構成について、異なる部分を説明する。
第2実施形態では、リングギヤ10の背面13には突起14(図2(b)参照)は形成されておらず、回転軸O1を中心とする環状の環溝15(第1凹部)が形成されており、リングギヤ10の環溝15とハブ部材20の環溝26(第2凹部)とは、軸方向において対向するように配置されている。
A different part is demonstrated about the structure of the power transmission device 1. FIG.
In the second embodiment, no projection 14 (see FIG. 2B) is formed on the back surface 13 of the ring gear 10, and an annular ring groove 15 (first recess) centered on the rotation axis O1 is formed. The ring groove 15 of the ring gear 10 and the ring groove 26 (second recess) of the hub member 20 are arranged to face each other in the axial direction.

第2実施形態に係る動力伝達装置1は、リング部材41(接合補助部材)を備えており、リング部材41は、環溝15と環溝26とで形成され回転軸O1を中心とするリング状の空間に収容されている。
そして、リング部材41の右側部分は、環溝15の底面15a(第1底面)と溶着(接合)している。一方、リング部材41の左側部分は、環溝26の底面26a(第2底面)と溶着(接合)している。すなわち、リングギヤ10とハブ部材20とは、リング部材41を介して相互に結合(接合)し一体化している。
ただし、接合補助部材は、リング状(環状)に限定されず、例えば、周方向において複数に分割された構成でもよい。
The power transmission device 1 according to the second embodiment includes a ring member 41 (joining auxiliary member), and the ring member 41 is formed of an annular groove 15 and an annular groove 26, and has a ring shape centering on the rotation axis O1. It is housed in the space.
The right side portion of the ring member 41 is welded (joined) to the bottom surface 15a (first bottom surface) of the annular groove 15. On the other hand, the left side portion of the ring member 41 is welded (joined) to the bottom surface 26 a (second bottom surface) of the annular groove 26. That is, the ring gear 10 and the hub member 20 are coupled and joined together via the ring member 41.
However, the joining auxiliary member is not limited to a ring shape (annular shape), and may be configured to be divided into a plurality of pieces in the circumferential direction, for example.

動力伝達装置1の製造方法について、異なる部分を説明する。
合わせ面形成工程において、環溝15を形成する。
A different part is demonstrated about the manufacturing method of the power transmission device 1. FIG.
In the mating surface forming step, the annular groove 15 is formed.

次いで、接合工程(電気抵抗溶接工程)において、環溝15と環溝26とでリング部材41を挟み、環溝15の底面15aとリング部材41の右端面とを突き合わせた状態、かつ、環溝26の底面26aとリング部材41の左端面とを突き合わせた状態で、リングギヤ10及びハブ部材20に通電させる。   Next, in the joining step (electrical resistance welding step), the ring member 41 is sandwiched between the annular groove 15 and the annular groove 26, and the bottom surface 15a of the annular groove 15 and the right end surface of the ring member 41 are in contact with each other. The ring gear 10 and the hub member 20 are energized with the bottom surface 26a of the ring 26 and the left end surface of the ring member 41 butted.

ここで、軸方向において、接合前におけるリング部材41の厚さ、環溝15及び環溝26の深さは、リングギヤ10とハブ部材20とを近づけた場合において、第1合わせ面12と第2合わせ面24とが接触する前に、リング部材41が、環溝15の底面15aと環溝26の底面26aにそれぞれ接触し、それぞれ突き合わさるように形成される。   Here, in the axial direction, the thickness of the ring member 41 and the depth of the annular groove 15 and the depth of the annular groove 26 before joining are the same as those of the first mating surface 12 and the second when the ring gear 10 and the hub member 20 are brought close to each other. Before the mating surface 24 comes into contact, the ring member 41 is formed so as to contact and abut against the bottom surface 15a of the annular groove 15 and the bottom surface 26a of the annular groove 26, respectively.

このように通電すると、環溝15の底面15aとリング部材41との第1突き合わせ部と、環溝26の底面26aとリング部材41との第2突き合わせ部とのみを経由するように高電流が流れ、第1突き合わせ部及び第2突き合わせ部において、通電に伴う抵抗熱が発生する。   When energized in this way, a high current is passed through only the first abutting portion between the bottom surface 15a of the annular groove 15 and the ring member 41 and the second abutting portion between the bottom surface 26a of the annular groove 26 and the ring member 41. In the flow, the first butting portion and the second butting portion generate resistance heat due to energization.

そして、この抵抗熱によって、第1突き合わせ部において、環溝15の底面15aとリング部材41とが軟化・溶融し、接合(電気抵抗溶接)される。一方、第2突き合わせ部において、環溝26の底面26aとリング部材41とが軟化・溶融し、接合(電気抵抗溶接)される。   And by this resistance heat, the bottom face 15a of the annular groove 15 and the ring member 41 are softened and melted and joined (electrical resistance welding) at the first abutting portion. On the other hand, in the second butted portion, the bottom surface 26a of the annular groove 26 and the ring member 41 are softened and melted and joined (electrical resistance welding).

≪第3実施形態≫
第3実施形態について、図6を参照して説明する。なお、第1実施形態と異なる部分を説明する。
«Third embodiment»
A third embodiment will be described with reference to FIG. In addition, a different part from 1st Embodiment is demonstrated.

動力伝達装置1の構成について、異なる部分を説明する。
図6(a)、図6(b)に示すように、縦断面視において、回転軸O1に対する第1合わせ面12の第1傾斜角度θ1と、回転軸O1に対する第2合わせ面24の第2傾斜角度θ2とは、異なっている。具体的には、第1傾斜角度θ1は、第2傾斜角度θ2よりも大きい(θ1>θ2)。そして、第1合わせ面12と第2合わせ面24とは線接触、つまり、周方向において円周状で接触している。
A different part is demonstrated about the structure of the power transmission device 1. FIG.
As shown in FIGS. 6A and 6B, in the longitudinal sectional view, the first inclination angle θ1 of the first mating surface 12 with respect to the rotation axis O1 and the second angle of the second mating surface 24 with respect to the rotation axis O1. It is different from the inclination angle θ2. Specifically, the first inclination angle θ1 is larger than the second inclination angle θ2 (θ1> θ2). The first mating surface 12 and the second mating surface 24 are in line contact, that is, in circumferential contact in the circumferential direction.

また、図6(b)に示すように、リングギヤ10の背面13と、ハブ部材20のフランジ面25aとは、相互に密着(当接)した構成となっている。
これにより、例えば、リングギヤ10がこれに噛合するドライブピニオン110(図1参照)から、図6(a)において、リングギヤ10の前側部分を左向き(図6(a)の紙面下向き)に押す噛合い反力を受けたとしても、背面13とフランジ面25aとが密着した状態であるので、リングギヤ10はハブ部材20に対して倒れず、リングギヤ10の回転軸とハブ部材20の回転軸とがずれることはない。
As shown in FIG. 6B, the back surface 13 of the ring gear 10 and the flange surface 25a of the hub member 20 are in close contact (contact) with each other.
Thereby, for example, from the drive pinion 110 (see FIG. 1) with which the ring gear 10 is engaged, in FIG. 6 (a), the front portion of the ring gear 10 is pushed leftward (downward on the paper surface in FIG. 6 (a)). Even if the reaction force is received, the back surface 13 and the flange surface 25a are in close contact with each other, so that the ring gear 10 does not fall with respect to the hub member 20, and the rotation shaft of the ring gear 10 and the rotation shaft of the hub member 20 are shifted. There is nothing.

動力伝達装置1の製造方法について、異なる部分を説明する。
押圧工程において、軸方向でリングギヤ10とハブ部材20とが相対的に近づく向きで押圧すると、傾斜角度の異なる第1合わせ面12と第2合わせ面24とが線状(円周状)の接触部(合わせ部)で接触し、リングギヤ10の中心とハブ部材20の中心とが一致しつつ、その押圧力が線状の接触部に集中する。
A different part is demonstrated about the manufacturing method of the power transmission device 1. FIG.
In the pressing step, when the ring gear 10 and the hub member 20 are pressed in the axial direction in a relatively approaching direction, the first mating surface 12 and the second mating surface 24 having different inclination angles are in a linear (circumferential) contact. The center of the ring gear 10 and the center of the hub member 20 coincide with each other, and the pressing force concentrates on the linear contact portion.

これにより、リングギヤ10及び/又はハブ部材20が前記接触部において弾性変形又は塑性変形し、リングギヤ10とハブ部材20とが軸方向においてさらに近づく。
その後、さらに押圧が進むと、背面13とフランジ面25aとの隙間が無くなり、図6(b)に示すように、背面13とフランジ面25aとが密着した状態となる。
Thereby, the ring gear 10 and / or the hub member 20 are elastically deformed or plastically deformed at the contact portion, and the ring gear 10 and the hub member 20 are further brought closer in the axial direction.
Thereafter, when the pressing further proceeds, there is no gap between the back surface 13 and the flange surface 25a, and as shown in FIG. 6B, the back surface 13 and the flange surface 25a are in close contact with each other.

≪第4実施形態≫
第4実施形態について、図7を参照して説明する。なお、第1実施形態と異なる部分を説明する。
<< Fourth Embodiment >>
A fourth embodiment will be described with reference to FIG. In addition, a different part from 1st Embodiment is demonstrated.

動力伝達装置1の構成について、異なる部分を説明する。
図7(a)、図7(b)に示すように、縦断面視において、第1合わせ面12の中央部は、第2合わせ面24に向かって円弧状で突出している。そして、第1合わせ面12と第2合わせ面24とは、第3実施形態と同様に、線接触、つまり、周方向において円周状で接触している。
なお、第2合わせ面24を円弧状としてもよいし、第1合わせ面12及び第2合わせ面24の両方を円弧状としてもよい。
A different part is demonstrated about the structure of the power transmission device 1. FIG.
As shown in FIGS. 7A and 7B, the central portion of the first mating surface 12 protrudes in an arc shape toward the second mating surface 24 in the longitudinal sectional view. The first mating surface 12 and the second mating surface 24 are in line contact, that is, in a circumferential shape in the circumferential direction, as in the third embodiment.
The second mating surface 24 may be arcuate, or both the first mating surface 12 and the second mating surface 24 may be arcuate.

また、図7(b)に示すように、リングギヤ10の背面13と、ハブ部材20のフランジ面25aとは、相互に密着(当接)した構成となっている。
これにより、例えば、リングギヤ10がこれに噛合するドライブピニオン110(図1参照)から、図7(a)において、リングギヤ10の前側部分を左向き(図7(a)の紙面下向き)に押す噛合い反力を受けたとしても、背面13とフランジ面25aとが密着した状態であるので、リングギヤ10はハブ部材20に対して倒れず、リングギヤ10の回転軸とハブ部材20の回転軸とがずれることはない。
Further, as shown in FIG. 7B, the back surface 13 of the ring gear 10 and the flange surface 25a of the hub member 20 are in close contact (contact) with each other.
Thus, for example, from the drive pinion 110 (see FIG. 1) with which the ring gear 10 is engaged, in FIG. 7 (a), the front side portion of the ring gear 10 is pushed leftward (downward on the page in FIG. 7 (a)). Even if the reaction force is received, the back surface 13 and the flange surface 25a are in close contact with each other, so that the ring gear 10 does not fall with respect to the hub member 20, and the rotation shaft of the ring gear 10 and the rotation shaft of the hub member 20 are shifted. There is nothing.

動力伝達装置1の製造方法について、異なる部分を説明する。
押圧工程において、軸方向でリングギヤ10とハブ部材20とが相対的に近づく向きで押圧すると、第1合わせ面12の中央部と第2合わせ面24とが線状(円周状)の接触部(合わせ部)で接触し、リングギヤ10の中心とハブ部材20の中心とが一致しつつ、その押圧力が線状の接触部に集中する。
A different part is demonstrated about the manufacturing method of the power transmission device 1. FIG.
In the pressing step, when the ring gear 10 and the hub member 20 are pressed in the axial direction in a relatively approaching direction, the central portion of the first mating surface 12 and the second mating surface 24 are linear (circumferential) contact portions. The center of the ring gear 10 and the center of the hub member 20 coincide with each other, and the pressing force concentrates on the linear contact portion.

これにより、リングギヤ10及び/又はハブ部材20が前記接触部において弾性変形又は塑性変形し、リングギヤ10とハブ部材20とが軸方向においてさらに近づく。
その後、さらに押圧が進むと、背面13とフランジ面25aとの隙間が無くなり、図7(b)に示すように、背面13とフランジ面25aとが密着した状態となる。
Thereby, the ring gear 10 and / or the hub member 20 are elastically deformed or plastically deformed at the contact portion, and the ring gear 10 and the hub member 20 are further brought closer in the axial direction.
Thereafter, when the pressing further proceeds, there is no gap between the back surface 13 and the flange surface 25a, and the back surface 13 and the flange surface 25a are in close contact with each other as shown in FIG. 7B.

≪第5実施形態≫
第5実施形態について、図8を参照して説明する。なお、第1実施形態と異なる部分を説明する。
«Fifth embodiment»
A fifth embodiment will be described with reference to FIG. In addition, a different part from 1st Embodiment is demonstrated.

図8は、動力伝達部材をデフケース230とし、本発明を四輪車の終減速装置200に適用した構成を例示する図である。終減速装置200は、ドライブピニオン210と、リングギヤ10と、デフ装置220と、を備えている。ドライブピニオン210は、車体に固定されたケース215に、軸受216、216を介して回転自在に支持されている。ドライブピニオン210の前端は、推進軸(図示しない)の後端と連結され、推進軸の動力がドライブピニオン210に入力されるようになっている。   FIG. 8 is a diagram illustrating a configuration in which the power transmission member is a differential case 230 and the present invention is applied to a final reduction device 200 for a four-wheel vehicle. The final reduction gear 200 includes a drive pinion 210, the ring gear 10, and a differential device 220. The drive pinion 210 is rotatably supported by a case 215 fixed to the vehicle body via bearings 216 and 216. The front end of the drive pinion 210 is connected to the rear end of a propulsion shaft (not shown), and the power of the propulsion shaft is input to the drive pinion 210.

ドライブピニオン210のギヤ部211は、リングギヤ10のギヤ部11と噛合している。   The gear portion 211 of the drive pinion 210 meshes with the gear portion 11 of the ring gear 10.

デフ装置220は、デフケース230と、デフギヤと、を備えている。デフギヤは、ピニオンギヤ241、241と、サイドギヤ242、242と、を備えている。デフケース230は、車体に固定されたケース235に、軸受236、236を介して回転自在に支持されており、その回転軸O1は後輪の回転中心である。そして、動力伝達装置2は、リングギヤ10と、デフケース230とを備えて構成されている。   The differential device 220 includes a differential case 230 and a differential gear. The differential gear includes pinion gears 241 and 241 and side gears 242 and 242. The differential case 230 is rotatably supported by a case 235 fixed to the vehicle body via bearings 236 and 236, and the rotation axis O1 is the rotation center of the rear wheel. The power transmission device 2 includes the ring gear 10 and a differential case 230.

そして、デフケース230の外周面の一部には、回転軸O1を中心とする円錐台状の第2合わせ面231が形成されており、第2合わせ面231は、リングギヤ10の第1合わせ面12と密着した状態となっている。   A part of the outer peripheral surface of the differential case 230 has a truncated cone-shaped second mating surface 231 centered on the rotation axis O <b> 1, and the second mating surface 231 is the first mating surface 12 of the ring gear 10. It is in close contact with.

また、デフケース230には、環状の環溝233が形成されており、環溝233は、リングギヤ10の突起14を収容すると共に、環溝233の底面は突起14と電気抵抗溶接されている。すなわち、リングギヤ10とデフケース230とは高強度材料からなるボルトによって締結されてなく、部品点数が削減され、その軽量化が図られている。つまり、動力伝達装置2の製造方法において、リングギヤ10とデフケース230との高い締め付け力によるボルト締結工程は不要であり、また、ボルト孔の形成工程も不要であり、動力伝達装置2の生産性が向上されている。
その他の作用効果については、第1実施形態と同様であるので、ここでの説明は省略する。
In addition, an annular ring groove 233 is formed in the differential case 230, and the ring groove 233 accommodates the protrusion 14 of the ring gear 10, and the bottom surface of the ring groove 233 is electrically resistance welded to the protrusion 14. That is, the ring gear 10 and the differential case 230 are not fastened by a bolt made of a high-strength material, the number of parts is reduced, and the weight is reduced. That is, in the manufacturing method of the power transmission device 2, the bolt fastening step by the high tightening force between the ring gear 10 and the differential case 230 is unnecessary, and the bolt hole forming step is unnecessary, and the productivity of the power transmission device 2 is improved. Has been improved.
The other functions and effects are the same as those in the first embodiment, and a description thereof will be omitted here.

1、2 動力伝達装置
10 リングギヤ(大歯車)
12 第1合わせ面
13 背面(第1対向面)
14 突起(突出部)
15 環溝(第1凹部)
15a 底面(第1底面)
20 ハブ部材(動力伝達部材)
24 第2合わせ面
25a フランジ面(第2対向面)
26 環溝(凹部、第2凹部)
26a 底面(第2底面)
41 リング部材(接合補助部材)
100、200 終減速装置
110、210 ドライブピニオン
230 デフケース(動力伝達部材)
231 第2合わせ面
O1 回転軸
1, 2 Power transmission device 10 Ring gear (large gear)
12 First mating surface 13 Back surface (first facing surface)
14 Protrusion (protrusion)
15 Ring groove (first recess)
15a Bottom (first bottom)
20 Hub member (power transmission member)
24 2nd mating surface 25a Flange surface (2nd opposing surface)
26 Ring groove (recess, second recess)
26a bottom surface (second bottom surface)
41 Ring member (joining auxiliary member)
100, 200 Final reduction gear 110, 210 Drive pinion 230 Differential case (power transmission member)
231 Second mating surface O1 Rotating shaft

Claims (6)

大歯車と動力伝達部材とを備え、前記大歯車と前記動力伝達部材とが一体で構成され同一の回転軸を中心とする動力伝達装置の製造方法であって、
前記大歯車に前記回転軸を中心とする円錐状の第1合わせ面を形成し、前記動力伝達部材に前記回転軸を中心とし前記第1合わせ面と合わさる円錐状の第2合わせ面を形成し、前記大歯車及び前記動力伝達部材の一方に他方に向かって突出する突出部を形成し、前記大歯車及び前記動力伝達部材の他方に前記突出部に対向する凹部を形成する合わせ面形成工程と、
前記第1合わせ面と前記第2合わせ面とを対向させつつ、前記突出部と前記凹部の底面とを突き合わせた状態で、前記大歯車及び前記動力伝達部材に通電し、前記突出部と前記凹部の底面とを電気抵抗溶接で接合する接合工程と、
軸方向において前記大歯車と前記動力伝達部材とを相対的に近づく向きで押圧し、前記第1合わせ面と前記第2合わせ面とを密着させる押圧工程と、
を含む
ことを特徴とする動力伝達装置の製造方法。
A manufacturing method of a power transmission device comprising a large gear and a power transmission member, wherein the large gear and the power transmission member are integrally formed and centered on the same rotation shaft,
A conical first mating surface centered on the rotation axis is formed on the large gear, and a conical second mating surface mating with the first mating surface is formed on the power transmission member. A mating surface forming step of forming a projecting portion projecting toward the other on one of the large gear and the power transmission member, and forming a recess facing the projecting portion on the other of the large gear and the power transmission member; ,
With the first mating surface and the second mating surface facing each other, the large gear and the power transmission member are energized in a state where the projecting portion and the bottom surface of the recess are butted, and the projecting portion and the recess A joining process of joining the bottom surface of the metal with electric resistance welding;
A pressing step of pressing the large gear and the power transmission member in a relatively approaching direction in the axial direction to bring the first mating surface and the second mating surface into close contact with each other;
The manufacturing method of the power transmission device characterized by including.
大歯車と動力伝達部材とを備え、前記大歯車と前記動力伝達部材とが一体で構成され同一の回転軸を中心とする動力伝達装置の製造方法であって、
前記大歯車に前記回転軸を中心とする円錐状の第1合わせ面を形成し、前記動力伝達部材に前記回転軸を中心とし前記第1合わせ面と合わさる円錐状の第2合わせ面を形成し、前記大歯車に第1凹部を形成し、前記動力伝達部材に前記第1凹部と対向する第2凹部を形成する合わせ面形成工程と、
前記第1合わせ面と前記第2合わせ面とを対向させつつ、前記第1凹部と前記第2凹部とで接合補助部材を挟み、前記第1凹部の第1底面と前記接合補助部材と突き合わせた状態、かつ、前記第2凹部の第2底面と前記接合補助部材とを突き合わせた状態で、前記大歯車及び前記動力伝達部材に通電し、前記第1凹部の第1底面及び前記接合補助部材と前記第2凹部の第2底面及び前記接合補助部材とをそれぞれ電気抵抗溶接で接合する接合工程と、
軸方向において前記大歯車と前記動力伝達部材とを相対的に近づく向きで押圧し、前記第1合わせ面と前記第2合わせ面とを密着させる押圧工程と、
を含む
ことを特徴とする動力伝達装置の製造方法。
A manufacturing method of a power transmission device comprising a large gear and a power transmission member, wherein the large gear and the power transmission member are integrally formed and centered on the same rotation shaft,
A conical first mating surface centered on the rotation axis is formed on the large gear, and a conical second mating surface mating with the first mating surface is formed on the power transmission member. A mating surface forming step of forming a first recess in the large gear and forming a second recess facing the first recess in the power transmission member;
While the first mating surface and the second mating surface are opposed to each other, a joining auxiliary member is sandwiched between the first concave portion and the second concave portion, and the first bottom surface of the first concave portion and the joining auxiliary member are abutted against each other. In a state where the second bottom surface of the second recess and the joining auxiliary member are butted together, the large gear and the power transmission member are energized, and the first bottom surface of the first recess and the joining auxiliary member are A joining step of joining the second bottom surface of the second recess and the joining auxiliary member by electric resistance welding, respectively;
A pressing step of pressing the large gear and the power transmission member in a relatively approaching direction in the axial direction to bring the first mating surface and the second mating surface into close contact with each other;
The manufacturing method of the power transmission device characterized by including.
前記回転軸に対する前記第1合わせ面の第1傾斜角度と、前記回転軸に対する前記第2合わせ面の第2傾斜角度とは、異なる
ことを特徴とする請求項1又は請求項2に記載の動力伝達装置の製造方法。
3. The power according to claim 1, wherein a first inclination angle of the first mating surface with respect to the rotation axis is different from a second inclination angle of the second mating surface with respect to the rotation axis. A method of manufacturing a transmission device.
縦断面視において、前記第1合わせ面及び前記第2合わせ面の一方は、他方に向かって円弧状で突出している
ことを特徴とする請求項1又は請求項2に記載の動力伝達装置の製造方法。
3. The power transmission device according to claim 1, wherein one of the first mating surface and the second mating surface protrudes in an arc shape toward the other in a longitudinal sectional view. Method.
前記動力伝達部材は、駆動輪が取り付けられるハブ部材である
ことを特徴とする請求項1から請求項4のいずれか1項に記載の動力伝達装置の製造方法。
The method of manufacturing a power transmission device according to any one of claims 1 to 4, wherein the power transmission member is a hub member to which a drive wheel is attached.
前記動力伝達部材は、デフケースである
ことを特徴とする請求項1から請求項4のいずれか1項に記載の動力伝達装置の製造方法。
The method of manufacturing a power transmission device according to any one of claims 1 to 4, wherein the power transmission member is a differential case.
JP2011170567A 2011-08-03 2011-08-03 Method for manufacturing power transmission device Withdrawn JP2013034998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170567A JP2013034998A (en) 2011-08-03 2011-08-03 Method for manufacturing power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170567A JP2013034998A (en) 2011-08-03 2011-08-03 Method for manufacturing power transmission device

Publications (1)

Publication Number Publication Date
JP2013034998A true JP2013034998A (en) 2013-02-21

Family

ID=47885122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170567A Withdrawn JP2013034998A (en) 2011-08-03 2011-08-03 Method for manufacturing power transmission device

Country Status (1)

Country Link
JP (1) JP2013034998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243687A (en) * 2017-05-25 2017-10-13 山东临工工程机械有限公司 The welding method of low-carbon alloy structural steel gear assembly
JPWO2019044749A1 (en) * 2017-08-31 2020-03-26 アイシン・エィ・ダブリュ株式会社 Differential device
CN111168239A (en) * 2018-11-13 2020-05-19 通用汽车环球科技运作有限责任公司 Fusion welding of ferroalloy components using low carbon steel strip
JP7526124B2 (en) 2021-03-31 2024-07-31 武蔵精密工業株式会社 Transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243687A (en) * 2017-05-25 2017-10-13 山东临工工程机械有限公司 The welding method of low-carbon alloy structural steel gear assembly
CN107243687B (en) * 2017-05-25 2019-11-12 山东临工工程机械有限公司 The welding method of low-carbon alloy structural steel gear assembly
JPWO2019044749A1 (en) * 2017-08-31 2020-03-26 アイシン・エィ・ダブリュ株式会社 Differential device
CN111168239A (en) * 2018-11-13 2020-05-19 通用汽车环球科技运作有限责任公司 Fusion welding of ferroalloy components using low carbon steel strip
CN111168239B (en) * 2018-11-13 2022-06-07 通用汽车环球科技运作有限责任公司 Fusion welding of ferroalloy components using low carbon steel strip
JP7526124B2 (en) 2021-03-31 2024-07-31 武蔵精密工業株式会社 Transmission

Similar Documents

Publication Publication Date Title
JP6119795B2 (en) Metal member joining method and metal member joining structure
CN103732348B (en) Welding Structure and welded manufacture method
US9951856B2 (en) Bi-metallic sprocket, and method of making same
JP5614054B2 (en) Beam welding member and differential device provided with the same
JP4684810B2 (en) Method for manufacturing cylindrical article
CN103038017B (en) The method be connected with wheel hub axle by welding current and press-in and axle and wheel hub are by this device connected and composed
US10738869B2 (en) Precisely aligned, friction welded spiral bevel or hypoid ring gear and differential case assembly
JP2011167746A (en) Beam-welded member and differential gear equipped with the same
JP2013034998A (en) Method for manufacturing power transmission device
CN106812909B (en) Precision aligned, friction welded helical bevel or hypoid ring gear and differential case assembly
EP2882983B1 (en) Differential case assembly with drive ring gear
CN108603580B (en) Differential assembly with two-piece carrier and welded ring gear
JP2016065582A (en) Welding structure of differential device for vehicle
US10830327B2 (en) Drive unit pinion and method of installation
JP5136184B2 (en) Method for joining metal members
JP5381501B2 (en) Welded joint parts and welded joint method
CN103269823B (en) Unitary member and manufacture method thereof
JP2013022633A (en) Method for manufacturing power transmission device
US20180142771A1 (en) System of components having wire weld joint and a method of joining a system of components including a cast iron component
JP5627218B2 (en) Differential gear device for vehicle
JP2008272818A (en) Friction welding structure and axle-housing
CN103648679A (en) Assembly comprising a radially intermediate joint and method of manufacturing such an assembly
WO2021010121A1 (en) Method and structure for bonding metal member
JP2007315463A (en) Hollow power transmission shaft
JP2016017581A (en) Power transmission device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007