JP2013033838A - Manufacturing method and manufacturing apparatus of substrate with thin film - Google Patents

Manufacturing method and manufacturing apparatus of substrate with thin film Download PDF

Info

Publication number
JP2013033838A
JP2013033838A JP2011168878A JP2011168878A JP2013033838A JP 2013033838 A JP2013033838 A JP 2013033838A JP 2011168878 A JP2011168878 A JP 2011168878A JP 2011168878 A JP2011168878 A JP 2011168878A JP 2013033838 A JP2013033838 A JP 2013033838A
Authority
JP
Japan
Prior art keywords
substrate
thin film
main surface
forming unit
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011168878A
Other languages
Japanese (ja)
Inventor
Takayoshi Saito
隆義 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011168878A priority Critical patent/JP2013033838A/en
Priority to PCT/JP2012/066928 priority patent/WO2013018483A1/en
Priority to TW101127818A priority patent/TW201316381A/en
Publication of JP2013033838A publication Critical patent/JP2013033838A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which preferably manufactures a substrate with a thin film by a thermal CVD method.SOLUTION: A light in a wavelength region, which is absorbed by a substrate 10, is radiated to the other main surface 10c2 of a film formation part 10c, a portion of the substrate 10 where a thin film is to be formed, and thereby heating the film formation part 10c. In the state where the film formation part 10c is heated, a reaction gas is supplied to one main surface 10c1 of the film formation part 10c from a nozzle 30, which is disposed facing the one main surface 10c1 of the film formation part 10c, and thereby forming a thin film.

Description

本発明は、薄膜付基板の製造方法及び製造装置に関し、特に、熱CVD法を用いた薄膜付基板の製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a substrate with a thin film, and more particularly to a manufacturing method and a manufacturing apparatus for a substrate with a thin film using a thermal CVD method.

従来、薄膜の形成方法として、例えば特許文献1に記載されているような熱CVD(Chemical Vapor Deposition)法が広く用いられている。この熱CVD法は、ノズルから供給された反応ガスを基板上で反応させることにより、反応ガスの反応物からなる薄膜を基板上に形成する方法である。   Conventionally, as a method for forming a thin film, for example, a thermal CVD (Chemical Vapor Deposition) method described in Patent Document 1 has been widely used. This thermal CVD method is a method in which a reaction gas supplied from a nozzle is reacted on a substrate to form a thin film made of a reaction product of the reaction gas on the substrate.

特開2010−135645号公報JP 2010-135645 A

熱CVD法による成膜を行うに際しては、ノズル中において反応ガスが反応しないようにノズルの温度を低くしておく一方、基板上で反応ガスの反応が好適に進行するように、基板の温度を高くしておく必要がある。しかしながら、基板のノズルの直下に位置する部分の温度は、低温のノズルの影響で温度が低くなりがちである一方、ノズルの温度は高くなりがちであり、ノズルが変形しやすいという問題がある。   When performing film formation by thermal CVD, the temperature of the substrate is set so that reaction of the reaction gas proceeds favorably on the substrate while keeping the temperature of the nozzle low so that the reaction gas does not react in the nozzle. It needs to be high. However, the temperature of the portion located immediately below the nozzle of the substrate tends to be low due to the influence of the low temperature nozzle, while the temperature of the nozzle tends to be high, and there is a problem that the nozzle is easily deformed.

本発明は、熱CVD法により薄膜付基板を好適に製造し得る方法を提供することを主な目的とする。   The main object of the present invention is to provide a method capable of suitably producing a substrate with a thin film by a thermal CVD method.

本発明に係る薄膜付基板の製造方法は、基板と、基板の一主面の上に形成された薄膜とを有する薄膜付基板の製造方法に関する。本発明に係る薄膜付基板の製造方法では、基板の薄膜を形成しようとする部分である成膜部の他主面に、基板に吸収される波長域の光を照射することにより成膜部を加熱した状態で、成膜部の一主面に対向して配置したノズルから成膜部の一主面に向けて反応ガスを供給することにより薄膜を形成する。   The manufacturing method of the board | substrate with a thin film which concerns on this invention is related with the manufacturing method of the board | substrate with a thin film which has a board | substrate and the thin film formed on one main surface of a board | substrate. In the method for manufacturing a substrate with a thin film according to the present invention, the film forming unit is formed by irradiating light on a wavelength region absorbed by the substrate to the other main surface of the film forming unit which is a portion on which a thin film is to be formed. In a heated state, a thin film is formed by supplying a reactive gas from a nozzle disposed facing one main surface of the film forming unit toward one main surface of the film forming unit.

基板として、厚みが200μm以下のガラス基板を用いることが好ましい。   As the substrate, a glass substrate having a thickness of 200 μm or less is preferably used.

本発明に係る薄膜付基板の製造装置は、基板と、基板の一主面の上に形成された薄膜とを有する薄膜付基板を製造するための装置に関する。本発明に係る薄膜付基板の製造装置は、加熱器と、ノズルとを備える。加熱器は、基板の薄膜を形成しようとする部分である成膜部の他主面に、基板に吸収される波長域の光を照射することにより成膜部を加熱する。ノズルは、成膜部の一主面に対向して配置されている。ノズルは、成膜部の一主面に向けて反応ガスを供給する。   The apparatus for manufacturing a substrate with a thin film according to the present invention relates to an apparatus for manufacturing a substrate with a thin film having a substrate and a thin film formed on one main surface of the substrate. The apparatus for manufacturing a substrate with a thin film according to the present invention includes a heater and a nozzle. The heater heats the film forming unit by irradiating the other main surface of the film forming unit, which is a portion where the thin film of the substrate is to be formed, with light in a wavelength region absorbed by the substrate. The nozzle is disposed to face one main surface of the film forming unit. The nozzle supplies a reactive gas toward one main surface of the film forming unit.

加熱器は、赤外線ヒーターと、赤外線ヒーターの成膜部とは反対側に配されており、赤外線ヒーターから出射された赤外線を成膜部側に反射する反射器とを有していてもよい。   The heater may include an infrared heater and a reflector that is disposed on the opposite side of the infrared heater from the film forming unit and reflects infrared light emitted from the infrared heater toward the film forming unit.

本発明によれば、熱CVD法により薄膜付基板を好適に製造し得る方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can manufacture a board | substrate with a thin film suitably by thermal CVD method can be provided.

第1の実施形態における薄膜付基板の製造方法を説明するための模式的斜視図である。It is a typical perspective view for demonstrating the manufacturing method of the board | substrate with a thin film in 1st Embodiment. 第1の実施形態における薄膜付基板の製造方法を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the board | substrate with a thin film in 1st Embodiment. 第2の実施形態における薄膜付基板の製造方法を説明するための模式的側面図である。It is a typical side view for demonstrating the manufacturing method of the board | substrate with a thin film in 2nd Embodiment.

以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, an example of the preferable form which implemented this invention is demonstrated. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。   Moreover, in each drawing referred in embodiment etc., the member which has a substantially the same function shall be referred with the same code | symbol. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.

(第1の実施形態)
図1は、第1の実施形態における薄膜付基板の製造方法を説明するための模式的斜視図である。図2は、第1の実施形態における薄膜付基板の製造方法を説明するための模式的断面図である。
(First embodiment)
FIG. 1 is a schematic perspective view for explaining a manufacturing method of a substrate with a thin film according to the first embodiment. FIG. 2 is a schematic cross-sectional view for explaining the method for manufacturing the thin film-coated substrate in the first embodiment.

本実施形態では、基板と、基板の一主面の上に形成された薄膜とを有する薄膜付基板を熱CVD法により製造する方法及びそれに用いる製造装置について説明する。   In the present embodiment, a method for manufacturing a thin film-attached substrate having a substrate and a thin film formed on one main surface of the substrate by a thermal CVD method and a manufacturing apparatus used therefor will be described.

本実施形態において、基板や薄膜の種類、形状寸法等は特に限定されない。基板は、熱CVD法により薄膜形成する際の温度に耐えうる耐熱性を有するものであればよい。好ましく用いられる基板の具体例としては、例えば、ガラス基板、セラミック基板、耐熱性樹脂基板等が挙げられる。ここでは、基板として、図1及び図2に示す、厚みが200μm以下であり、可撓性を有する帯状のガラス基板10を用いる例について説明する。   In the present embodiment, the type of substrate and thin film, the shape dimensions, etc. are not particularly limited. The substrate only needs to have heat resistance that can withstand the temperature at which a thin film is formed by thermal CVD. Specific examples of the substrate preferably used include a glass substrate, a ceramic substrate, and a heat resistant resin substrate. Here, an example in which a strip-shaped glass substrate 10 having a thickness of 200 μm or less and having flexibility as shown in FIGS. 1 and 2 is used as a substrate will be described.

薄膜は、熱CVD法により形成可能なものであれば特に限定されない。単一の薄膜を形成してもよいし、複数の薄膜の積層体を形成してもよい。例えば、屈折率が比較的低い低屈折率層と、屈折率が比較的高い高屈折率層とが交互に積層されてなる誘電体多層膜や、酸化ケイ素や窒化ケイ素などからなる耐熱膜等を形成してもよい。   The thin film is not particularly limited as long as it can be formed by a thermal CVD method. A single thin film may be formed, or a laminate of a plurality of thin films may be formed. For example, a dielectric multilayer film in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated, a heat resistant film made of silicon oxide, silicon nitride, etc. It may be formed.

(製造装置1)
薄膜付基板の製造装置1は、ガラス基板10の第1の巻回ロール10aからガラス基板10を送り出す送り出し機11と、表面に薄膜が形成されたガラス基板10からなる薄膜付ガラス基板を巻き取り、第2の巻回ロール10bとする巻取機12とを備えている。送り出し機11と巻取機12とは相互に間隔をおいて配されている。ガラス基板10の第1の巻回ロール10aと第2の巻回ロール10bとの間に位置する部分は、長さ方向xに引張応力が付与された状態で、平板状に維持されている。薄膜は、この平板状に維持された、ガラス基板10の第1の巻回ロール10aと第2の巻回ロール10bとの間に位置する部分の上に形成される。即ち、ガラス基板10の第1の巻回ロール10aと第2の巻回ロール10bとの間に位置する部分の一部が、薄膜を形成しようとする部分である成膜部10cを構成している。
(Manufacturing equipment 1)
The manufacturing apparatus 1 for a substrate with a thin film winds up a glass substrate with a thin film made up of a feeding machine 11 that sends out the glass substrate 10 from a first winding roll 10a of the glass substrate 10 and a glass substrate 10 with a thin film formed on the surface. And a winder 12 serving as a second winding roll 10b. The feeder 11 and the winder 12 are arranged with a space therebetween. The portion of the glass substrate 10 located between the first winding roll 10a and the second winding roll 10b is maintained in a flat plate shape with a tensile stress applied in the length direction x. A thin film is formed on the part located between the 1st winding roll 10a and the 2nd winding roll 10b of the glass substrate 10 maintained by this flat form. That is, a part of the portion of the glass substrate 10 located between the first winding roll 10a and the second winding roll 10b constitutes a film forming unit 10c that is a part where a thin film is to be formed. Yes.

製造装置1は、加熱器20を備えている。加熱器20は、成膜部10cの第2の主面10c2に、ガラス基板10に吸収される波長域の光を照射することにより成膜部10cを加熱する。ガラス基板10は、組成に関わらず、一般的に赤外線を吸収する。このため、本実施形態のように、基板としてガラス基板10を用いる場合は、加熱器20として、赤外線、好ましくは、波長が3μm以上である赤外線を成膜部10cに照射させる加熱器を用いることができる。   The manufacturing apparatus 1 includes a heater 20. The heater 20 heats the film forming unit 10c by irradiating the second main surface 10c2 of the film forming unit 10c with light in a wavelength region absorbed by the glass substrate 10. The glass substrate 10 generally absorbs infrared rays regardless of the composition. For this reason, when using the glass substrate 10 as a substrate as in the present embodiment, a heater that irradiates the film forming unit 10c with infrared rays, preferably with infrared rays having a wavelength of 3 μm or more, is used as the heater 20. Can do.

本実施形態では、加熱器20は、複数の加熱器20a〜20cを含むが、加熱器20は、単一の加熱器により構成されていてもよい。   In the present embodiment, the heater 20 includes a plurality of heaters 20a to 20c, but the heater 20 may be configured by a single heater.

図2に示すように、複数の加熱器20a〜20cのそれぞれは、ガラス基板10に吸収される波長域の光(本実施形態においては、具体的には赤外線)を照射する光出射体(本実施形態においては、具体的には赤外線ヒーター)21と、光出射体21から出射された光を反射する反射器22とを備えている。反射器22は、光出射体21の成膜部10cとは反対側に配されている。反射器22は、光出射体21から出射された光(本実施形態においては、具体的には赤外線)を成膜部10cに反射する反射面22aを有する。反射面22aの形状は、成膜部10cと加熱器20a〜20cとの位置関係などに応じて適宜設定することができる。反射面22aは、例えば、光出射体21から出射された光を平行光にするものであってもよいし、集束光にするものであってもよいし、発散光にするものであってもよい。   As shown in FIG. 2, each of the plurality of heaters 20 a to 20 c is a light emitting body (a book) that emits light in a wavelength region that is absorbed by the glass substrate 10 (specifically, in the present embodiment, infrared light). In the embodiment, specifically, an infrared heater) 21 and a reflector 22 that reflects the light emitted from the light emitting body 21 are provided. The reflector 22 is disposed on the opposite side of the light emitting body 21 from the film forming portion 10c. The reflector 22 has a reflecting surface 22a that reflects the light emitted from the light emitter 21 (specifically, infrared rays in the present embodiment) to the film forming unit 10c. The shape of the reflective surface 22a can be appropriately set according to the positional relationship between the film forming unit 10c and the heaters 20a to 20c. The reflection surface 22a may be, for example, one that makes the light emitted from the light emitter 21 parallel light, one that makes it converged light, or one that makes it divergent light. Good.

本実施形態では具体的には、長さ方向xの中央部において成膜部10cに垂直に配されている加熱器20bの反射面22aは、光出射体21から出射された光を集束光にするものである。一方、加熱器20bの長さ方向xの両側において成膜部10cに対して傾斜して配されている加熱器20a、20cの反射面22aは、光出射体21から出射された光を平行光にするものである。   Specifically, in the present embodiment, the reflecting surface 22a of the heater 20b arranged perpendicularly to the film forming unit 10c in the central portion in the length direction x makes the light emitted from the light emitting body 21 into focused light. To do. On the other hand, the reflecting surfaces 22a of the heaters 20a and 20c that are inclined with respect to the film forming unit 10c on both sides in the length direction x of the heater 20b allow the light emitted from the light emitter 21 to be parallel light. It is to make.

製造装置1は、ノズル30をさらに備えている。ノズル30は、成膜部10cの第1の主面10c1に対向して配されている。ノズル30は、成膜部10cの第1の主面10c1に向けて反応ガスを供給する。具体的には、ノズル30は、ノズル孔31を有している。ノズル孔31は、反応ガスを供給する反応ガス供給部(図示せず)に接続されている。この反応ガス供給部から供給された反応ガスは、ノズル30のノズル孔31を経由して、成膜部10cの第1の主面10c1に供給される。なお、ノズル孔31から噴出される反応ガスの種類、流量等は、成膜しようとする薄膜の種類に応じて適宜設定することができる。   The manufacturing apparatus 1 further includes a nozzle 30. The nozzle 30 is disposed to face the first main surface 10c1 of the film forming unit 10c. The nozzle 30 supplies a reactive gas toward the first main surface 10c1 of the film forming unit 10c. Specifically, the nozzle 30 has a nozzle hole 31. The nozzle hole 31 is connected to a reaction gas supply unit (not shown) for supplying a reaction gas. The reactive gas supplied from the reactive gas supply unit is supplied to the first main surface 10c1 of the film forming unit 10c via the nozzle hole 31 of the nozzle 30. Note that the type, flow rate, and the like of the reactive gas ejected from the nozzle hole 31 can be appropriately set according to the type of thin film to be formed.

ノズル30の温度は、反応ガスがノズル30内において反応しないような温度に設定される。ノズル30の温度は、具体的には、例えば、150℃〜250℃程度に設定される。   The temperature of the nozzle 30 is set such that the reaction gas does not react in the nozzle 30. Specifically, the temperature of the nozzle 30 is set to about 150 ° C. to 250 ° C., for example.

なお、ノズル30には、図示しない加熱器が設けられており、この加熱器によってノズル30の温度が制御されている。   The nozzle 30 is provided with a heater (not shown), and the temperature of the nozzle 30 is controlled by this heater.

(薄膜付基板の製造方法)
次に、製造装置1を用いた薄膜付基板の製造方法について説明する。
(Manufacturing method of substrate with thin film)
Next, the manufacturing method of the board | substrate with a thin film using the manufacturing apparatus 1 is demonstrated.

本実施形態では、第1の巻回ロール10aから順次送り出されてくるガラス基板10の上に薄膜を形成していく。このガラス基板10のうち、現在薄膜を形成しようとしている部分を成膜部10cとする。従って、本実施形態においては、成膜部10cは、時間と共に変化していく。   In this embodiment, a thin film is formed on the glass substrate 10 sequentially sent out from the first winding roll 10a. A portion of the glass substrate 10 where a thin film is currently being formed is referred to as a film forming portion 10c. Therefore, in the present embodiment, the film forming unit 10c changes with time.

本実施形態では、成膜部10cの第2の主面10c2に、加熱器20から、ガラス基板10に吸収される波長域の光(本実施形態においては、具体的には赤外線)を照射することにより成膜部10cを反応ガスが反応する程度の高温にまで加熱した状態で、ノズル30から第1の主面10c1に向けて反応ガスを供給することにより薄膜を形成し、薄膜付きガラス基板を得る。薄膜付きガラス基板は、巻取機12により第2の巻回ロール10bに巻回されていく。   In the present embodiment, the second main surface 10c2 of the film forming unit 10c is irradiated with light in the wavelength range absorbed by the glass substrate 10 from the heater 20 (specifically, in the present embodiment, infrared light). In this state, the thin film is formed by supplying the reactive gas from the nozzle 30 toward the first main surface 10c1 in a state where the film forming unit 10c is heated to such a high temperature that the reactive gas reacts. Get. The glass substrate with a thin film is wound around the second winding roll 10 b by the winder 12.

なお、成膜時におけるガラス基板10の温度は、反応ガスの種類等に応じて適宜設定することができる。成膜時におけるガラス基板10の温度は、例えば、500℃〜600℃程度とすることができる。   In addition, the temperature of the glass substrate 10 at the time of film-forming can be suitably set according to the kind etc. of reaction gas. The temperature of the glass substrate 10 at the time of film-forming can be about 500 to 600 degreeC, for example.

ところで、例えば薄膜を形成しようとする基板の加熱方法としては、雰囲気加熱法も考えられる。しかしながら、基板を雰囲気加熱した場合は、同じ雰囲気中に配されたノズルも同様に加熱されることとなる。このため、ノズル内において反応ガスが反応してしまい、反応ガスのノズルからの噴射が好適に行われなくなる虞がある。また、ノズルが熱により変形し、ノズル孔の大きさが変化してしまうことにより、反応ガスの流量が変化し、所望の厚みの薄膜を形成できなくなる虞もある。従って、薄膜付基板を好適に製造できない場合がある。   By the way, for example, an atmosphere heating method is also conceivable as a method for heating a substrate on which a thin film is to be formed. However, when the substrate is heated in the atmosphere, the nozzles arranged in the same atmosphere are also heated in the same manner. For this reason, the reactive gas reacts in the nozzle, and there is a possibility that the reactive gas may not be suitably injected from the nozzle. Further, since the nozzle is deformed by heat and the size of the nozzle hole is changed, there is a possibility that the flow rate of the reaction gas is changed and a thin film having a desired thickness cannot be formed. Therefore, the substrate with a thin film may not be suitably manufactured.

それに対して本実施形態では、ガラス基板10に吸収される光を加熱器20からガラス基板10のノズル30とは反対側の第2の主面10c2に向けて照射することにより成膜部10cを加熱する。このため、加熱器20からの光がノズル30に到達することが抑制されており、ガラス基板10のみを好適に加熱することができる。従って、ノズル30を、反応ガスが反応しないような低温に保持したまま、ガラス基板10の温度を反応ガスの反応に好適な高温にすることができる。その結果、ノズル30の変形を抑制でき、高い膜厚精度で薄膜を形成することができる。ノズル30内における反応ガスの反応を抑制することができる。その結果、反応ガスの利用効率を高めることができる。さらに、例えば成膜室全体を加熱する必要がなくなるため、製造装置1を小型化することができると共に、エネルギー効率を高めることができる。   On the other hand, in this embodiment, the film-forming part 10c is irradiated by irradiating the light absorbed by the glass substrate 10 toward the 2nd main surface 10c2 on the opposite side to the nozzle 30 of the glass substrate 10 from the heater 20. Heat. For this reason, it is suppressed that the light from the heater 20 reaches | attains the nozzle 30, and only the glass substrate 10 can be heated suitably. Therefore, the temperature of the glass substrate 10 can be set to a high temperature suitable for the reaction of the reaction gas while the nozzle 30 is kept at a low temperature such that the reaction gas does not react. As a result, deformation of the nozzle 30 can be suppressed, and a thin film can be formed with high film thickness accuracy. Reaction of the reaction gas in the nozzle 30 can be suppressed. As a result, the utilization efficiency of the reaction gas can be increased. Furthermore, for example, since it is not necessary to heat the entire film forming chamber, the manufacturing apparatus 1 can be reduced in size and energy efficiency can be increased.

なお、本実施形態の方法は、厚みが200μm以下のガラス基板10を用いる場合に特に好適である。厚みが200μm以下のガラス基板10は、局所加熱した場合にも割れにくいためである。また、厚みが200μm以下のガラス基板10は、一方側の主面側に光を照射した際にも、他方側の表層も好適に加熱できるためである。但し、ガラス基板10が薄すぎると、ガラス基板10の強度が低くなりすぎる場合がある。従って、ガラス基板10の厚みは、5μm以上であることが好ましい。   In addition, the method of this embodiment is especially suitable when using the glass substrate 10 whose thickness is 200 micrometers or less. This is because the glass substrate 10 having a thickness of 200 μm or less is difficult to break even when locally heated. In addition, the glass substrate 10 having a thickness of 200 μm or less can suitably heat the surface layer on the other side even when the main surface side on one side is irradiated with light. However, if the glass substrate 10 is too thin, the strength of the glass substrate 10 may be too low. Therefore, the thickness of the glass substrate 10 is preferably 5 μm or more.

以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。   Hereinafter, other examples of preferred embodiments of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.

(第2の実施形態)
図3は、第2の実施形態における薄膜付基板の製造方法を説明するための模式的側面図である。
(Second Embodiment)
FIG. 3 is a schematic side view for explaining the method for manufacturing the thin film-coated substrate in the second embodiment.

第1の実施形態では、ガラス基板10が第1の巻回ロール10aから供給される例について説明した。但し、本発明は、これに限定されない。例えば、図3に示すように、成形装置40からガラス基板10が直接供給されるようにしてもよい。この場合、他の部材に接触していないガラス基板10の清浄度の高い主面の上に薄膜を形成することができる。   In the first embodiment, the example in which the glass substrate 10 is supplied from the first winding roll 10a has been described. However, the present invention is not limited to this. For example, as shown in FIG. 3, the glass substrate 10 may be directly supplied from the molding apparatus 40. In this case, a thin film can be formed on the main surface with high cleanliness of the glass substrate 10 that is not in contact with other members.

なお、第1及び第2の実施形態では、加熱器20とノズル30とを一組設ける例について説明した。但し、本発明は、この構成に限定されない。加熱器とノズルとを複数組設けてもよい。   In the first and second embodiments, an example in which a set of the heater 20 and the nozzle 30 is provided has been described. However, the present invention is not limited to this configuration. A plurality of sets of heaters and nozzles may be provided.

1…製造装置
10…ガラス基板
10a…第1の巻回ロール
10b…第2の巻回ロール
10c…成膜部
10c1…第1の主面
10c2…第2の主面
11…送り出し機
12…巻取機
20、20a〜20c…加熱器
21…光出射体
22…反射器
22a…反射面
30…ノズル
31…ノズル孔
40…成形装置
DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus 10 ... Glass substrate 10a ... 1st winding roll 10b ... 2nd winding roll 10c ... Film-forming part 10c1 ... 1st main surface 10c2 ... 2nd main surface 11 ... Sending out machine 12 ... winding Taker 20, 20a-20c ... Heater 21 ... Light emitter 22 ... Reflector 22a ... Reflecting surface 30 ... Nozzle 31 ... Nozzle hole 40 ... Molding device

Claims (4)

基板と、前記基板の一主面の上に形成された薄膜とを有する薄膜付基板の製造方法であって、
前記基板の前記薄膜を形成しようとする部分である成膜部の他主面に、前記基板に吸収される波長域の光を照射することにより前記成膜部を加熱した状態で、前記成膜部の一主面に対向して配置したノズルから前記成膜部の一主面に向けて反応ガスを供給することにより前記薄膜を形成する、薄膜付基板の製造方法。
A method of manufacturing a substrate with a thin film having a substrate and a thin film formed on one main surface of the substrate,
In the state where the film forming unit is heated by irradiating the other main surface of the film forming unit, which is the part of the substrate where the thin film is to be formed, with light in a wavelength region absorbed by the substrate. A method of manufacturing a substrate with a thin film, wherein the thin film is formed by supplying a reactive gas from a nozzle disposed opposite to one main surface of the unit toward the main surface of the film forming unit.
前記基板として、厚みが200μm以下のガラス基板を用いる、請求項1に記載の薄膜付基板の製造方法。   The method for producing a substrate with a thin film according to claim 1, wherein a glass substrate having a thickness of 200 μm or less is used as the substrate. 基板と、前記基板の一主面の上に形成された薄膜とを有する薄膜付基板を製造するための装置であって、
前記基板の前記薄膜を形成しようとする部分である成膜部の他主面に、前記基板に吸収される波長域の光を照射することにより前記成膜部を加熱する加熱器と、
前記成膜部の一主面に対向して配置されており、前記成膜部の一主面に向けて反応ガスを供給するノズルと、
を備える、薄膜付基板の製造装置。
An apparatus for manufacturing a substrate with a thin film having a substrate and a thin film formed on one main surface of the substrate,
A heater that heats the film forming unit by irradiating the other main surface of the film forming unit, which is a part of the substrate where the thin film is to be formed, with light in a wavelength region absorbed by the substrate;
A nozzle that is disposed to face one main surface of the film forming unit, and that supplies a reactive gas toward one main surface of the film forming unit;
An apparatus for manufacturing a substrate with a thin film.
前記加熱器は、赤外線ヒーターと、前記赤外線ヒーターの前記成膜部とは反対側に配されており、前記赤外線ヒーターから出射された赤外線を前記成膜部側に反射する反射器とを有する、請求項3に記載の薄膜付基板の製造装置。   The heater is provided with an infrared heater and a reflector that is disposed on the opposite side of the infrared heater from the film forming unit and reflects infrared light emitted from the infrared heater to the film forming unit side. The apparatus for manufacturing a substrate with a thin film according to claim 3.
JP2011168878A 2011-08-02 2011-08-02 Manufacturing method and manufacturing apparatus of substrate with thin film Withdrawn JP2013033838A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011168878A JP2013033838A (en) 2011-08-02 2011-08-02 Manufacturing method and manufacturing apparatus of substrate with thin film
PCT/JP2012/066928 WO2013018483A1 (en) 2011-08-02 2012-07-03 Method and apparatus for manufacturing substrate provided with thin film
TW101127818A TW201316381A (en) 2011-08-02 2012-08-01 Method and apparatus for manufacturing substrate provided with thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168878A JP2013033838A (en) 2011-08-02 2011-08-02 Manufacturing method and manufacturing apparatus of substrate with thin film

Publications (1)

Publication Number Publication Date
JP2013033838A true JP2013033838A (en) 2013-02-14

Family

ID=47629015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168878A Withdrawn JP2013033838A (en) 2011-08-02 2011-08-02 Manufacturing method and manufacturing apparatus of substrate with thin film

Country Status (3)

Country Link
JP (1) JP2013033838A (en)
TW (1) TW201316381A (en)
WO (1) WO2013018483A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211029B2 (en) * 2018-11-20 2023-01-24 日本電気硝子株式会社 Method for manufacturing glass article and method for heating thin glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336272A (en) * 1989-06-30 1991-02-15 Sony Corp Photo-cvd device
JP2000349314A (en) * 1999-06-02 2000-12-15 Canon Inc Manufacture of photovoltaic element
JP5141944B2 (en) * 2007-03-02 2013-02-13 株式会社アルバック Thermal CVD apparatus and film forming method

Also Published As

Publication number Publication date
WO2013018483A1 (en) 2013-02-07
TW201316381A (en) 2013-04-16

Similar Documents

Publication Publication Date Title
CN105492510B (en) Thermoplasticity prepreg and laminated body
JP6109879B2 (en) Manufacturing method of light control panel
KR102648444B1 (en) Flexible light-emitting devices, lighting devices, and image display devices
US8383983B2 (en) Substrate cutting apparatus and method of cutting substrate using the same
US20170250516A1 (en) Light source unit, light source module, and laser ignition system
JP2008081333A (en) Method for manufacturing glass strip
US20130019805A1 (en) Deposition source and deposition apparatus including the same
US9463998B2 (en) Manufacturing method for glass with film
JP2013140679A (en) Organic el light source
WO2013018483A1 (en) Method and apparatus for manufacturing substrate provided with thin film
EP2469588A2 (en) Susceptor for CVD Apparatus, CVD Apparatus and Substrate Heating Method using the Same
KR20160065034A (en) Infrared heater and infrared processing device
TW522751B (en) Organic flat light emitting device
JP2011068916A (en) Film deposition method and film deposition apparatus
WO2015002056A1 (en) Method for manufacturing gas barrier film
CN102477538B (en) Surface type evaporation source and evaporation method and system thereof
KR101351332B1 (en) Apparatus for cutting glass substrate using laser
JP2012218415A (en) Method for manufacturing array substrate and array substrate, and method for manufacturing screen and screen
JP2012225829A (en) Infrared radiation element and infrared light source
JP7005967B2 (en) LED module
JP2018008425A (en) Radiation device, and processing unit using radiation device
JP2014067544A (en) Light source
US20120132349A1 (en) Method for producing tunable interference filter
CN104704614A (en) Apparatus for providing and directing heat energy in a process chamber
Yang et al. High light extraction performance using evanescent waves for top emission OLED applications with thin film encapsulation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007