JP2013034416A - Bacterium having overlapped genomic region - Google Patents

Bacterium having overlapped genomic region Download PDF

Info

Publication number
JP2013034416A
JP2013034416A JP2011171963A JP2011171963A JP2013034416A JP 2013034416 A JP2013034416 A JP 2013034416A JP 2011171963 A JP2011171963 A JP 2011171963A JP 2011171963 A JP2011171963 A JP 2011171963A JP 2013034416 A JP2013034416 A JP 2013034416A
Authority
JP
Japan
Prior art keywords
region
strain
chromosome
transformant
aspergillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011171963A
Other languages
Japanese (ja)
Inventor
Osamu Takahashi
理 高橋
Atsushi Sato
敦史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP2011171963A priority Critical patent/JP2013034416A/en
Priority to PCT/JP2012/068664 priority patent/WO2013021811A1/en
Publication of JP2013034416A publication Critical patent/JP2013034416A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/50Soya sauce

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Polymers & Plastics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Soy Sauces And Products Related Thereto (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the production of a koji fungus having a new character, which cannot be obtained so far, in a steady and systematic manner on the basis of a technique for overlapping an arbitrary genomic region on a chromosome of a fungus belonging to the genus Aspergillus.SOLUTION: The transformant of the fungus belonging to the genus Aspergillus can produce a wide variety of groups of enzymes necessary for the production of soy source, e.g. proteases, at high levels. The transformant has overlapped genomic regions in tandem on the same chromosome and also has a transformed marker gene integrated into a region sandwiched by the overlapped genomic regions.

Description

本発明は、アスペルギルス属に属する形質転換菌であって、重複するゲノム領域を同一染色体上に有する菌に関する。 The present invention relates to a transformed bacterium belonging to the genus Aspergillus, which has an overlapping genomic region on the same chromosome.

アスペルギルス・ソーヤ(Aspergillus sojae )及びアスペルギルス・オリゼ(Aspergillus oryzae)等の麹菌は、醤油、酒、味噌などの伝統的な食品の醸造や酵素の生産等のために工業的に広く用いられている、また近年の麹菌(アスペルギルス・オリゼ)の全ゲノム配列の決定やマイクロアレイを用いた網羅的な遺伝子発現解析などの進展に伴い、遺伝子工学的な改変、特に染色体レベルの改変により酵素等の生産性や増殖速度の改良などの効果が期待される糸状菌である。 Aspergillus sojae and Aspergillus oryzae are widely used industrially for brewing traditional foods such as soy sauce, sake and miso, and for producing enzymes, etc. In addition, with the recent progress in the determination of the entire genome sequence of Aspergillus oryzae and the comprehensive gene expression analysis using microarrays, the productivity of enzymes, etc. can be improved by genetic engineering modifications, especially at the chromosome level. It is a filamentous fungus that is expected to have an effect of improving the growth rate.

更に、麹菌が生産する酵素は様々な産業に利用されている。例えば、日本の伝統食品である醤油製造においても、麹菌の生産する多様な酵素が利用されている。醤油製造では、麹菌を原料である大豆と小麦に生育させ、多様な酵素を生産させる。ここで麹菌が生産した多様な酵素は、大豆や小麦のタンパク質、糖質、脂質などを分解し、次工程の乳酸発酵、酵母発酵を促す。この過程で、麹菌が原料分解酵素を多量に生産すると、原料利用率や圧搾性が上がり生産性を大幅に向上させることができる。加えて、乳酸発酵、酵母発酵への基質が十分に供給されるため、発酵が適正に行なわれ、醤油の品質は大きく向上する。 Furthermore, enzymes produced by Aspergillus are used in various industries. For example, in the production of soy sauce, a traditional Japanese food, various enzymes produced by Aspergillus are used. In soy sauce production, koji molds are grown on soybeans and wheat as raw materials to produce various enzymes. Here, the various enzymes produced by Aspergillus decompose proteins, sugars, lipids, etc. of soybeans and wheat, and promote lactic acid fermentation and yeast fermentation in the next process. In this process, when the koji mold produces a large amount of the raw material degrading enzyme, the raw material utilization rate and the squeezability can be increased and the productivity can be greatly improved. In addition, since the substrate for lactic acid fermentation and yeast fermentation is sufficiently supplied, fermentation is performed properly and the quality of soy sauce is greatly improved.

Aspergillus nidulans, niger, fumigatus, awamoriなどのアスペルギルス属菌が単核の世代を持つのに対し、アスペルギルス・ソーヤ及びアスペルギルス・オリゼ等の麹菌は分生子の状態も含めてその生活環において常に多核の状態を保ち、これまでのところ有性世代が確認されておらず、親細胞から娘細胞への核の分配機構についても解明されていない。そのために、菌株間の交配やRIP(repeat induced mutation)等の手段によって新たな変異株を作成することが出来ず、遺伝学的研究が困難であり、上記のように産業的に極めて有用な菌であるにもかかわらず、遺伝的解析は遅れていた。 Aspergillus nidulans, niger, fumigatus, awamori and other Aspergillus species have a mononuclear generation, whereas Aspergillus sojae and Aspergillus oryzae and other Aspergillus species are always multinucleated in their life cycle, including conidia. So far, no sexual generation has been confirmed, and the mechanism of nuclear distribution from parent cells to daughter cells has not been elucidated. Therefore, new mutants cannot be created by means such as crossing between strains or RIP (repeat induced mutation), and genetic research is difficult. Nevertheless, genetic analysis was delayed.

これらのことから、多種の酵素の生産性の高い等の有用な麹菌を育種することは産業上極めて重要であり、これを目的とした育種が現在までに精力的に行なわれている。このような麹菌の育種方法には、大きく分けて突然変異法と遺伝子組換え法がある。 From these facts, breeding useful koji molds with high productivity of various enzymes is extremely important in industry, and breeding for this purpose has been vigorously carried out so far. Such gonococcal breeding methods can be broadly classified into mutation methods and gene recombination methods.

突然変異法にはX線、紫外線、重イオンビーム等の各種変異処理が用いられ、そこから有用な性質を指標としたスクリーニングを行うことにより、様々な酵素活性や、醸造特性等の優れた株が作出されてきた。近年、ゲノム情報を利用してこれらの有用な形質を持つ菌株を解析し、得られた知見により染色体の重複が麹菌に好ましい性質を付与するのに重要であることが判明しており、突然変異処理によって900kb以上の大規模なゲノム領域の重複をもつ麹菌が得られている(特許文献1)。又、最近の研究により、ガンマ線照射により得られた酵母を解析すると、染色体の重複領域の境界領域に高頻度で繰り返し配列が存在することが報告された(非特許文献1)。 Various mutation treatments such as X-rays, ultraviolet rays, and heavy ion beams are used in the mutation method, and screening using the useful properties as an index makes it possible to obtain various strains with excellent enzyme activity and brewing characteristics. Has been created. In recent years, genome information has been used to analyze strains with these useful traits, and the knowledge gained has revealed that chromosome duplication is important for conferring favorable properties on Neisseria gonorrhoeae. As a result of the treatment, Neisseria gonorrhoeae having a large genomic region overlap of 900 kb or more has been obtained (Patent Document 1). Moreover, according to recent research, when yeast obtained by gamma ray irradiation was analyzed, it was reported that repeated sequences exist frequently in the boundary region of the overlapping region of chromosomes (Non-patent Document 1).

しかしながら、このような染色体の重複のメカニズムは解明されていない。従って、変異処理を用いた従来の方法では、酵素活性等を指標としてスクリーニングを行った際に、たまたまその活性に関係のある染色体上の領域に重複を持つ菌株が得られるだけで、実際には様々な染色体上の部位でランダムに変異が起こるため、麹菌の染色体上の特定の箇所を狙って重複させることは不可能であった。又、このような変異を利用して得られた染色体の重複株の場合には、それらの間の相同配列間の組換えにより復帰変異(すなわち染色体重複の脱落)が高い頻度で生じることも知られている。 However, the mechanism of such chromosomal duplication has not been elucidated. Therefore, in the conventional method using mutation treatment, when screening is performed using enzyme activity or the like as an index, a strain having an overlap in the region on the chromosome that happens to be related to the activity is obtained. Because mutations occur randomly on various chromosome sites, it was impossible to duplicate specific sites on the Koji mold chromosome. In addition, in the case of chromosomal duplication strains obtained by using such mutations, it is also known that reversion mutations (ie, loss of chromosomal duplication) occur frequently due to recombination between homologous sequences between them. It has been.

一方で、遺伝子組換え法は形質転換を利用して目的のDNAを麹菌に取り込ませることにより育種する方法であり、従来の遺伝子組換え法で取り込ませる遺伝子のサイズは5〜6kbが通常である。しかしながら、上記のような酵素生産性の高い等の有用な麹菌を実際に得るには、目的とする遺伝子領域に加えて、該遺伝子のプロモーター領域、ターミネーター領域、場合によってはスクリーニング時のマーカーとなる遺伝子が取り込ませるDNA領域に含まれている必要があり、これらの領域を併せると通常は10kb以上にも及ぶ大きな領域になることが多い。 On the other hand, the genetic recombination method is a method of breeding by incorporating a target DNA into a koji mold using transformation, and the size of the gene incorporated by the conventional genetic recombination method is usually 5 to 6 kb. . However, in order to actually obtain useful koji molds with high enzyme productivity as described above, in addition to the target gene region, the promoter region and terminator region of the gene, and in some cases, a marker for screening It is necessary to be included in the DNA region into which the gene is incorporated, and when these regions are combined, the region is usually a large region of 10 kb or more.

以上のように、染色体上の任意の位置で比較的大きな領域の重複を起こすことが出来る技術はこれまで存在していない。 As described above, there is no technology that can cause a relatively large region to overlap at an arbitrary position on a chromosome.

特許第4469014号公報Japanese Patent No. 4469014

Argueso et al. (2008) Proc Natl Acad Sci U S A. 105:11845-11850.Argueso et al. (2008) Proc Natl Acad Sci U S A. 105: 11845-11850.

上記のとおり、特許文献1に記載されたような変異処理を用いた従来の方法では、実際には様々な染色体上の部位でランダムに変異が起こるため、麹菌の染色体上の特定の箇所を狙って重複させることは不可能である。更に、このような従来方法によって同一染色体上にゲノム重複領域が生じた場合には、その形質転換菌を培養する過程で相同組換えによって復帰変異(すなわち染色体重複の脱落)が生じる。従って、特許文献1に記載の発明では復帰変異しない株が得られているが、これは重複したゲノム領域が元の染色体とは別の染色体に存在している為と考えられる。実際に、特許文献1では、ゲノム重複領域に含まれる遺伝子の活性及び発現量が増加していることは定量的に確認されているが、重複ゲノムが染色体上のどの位置にあるかは確認されていない。 As described above, in the conventional method using the mutation process described in Patent Document 1, in practice, mutation occurs randomly at various sites on chromosomes. It is impossible to overlap them. Further, when a genome duplication region is generated on the same chromosome by such a conventional method, a back mutation (ie, chromosomal duplication is lost) is caused by homologous recombination in the process of culturing the transformant. Therefore, in the invention described in Patent Document 1, a strain that does not undergo reverse mutation is obtained, which is considered to be because an overlapping genomic region exists on a chromosome different from the original chromosome. Actually, in Patent Document 1, it is quantitatively confirmed that the activity and expression level of genes contained in the genome duplication region are increased, but it is confirmed where the duplication genome is located on the chromosome. Not.

本発明は上記の問題点を解決し、麹菌の染色体上の任意のゲノム領域を重複させる技術に基づき、従来は取得不能であった新たな形質を持つ麹菌の取得を安定的・計画的に可能にすることを目的とする。 The present invention solves the above-mentioned problems and enables stable and systematic acquisition of Neisseria gonorrhoeae with new traits that were previously unacquirable based on a technique for overlapping arbitrary genomic regions on the Aspergillus chromosome. The purpose is to.

本発明者は、アスペルギルス属に属する菌において、pyrG遺伝子等の形質転換マーカー(選択マーカー)遺伝子の配列を染色体中の任意の領域を挟むように該領域の5’及び3’末端の外側に配する形質転換体を作製することによって、該遺伝子の内部の相同領域で発生した二重鎖切断後の修復機能を介した相同組換えによって染色体の重複が起き、そのような株を該形質転換マーカーに基づき選抜することによって、狙った染色体領域において同一染色体上でのゲノムの一部の領域に重複(ゲノム重複領域を有する)が起きた株(形質転換菌)を作製することが出来ることを見出し、本発明を完成した。 In the bacterium belonging to the genus Aspergillus, the present inventor arranged the sequence of a transformation marker (selection marker) gene such as a pyrG gene outside the 5 ′ and 3 ′ ends of a region so as to sandwich an arbitrary region in the chromosome. By producing homologous recombination via the repair function after double-strand breaks generated in the homologous region inside the gene, and such strains are transformed into the transformation marker. By selecting based on the above, it was found that a strain (transformed bacteria) in which duplication (having a genome duplication region) occurred in a partial region of the genome on the same chromosome in the targeted chromosomal region can be produced. The present invention has been completed.

即ち、本発明は以下の各態様に係る。
[態様1]
アスペルギルス属に属する菌の形質転換菌であって、同一染色体上でタンデムにゲノム重複領域(重複ゲノム領域)を有することを特徴とする、前記形質転換菌。
[態様2]
ゲノム重複領域に挟まれた領域に形質転換マーカー遺伝子が組み込まれていることを特徴とする、態様1記載の形質転換菌。
[態様3]
ゲノム重複領域が十〜数百kbである、態様1又は2記載の形質転換菌。
[態様4]
アスペルギルス属に属する菌がアスペルギルス・オリゼまたはアスペルギルス・ソーヤである、態様1ないし3のいずれか一項に記載の形質転換菌。
[態様5]
ゲノム重複領域がアスペルギルス・オリゼの2番染色体のSC003領域の500kb以上で700kb未満である、態様4記載の形質転換菌。
[態様6]
ゲノム重複領域がアスペルギルス・オリゼの2番染色体のSC003領域におけるAO090003001035〜AO090003001214に挟まれた領域であって、これらの端のORF領域は含まない領域である、態様5記載の形質転換菌。
[態様7]
形質転換マーカー遺伝子が、pyrG、sC及びniaDから成る群から選択される、態様1ないし6のいずれかに記載の形質転換菌。
[態様8]
染色体重複を持たないコントロール株(Ct株)と比べて、プロテアーゼが1.9倍以上、及び/又はα―アミラーゼ活性が1.4倍以上に増加していることを特徴とする、態様1ないし7のいずれか一項に記載の形質転換菌。
[態様9]
遺伝子組換え法によって作製されたものであることを特徴とする、態様1ないし8のいずれか一項に記載の形質転換菌。
[態様10]
態様1ないし9のいずれか一項に記載の形質転換菌を用いて製造される醤油。
That is, the present invention relates to the following aspects.
[Aspect 1]
A transformant of a bacterium belonging to the genus Aspergillus, wherein the transformant has a genome overlap region (overlap genome region) in tandem on the same chromosome.
[Aspect 2]
The transformant according to aspect 1, wherein a transformation marker gene is incorporated in a region sandwiched between genome overlapping regions.
[Aspect 3]
The transformed bacterium according to aspect 1 or 2, wherein the genome overlap region is 10 to several hundred kb.
[Aspect 4]
The transformed bacterium according to any one of aspects 1 to 3, wherein the bacterium belonging to the genus Aspergillus is Aspergillus oryzae or Aspergillus soya.
[Aspect 5]
The transformed bacterium according to aspect 4, wherein the genome overlap region is 500 kb or more and less than 700 kb of the SC003 region of chromosome 2 of Aspergillus oryzae.
[Aspect 6]
The transformant according to aspect 5, wherein the genome overlap region is a region sandwiched between AO090003001035 to AO090003001214 in the SC003 region of chromosome 2 of Aspergillus oryzae, and does not include the ORF region at these ends.
[Aspect 7]
The transformant according to any one of embodiments 1 to 6, wherein the transformation marker gene is selected from the group consisting of pyrG, sC and niaD.
[Aspect 8]
As compared with a control strain (Ct strain) having no chromosomal duplication, the protease is increased by 1.9 times or more and / or the α-amylase activity is increased by 1.4 times or more. 8. The transformed bacterium according to any one of 7.
[Aspect 9]
The transformed bacterium according to any one of aspects 1 to 8, which is produced by a gene recombination method.
[Aspect 10]
A soy sauce produced using the transformed bacterium according to any one of aspects 1 to 9.

本発明によって、麹菌の同一染色体上において十〜数百kb(例えば、500kb以上で700kb未満)に及ぶ任意の領域の重複を起こさせることが可能となった。このような技術は従来存在しなかった。また本発明は宿主に内在性の遺伝子しか使用しておらず、作出した重複株中にも外来遺伝子が残らないセルフクローニング株であることから、醤油の醸造等、食品製造に使用する微生物(例えば、醤油麹菌)の育種法としても極めて優れた方法である。 According to the present invention, it is possible to cause duplication of an arbitrary region ranging from 10 to several hundred kb (for example, 500 kb or more and less than 700 kb) on the same chromosome of Neisseria gonorrhoeae. There has been no such technique in the past. In addition, since the present invention uses only an endogenous gene in the host and is a self-cloning strain in which no foreign gene remains in the produced duplicate strain, microorganisms used for food production such as soy sauce brewing (for example, It is also an extremely excellent method for breeding soy sauce koji.

更に、発明方法によって製造された染色体領域の重複を有する形質転換菌においては、タンデムに並ぶ相同配列間の組換えによりゲノム重複領域が脱落した場合、これらのゲノム重複領域に挟まれた領域に組み込まれているpyrG等の形質転換マーカー遺伝子が一緒に脱落して特定の栄養要求(例えば、ウリジン要求)性となり、その結果、通常の培地では生育不可能であるため、選択圧がかかり、染色体重複の脱落を回避することが可能である。 Furthermore, in a transformed bacterium having an overlap of a chromosomal region produced by the inventive method, when a genome overlap region is lost due to recombination between homologous sequences arranged in tandem, it is incorporated into a region sandwiched between these genome overlap regions. PyrG and other transformation marker genes are dropped together and become specific auxotrophic (for example, uridine requirement) properties. As a result, they cannot grow on normal media, so selective pressure is applied and chromosome duplication occurs. Can be avoided.

本発明方法の概略を示す。An outline of the method of the present invention is shown. 5’ΔpyrGあるいは3’ΔpyrGユニットの作製を示す。The production of 5'ΔpyrG or 3'ΔpyrG units is shown. 2番染色体中の染色体重複のtarget領域を示す。The target region of chromosomal duplication in chromosome 2 is shown. PCRによる同一染色体上のゲノム領域の確認の結果を示す。The result of confirmation of the genomic region on the same chromosome by PCR is shown. 定量PCRを用いた2番染色体の重複領域における各遺伝子のコピー数を示す。The number of copies of each gene in the overlapping region of chromosome 2 using quantitative PCR is shown.

本発明は、アスペルギルス属に属する菌の形質転換菌であって、同一染色体上でタンデムにゲノム重複領域を有することを特徴とする、前記形質転換菌に係る。この形質転換菌の主要な特徴に一つとして、ゲノム重複領域に挟まれた領域に形質転換マーカー遺伝子が組み込まれていることを挙げることが出来る。この結果、発明方法の形質転換菌においては、タンデムに並ぶ相同配列間の組換えによりゲノム重複領域が脱落した場合、ゲノム重複領域に挟まれた領域に形質転換マーカー遺伝子が組み込まれているpyrG等の形質転換マーカー遺伝子が一緒に脱落して特定の栄養要求(例えば、ウリジン要求)性となり、その結果、通常の培地では生育不可能であるため、選択圧がかかり、染色体重複の脱落を回避することができるのである。 The present invention relates to the above-mentioned transformed bacterium, which is a transformed bacterium belonging to the genus Aspergillus and has a genome overlap region in tandem on the same chromosome. One of the main characteristics of this transformed bacterium is that a transformation marker gene is incorporated in a region sandwiched between genome overlapping regions. As a result, in the transformed bacterium of the invention method, when the genome overlap region is lost due to recombination between homologous sequences arranged in tandem, pyrG or the like in which a transformation marker gene is incorporated in the region sandwiched between the genome overlap regions, etc. The transformation marker genes of the two are dropped together to have a specific nutritional requirement (for example, uridine requirement), and as a result, they cannot grow on a normal medium, so that selective pressure is applied and the loss of chromosome duplication is avoided. It can be done.

本発明の形質転換菌の親株として使用するアスペルギルス属に属する菌としては、アスペルギルス・ソーヤ、アスペルギルス・オリゼ、アスペルギルス・ニガー、アスペルギルス・アワモリ等の任意の菌株が挙げられるが、そのうちアスペルギルス・ソーヤ及びアスペルギルス・オリゼに属する菌株が好ましい。 Examples of the bacteria belonging to the genus Aspergillus used as the parent strain of the transformant of the present invention include arbitrary strains such as Aspergillus soya, Aspergillus oryzae, Aspergillus niger, Aspergillus awamori, etc., of which Aspergillus soya and Aspergillus -A strain belonging to oryzae is preferred.

このような菌株としては、例えば、アスペルギルス・ソーヤ 262(FERM P−2188)、アスペルギルス・ソーヤ 2165(FERM P−7280)、アスペルギルス・ソーヤ (ATCC42251)、アスペルギルス・オリゼ(IAM2638)、及びアスペルギルス・オリゼRIB40(NBRC100959)等の公的寄託機関で保存されており当業者には容易に入手可能であるような各菌株等を挙げることができる。 Examples of such strains include Aspergillus soja 262 (FERM P-2188), Aspergillus soya 2165 (FERM P-7280), Aspergillus soya (ATCC 42251), Aspergillus oryzae (IAM2638), and Aspergillus oryzae RIB40. Examples include each strain that is stored in a public depository such as (NBRC100599) and is readily available to those skilled in the art.

外来DNAの染色体への組込みは染色体DNAの二重鎖切断時の修復機構を介して行われることが知られており、このDNA修復機構には相同組換えと非相同組換え(非相同末端結合)の2種類の機構が存在する。相同組換えの場合には外来DNAと相同性のある領域を介して組込みが起こるが、非相同組換えの場合には外来DNAの配列には関係なく染色体上のランダムな位置への組込みが起こり、これら2つの組換え機構は平衡して作用していると考えられている(Ristic et al. Nucl. Acids Res. (2003) 31: 5229-5237)。   It is known that foreign DNA is integrated into the chromosome through a repair mechanism during double-strand breaks in the chromosomal DNA. This DNA repair mechanism includes homologous recombination and non-homologous recombination (non-homologous end joining). There are two types of mechanisms. In the case of homologous recombination, integration occurs through a region homologous to foreign DNA, but in the case of non-homologous recombination, integration occurs at a random position on the chromosome regardless of the sequence of the foreign DNA. These two recombination mechanisms are thought to act in equilibrium (Ristic et al. Nucl. Acids Res. (2003) 31: 5229-5237).

相同組換え機構の中心をなす遺伝子はrad52グループと呼ばれる一連の遺伝子でその中にrad50、51、52、54、Mre11、XRS2等が含まれる(Kooistra et al. 2004)。相同組換え機構はバクテリアから真核生物まで多くの生物種で存在が確認され、Aspergillus属の実験室株であり単核分生子を持つAspergillus nidulansにおいてもuvsC遺伝子がクローニングされ研究が進められており(van Heemst et al. Mol. Gen. Genet. (1997)254: 654-64)、発現頻度を一定レベル上昇させることで相同組換頻度が向上することが報告されている(Natsume et al. Biosci. Biotechnol. Biochem. (2004) 68: 1649-1656)。   The genes that form the center of the homologous recombination mechanism are a series of genes called the rad52 group, which includes rad50, 51, 52, 54, Mre11, XRS2, etc. (Kooistra et al. 2004). The homologous recombination mechanism has been confirmed to exist in many species from bacteria to eukaryotes, and the uvsC gene has been cloned and studied in Aspergillus nidulans, which is a laboratory strain of the genus Aspergillus and has mononuclear conidia. (van Heemst et al. Mol. Gen. Genet. (1997) 254: 654-64), it has been reported that the homologous recombination frequency is improved by raising the expression frequency to a certain level (Natsume et al. Biosci). Biotechnol. Biochem. (2004) 68: 1649-1656).

一方で、非相同組換え機構は相同組換えとは全く異なる非相同末端結合(Non-Homologous End Joining)によることがに明らかとなっており、この機構の中心になる遺伝子としてはKu70、Ku80、Xrcc4、LIG4、DNAPKcsなどが知られている。Ku70およびKu80はヘテロダイマーとして機能し、ヌクレオチドキナーゼ(XRCC4)およびDNA LigaseVIとともに複合体を形成して、DNA二重鎖切断(DSB)時にその修復のためにDNA末端に結合してNon-Homologous End Joiningを促進することが知られている。(Walker et al. Nature (2001) 412: 607-614)。このKuを介した非相同組換え機構に関しては真核生物でのみ存在が確認されている。   On the other hand, it is clear that non-homologous recombination mechanism is based on non-homologous end joining, which is completely different from homologous recombination. The genes at the center of this mechanism are Ku70, Ku80, Xrcc4, LIG4, DNAPKcs, etc. are known. Ku70 and Ku80 function as heterodimers, forming a complex with nucleotide kinase (XRCC4) and DNA Ligase VI, and linking to the DNA ends for its repair during DNA double-strand breaks (DSB). It is known to promote Joining. (Walker et al. Nature (2001) 412: 607-614). The existence of this homologous recombination mechanism via Ku has been confirmed only in eukaryotes.

本発明の形質転換菌におけるゲノム重複領域は任意に選択することが出来る。その領域の大きさは、好ましくは十〜数百kbである。このようなゲノム重複領域の好適例としては、プロテアーゼ及びα―アミラーゼ等の産業上有用な各種酵素をコードする遺伝子が多数含まれているアスペルギルス・オリゼの2番染色体のSC003領域におけるゲノム領域、例えば、500kb以上で700kb未満のゲノム領域を挙げることができる。特に、ゲノム重複領域として、アスペルギルス・オリゼの2番染色体のSC003領域におけるAO090003001035〜AO090003001214に挟まれた領域であって、これらの端のORF領域は含まない領域が挙げられる。このような形質転換菌の好適例として、以下の実施例に記載されている、A-C-585k株、B-C-517k株、及びB-C4-512k株を挙げることが出来る。   The genome overlap region in the transformant of the present invention can be arbitrarily selected. The size of the region is preferably 10 to several hundred kb. As a preferred example of such a genomic overlapping region, a genomic region in the SC003 region of chromosome 2 of Aspergillus oryzae containing a large number of genes encoding various industrially useful enzymes such as protease and α-amylase, for example, A genomic region of 500 kb or more and less than 700 kb. In particular, the genome overlapping region includes a region sandwiched between AO090003001035 to AO090003001214 in the SC003 region of Aspergillus oryzae chromosome 2 and does not include these end ORF regions. Preferred examples of such transformed bacteria include the A-C-585k strain, the B-C-517k strain, and the B-C4-512k strain described in the following examples.

本発明の形質転換菌は、染色体重複を持たないコントロール株(Ct株)と比べて、産業上有用な各種酵素の発現量が増加している。例えば、アスペルギルス・オリゼの形質転換菌においてはプロテアーゼ活性が1.8倍以上、好ましくは3.1倍以上、及び/又はα―アミラーゼ活性が1.4倍以上、好ましくは1.6倍以上に増加していることを特徴とする。 In the transformed bacterium of the present invention, the expression levels of various industrially useful enzymes are increased as compared with a control strain (Ct strain) having no chromosome duplication. For example, in an Aspergillus oryzae transformed bacterium, protease activity is 1.8 times or more, preferably 3.1 times or more, and / or α-amylase activity is 1.4 times or more, preferably 1.6 times or more. It is characterized by an increase.

本発明の形質転換菌において、重複の対象となるゲノム領域は任意に選択することができるので、有用な酵素類をコードする公知の各種領域を重複のターゲット領域とすることによって、醤油の醸造等、食品製造に有用な麹菌(例えば、醤油麹菌)を得ることが出来る。従って、本発明は、このような形質転換菌を用いて製造される醤油等の食品にも係るものである。 In the transformed bacterium of the present invention, the genomic region to be duplicated can be arbitrarily selected, so that various known regions encoding useful enzymes are used as the duplicated target region, soy sauce brewing, etc. A koji mold (for example, a soy sauce koji mold) useful for food production can be obtained. Therefore, the present invention also relates to foods such as soy sauce produced using such transformed bacteria.

本発明の形質転換菌の作製方法・手段に特に制限はない。好適方法の一つとして、以下に示すような形質転換体を用いる遺伝子組換え法を挙げることが出来る。 There is no restriction | limiting in particular in the preparation method and means of the transformed microbe of this invention. One preferred method is a gene recombination method using a transformant as shown below.

即ち、本発明の遺伝子組換え法に使用する形質転換体は、重複を目的とする麹菌染色体上のターゲット領域の5’ 末端又は3’末端のいずれか一方の末端の外側に、コード領域の5’ 末端又は3’末端のいずれか一方の一部が欠損した形質転換マーカー遺伝子が組み込まれ、該ターゲット領域の他方の末端の外側に他方の末端の一部が欠損した形質転換マーカー遺伝子が組み込まれて成り、該ターゲット領域が、夫々、コード領域の5’又は3’末端の一部が欠損した2つの形質転換マーカー遺伝子によって挟み込まれ、且つ、組み込まれた形質転換マーカー遺伝子の欠損部分に接する配列(欠損部分を有する各末端領域配列)が該ターゲット領域とは反対側に位置していることを特徴とする。   That is, the transformant used in the gene recombination method of the present invention has a coding region 5 outside of either the 5 ′ end or the 3 ′ end of the target region on the gonococcal chromosome intended for duplication. A transformation marker gene lacking a part of either the 'terminal or the 3' terminal is incorporated, and a transformation marker gene lacking a part of the other terminal is incorporated outside the other end of the target region. The target region is sandwiched between two transformation marker genes each lacking a part of the 5 ′ or 3 ′ end of the coding region, and is in contact with the defective portion of the incorporated transformation marker gene (Each terminal region sequence having a defective portion) is located on the side opposite to the target region.

即ち、重複を目的とするアスペルギルス属に属する菌の染色体上のターゲット領域の5’末端の外側にコード領域の5’末端の一部(適当な長さの塩基配列から成る5’末端領域)が欠損した形質転換マーカー遺伝子を組み込み、一方、ターゲット領域の3’末端の一部(適当な長さの塩基配列から成る3’末端領域)の外側にコード領域の3’末端の一部が欠損した形質転換マーカー遺伝子を組み込むことが出来る。或いは、重複を目的とするアスペルギルス属に属する菌の染色体上のターゲット領域の5’末端の外側にコード領域の3’末端の一部が欠損した形質転換マーカー遺伝子を組み込み、一方、ターゲット領域の3’末端の外側にコード領域の5’末端の一部が欠損した形質転換マーカー遺伝子を組み込んでもよい。 That is, a part of the 5 ′ end of the coding region (5 ′ end region consisting of a base sequence of an appropriate length) is located outside the 5 ′ end of the target region on the chromosome of the bacterium belonging to the genus Aspergillus for duplication. A defective transformation marker gene was incorporated, while a part of the 3 ′ end of the coding region was deleted outside a part of the 3 ′ end of the target region (a 3 ′ end region comprising a base sequence of an appropriate length). A transformation marker gene can be incorporated. Alternatively, a transformation marker gene in which a part of the 3 ′ end of the coding region is deleted outside the 5 ′ end of the target region on the chromosome of a bacterium belonging to the genus Aspergillus intended for duplication, while the target region 3 A transformation marker gene lacking a part of the 5 ′ end of the coding region may be incorporated outside the “end”.

いずれの場合でも、重複の対象となるターゲット領域を挟み込んでいる、夫々、コード領域の5’又は3’末端の一部が欠損した2つの形質転換マーカー遺伝子において、欠損した部分に接する配列が該ターゲット領域とは反対側に位置していることが必要である。 In any case, in two transformation marker genes that sandwich the target region to be overlapped and each lacks a part of the 5 ′ or 3 ′ end of the coding region, the sequence in contact with the missing portion is It must be located on the opposite side of the target area.

このような構造上の特徴を有する形質転換体を培養することによって、対応する染色体の間で、夫々、ターゲット領域の5’ 末端又は3’末端の外側に組み込まれた形質転換マーカー遺伝子のコード領域の中間部分に共通して存在する相同配列領域(図1,図2及び図4中で斜線で示した部分)間における二重鎖切断時の修復機構を介する相同組換えが生起し、その結果、該ターゲット領域が重複された菌株が得られる。ここで、「対応する染色体」とは、実施例で示されるように、形質転換体の多核に含まれる相同染色体、例えば、各菌において有用物質(例えば、各種酵素類)をコードする遺伝子が多数含まれている、複数の8及び2番等の染色体を意味する。   By culturing a transformant having such a structural feature, the coding region of a transformation marker gene incorporated between the corresponding chromosomes and outside the 5 ′ end or 3 ′ end of the target region, respectively. Homologous recombination between the homologous sequence regions (shaded areas in FIGS. 1, 2 and 4) existing in the middle part of the DNA via the repair mechanism at the time of double strand breakage, and the result A strain in which the target region is overlapped is obtained. Here, the “corresponding chromosome”, as shown in the Examples, includes many genes encoding homologous chromosomes contained in the polynuclear of the transformant, for example, useful substances (for example, various enzymes) in each bacterium. It means a plurality of chromosomes such as 8 and 2 included.

従って、本発明で使用するアスペルギルス属に属する菌としては、上記のような非相同組換え機構に関与する各種遺伝子が抑制又は欠失している形質転換菌(特開2006−158269号公報)を使用することもできる。 Therefore, as a bacterium belonging to the genus Aspergillus used in the present invention, a transformed bacterium in which various genes involved in the heterologous recombination mechanism as described above are suppressed or deleted (Japanese Patent Laid-Open No. 2006-158269). It can also be used.

又、該形質転換体における該ターゲット領域の5’及び3’末端の外側に組み込まれる形質転換マーカー遺伝子は、相同組換えを効率よく生起するのに十分な長さ、例えば、数百bp以上、数百bp〜数kb程度(例えば、約100bp〜約2kb)の塩基配列がコード領域の中間部分に残るように、そのコード領域の5’末端又は3’末端の一部が欠損していることが好ましい。即ち、重複を目的とするアスペルギルス属に属する菌の染色体のターゲット領域の5’及び3’末端の外側に組み込まれた、コード領域の5’末端又は3’末端の一部が欠損している2つの形質転換マーカー遺伝子のいずれにおいても、元の形質転換マーカー遺伝子のコード領域の中間部分に存在する上記の長さの塩基配列が共通して残っていることが好ましい。従って、形質転換マーカー遺伝子のコード領域において欠損させる5’末端又は3’末端領域の塩基配列の長さは、使用する形質転換マーカー遺伝子の種類及び全長等に応じて、当業者が適宜決めることが出来る。例えば、pyrG遺伝子を使用する場合には、通常、例えば、約0.4kb〜約1.4kbである。又、欠損させる5’末端又は3’末端領域の塩基配列の長さは同じである必要はない。 In addition, the transformation marker gene incorporated outside the 5 ′ and 3 ′ ends of the target region in the transformant has a length sufficient to efficiently cause homologous recombination, for example, several hundred bp or more, The 5 'end or part of the 3' end of the coding region is missing so that a base sequence of several hundred bp to several kb (eg, about 100 bp to about 2 kb) remains in the middle of the coding region. Is preferred. That is, the 5 ′ end or part of the 3 ′ end of the coding region incorporated outside the 5 ′ and 3 ′ ends of the target region of the chromosome of the bacterium belonging to the genus Aspergillus for duplication is missing 2 In any one of the transformation marker genes, it is preferable that the base sequence having the above-mentioned length existing in the middle part of the coding region of the original transformation marker gene remains in common. Accordingly, the length of the base sequence of the 5 ′ end or 3 ′ end region to be deleted in the coding region of the transformation marker gene can be appropriately determined by those skilled in the art according to the type and total length of the transformation marker gene used. I can do it. For example, when the pyrG gene is used, it is usually about 0.4 kb to about 1.4 kb, for example. Further, the lengths of the base sequences of the 5 'end or 3' end regions to be deleted need not be the same.

このような形質転換体を培養した場合に、上記の相同組換えによって該ターゲット領域が重複された菌株においては同時に形質転換マーカー遺伝子コード領域の完全長が構築される結果、形質転換マーカー遺伝子に基づく形質によって、該ターゲット領域が重複された菌株を該ターゲット領域が重複されていない(即ち、形質転換マーカー遺伝子コード領域の完全長が構築されていない)菌株から選択すること出来る。 When such a transformant is cultured, in the strain in which the target region is duplicated by the homologous recombination, the full length of the transformation marker gene coding region is simultaneously constructed. As a result, it is based on the transformation marker gene. Depending on the trait, a strain in which the target region is duplicated can be selected from a strain in which the target region is not duplicated (ie, the full length of the transformation marker gene coding region has not been constructed).

本発明で使用する形質転換マーカーに特に制限はないが、ポジティブ選択可能なマーカー遺伝子の代表例として、pyrG、sC及びniaD等を挙げることが出来、これらマーカー遺伝子を使用した際には、夫々の栄養要求性(ウリジン要求、イオウ資化、及び、硝酸資化)を補償する形質によって該ターゲット領域が重複された菌株を選択することが可能となる。 There are no particular limitations on the transformation marker used in the present invention, but typical examples of marker genes that can be positively selected include pyrG, sC, and niaD. When these marker genes are used, It is possible to select a strain in which the target region is overlapped by a trait that compensates for auxotrophy (uridine requirement, sulfur utilization, and nitrate utilization).

尚、これらのマーカー遺伝子は、選択用の薬剤を含む培地で培養することによって、該マーカー遺伝子を含有する菌はそこに含まれている該マーカー遺伝子の発現産物によって選択用の薬剤が細胞毒性物質に変換され細胞死に至らしめることによって、ネガティブ選択にも使用することが出来る。 These marker genes are cultured in a medium containing a drug for selection, and the bacteria containing the marker gene are expressed as cytotoxic substances by the expression product of the marker gene contained therein. It can be used for negative selection by converting to a cell death.

更に、重複を目的とする染色体上のターゲット領域の5’及び3’末端の外側に組み込む形質転換マーカー遺伝子のいずれか一方又はその両方のコード領域の中間部分に存在する相同配列領域に予め、I-sceI、I-ceuI、PI-pspI及びPI-sceI等の当業者に公知の適当な制限酵素認識部位を導入しておくことが出来る。このような制限酵素部位は、相同組換え等の当業者に公知の任意の手段によって導入することが出来る。 Furthermore, a homologous sequence region existing in the middle part of the coding region of either or both of the transformation marker genes to be incorporated outside the 5 ′ and 3 ′ ends of the target region on the chromosome for duplication is previously added to the I Appropriate restriction enzyme recognition sites known to those skilled in the art such as -sceI, I-ceuI, PI-pspI and PI-sceI can be introduced. Such restriction enzyme sites can be introduced by any means known to those skilled in the art, such as homologous recombination.

上記の形質転換体を使用して本発明の形質転換菌を製造する遺伝子組換え法の好適例は以下の通りである。尚、この方法の概略は図1に示したとおりである。即ち、上記方法は、
(1)上記の特徴を有する形質転換体を培養し、
(2)ターゲット領域の5’ 末端及び3’末端の外側に組み込まれた形質転換マーカー遺伝子のコード領域の中間部分に共通して存在する相同配列領域間における二重鎖切断時の修復機構を介した、該形質転換体の対応する染色体の間での相同組換えによって該ターゲット領域が重複された菌株を得、
(3)上記の相同組換えによってコード領域の完全長が構築された該形質転換マーカー遺伝子に基づく形質によって、該ターゲット領域が重複された菌株を選択することから成る。
Preferred examples of the gene recombination method for producing the transformant of the present invention using the above transformant are as follows. The outline of this method is as shown in FIG. That is, the above method
(1) culturing a transformant having the above characteristics;
(2) through a repair mechanism at the time of double-strand breaks between homologous sequence regions present in common in the middle part of the coding region of the transformation marker gene incorporated outside the 5 ′ end and 3 ′ end of the target region And obtaining a strain in which the target region is duplicated by homologous recombination between corresponding chromosomes of the transformant,
(3) selecting a strain in which the target region is duplicated by a trait based on the transformation marker gene in which the full length of the coding region has been constructed by the homologous recombination.

この遺伝子組換え法は、上記の形質転換体を通常の条件で培養することによって、形質転換マーカー遺伝子のコード領域の中間部分に共通して存在する相同配列領域間において二重鎖の切断が適当な頻度で生じた時に働く修復機構を介した相同組換えを利用するものである。上記方法において、形質転換体を当業者に公知の任意の方法で一度プロトプラストの状態にして適当な条件下で一定時間(例えば、数十分間〜1時間程度)保持し、その後、培養することによって相同組換えの効率を高めることが出来る。尚、アスペルギルス・ソーヤ及びアスペルギルス・オリゼ等の麹菌は分生子の状態も含めてその生活環において常に多核の状態を保っているので、対応する染色体の間で上記の相同組換えが容易に起こると考えられる。一方、アスペルギルス属のその他の菌、例えば、Aspergillus nidulans, niger, fumigatus, awamori等は単核の世代を持つが、それらの菌であっても菌糸からであれば多核状態のプロトプラストを容易に得ることができる。 In this gene recombination method, by culturing the above-mentioned transformant under normal conditions, it is appropriate to break double strands between homologous sequence regions that are commonly present in the middle part of the coding region of the transformation marker gene. It utilizes homologous recombination via a repair mechanism that works when it occurs at a low frequency. In the above method, transformants are once converted into protoplasts by any method known to those skilled in the art, and maintained under appropriate conditions for a certain period of time (for example, about several tens of minutes to 1 hour), and then cultured. Can increase the efficiency of homologous recombination. In addition, gonococci such as Aspergillus sojae and Aspergillus oryzae always maintain a multinucleated state in their life cycle including the conidial state, so that the above homologous recombination easily occurs between corresponding chromosomes. Conceivable. On the other hand, other fungi of the genus Aspergillus, such as Aspergillus nidulans, niger, fumigatus, awamori, etc., have mononuclear generations, but even those fungi can easily obtain multinucleated protoplasts from mycelia. Can do.

更に、コード領域の中間部分に存在する相同配列領域に、予め、I-sceI、I-ceuI、PI-pspI及びPI-sceI等の当業者に公知の適当な制限酵素認識部位が導入された形質転換マーカー遺伝子を使用する場合には、該制限酵素の作用下に形質転換体を培養して相同組換えを生起させることが出来る。具体的には、例えば、プロトプラストの状態にした形質転換体と制限酵素を融合補助剤(例えば、PEG等)の存在下で混合すること(プロトプラストPEG法)によって、制限酵素を該形質転換体に効率よく作用させることが可能である。 Furthermore, a trait in which an appropriate restriction enzyme recognition site known to those skilled in the art such as I-sceI, I-ceuI, PI-pspI, and PI-sceI has been introduced in advance into a homologous sequence region present in the middle part of the coding region. When a conversion marker gene is used, homologous recombination can be caused by culturing the transformant under the action of the restriction enzyme. Specifically, for example, by mixing a transformant in a protoplast state with a restriction enzyme in the presence of a fusion aid (eg, PEG) (protoplast PEG method), the restriction enzyme is added to the transformant. It is possible to act efficiently.

尚、上記の形質転換体は、本願明細書の実施例に記載されているような当業者の公知の手段を用いて作製することが出来る。又、形質転換体の培養は当業者に公知の適当な条件で実施することが出来る。 In addition, said transformant can be produced using a well-known means of those skilled in the art as described in the Example of this-application specification. Further, the transformant can be cultured under appropriate conditions known to those skilled in the art.

以下、実施例に基づき本発明を更に詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, the technical scope of this invention is not limited to these Examples.

以下の通り、麹菌2番染色体重複株の作製を行った。 As described below, a gonococcal chromosome 2 duplicated strain was prepared.

[実験方法]
使用菌株
Aspergillus oryzae RP-1株(ΔpyrG)。Aspergillus oryzae RP-1株はRIB40(=ATCC42149) 由来のpyrG deletion株(Takahashi et al. (2006) Biosci Biotechnol Biochem. 70:135-143)。
[experimental method]
Strains used
Aspergillus oryzae RP-1 strain (ΔpyrG). The Aspergillus oryzae RP-1 strain is a pyrG deletion strain derived from RIB40 (= ATCC42149) (Takahashi et al. (2006) Biosci Biotechnol Biochem. 70: 135-143).

使用培地
ポリペプトンデキストリン(PD)培地(polypepton 1%, dextrin 2%, KH2PO4 0.5%, NaNO3 0.1%, MgSO4 0.05%, casamino acid 0.1%, pH 6.0)、CzapekDox (CZ) 最小培地、再生培地として1.2M ソルビトール CZを使用した。1.5 mg/ml 5fluoroortic acid(5FOA) (シグマ社) および20mM ウリジンを含むCZ培地プレートをpyrG-(ウリジン要求)株のポジティブセレクション用の培地として使用した。
Using medium <br/> poly peptone dextrin (PD) medium (polypepton 1%, dextrin 2% , KH 2 PO 4 0.5%, NaNO 3 0.1%, MgSO 4 0.05%, casamino acid 0.1%, pH 6.0), CzapekDox (CZ ) 1.2M sorbitol CZ was used as the minimum medium and regeneration medium. A CZ medium plate containing 1.5 mg / ml 5fluoroortic acid (5FOA) (Sigma) and 20 mM uridine was used as a medium for positive selection of pyrG- (uridine requirement) strain.

形質転換
150ml容三角フラスコ中の20mM Uridineを含むポリペプトンデキストリン液体培地50mlに分生子を接種し、30℃で約20時間振とう培養を行い、菌体を回収した。回収した菌体を0.7 M KCl bufferで洗浄し、1% Lysing enzyme(シグマ社)を含む0.7M KCl buffer中で30℃、3時間緩やかに振とうし、プロトプラストを調製した。得られたプロトプラストを1.2 Mソルビトール bufferで洗浄した後、プロトプラストPEG法により形質転換を行った。形質転換体の再生は0.5%agarを含む1.2Mソルビトール-CZ培地上で行った。
Transformation
Conidia were inoculated into 50 ml of a polypeptone dextrin liquid medium containing 20 mM Uridine in a 150 ml Erlenmeyer flask, and cultured at 30 ° C. for about 20 hours with shaking to recover the cells. The collected cells were washed with 0.7 M KCl buffer, and gently shaken in 0.7 M KCl buffer containing 1% Lysing enzyme (Sigma) at 30 ° C. for 3 hours to prepare protoplasts. The obtained protoplast was washed with 1.2 M sorbitol buffer, and then transformed by the protoplast PEG method. Transformants were regenerated on 1.2M sorbitol-CZ medium containing 0.5% agar.

染色体重複株の作製
染色体重複株の作製は、以下の通りに行った。約2x 107/100μl量のプロトプラスト溶液に対し、20μlのPEG溶液を加えた後、氷中に40分保持した後、70μlのPEG溶液を加え、さらに室温で20分保持した後、1.2Mソルビトール-CZ培地プレート上で再生させた。また、I-sceIを使用する場合には、PEG溶液の添加と同時に加えた。CZ培地上で生育の見られた株を染色体重複候補株として以後の解析に使用した。
Production of Chromosomal Duplicate Strains Chromosome duplicated strains were produced as follows. After adding 20 μl of PEG solution to a protoplast solution of about 2 × 10 7/100 μl, hold in ice for 40 minutes, add 70 μl of PEG solution, and then hold at room temperature for 20 minutes, then 1.2M sorbitol -Regenerated on CZ media plate. When I-sceI was used, it was added simultaneously with the addition of the PEG solution. Strains that grew on CZ medium were used as chromosome duplication candidate strains for the subsequent analysis.

定量PCR(リアルタイムPCR)を用いた染色体中の遺伝子コピー数の比較
定量PCRはMx3005P(アジレント・テクノロジー社)を用いて行った。他の染色体に位置するrad52をノーマライザーとして相対定量法により、2番染色体上のAlp、amyR、prtT、1258Dの各遺伝子のコピー数を親株と染色体重複株との間で比較した。PCRの条件は95℃で10分保持した後、95℃20秒−58℃30秒−72℃30秒を45サイクル繰り返した。PCRにはRad52、Alp、amyR、prtT、1258Dの各遺伝子の増幅にはそれぞれr52U-r52L、amyRU-amyRL、AlpU-AlpL、prtTU-prtTL、1258DU-1258DLの各プライマーを使用した(表1)。
Comparison of gene copy number in chromosome using quantitative PCR (real-time PCR) Quantitative PCR was performed using Mx3005P (Agilent Technology). By using rad52 located in another chromosome as a normalizer, the copy number of each gene of Alp, amyR, prtT, and 1258D on chromosome 2 was compared between the parent strain and the chromosome duplication strain by relative quantification. PCR conditions were maintained at 95 ° C. for 10 minutes, and then 45 cycles of 95 ° C. 20 seconds-58 ° C. 30 seconds-72 ° C. 30 seconds were repeated. For PCR, Rad52, Alp, amyR, prtT, and 1258D genes were amplified using r52U-r52L, amyRU-amyRL, AlpU-AlpL, prtTU-prtTL, and 1258DU-1258DL primers, respectively (Table 1).

ふすま麹の作製法
麹菌の酵素活性評価は定法に従って行なった。すなわち、80%散水した小麦ふすま5gを150ml容三角フラスコに入れ、121℃、50分滅菌した後、麹菌を2白金耳程度接種し30℃、4日間培養する。培養後、滅菌水100mlを入れ、ゴム栓をして十分に振とうし、4時間室温にて静置した後、No.2の濾紙(アドバンテック社製)で濾過して得られた抽出液を酵素サンプルとした。
Preparation method of bran meal The enzyme activity of Aspergillus was evaluated according to a conventional method. That is, 5 g of wheat bran sprinkled with 80% water is put into a 150 ml Erlenmeyer flask, sterilized at 121 ° C. for 50 minutes, inoculated with about 2 platinum ears and cultured at 30 ° C. for 4 days. After culturing, add 100 ml of sterilized water, shake with rubber plugs, shake well, and let stand at room temperature for 4 hours, then filter the extract obtained by filtering through No. 2 filter paper (manufactured by Advantech). An enzyme sample was used.

プロテアーゼ活性の測定法
得られた酵素サンプルを適宜希釈し、「しょうゆ試験法」(財団法人 日本醤油研究所 昭和60年、287ページ)に記載の方法に従って測定した。プロテアーゼ活性は、ふすま麹1g当り1分間に1μモルのチロシンを生成する活性を1U(ユニットまたは単位)として示した。
Method for measuring protease activity The obtained enzyme sample was appropriately diluted and measured according to the method described in "Soy sauce test method" (Japan Soy Sauce Research Institute, 1985, p. 287). Protease activity is shown as 1 U (unit or unit) that produces 1 μmol of tyrosine per gram of wheat bran per gram.

α-アミラーゼ活性の測定法
得られた酵素サンプルを適宜希釈し、α-アミラーゼ測定キット(キッコーマン醸造分析キット、コード60213)を用い、キットのプロトコールに従って測定を行なった。α-アミラーゼ活性は、ふすま麹1g当り1分間に1μモルの2-クロロ-4-ニトロフェノールを遊離する力価を1U(ユニットまたは単位)として示した。
Method for measuring α-amylase activity The obtained enzyme sample was appropriately diluted and measured using an α-amylase measurement kit (Kikkoman Brewing Analysis Kit, Code 60213) according to the protocol of the kit. The α-amylase activity was expressed as 1 U (unit or unit) of a titer that liberates 1 μmol of 2-chloro-4-nitrophenol per 1 g of bran koji.

[染色体重複株の作製]
染色体の重複は染色体の二重鎖切断修復の過程で生じると考えられているが、そのメカニズムは判っていない。しかし酵母においてガンマ線照射によって取得された変異株の染色体を解析すると染色体の重複が起きた領域の境界付近に繰り返し配列が存在することが報告されている(非特許文献1)ことから、相同領域を持つ5’ΔpyrGおよび3’ΔpyrGで重複ターゲット領域を挟んだコンストラクトを作製し、相同配列内部で二重鎖切断を引き起こすことにより、染色体の重複を作製出来ると考えられる(図1)。
[Creation of chromosome duplicated strain]
Chromosomal duplication is thought to occur in the process of chromosome double-strand break repair, but the mechanism is unknown. However, when analyzing the chromosomes of mutant strains obtained by gamma irradiation in yeast, it has been reported that there are repetitive sequences near the boundaries of the regions where chromosome duplication occurred (Non-patent Document 1). It is considered that chromosomal duplication can be produced by preparing a construct having the overlapping target region sandwiched between 5′ΔpyrG and 3′ΔpyrG possessed, and causing double-strand breaks within the homologous sequence (FIG. 1).

そこで、まず、5’ΔpyrGおよび3’ΔpyrGを作製するために、図2に示すような基本ユニットを作製した。5’ΔpyrGあるいは3’ΔpyrGユニットの作製は PCRとライゲーションを用いて行った。pyrGユニットの作製は、当業者に公知の方法を用いて、pyrG全長の転写開始点付近(5’ΔpyrGの場合)あるいはコード領域の3’側付近(3’ΔpyrGの場合)に図2中で斜線で示す相同配列(適当な制限酵素認識部位を含んでいても良い)を組込むことにより行った。各ベクターが染色体上に組込まれた後5FOA耐性株を選択(ネガティブ選択)することにより、それぞれ相同領域での組換えにより内部が切り出された5’ΔpyrGあるいは3’ΔpyrG株が得られる。 Therefore, first, in order to produce 5′ΔpyrG and 3′ΔpyrG, basic units as shown in FIG. 2 were produced. The 5′ΔpyrG or 3′ΔpyrG unit was prepared using PCR and ligation. The pyrG unit is prepared using a method known to those skilled in the art in FIG. 2 near the transcription start point of the full pyrG (in the case of 5′ΔpyrG) or near the 3 ′ side of the coding region (in the case of 3′ΔpyrG). This was carried out by incorporating a homologous sequence indicated by hatching (which may contain an appropriate restriction enzyme recognition site). After each vector is integrated on the chromosome, a 5FOA resistant strain is selected (negative selection), thereby obtaining a 5'ΔpyrG or 3'ΔpyrG strain whose interior is excised by recombination in the homologous region.

次に5’ΔpyrGおよび3’ΔpyrGそれぞれのユニットを染色体上のターゲットとする領域に組込むためのベクターを構築した。標的とする領域は図3に示すように、A.oryzaeの2番染色体中のSC003領域のAO090003001003〜AO090003001258の各ORFの領域に対応する部分を含む700 kbの領域(図3、斜線部)のうちのB領域からC4の領域に渡るAO090003001036〜AO090003001212の各ORFの領域に対応する部分を含む512 kbの領域(AO090003001035〜AO090003001214に挟まれた領域であって、これらの端のORF領域は含まない領域)である。本明細書内では以後簡略化のため、各遺伝子名のAO090003000部分を省略し、Bで表現する(例:AO090003000160 → B160)。SC003領域と対応する各遺伝子の配列は独立行政法人製品評価技術基盤機構(NITE)のゲノム解析データベースであるDOGAN(Database Of the Genomes Analyzed at NITE)に基づいている。(http://www.bio.nite.go.jp/dogan/GeneMap?GENOME_ID=ao__G2)。 Next, a vector for integrating each unit of 5'ΔpyrG and 3'ΔpyrG into a target region on the chromosome was constructed. As shown in FIG. 3, the target region is a 700 kb region (FIG. 3, hatched portion) including a portion corresponding to each ORF region of AO090003001003 to AO090003001258 of SC003 region in chromosome 2 of A. oryzae. A 512 kb region including the portion corresponding to each ORF region of AO090003001036 to AO090003001212 across the B region to C4 region (AO090003001035 to AO090003001214, not including the ORF region at these ends) Area). In the present specification, for simplification, the AO090003000 portion of each gene name is omitted and expressed by B (eg, AO090003000160 → B160). The sequence of each gene corresponding to the SC003 region is based on DOGAN (Database Of the Genomes Analyzed at NITE), which is a genome analysis database of the National Institute of Technology and Evaluation (NITE). (Http://www.bio.nite.go.jp/dogan/GeneMap?GENOME_ID=ao__G2).

図3中の2番染色体上のB領域に5’ΔpyrGのコンストラクトを組込むためのベクター(pB-5’Δ)とC4領域に3’ΔpyrGのコンストラクトを組込むためのベクター(pC4-3’Δ)の構築を、以下の通り行った。 A vector (pB-5'Δ) for incorporating the 5′ΔpyrG construct into the B region on chromosome 2 in FIG. 3 and a vector (pC4-3′Δ) for incorporating the 3′ΔpyrG construct into the C4 region in FIG. Was constructed as follows.

まずプライマーB-UとB-LおよびC4-UとC4-Lを用いてA.oryzaeのゲノムDNAよりPCRによりB領域の近傍およびC4領域の近傍を含む約3 kbの領域を増幅し、ベクターにクローニングした。 First, using the primers B-U and B-L and C4-U and C4-L, a region of about 3 kb including the vicinity of the B region and the vicinity of the C4 region was amplified from the genomic DNA of A. oryzae by PCR and cloned into a vector.

プライマーB-iUおよびB-iLを用いて増幅したB領域の近傍を含むベクターと、プライマーpyrUおよびpyrLを用いて増幅した5’ΔpyrGユニットとを、In-fusion クローニングキット(Takara社)を用いてライゲーションし、2番染色体上のB領域に5’ΔpyrGのコンストラクトを組込むためのベクター(pB-5’Δ)を構築した。ライゲーションはキットの所定のプロトコールにしたがって行なった。続いてプライマーC4-iUおよびC4-iLを用いて増幅したC4領域を含むベクターと、プライマーpyrUおよびpyrLを用いて増幅した3’ΔpyrGユニットとを、In-fusionクローニングキット(Takara社)を用いてライゲーションし、C4領域に3’ΔpyrGのコンストラクトを組込むためのベクター(pC4-3’Δ)を構築した。このベクターを作製するのに使用したプライマーを表2に示す。 A vector containing the vicinity of the B region amplified using primers B-iU and B-iL, and a 5′ΔpyrG unit amplified using primers pyrU and pyrL, were obtained using an In-fusion cloning kit (Takara). Ligation was carried out to construct a vector (pB-5′Δ) for incorporating a 5′ΔpyrG construct into the B region on chromosome 2. Ligation was performed according to the protocol specified in the kit. Subsequently, the vector containing the C4 region amplified using the primers C4-iU and C4-iL and the 3′ΔpyrG unit amplified using the primers pyrU and pyrL were obtained using an In-fusion cloning kit (Takara). Ligation was carried out to construct a vector (pC4-3′Δ) for incorporating a 3′ΔpyrG construct into the C4 region. The primers used to make this vector are shown in Table 2.

まず2番染色体のB領域に5’ΔpyrGのコンストラクトを組込むためのベクター(pB-5’Δ)をプライマーB-UおよびB-Lを用いて増幅し、そのPCR産物を用いてA.oryzaeのΔpyrG株に対して形質転換を行った。得られた形質転換体をPCRおよびサザンハイブリダイゼーションにより調べた結果、1株で目的部位にベクターが組込まれていることが確認された。次にこの株から分生子を採取し、約1×10を5FOAを含むCZ培地プレート上へ塗布し、得られた5FOA耐性株を解析したところ、B領域に5’ΔpyrGのコンストラクトを持つことが確認された。このB領域に5’ΔpyrGのコンストラクトを持つΔpyrG株を親株として、C4領域(512 kb領域重複用)に3’ΔpyrGのコンストラクトを組込むためのベクター(pC4-3’Δ)をプライマーC4-UおよびC4-Lを用いたPCRにより増幅した後、形質転換を行った。C4領域にベクターが組込まれた株をPCRおよびサザンハイブリダイゼーションを用いて選抜して分生子を回収し、5FOA−CZプレート上で耐性を示すコロニーを選択した結果、重複ターゲット領域中(512 kb領域)の最もセントロメア側であるB領域に5`ΔpyrGが組込まれ、最もテロメア側であるC4領域に3`ΔpyrGが組込まれた株の構築が確認された。こうして2番染色体中の512 kbの領域を重複させるための基本的なコンストラクトを持った株(B-C4-hap株)の構築に成功した(図3)。 First, a vector (pB-5'Δ) for integrating the 5′ΔpyrG construct into the B region of chromosome 2 was amplified using primers BU and BL, and the PCR product was used to amplify the ΔpyrG strain of A. oryzae. Transformation. As a result of examining the obtained transformant by PCR and Southern hybridization, it was confirmed that the vector was integrated into the target site in one strain. Next, conidia were collected from this strain, applied to approximately 1 × 10 5 onto a CZ medium plate containing 5FOA, and the obtained 5FOA resistant strain was analyzed. As a result, the B region had a 5′ΔpyrG construct. Was confirmed. A ΔpyrG strain having a 5′ΔpyrG construct in the B region is used as a parent strain, and a vector (pC4-3′Δ) for incorporating the 3′ΔpyrG construct in the C4 region (for 512 kb region duplication) is used as primers C4-U and After amplification by PCR using C4-L, transformation was performed. A strain in which the vector was integrated into the C4 region was selected using PCR and Southern hybridization, and conidia were collected. As a result of selecting a colony exhibiting resistance on the 5FOA-CZ plate, the overlapping target region (512 kb region) was selected. The construction of a strain in which 5`ΔpyrG was incorporated into the B region, which is the most centromeric side, and 3`ΔpyrG was incorporated into the C4 region, which was the most telomeric side, was confirmed. Thus, a strain (B-C4-hap strain) having a basic construct for overlapping the 512 kb region in chromosome 2 was successfully constructed (FIG. 3).

次に、このB-C4-hap株を親株として、前述の方法により、染色体重複株の取得実験を行った。その結果、再生プレートから1個のpyrG+のコロニーが得られたので、これをB-C4-512k株とした。続いて、得られたpyrG+株(B-C4-512k株)から染色体DNAを抽出し、PCRおよび定量PCR(リアルタイムPCR)により、染色体が重複しているかどうかの確認を試みた。 Next, using this B-C4-hap strain as a parent strain, an experiment for obtaining a chromosome duplication strain was performed by the method described above. As a result, one pyrG + colony was obtained from the regenerated plate, and this was designated as B-C4-512k strain. Subsequently, chromosomal DNA was extracted from the obtained pyrG + strain (B-C4-512k strain), and an attempt was made to confirm whether the chromosomes were duplicated by PCR and quantitative PCR (real-time PCR).

PCRによる染色体重複の確認
まず、PCRにより狙った染色体上の領域の重複が起きているかどうかの確認を行なった。その結果を図4に示す。重複領域のセントロメア側の端に位置し、ベクター(pB-5’Δ)が組込まれているB領域の近傍領域を増やすためのプライマー(B-UとB-L)を用いた場合(図4上)には、コントロール株(親株:B-C4-hap株)、重複株(B-C4-512k株)ともに4.4 kbのバンドの増幅が見られた(図4下、レーン1および2)。また重複領域のテロメア側の端に位置し、ベクター(pC4-3’Δ)が組込まれているC4領域の近傍領域を増やすためのプライマー(C4-UとC4-L)を用いた場合(図4上)にも、コントロール、重複株ともに3.9 kbのバンドの増幅が見られた(図4下、レーン5および6)。一方、プライマーC4-UとB-Lの組合わせでPCRを行った場合(図4上)にはコントロールでは全くバンドの増幅が見られないのに対し、染色体重複株では、はっきりと4.8 kbのバンドの増幅が見られた(レーン3および4)。染色体重複株でのみ見られた4.8kbのバンドは、染色体上の狙った領域が同一染色体上で重複し、図4下に示すような構造が染色体上に存在する場合にのみ得られるバンドであると考えられる。このことから、染色体重複株B-C4-512k株では2番染色体上のB領域からC4領域に渡る512 kbの領域(B1036〜B1212)が同一染色体上で重複していることが示された。
Confirmation of chromosomal duplication by PCR First, it was confirmed by PCR whether or not duplication of the targeted chromosome region occurred. The result is shown in FIG. When using primers (BU and BL) that are located at the centromere end of the overlapping region and increase the region near the B region where the vector (pB-5'Δ) is incorporated (upper figure 4) A 4.4 kb band was amplified in both the control strain (parent strain: B-C4-hap strain) and the overlapping strain (B-C4-512k strain) (bottom of FIG. 4, lanes 1 and 2). In addition, when primers (C4-U and C4-L) are used to increase the region near the C4 region, which is located at the telomeric end of the overlapping region and into which the vector (pC4-3'Δ) has been incorporated (Fig. 4)), amplification of a band of 3.9 kb was observed in both the control and overlapping strains (bottom of FIG. 4, lanes 5 and 6). On the other hand, when PCR was performed with a combination of primers C4-U and BL (Fig. 4), no band amplification was observed in the control, whereas in the chromosome duplicated strain, a clearly 4.8 kb band was observed. Amplification was seen (lanes 3 and 4). The 4.8 kb band found only in the chromosomal overlapping strain is a band obtained only when the targeted region on the chromosome overlaps on the same chromosome and the structure shown in the lower part of FIG. 4 is present on the chromosome. it is conceivable that. From this, it was shown that the 512-kb region (B1036 to B1212) extending from the B region to the C4 region on chromosome 2 was duplicated on the same chromosome in the chromosome overlapping strain B-C4-512k.

リアルタイムPCRによるコピー数の確認
続いてリアルタイムPCR(定量PCR)を用いて2番染色体の重複領域における各遺伝子のコピー数をコントロール株(親株:B-C4-hap株)および染色体重複株(B-C4-512k株)で比較した(図5)。実験では他の染色体に存在し、コピー数が1であるrad52をノーマライザーとして使用し、重複領域内のセントロメア側の端に位置するB1036遺伝子(Alp)とそこから490 kb離れた位置に存在するB1208(amyR)遺伝子およびテロメア側の端に位置するB1212(prtT)遺伝子、そして重複領域外に位置するB1258D遺伝子をターゲットとして、SYBR Greenを用いた相対的定量法により、親株におけるコピー数との比較を行った。図5にはコントロール株(B-C4-hap株)でのコピー数に対する相対値を示す。その結果、染色体重複株であるB-C4-512k株では、染色体重複領域外に位置するB1258Dの相対値は約1程度であったが、重複領域の内部に位置するB1036遺伝子、B1208遺伝子、B1212遺伝子についてはいずれもコントロール株でのコピー数に対して2倍程度の値を示した。これらの結果から染色体重複株(B-C4-512k株)においては、重複領域内に位置する遺伝子のコピー数が2に増幅していることが確認された。これらのPCRおよびリアルタイムPCR(定量PCR)の結果から、染色体重複株(B-C4-512k株)では2番染色体上の狙った領域である512 kbの領域が確かに重複していることが確認された。
Confirmation of copy number by real-time PCR Subsequently, the copy number of each gene in the overlapping region of chromosome 2 was determined using real-time PCR (quantitative PCR) and the control strain (parent strain: B-C4-hap strain) and chromosome duplication The strain (B-C4-512k strain) was compared (FIG. 5). In the experiment, rad52, which is present in other chromosomes and has a copy number of 1, is used as a normalizer, and the B1036 gene (Alp) located at the centromere end in the overlap region is located 490 kb away from it. Relative quantification using SYBR Green targeting the B1208 (amyR) gene, the B1212 (prtT) gene located at the telomeric end, and the B1258D gene located outside the overlapping region, compared with the copy number in the parent strain Went. FIG. 5 shows relative values with respect to the copy number in the control strain (B-C4-hap strain). As a result, in the B-C4-512k strain, which is a chromosome duplication strain, the relative value of B1258D located outside the chromosome duplication region was about 1, but the B1036 gene, B1208 gene, B1212 located inside the duplication region were about 1 All genes showed values about twice the copy number in the control strain. From these results, it was confirmed that in the chromosome duplication strain (B-C4-512k strain), the copy number of the gene located in the duplication region was amplified to 2. From the results of these PCR and real-time PCR (quantitative PCR), it was confirmed that the 512 kb region, which was the target region on chromosome 2, was indeed duplicated in the chromosome duplication strain (B-C4-512k strain). It was done.

さらに同様の方法により、図3中のA-D領域間の700 kb、A-C領域間の585 kb、B-C領域間の517 kb、A-C2領域間の573 kb、B-B3領域間の10 kbの重複株を取得するために、A領域に5’ΔpyrGのコンストラクトを、B3領域、C2領域、C領域、D領域にはそれぞれ3’ΔpyrGのコンストラクトを導入するためのベクターを構築した。ベクターの構築には、それぞれ、A領域にはプライマーA-U、A-L、A-iU、A-iLを、B3領域にはプライマーB3-U、B3-L、B3-iU、B3-iLを、C領域にはプライマーC-U、C-L、C-iU、C-iLを、C2領域にはプライマーC2-U、C2-L、C2-iU、C2-iLを、D領域にはプライマーD-U、D-L、D-iU、D-iLを使用し、ΔpyrGユニットとのライゲーションはIn-fusionクローニングキット(Takara社)を用いて行った。得られたベクターを前述の方法と同様にPCRにより増幅した後、それらをA.oryzaeのΔpyrG株に対して形質転換することにより、染色体重複用の親株を作製した後、A-D領域700kbの重複株(A-D-700k株)、A-C領域585kbの重複株(A-C-585k株)、B-C領域517kbの重複株(B-C-517k株)、A-C2領域573kbの重複株(A-C2-573k株)、B-B3領域10kbの重複株(B-B3-10k株)を取得した。これらの重複株の作製に使用したプライマーを表3に示す。これらの菌株に関しても、染色体重複株B-C4-512k株と同様に、2番染色体上の各領域が同一染色体上で重複していることが示された。 Further, in the same manner, 700 kb between the AD regions, 585 kb between the AC regions, 517 kb between the BC regions, 573 kb between the A-C2 regions, and 10 kb between the B-B3 regions. In order to obtain a strain, a vector for introducing a 5′ΔpyrG construct into the A region and a 3′ΔpyrG construct into each of the B3 region, C2, C region, and D region was constructed. For vector construction, primers A, AL, A-iU and A-iL are used for the A region, primers B3-U, B3-L, B3-iU and B3-iL are used for the B3 region, and the C region. Includes primers CU, CL, C-iU, C-iL, C2 region includes primers C2-U, C2-L, C2-iU, C2-iL, D region includes primers DU, DL, D-iU D-iL was used, and ligation with the ΔpyrG unit was performed using an In-fusion cloning kit (Takara). After amplifying the obtained vector by PCR in the same manner as described above and then transforming it into the ΔpyrG strain of A. oryzae, a parent strain for chromosomal duplication was prepared, and then a duplicate strain of AD region 700 kb (AD-700k strain), AC region 585 kb overlapping strain (AC-585k strain), BC region 517 kb overlapping strain (BC-517k strain), A-C2 region 573 kb overlapping strain (A-C2-573k strain), A 10-kb overlapping strain (B-B3-10k strain) of the B-B3 region was obtained. Table 3 shows the primers used for the production of these overlapping strains. Regarding these strains, it was shown that each region on chromosome 2 was duplicated on the same chromosome as in the case of the chromosome duplication strain B-C4-512k.

活性の測定
2番染色体の重複株については、特許文献1(特許第4469014号「大規模ゲノム重複を保持する麹菌」)で、麹菌の2番染色体上のSC003のAO090003001003〜AO090003001259に対応するゲノム領域の重複株で、プロテアーゼ活性およびアミラーゼ活性の顕著な上昇が見られることが報告されている。本実験で2番染色体を重複させた重複株について、同様の活性上昇が見られるかどうかを調べるために、酵素活性の測定を行なった。酵素活性の比較対照とするために、本実験での方法を用いて2番染色体上のAO090003001003〜AO090003001258(B1003〜B1258)に対応する700 kbの領域を重複させたA-D-700k株を用いた(図3)。さらに同様の方法を用いて作製した重複株であるA-C-585k株、B-C−517k株、A-C2−573k株、B-B2-10k株を用いて酵素活性の測定を行った。
Measurement of activity Regarding the duplicated strain of chromosome 2, the genome region corresponding to AO090003001003 to AO090003001259 of SC003 on chromosome 2 of Neisseria gonorrhoeae in Patent Document 1 (Patent No. 4469014 “Koji mold that retains large-scale genome duplication”) It has been reported that a significant increase in protease activity and amylase activity can be seen in duplicate strains of. In order to investigate whether or not the same activity increase was observed for the duplicated strain in which chromosome 2 was duplicated in this experiment, enzyme activity was measured. As a comparative control of enzyme activity, the AD-700k strain in which a 700 kb region corresponding to AO090003001003 to AO090003001258 (B1003 to B1258) on chromosome 2 was overlapped using the method in this experiment ( FIG. 3). Furthermore, enzyme activity was measured using the duplicate strains AC-585k, BC-517k, A-C2-573k, and B-B2-10k prepared by the same method.

プロテアーゼ活性測定の結果
前述の方法によって、ふすま麹より得られた酵素抽出液を用いて全プロテアーゼ活性の測定を行い、染色体重複を持たないコントロール株(Ct株)と重複株とで比較を行なった。その結果を表4に示す。プロテアーゼ活性については、コントロール株(Ct株)の活性に対し、染色体重複株(A-C4-512k株)では約3倍に活性値が上昇していた。また、この値は700 kbの領域の染色体重複株(A-D-700k株)で得られた活性値であるとほぼ同等であった。このことから本発明で作製した512 kbの領域の染色体重複株(B-C4-512k株)では、ふすま培養において、700 kbの領域の染色体株重複(A-D-700k株)と同様のプロテアーゼ活性の上昇が見られることが判明した。また、同様の方法で作製したA-C領域間575kbの重複株(A-C-575k株)、B-C領域間517kbの重複株(B-C-517k株)、においても同様のプロテアーゼ活性の上昇が確認された。一方、B-B3領域間10kbの重複株(B-B3-10k株)およびA-C2領域間の573kbの重複株(A-C2-573k株)においてはプロテアーゼ活性の上昇は2倍弱であった。
Results of measurement of protease activity Using the above-mentioned method, total protease activity was measured using the enzyme extract obtained from bran rice cake, and control strains (Ct strains) that do not have chromosomal duplication and duplicate strains were measured. A comparison was made. The results are shown in Table 4. As for the protease activity, the activity value increased about 3 times in the chromosome duplication strain (A-C4-512k strain) compared to the activity of the control strain (Ct strain). This value was almost the same as the activity value obtained with the chromosome duplication strain (AD-700k strain) in the 700 kb region. Therefore, the 512 kb chromosomal duplication strain (B-C4-512k strain) prepared in the present invention has the same protease activity as the 700 kb chromosomal strain duplication (AD-700k strain) in bran culture. An increase was found. In addition, the same increase in protease activity was also confirmed in the 575 kb overlapping strain (AC-575k strain) and the 517 kb overlapping strain (BC-517k strain) between the BC regions prepared by the same method. On the other hand, in the 10-kb overlapping strain between B-B3 regions (B-B3-10k strain) and the 573-kb overlapping strain between A-C2 regions (A-C2-573k strain), the increase in protease activity was slightly less than twice. It was.

α‐アミラーゼ活性測定の結果
続いてα‐アミラーゼ活性についても同一の酵素液を用いて測定を行なった。その結果を表5に示す。その結果、コントロール株(Ct株)の活性値に対し、染色体重複株(B-C4-512k株)での活性値は約1.6倍程度に上昇していることが明らかとなった。この値は700 kbの領域の染色体重複株(A-D-700k株)において得られた値とほぼ同じであった。またB-B3-10k株以外の染色体重複株(A-C-585k株、B-C-517k株、A-C2-573k株)においても同様のアミラーゼ活性の上昇が見られた。このことから本発明で作製した512 kbの領域の染色体重複株(B-C4-512k株)では、ふすま培養において、700 kbの領域の染色体株重複(A-D-700k株)と同様のアミラーゼ活性の上昇が見られることが判明した。
Results of measurement of α-amylase activity Subsequently, α-amylase activity was also measured using the same enzyme solution. The results are shown in Table 5. As a result, it was revealed that the activity value in the chromosome duplication strain (B-C4-512k strain) was increased by about 1.6 times that of the control strain (Ct strain). This value was almost the same as the value obtained in the chromosome duplication strain (AD-700k strain) of the 700 kb region. The same increase in amylase activity was also observed in chromosome duplication strains other than the B-B3-10k strain (AC-585k strain, BC-517k strain, A-C2-573k strain). Therefore, the chromosomal duplication strain (B-C4-512k strain) of the 512 kb region produced in the present invention has the same amylase activity in the bran culture as the chromosomal strain duplication (AD-700k strain) of the 700 kb region. An increase was found.

以上の結果より、本実施例で作製した各形質転換菌においては2番染色体の同一染色体上で重複領域が見られた。例えば、B-C4-512k株では2番染色体のB1036-B1212間512 kbの領域が同一染色体上で確かに重複しており、ふすま培養において、B1003-B1258間700 kbの領域の染色体重複株(A-D-700k株)と同様に、染色体重複のない親株に比較して、顕著なプロテアーゼ活性およびアミラーゼ活性の上昇が見られることが判った。また、同様の方法で作製したA-C領域間575kbの重複株(A-C-575k株)、B-C領域間517kbの重複株(B-C-517k株)、においても同等のプロテアーゼ活性の上昇、およびアミラーゼ活性の上昇が確認された。このことから、2番染色体の重複によるプロテアーゼ活性およびアミラーゼ活性の上昇には、B1003-B1258間700 kbの領域より短い領域の重複で十分であることが示された。 From the above results, in each transformed bacterium prepared in this example, an overlapping region was observed on the same chromosome of chromosome 2. For example, in the B-C4-512k strain, the 512 kb region between B1036-B1212 of chromosome 2 is surely duplicated on the same chromosome, and in the bran culture, the 700 kb region between the B1003-B1258 chromosomes ( As in the case of AD-700k strain), it was found that a remarkable increase in protease activity and amylase activity was observed as compared with the parent strain having no chromosome duplication. In addition, the same protease activity and amylase activity increased in the 575 kb overlapping strain between AC regions (AC-575k strain) and 517 kb overlapping strain between BC regions (BC-517k strain) prepared in the same manner. Was confirmed. From this, it was shown that the duplication of a region shorter than the 700 kb region between B1003-B1258 is sufficient for the increase of protease activity and amylase activity due to the duplication of chromosome 2.

本発明により、育種の対象である菌株のゲノム情報を利用して実用上有用であると考えられる染色体の領域を特定し、その特定ゲノム領域を同一染色体上でタンデムに重複させた菌株を提供することが可能となり、効率的に分子育種が進められると考えられる。更に、従来知られていなかった全く新たな有用な形質が強化された麹菌が得られるものと期待される。 According to the present invention, a chromosomal region that is considered to be practically useful is identified using genomic information of a strain to be bred, and a strain obtained by overlapping the specific genomic region in tandem on the same chromosome is provided. It is possible to promote molecular breeding efficiently. Furthermore, it is expected that a koji mold with a completely new and useful character that has not been conventionally known can be obtained.

Claims (10)

アスペルギルス属に属する菌の形質転換菌であって、同一染色体上でタンデムにゲノム重複領域を有することを特徴とする、前記形質転換菌。 A transformant of a bacterium belonging to the genus Aspergillus, wherein the transformant has a genome overlap region in tandem on the same chromosome. ゲノム重複領域に挟まれた領域に形質転換マーカー遺伝子が組み込まれていることを特徴とする、請求項1記載の形質転換菌。 2. The transformed bacterium according to claim 1, wherein a transformation marker gene is incorporated in a region sandwiched between genome overlapping regions. ゲノム重複領域が十〜数百kbである、請求項1又は2記載の形質転換菌。 The transformed bacterium according to claim 1 or 2, wherein the genome overlap region is 10 to several hundred kb. アスペルギルス属に属する菌がアスペルギルス・オリゼまたはアスペルギルス・ソーヤである、請求項1ないし3のいずれか一項に記載の形質転換菌。 The transformed bacterium according to any one of claims 1 to 3, wherein the bacterium belonging to the genus Aspergillus is Aspergillus oryzae or Aspergillus soya. ゲノム重複領域がアスペルギルス・オリゼの2番染色体のSC003領域の500kb以上で700kb未満である、請求項4記載の形質転換菌。 The transformed bacterium according to claim 4, wherein the genome overlap region is 500 kb or more and less than 700 kb of the SC003 region of chromosome 2 of Aspergillus oryzae. ゲノム重複領域がアスペルギルス・オリゼの2番染色体のSC003領域におけるAO090003001035〜AO090003001214に挟まれた領域であって、これらの端のORF領域は含まない領域である、請求項5記載の形質転換菌。 The transformed bacterium according to claim 5, wherein the genome overlapping region is a region sandwiched between AO090003001035 to AO090003001214 in the SC003 region of Aspergillus oryzae chromosome 2, and does not include the ORF region at these ends. 形質転換マーカー遺伝子が、pyrG、sC及びniaDから成る群から選択される、請求項1ないし6のいずれかに記載の形質転換菌。 The transformed bacterium according to any one of claims 1 to 6, wherein the transformation marker gene is selected from the group consisting of pyrG, sC and niaD. 染色体重複を持たないコントロール株(Ct株)と比べて、プロテアーゼが1.9倍以上、及び/又はα―アミラーゼ活性が1.4倍以上に増加していることを特徴とする、請求項1ないし7のいずれか一項に記載の形質転換菌。 The protease is increased by 1.9 times or more and / or the α-amylase activity is increased by 1.4 times or more compared with a control strain (Ct strain) having no chromosome duplication. The transformant as described in any one of thru | or 7. 遺伝子組換え法によって作製されたものであることを特徴とする、請求項1ないし8のいずれか一項に記載の形質転換菌。 The transformed bacterium according to any one of claims 1 to 8, which is produced by a gene recombination method. 請求項1ないし9のいずれか一項に記載の形質転換菌を用いて製造される醤油。 Soy sauce produced using the transformant according to any one of claims 1 to 9.
JP2011171963A 2011-08-05 2011-08-05 Bacterium having overlapped genomic region Pending JP2013034416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011171963A JP2013034416A (en) 2011-08-05 2011-08-05 Bacterium having overlapped genomic region
PCT/JP2012/068664 WO2013021811A1 (en) 2011-08-05 2012-07-24 Bacterium having overlapped genomic region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171963A JP2013034416A (en) 2011-08-05 2011-08-05 Bacterium having overlapped genomic region

Publications (1)

Publication Number Publication Date
JP2013034416A true JP2013034416A (en) 2013-02-21

Family

ID=47668327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171963A Pending JP2013034416A (en) 2011-08-05 2011-08-05 Bacterium having overlapped genomic region

Country Status (2)

Country Link
JP (1) JP2013034416A (en)
WO (1) WO2013021811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985100A1 (en) 2015-01-30 2022-04-20 Kikkoman Corporation Transformed fungus having enhanced ergothioneine productivity and method for producing ergothioneine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246481A (en) * 2009-04-17 2010-11-04 Kikkoman Corp Aspergillus oryzae having large-scale genome duplication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095280A (en) * 2007-10-17 2009-05-07 Kikkoman Corp Method for breeding mutant strain of yellow koji mold
JP2009095279A (en) * 2007-10-17 2009-05-07 Kikkoman Corp Koji mold, method for breeding the same, and method for producing soy sauce
US9169487B2 (en) * 2010-06-17 2015-10-27 Kikkoman Corporation Method for producing a large region duplication of Aspergillus chromosome

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246481A (en) * 2009-04-17 2010-11-04 Kikkoman Corp Aspergillus oryzae having large-scale genome duplication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012042456; 北本則行: '醤油麹菌Aspergillus orizae KBN616株における形質転換系の開発' 愛知県食品工業技術センター年報 第42号, 200111, p.32-34 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985100A1 (en) 2015-01-30 2022-04-20 Kikkoman Corporation Transformed fungus having enhanced ergothioneine productivity and method for producing ergothioneine

Also Published As

Publication number Publication date
WO2013021811A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
Li et al. Developing Aspergillus niger as a cell factory for food enzyme production
JP5772594B2 (en) Transformant, method for producing the same, and method for producing lactic acid
Jin et al. Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts
JP5751609B2 (en) Method for producing cells with modified properties
JP5836946B2 (en) A method for producing large region duplications in the Neisseria gonorrhoeae chromosome
JP6081245B2 (en) A method for creating a translocation of any region in the Neisseria gonorrhoeae chromosome
US20120034654A1 (en) Method for transforming schizosaccharomyces pombe, transformant of schizosaccharomyces pombe and method for producing heterologous protein
WO2013021811A1 (en) Bacterium having overlapped genomic region
CN108913611B (en) Gene element and application thereof in saccharomyces cerevisiae chromosome number, copy number and structural variation
CN108949600B (en) Deletion of gene and application thereof, strain lacking gene and application thereof in improving yield of microbial secondary metabolite
JP5995232B2 (en) Efficient method for fusion of Neisseria gonorrhoeae cell lines
JP5506159B2 (en) A novel wine yeast obtained by crossing sake yeast and wine yeast and its production method
JP5565992B2 (en) Transformation method of yeast Candida utilis
JP5424301B2 (en) Method for introducing protein into nucleus and use thereof
JP2018064484A (en) Methods for mass-producing hydrolytic enzymes by aspergillus oryzae
JP5828447B2 (en) Ethanol production method
Braun-Galleani et al. Tetrad analysis without tetrad dissection: Meiotic recombination and genomic diversity in the yeast Komagataella phaffii (Pichia pastoris)
JP6284139B2 (en) Screening method for yeast having mating ability
JP2009178104A (en) Method for homogenizing specific region of diploid cell chromosome using lose of heterozygosity
JP5170397B2 (en) Method for producing mutant strains of filamentous fungi using ion beam irradiation
Coca-Ruiz et al. Improved Protoplast Production Protocol for Fungal Transformations Mediated by CRISPR/Cas9 in Botrytis cinerea Non-Sporulating Isolates
JP6473001B2 (en) Large-scale deletion mutant of Aspergillus spp.
Lim et al. Effects of the loss of mismatch repair genes on single-strand annealing between divergent sequences in Saccharomyces cerevisiae
JP2014076046A (en) Method for enhancing ethanol production and fermentative performance of yeast by disruption of its mitophagy function
JP2009178064A (en) Method for producing ethanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112