JP2013031272A - Radio power transmission device and method - Google Patents

Radio power transmission device and method Download PDF

Info

Publication number
JP2013031272A
JP2013031272A JP2011164852A JP2011164852A JP2013031272A JP 2013031272 A JP2013031272 A JP 2013031272A JP 2011164852 A JP2011164852 A JP 2011164852A JP 2011164852 A JP2011164852 A JP 2011164852A JP 2013031272 A JP2013031272 A JP 2013031272A
Authority
JP
Japan
Prior art keywords
resonator
resonators
power
power transmission
power transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011164852A
Other languages
Japanese (ja)
Other versions
JP5742548B2 (en
Inventor
Wataru Hattori
渉 服部
Masayoshi Tsuji
正芳 辻
Masahiro Tanomura
昌宏 田能村
Shuhei Yoshida
周平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011164852A priority Critical patent/JP5742548B2/en
Publication of JP2013031272A publication Critical patent/JP2013031272A/en
Application granted granted Critical
Publication of JP5742548B2 publication Critical patent/JP5742548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make the distance between adjacent resonators within a radio power transmission device a long range while preventing the device from becoming larger and power transmission efficiency from declining.SOLUTION: A radio power transmission device 1 comprises: a power transmitter 100 including a resonator train 110 formed by a plurality of resonators 102 having nearly equal resonance frequencies resonating through an electric field or a magnetic field and becoming a series coupling state, and an input part 120 for supplying power with a frequency of a frequency component nearly equal to the resonance frequencies to one end of the resonator train 110; a power receiver 200 including a resonator train 210 formed by a plurality of resonators 202 having resonance frequencies nearly equal to the resonance frequencies of the resonators 102 resonating through an electric field or a magnetic field and becoming a series coupling state, and an output part 220 for taking out power transmitted from the power transmitter 100 from one end of the resonator train 210. A resonator RFsituated at an end different than the end within the resonator train 110 and a resonator RFsituated at an end different than the end within the resonator train 210 resonate through an electric field or a magnetic field and become a series coupling state.

Description

本発明は、無線電力伝送装置および方法に関し、特に、共振器間の共鳴現象を用いて電力を伝送する無線電力伝送装置および方法に関する。   The present invention relates to a wireless power transmission apparatus and method, and more particularly, to a wireless power transmission apparatus and method for transmitting power using a resonance phenomenon between resonators.

2個の共振器を配置し、その間の電磁界結合による共鳴現象を用いて電力を伝送する無線電力伝送装置の研究が盛んに行われている。無線電力伝送装置の一例が、非特許文献1に記載されている。非特許文献1に記載されているように、回路的には共振器直結型帯域通過フィルタと同じであり、以下に述べる中継器は入出力両端の共振器を除き、その間に配置された共振器に対応する。   Research on a wireless power transmission device that arranges two resonators and transmits power using a resonance phenomenon caused by electromagnetic coupling between the two resonators has been actively conducted. An example of a wireless power transmission device is described in Non-Patent Document 1. As described in Non-Patent Document 1, the circuit is the same as a direct-coupled resonator band-pass filter. The repeater described below is a resonator disposed between input and output except for the resonators at both ends. Corresponding to

しかしながら、共振器直結型帯域通過フィルタにおいては、非特許文献2に記載されているように、小型化や、隣接共振器間以外の結合を防止するため、共振器の作る近接電磁界の広がりを抑制する方針で設計がなされてきた。一方、無線電力伝送装置においては、電力伝送距離を伸ばすことが応用上重要であり、共振器の作る近接電磁界分布を広げることが重要となっている。すなわち、同一の理論で説明できるが、課題は異なっており、無線電力伝送装置の開発には新たな考え方が必要とされている。   However, in the resonator direct connection type bandpass filter, as described in Non-Patent Document 2, in order to prevent downsizing and coupling other than between adjacent resonators, the spread of the near electromagnetic field created by the resonator is reduced. The design has been made with a policy to suppress. On the other hand, in a wireless power transmission device, it is important in application to extend the power transmission distance, and it is important to widen the near electromagnetic field distribution created by the resonator. That is, although it can be explained by the same theory, the problems are different, and a new concept is required for the development of a wireless power transmission device.

無線電力伝送装置においては、共振器間の距離が離れるほど、電力の伝送効率が低下する。この伝送効率の低下を抑制し、長距離の電力伝送を実現するための技術が、特許文献1(特開2010−219838号公報)、特許文献2(特開2010−148273号公報)、特許文献3(特開2010−158114号公報)、特許文献4(特開2010−246248号公報)に開示されている。上記公報開示の技術には、送電側共振器及び受電側共振器の間に中継器を挿入することが記載されている。   In the wireless power transmission device, the power transmission efficiency decreases as the distance between the resonators increases. Techniques for suppressing this reduction in transmission efficiency and realizing long-distance power transmission are disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2010-219838), Patent Document 2 (Japanese Patent Laid-Open No. 2010-148273), and Patent Document. 3 (Japanese Unexamined Patent Application Publication No. 2010-158114) and Japanese Patent Application Laid-Open No. 2010-246248 (Japanese Unexamined Patent Application Publication No. 2010-246248). The technology disclosed in the above publication describes that a repeater is inserted between the power transmission side resonator and the power reception side resonator.

なお、特許文献5(特表2010−537496号公報)において無給電回路と呼ばれる中継器は短距離ホップとして動作し、実質的には多数の送信機となると記載があり、どちらかというと共振器を並列に並べたものであり、本発明に関わる共振器を直列に並べて長距離化を意図したものではない。また、特許文献6(特表2010−520716号公報)記載の中継器は送電側共振器及び受電側共振器の間に挿入するパッシブな共振器ではなく、無線通信における中継器同様、周波数変換等を行えるアクティブに動作する中継器であり、他の公報記載の中継器とは異なる。   In addition, in Patent Document 5 (Japanese Translation of PCT International Publication No. 2010-537496), there is a description that a repeater called a parasitic circuit operates as a short-distance hop and substantially becomes a large number of transmitters. Are arranged in parallel, and are not intended to increase the distance by arranging the resonators according to the present invention in series. In addition, the repeater described in Patent Document 6 (Japanese Patent Publication No. 2010-520716) is not a passive resonator inserted between the power transmission side resonator and the power reception side resonator, but frequency conversion, etc., similar to the relay in wireless communication. It is an actively operated repeater that is capable of performing the above and is different from the repeaters described in other publications.

特許文献1(特開2010−219838号公報)、特許文献2(特開2010−148273号公報)、特許文献3(特開2010−158114号公報)、特許文献4(特開2010−246248号公報)に記載の中継器の効果は以下の通りである。特許文献1(特開2010−219838号公報)には、送電効率を大幅に減衰させること無く、送電器と受電器間の距離を長くすることができると記載されている。また、特許文献2(特開2010−148273号公報)においては、送受電器間距離を一定に保ったまま伝送効率を向上できるか、あるいは段落[0024]に送電器と受電器間の距離を長くするように中継器を使用すると記載されている。   Patent Document 1 (Japanese Patent Laid-Open No. 2010-219838), Patent Document 2 (Japanese Patent Laid-Open No. 2010-148273), Patent Document 3 (Japanese Patent Laid-Open No. 2010-158114), Patent Document 4 (Japanese Patent Laid-Open No. 2010-246248) The effect of the repeater described in (1) is as follows. Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-219838) describes that the distance between the power transmitter and the power receiver can be increased without significantly reducing the power transmission efficiency. In Patent Document 2 (Japanese Patent Laid-Open No. 2010-148273), the transmission efficiency can be improved while keeping the distance between the power transmitter and receiver constant, or the distance between the power transmitter and the power receiver is increased in paragraph [0024]. It is described that a repeater is used.

また、特許文献3(特開2010−158114号公報)においても、中継器の効果として、送電器と受電器間の距離を長くすることができると記載されている。また、特許文献4(特開2010−246248号公報)においても、パッシブリピータと呼ばれる中継器は段落[0015]と図15に記載の通り、アクセス距離、すなわち送電器と受電器間の距離を長くするために使用すると記載されている。以上述べた通り、特許文献1(特開2010−219838号公報)、特許文献2(特開2010−148273号公報)、特許文献3(特開2010−158114号公報)、特許文献4(特開2010−246248号公報)に記載の中継器、すなわち共振器の役割は、電力伝送効率の低下を抑制した状態で、送電器と受電器を含む装置全長を長くすることであった。
このように、上述した文献に記載の技術では、電力伝送効率の低下を抑制した状態で、中継器の設置により送電器と受電器を含む装置全長を長くすることができる。
Patent Document 3 (Japanese Patent Laid-Open No. 2010-158114) also describes that the distance between the power transmitter and the power receiver can be increased as an effect of the repeater. Also in Patent Document 4 (Japanese Patent Laid-Open No. 2010-246248), a repeater called a passive repeater increases the access distance, that is, the distance between the power transmitter and the power receiver, as described in paragraph [0015] and FIG. It is described as being used to do. As described above, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-219838), Patent Document 2 (Japanese Patent Application Laid-Open No. 2010-148273), Patent Document 3 (Japanese Patent Application Laid-Open No. 2010-158114), and Patent Document 4 (Japanese Patent Application Laid-Open Publication No. The role of the repeater described in Japanese Patent Application Laid-Open No. 2010-246248), that is, the resonator, was to lengthen the entire length of the device including the power transmitter and the power receiver in a state in which a decrease in power transmission efficiency was suppressed.
As described above, in the technique described in the above-described document, it is possible to lengthen the entire length of the apparatus including the power transmitter and the power receiver by installing the repeater in a state in which a decrease in power transmission efficiency is suppressed.

特開2010−219838号公報JP 2010-219838 A 特開2010−148273号公報JP 2010-148273 A 特開2010−158114号公報JP 2010-158114 A 特開2010−246248号公報JP 2010-246248 A 特表2010−537496号公報Special table 2010-537496 gazette 特表2010−520716号公報Special table 2010-520716

粟井、外3名、「共鳴型ワイヤレス電力伝送に用いる共振器の比較検討」、信学技報WPT2010−01、社団法人 電子情報通信学会、2010年4月、p.1−7Sakurai, et al., “Comparative Study of Resonators Used for Resonant Wireless Power Transmission”, IEICE Technical Report WPT2010-01, The Institute of Electronics, Information and Communication Engineers, April 2010, p. 1-7 馬、外2名、「6種類のマイクロストリップスパイラル共振器の特性の比較研究」、信学技報MW2002−70、社団法人 電子情報通信学会、2002年9月、p.1−5Ma and 2 others, “Comparative study of characteristics of six types of microstrip spiral resonators”, IEICE Technical Report MW2002-70, The Institute of Electronics, Information and Communication Engineers, September 2002, p. 1-5

上述した文献に記載の技術においては送電器と受電器の間に中継器が設置できなければならないという制約があったため、中継器が設置できず、無線だけで長距離伝送しなければならない場合ついては検討されていないという問題点があった。   In the technology described in the above-mentioned document, there is a restriction that a repeater must be installed between the power transmitter and the power receiver. Therefore, the repeater cannot be installed and long distance transmission must be performed only by radio. There was a problem that it was not considered.

本発明の目的は、上述した課題である中継器を設置できない場合に、電力伝送効率の低下を抑制しながら、無線電力伝送装置内の隣接共振器間距離、特に送電器と受電器の間の隣接共振器間距離の長距離化ができないという問題点を解決する無線電力伝送装置および方法を提供することにある。   The object of the present invention is to prevent the distance between adjacent resonators in the wireless power transmission device, particularly between the power transmitter and the power receiver, while suppressing the decrease in power transmission efficiency when the repeater, which is the problem described above, cannot be installed. An object of the present invention is to provide a wireless power transmission apparatus and method that solves the problem that the distance between adjacent resonators cannot be increased.

本発明の無線電力伝送装置は、
送電器と、前記送電器から伝送された電力を取り出す受電器と、を備え、
前記送電器は、
共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列と、
周波数が該共振周波数と略同一の周波数成分からなる電力を発生させて前記発生された電力を前記第1の共振器列の一端に供給する入力部と、を含み、
前記受電器は、
前記共振周波数と共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列と、
前記送電器から伝送された前記電力を、前記第2の共振器列の一端から取り出す出力部と、を含み、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とする。
The wireless power transmission device of the present invention is
A power transmitter, and a power receiver that extracts power transmitted from the power transmitter,
The power transmitter
A first resonator array in which at least two resonators having substantially the same resonance frequency resonate through an electric field or a magnetic field generated by the resonator and are coupled in series;
An input unit that generates power having a frequency component whose frequency is substantially the same as the resonance frequency, and supplies the generated power to one end of the first resonator array;
The power receiver
A second resonator array in which at least two resonators having substantially the same resonance frequency as the resonance frequency resonate through an electric field or a magnetic field generated by the resonator and are coupled in series;
An output unit that extracts the power transmitted from the power transmitter from one end of the second resonator array;
Of the first resonator row of the power transmitter, the resonator at the other end located at a different end from the one end connected to the input unit, and the second resonator row of the power receiver, A resonator at the other end located at an end different from the one end connected to the output unit is resonated through an electric field or a magnetic field to form a coupled state in series.

本発明の無線電力伝送方法は、
共振周波数が略同一の少なくとも2個の共振器を含む第1の共振器列と、前記第1の共振器列の一端に設けられた入力部とを含む送電器と、前記共振周波数と共振周波数が略同一の少なくとも2個の共振器を含む第2の共振器列と、前記送電器から伝送された電力を前記第2の共振器列の一端から取り出す出力部と、を含む受電器と、を設け、
前記送電器の前記第1の共振器列を、当該共振器の発生する電界または磁界を通して共鳴させ、直列の結合状態とし、
前記送電器の前記入力部が、周波数が該共振周波数と略同一の周波数成分からなる電力を発生させ、
前記送電器の前記入力部が前記発生した電力を前記第1の共振器列の一端に供給し、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
前記受電器の前記出力部が、前記送電器から伝送された前記電力を、前記第2の共振器列の前記一端から取り出す。
The wireless power transmission method of the present invention includes:
A power transmitter including a first resonator array including at least two resonators having substantially the same resonance frequency, and an input provided at one end of the first resonator array; and the resonance frequency and the resonance frequency. A power receiver including: a second resonator array including at least two resonators substantially identical to each other; and an output unit that extracts power transmitted from the power transmitter from one end of the second resonator array; Provided,
The first resonator array of the power transmitter is resonated through an electric field or a magnetic field generated by the resonator to be in a series coupled state,
The input unit of the power transmitter generates power having a frequency component whose frequency is substantially the same as the resonance frequency,
The input of the power transmitter supplies the generated power to one end of the first array of resonators;
Of the first resonator row of the power transmitter, the resonator at the other end located at a different end from the one end connected to the input unit, and the second resonator row of the power receiver, Resonating through the electric field or magnetic field with the resonator at the other end located at a different end from the one end connected to the output unit, in a series coupled state,
The output unit of the power receiver extracts the power transmitted from the power transmitter from the one end of the second resonator array.

以上、本発明の構成について説明したが、本発明は、これに限られず様々な態様を含む。なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。   As mentioned above, although the structure of this invention was demonstrated, this invention is not restricted to this, Various aspects are included. It should be noted that any combination of the above-described constituent elements and a representation of the present invention converted between a method, an apparatus, a system, etc. are also effective as an aspect of the present invention.

また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。   The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.

また、本発明の方法には複数の手順を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法を実施するときには、その複数の手順の順番は内容的に支障しない範囲で変更することができる。   Moreover, although the several procedure is described in order in the method of this invention, the order of the description does not limit the order which performs a several procedure. For this reason, when implementing the method of this invention, the order of the several procedure can be changed in the range which does not interfere in content.

さらに、本発明の方法の複数の手順は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。   Further, the plurality of procedures of the method of the present invention are not limited to being executed at different timings. For this reason, another procedure may occur during the execution of a certain procedure, or some or all of the execution timing of a certain procedure and the execution timing of another procedure may overlap.

本発明によれば、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、無線電力伝送装置内の隣接共振器間距離、特に送電器と受電器の間の隣接共振器間距離を長距離化できる無線電力伝送装置および方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, while suppressing the enlargement of an apparatus and suppressing the fall of electric power transmission efficiency, between adjacent resonators in a wireless power transmission device, especially between adjacent resonators between a power transmitter and a power receiver. Provided are a wireless power transmission apparatus and method capable of increasing the distance.

本発明の実施の形態に係る無線電力伝送装置の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the wireless power transmission apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る無線電力伝送装置を伝達関数の計算により解析するためのパラメータの対応を模式的に示すブロック図である。It is a block diagram which shows typically the response | compatibility of the parameter for analyzing the wireless power transmission apparatus which concerns on embodiment of this invention by calculation of a transfer function. 結合係数の共振器間距離依存性を示す図である。It is a figure which shows the distance dependency between resonators of a coupling coefficient. 比帯域1%のバターワース型を取る無線電力伝送装置の共振器数に対する結合係数の最小値を示す図である。It is a figure which shows the minimum value of a coupling coefficient with respect to the number of resonators of the wireless power transmission apparatus which takes a Butterworth type of 1% of a specific band. 比帯域1%のバターワース型を取る無線電力伝送装置の共振器数に対する電力伝送効率の最大値を示す図である。It is a figure which shows the maximum value of the power transmission efficiency with respect to the number of resonators of the wireless power transmission apparatus which takes a Butterworth type of 1% of a specific band. 比帯域1%のバターワース型を取る無線電力伝送装置の共振器数に対する電力伝送効率を結合係数の最小値で除した値の関係を示す図である。It is a figure which shows the relationship of the value which remove | divided the power transmission efficiency with the minimum value of the coupling coefficient with respect to the number of resonators of the wireless power transmission apparatus of Butterworth type of 1% of a specific band. 本発明の実施の形態に係る無線電力伝送装置を模式的に示すブロック図である。1 is a block diagram schematically showing a wireless power transmission device according to an embodiment of the present invention. 比帯域1%のバターワース型を取る無線電力伝送装置において、無負荷Q値の異なる共振器の組み合わせに対する電力伝送効率の通過帯域内での最大値の関係を示す図である。In a wireless power transmission device of Butterworth type with a relative bandwidth of 1%, it is a diagram showing the relationship of the maximum value within the pass band of power transmission efficiency for a combination of resonators having different unloaded Q values. 本発明の無線電力伝送装置の実施例において、4個の共振器の無負荷Q値の組合せに対する電力伝送効率の通過帯域内での最大値の関係を示す図である。In the Example of the wireless power transmission apparatus of this invention, it is a figure which shows the relationship of the maximum value in the pass band of the power transmission efficiency with respect to the combination of the unloaded Q value of four resonators.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(第1の実施の形態)
図1は、本発明の実施の形態に係る無線電力伝送装置1の構成を模式的に示すブロック図である。
図1に示すように、本発明の実施の形態に係る無線電力伝送装置1は、送電器100と、送電器100から伝送された電力を取り出す受電器200と、を備え、送電器100は、共振周波数が略同一の少なくとも2個の共振器102(共振器RF、共振器RF、ここで、nは2以上の整数)が当該共振器102の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列110と、周波数が該共振周波数と略同一の周波数成分からなる電力Pを発生させて当該発生された電力Pを第1の共振器列110の一端112に供給する入力部120と、を少なくとも有し、受電器200は、共振器102の共振周波数と共振周波数が略同一の少なくとも2個の共振器202(共振器RFn+1、共振器RFn+m、ここで、mは2以上の整数)が当該共振器202の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列210と、送電器100から伝送された電力Pを、第2の共振器列210の一端212から取り出す出力部220と、を少なくとも有し、送電器100の第1の共振器列110の内、入力部120と繋がる一端112と異なる端部に位置する他端114の共振器102(共振器RF)と、受電器200の第2の共振器列210の内、出力部220と繋がる一端212と異なる端部に位置する他端214の共振器202(共振器RFn+1)とを電界または磁界を通して共鳴し、直列の結合状態とする。
(First embodiment)
FIG. 1 is a block diagram schematically showing a configuration of a wireless power transmission device 1 according to an embodiment of the present invention.
As shown in FIG. 1, the wireless power transmission device 1 according to the embodiment of the present invention includes a power transmitter 100 and a power receiver 200 that extracts power transmitted from the power transmitter 100. At least two resonators 102 (resonator RF 1 , resonator RF n , where n is an integer of 2 or more) having substantially the same resonance frequency resonate through an electric field or a magnetic field generated by the resonator 102 and are connected in series. the first resonator column 110 as a combined state, the generated power P i to generate a power P i frequencies consisting resonant frequency and substantially the same frequency components of the first resonator column 110 The power receiver 200 includes at least two resonators 202 (resonator RF n + 1 and resonator RF n + m ) having substantially the same resonance frequency as the resonance frequency of the resonator 102. , Where m is an integer of 2 or more) and resonates through the electric field or magnetic field generated by the resonator 202 to be coupled in series, and the power P transmitted from the power transmitter 100 and at least an output unit 220 for extracting o from one end 212 of the second resonator array 210, and an end portion different from the one end 112 connected to the input unit 120 in the first resonator array 110 of the power transmitter 100. resonator 102 at the other end 114 located at the (cavity RF n) and, in the second resonator column 210 of the power receiver 200, the other end 214 located at the end different from the end 212 connected to the output unit 220 The resonator 202 (resonator RF n + 1 ) is resonated through an electric field or a magnetic field to be coupled in series.

また、本発明の実施の形態に係る無線電力伝送装置1は、送電器100の共振器102の数と受電器200の共振器202の数を共に等しくするのが好ましい。すなわち、n=mとすることができる。以下、共振器102または共振器202は、それぞれ個々の共振器を区別する必要がある場合は、共振器RF、共振器RF、共振器RFn+1、または共振器RFn+mなどと呼び、区別する必要がない場合は、共振器102または共振器202と呼ぶものとする。 In the wireless power transmission device 1 according to the embodiment of the present invention, it is preferable that both the number of the resonators 102 of the power transmitter 100 and the number of the resonators 202 of the power receiver 200 are equal. That is, n = m. Hereinafter, the resonator 102 or the resonator 202 is referred to as a resonator RF 1 , a resonator RF n , a resonator RF n + 1 , or a resonator RF n + m when it is necessary to distinguish each resonator. When there is no need to do this, the resonator 102 or the resonator 202 is called.

なお、以下の各図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。   In the following drawings, the configuration of parts not related to the essence of the present invention is omitted and is not shown.

共振器102および共振器202は、たとえば、コイルを用いて構成することができる。コイルの種類は、特に限定されないが、たとえば、スパイラルコイル、ソレノイダルコイルなどである。また、コイル形状以外にもミアンダライン形状であってもよい。
入力部120および出力部220は、たとえば、ループコイルを用いて構成することができる。また、ループ以外に、線路をタップしてもよい。
The resonator 102 and the resonator 202 can be configured using a coil, for example. Although the kind of coil is not specifically limited, For example, they are a spiral coil, a solenoid coil, etc. In addition to the coil shape, a meander line shape may be used.
The input unit 120 and the output unit 220 can be configured using a loop coil, for example. Moreover, you may tap a track | line other than a loop.

入力部120および出力部220のコイルの両端には、それぞれ入力端子122および出力端子222が設けられる。入力部120の入力端子122には、無線電力伝送装置1に電力Pを供給する電気回路(不図示)が電気的に接続される。出力部220の出力端子222には、無線電力伝送装置1から取り出した電力Pを受け取る電気回路(不図示)が電気的に接続される。 An input terminal 122 and an output terminal 222 are provided at both ends of the coils of the input unit 120 and the output unit 220, respectively. To an input terminal 122 of the input unit 120, an electric circuit for supplying electric power P i to the wireless power transmission apparatus 1 (not shown) are electrically connected. An electrical circuit (not shown) that receives power Po extracted from the wireless power transmission device 1 is electrically connected to the output terminal 222 of the output unit 220.

共振器間の共鳴現象を用いて電力を伝送する無線電力伝送装置1の電力伝送特性は、回路の伝達関数を計算することにより求まる。その際必要とされるパラメータは、図2に示す通り、本実施形態の共振器102および共振器202の共振周波数fおよび無負荷Q値Q、ならびに、隣接するi番目の共振器RFと(i+1)番目の共振器RFi+1の間のエネルギーの重なり積分の割合を表す結合係数ki,i+1、入力部120とその入力部120の繋がる共振器RFとの結合を表す外部Q値Qe−in、出力部220とその出力部220の繋がる共振器RFn+mとの結合を表す外部Q値Qe−outである。ここで、送電器100の共振器102の数n、受電器200の共振器202数mとすると、iは1からn+mの整数となる。 The power transmission characteristics of the wireless power transmission device 1 that transmits power using the resonance phenomenon between the resonators can be obtained by calculating the transfer function of the circuit. Parameters required at that time, as shown in FIG. 2, the resonance frequency f o and unloaded Q value Q u of the resonator 102 and the resonator 202 of the present embodiment, as well as the adjacent i-th resonator RF i And an external Q value representing the coupling between the input unit 120 and the resonator RF 1 connected to the input unit 120, and the coupling coefficient k i, i + 1 representing the rate of energy overlap integral between the (i + 1) th resonator RF i + 1. Q e-in is an external Q value Q e-out representing the coupling between the output unit 220 and the resonator RF n + m to which the output unit 220 is connected. Here, if the number n of the resonators 102 of the power transmitter 100 and the number m of the resonators 202 of the power receiver 200 are set, i is an integer from 1 to n + m.

また、各共振器102および各共振器202の共振周波数fは、略同一の値を取るのが好ましい。その理由は、各共振器の共振周波数が異なると、結合が弱くなり、同一結合係数をとれば、伝送距離が短くなり、同一距離であれば、伝送効率が低下することとなるからである。また、共振周波数が異なると設計が複雑になるといった問題も生じるからである。
各共振器RFの無負荷Q値は、共振器毎に異なる値を取りうるが、詳細については後述し、ここでは、図2に示すように、すべてQとする。
Further, the resonance frequency f o of each resonator 102 and the resonator 202, preferably takes approximately the same value. The reason is that if the resonance frequency of each resonator is different, the coupling becomes weak, and if the same coupling coefficient is taken, the transmission distance is shortened, and if the same distance is used, the transmission efficiency is lowered. Another reason is that if the resonance frequency is different, the design becomes complicated.
Unloaded Q value of each resonator RF i is susceptible to different values for each resonator, and described in detail later, in this case, as shown in FIG. 2, all the Q u.

また、図1に示すように、送電器100の入力部120側から受電器200の出力部220に向かって隣接している順に共振器102および共振器202に順番付けする。上述したように、送電器100の共振器102の数をn、受電器200の共振器202の数をmとすると、共振器RF、共振器RF、...、共振器RF、共振器RFn+1、...、共振器RFn+m−1、共振器RFn+mと順番付けされる。ここで、iとjは、1からn+mの間の値を取る整数で、i≠jとすると、ki,jは入力側からi番目の共振器RFとj番目の共振器RFとの間の結合係数を与える。 Further, as shown in FIG. 1, the resonator 102 and the resonator 202 are ordered in the order of being adjacent from the input unit 120 side of the power transmitter 100 toward the output unit 220 of the power receiver 200. As described above, when the number of the resonators 102 of the power transmitter 100 is n and the number of the resonators 202 of the power receiver 200 is m, the resonators RF 1 , resonators RF 2 ,. . . , Resonators RF n , resonators RF n + 1 ,. . . , Resonator RF n + m−1 and resonator RF n + m . Here, i and j are integers having values between 1 and n + m, and if i ≠ j, k i, j is the i-th resonator RF i and j-th resonator RF j from the input side. Gives the coupling coefficient between.

また、受動回路の相反性からki,j=kj,iとなる。
図2に示すように、本発明の実施の形態に係る無線電力伝送装置1は、送電器100の共振器列110の、入力部120側から順に数えた各々の結合係数ki,jが、受電器200の共振器列210の、出力部220側から順に数えた結合係数kj,iと、各々同じ順番の結合係数間で略同一の値を取る。
すなわち、送電器100の共振器列110と受電器200の共振器列210において、対称的な位置にある隣接共振器間結合係数が略同一の値を取る。
In addition, k i, j = k j, i because of the reciprocity of the passive circuit.
As shown in FIG. 2, in the wireless power transmission device 1 according to the embodiment of the present invention, each coupling coefficient k i, j counted in order from the input unit 120 side of the resonator array 110 of the power transmitter 100 is The coupling coefficient k j, i counted in order from the output unit 220 side of the resonator array 210 of the power receiver 200 takes substantially the same value between the coupling coefficients in the same order.
That is, in the resonator array 110 of the power transmitter 100 and the resonator array 210 of the power receiver 200, the coupling coefficient between adjacent resonators at symmetrical positions takes substantially the same value.

さらに、本発明においては、第1の共振器列110(図1)および第2の共振器列210(図1)はそれぞれ直列であるとするため、伝達関数の計算において、隣接共振器間の結合係数ki,i+1(=ki+1,i)しか考慮しないものとする。 Furthermore, in the present invention, since the first resonator array 110 (FIG. 1) and the second resonator array 210 (FIG. 1) are each in series, in the calculation of the transfer function, between adjacent resonators Only the coupling coefficients k i, i + 1 (= k i + 1, i ) are considered.

ここで、「共振器が隣接する」とは、大抵の場合、空間的に隣接することと一致する。しかしながら、結合係数は磁界や電界に貯えられるエネルギーの重なり積分をもとに得られるため、共振器間の空間的相対的位置ズレと相対的角度ズレ、あるいは周辺の電磁環境に影響され、その大小は必ずしも空間的な距離の大小と一致しない。   Here, “resonator is adjacent” usually coincides with spatially adjacent. However, since the coupling coefficient is obtained based on the overlap integral of the energy stored in the magnetic field or electric field, it is affected by the spatial relative positional deviation and relative angular deviation between the resonators, or the surrounding electromagnetic environment. Does not necessarily match the size of the spatial distance.

従って、正確には、結合係数ki,j(1≦i<j≦n+m)において、ki,jが最大値となる場合に共振器RFと共振器RFは隣接しているとし、j=i+1とする。なお、特定の共振器間距離をとった場合、その距離で実現できる結合係数には最大値が存在する。その理由は、結合係数は磁界や電界に貯えられるエネルギーの重なり積分をもとに得られることと、均一な電磁環境下では共振器から距離が離れるほど共振器が形成する磁界や電界の強さが弱まるからである。あるいは特定の結合係数を実現する共振器間距離には最大値が存在する。この共振器間距離を本発明では、単に「共振器間距離」と表す。 Therefore, to be exact, when the coupling coefficient k i, j (1 ≦ i <j ≦ n + m) is the maximum value of k i, j , the resonator RF i and the resonator RF j are adjacent to each other. Let j = i + 1. When a specific distance between the resonators is taken, there is a maximum value for the coupling coefficient that can be realized at that distance. The reason is that the coupling coefficient can be obtained based on the overlap integral of the energy stored in the magnetic field or electric field, and the strength of the magnetic field or electric field formed by the resonator as the distance from the resonator increases in a uniform electromagnetic environment. Because it weakens. Alternatively, there is a maximum value for the distance between resonators that realizes a specific coupling coefficient. In the present invention, this inter-resonator distance is simply expressed as “inter-resonator distance”.

上述のような構成において、本発明の無線電力伝送方法を以下に説明する。
本発明の無線電力伝送方法は、図1の無線電力伝送装置1に、共振周波数が略同一の少なくとも2個の共振器102(共振器RF、共振器RF)を含む第1の共振器列110と、第1の共振器列110の一端に設けられた入力部120とを含む送電器100と、共振器102の共振周波数と共振周波数が略同一の少なくとも2個の共振器202(共振器RFn+1、共振器RFn+m、)を含む第2の共振器列210と、送電器100から伝送された電力を第2の共振器列210の一端から取り出す出力部220と、を含む受電器200と、を設け、送電器100の第1の共振器列110が、当該共振器102の発生する電界または磁界を通して共鳴し、直列の結合状態とし、送電器100の入力部120が、周波数が該共振周波数と略同一の周波数成分からなる電力Pを発生させ、送電器100の入力部120が発生した電力Pを第1の共振器列110の一端に供給し、送電器100の第1の共振器列110の内、入力部120と繋がる一端112と異なる端部に位置する他端114の共振器102(共振器RF)と、受電器200の第2の共振器列210の内、出力部220と繋がる一端212と異なる端部に位置する他端214の共振器102(共振器RFn+1)と、を電界または磁界を通して共鳴させ、直列の結合状態とし、受電器200の出力部220が、送電器100から伝送された電力Pを、第2の共振器列210の一端212から取り出す。
The wireless power transmission method of the present invention with the above configuration will be described below.
The wireless power transmission method of the present invention includes a first resonator including at least two resonators 102 (resonator RF 1 and resonator RF n ) having substantially the same resonance frequency in the wireless power transmission device 1 of FIG. The power transmitter 100 including the column 110 and the input unit 120 provided at one end of the first resonator column 110, and at least two resonators 202 (resonances) having substantially the same resonance frequency as the resonance frequency of the resonator 102 A second resonator array 210 including a resonator RF n + 1 and a resonator RF n + m ), and an output unit 220 that extracts the power transmitted from the power transmitter 100 from one end of the second resonator array 210. 200, and the first resonator array 110 of the power transmitter 100 resonates through an electric field or a magnetic field generated by the resonator 102 to be connected in series, and the input unit 120 of the power transmitter 100 has a frequency of The resonance frequency Substantially the same to generate electric power P i consisting of frequency components, the power P i of the input unit 120 of the power transmitting device 100 is generated and supplied to one end of the first resonator column 110, a first resonance of the power transmitting device 100 and The resonator 102 (resonator RF n ) at the other end 114 located at a different end from the one end 112 connected to the input unit 120 in the device array 110, and the output from the second resonator array 210 in the power receiver 200. The resonator 102 (resonator RF n + 1 ) at the other end 214 located at a different end from the one end 212 connected to the unit 220 is resonated through an electric field or a magnetic field to be coupled in series, and the output unit 220 of the power receiver 200 is the power P o, which is transmitted from the power transmitting device 100, taken from one end 212 of the second resonator column 210.

図3は、本発明の効果を説明するための図であり、非特許文献1の図3に記載された結合係数の共振器間距離依存性を示す図である。横軸は共振器間距離を示し、縦軸は共振器間結合係数を示す。
電界による結合の強さと磁界による結合の強さの大小が反転する場合を除いて、図3に示すように、結合係数は共振器間距離に依存し、共振器間距離の増大と共に共振器間の結合係数は単調に低下する。
FIG. 3 is a diagram for explaining the effect of the present invention and is a diagram illustrating the inter-resonator distance dependence of the coupling coefficient described in FIG. The horizontal axis represents the distance between resonators, and the vertical axis represents the coupling coefficient between resonators.
Except for the case where the strength of the coupling due to the electric field and the strength of the coupling due to the magnetic field are reversed, the coupling coefficient depends on the distance between the resonators as shown in FIG. The coupling coefficient of decreases monotonously.

さらに、電界や磁界は空間的に分布し、無限遠で0になるため、図3に示すように、結合係数の共振器間距離依存性は、下に凸で、x=∞でy=0に漸近する曲線となる。また、共振器間距離が小さい場合、結合係数曲線の接線lの傾きは急峻であり、共振器間距離が大きい場合、結合係数曲線の接線lの傾きは緩やかである。接線lの△xの方が、接線lの△xより幅が狭く、接線lの△yの方が、接線lの△yより幅が広いことが分かる。
なお、磁界による結合の強さより、電界による結合の強さは共振器間距離の増大と共に急峻に低下することが考えられる。従って、共振器間距離をより伸ばすためには磁界による共鳴現象を用いることが望ましい。
Further, since the electric field and the magnetic field are spatially distributed and become 0 at infinity, as shown in FIG. 3, the inter-resonator distance dependency of the coupling coefficient is convex downward, and y = 0 when x = ∞. The curve becomes asymptotic to. Further, when the distance between resonators is small, the slope of the tangent l 1 of the coupling coefficient curve is steep, if the distance between the resonators is large, the gradient of the tangent l 2 of the coupling coefficient curve is gentle. Towards the △ x 1 tangents l 1 is wider than the △ x 2 tangents l 2 is narrow, towards the △ y 1 tangents l 1 it can be seen the width than the △ y 2 tangents l 2 is wide.
Note that it is conceivable that the coupling strength due to the electric field sharply decreases as the distance between the resonators increases as the coupling strength due to the magnetic field increases. Therefore, in order to further increase the distance between the resonators, it is desirable to use a resonance phenomenon caused by a magnetic field.

さらに本発明において、「共振器の結合状態が直列である」とは、隣接していない共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)が、隣接共振器間結合係数ki,i+1より十分小さいことを意味する。ここでいう「十分小さい」とは、無線電力伝送装置1を帯域通過フィルタとみなした場合に、周波数特性の通過帯域内にノッチと呼ばれる急峻な落ち込みができない程度に、共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)が隣接共振器間結合係数ki,i+1より小さいことを意味する。 Further, in the present invention, “the coupling state of the resonators is in series” means that the coupling coefficient k i, j (i + 1 <j, 1 ≦ i, j ≦ n + m) between the resonators that are not adjacent is an adjacent resonator. It means that it is sufficiently smaller than the intermediate coupling coefficient k i, i + 1 . Here, “sufficiently small” means that when the wireless power transmission device 1 is regarded as a bandpass filter, the inter-resonator coupling coefficient k i is such that a sharp drop called a notch cannot be made in the passband of the frequency characteristics. , J (i + 1 <j, 1 ≦ i, j ≦ n + m) is smaller than the coupling coefficient k i, i + 1 between adjacent resonators.

なお、本発明では、温度変動等に対する不安定性を除くため、少なくとも無線電力伝送装置1を帯域通過フィルタとみなした場合の周波数特性の通過帯域内にノッチと呼ばれる急峻な落ち込みが無いことが望ましい。あるいはそのような周波数特性が得られるように、フルヴィッツ多項式で表される伝達関数が零点を持たないことが望ましい。なぜなら、このような零点は、かならずしも共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)が隣接共振器間結合係数ki,i+1より小さくない場合に起こりえるからである。 In the present invention, in order to eliminate instability with respect to temperature fluctuation or the like, it is desirable that there is no steep drop called a notch in the pass band of frequency characteristics when at least the wireless power transmission device 1 is regarded as a band pass filter. Alternatively, it is desirable that the transfer function represented by the Hurwitz polynomial does not have a zero so that such frequency characteristics can be obtained. This is because such a zero may occur when the inter-resonator coupling coefficient k i, j (i + 1 <j, 1 ≦ i, j ≦ n + m) is not smaller than the adjacent resonator coupling coefficient k i, i + 1. It is.

通過帯域内にノッチを持つような零点が存在しない場合、少なくとも通過帯域内は共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)を0とした全極型帯域通過フィルタとして近似的に解析できることが帯域通過フィルタの設計論で知られている。従って、本発明においても隣接していない共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)を0とみなす場合がある。 When there is no zero having a notch in the passband, at least in the passband, the all-pole band with the inter-resonator coupling coefficient ki , j (i + 1 <j, 1≤i, j≤n + m) being 0 It is known from the design theory of a band pass filter that it can be analyzed approximately as a pass filter. Therefore, even in the present invention, the coupling coefficient k i, j (i + 1 <j, 1 ≦ i, j ≦ n + m) between the resonators that are not adjacent to each other may be regarded as zero.

全極型帯域通過フィルタのうち、最大平坦特性をもたらすバターワースフィルタは、一方で理想的には通過帯域の平坦部分で反射損失が0になる。この特性を無線電力伝送装置1(図1)に用いた場合、他のフィルタ特性を用いるより電力伝送効率を最大化することができる。ここで、通過帯域は、フィルタのタイプにより様々であるが、バターワースフィルタの場合、共振器の無負荷Q値を無限大とした場合に、共振器の共振周波数を中心に透過損失が3dB以下の周波数範囲を指す。   Among all-pole bandpass filters, the Butterworth filter that provides the maximum flat characteristic ideally has zero reflection loss in the flat part of the passband. When this characteristic is used for the wireless power transmission apparatus 1 (FIG. 1), the power transmission efficiency can be maximized as compared with other filter characteristics. Here, the passband varies depending on the type of filter. In the case of a Butterworth filter, when the no-load Q value of the resonator is infinite, the transmission loss is 3 dB or less centering on the resonance frequency of the resonator. Refers to the frequency range.

このバターワースフィルタ型無線電力伝送装置の結合係数の一例を算出した。その値を表1に示す。表1は、本発明の実施の形態に係る無線電力伝送装置において、比帯域1%の場合のバターワースフィルタ型無線電力伝送装置の共振器数と結合係数の関係を示す。   An example of the coupling coefficient of this Butterworth filter type wireless power transmission apparatus was calculated. The values are shown in Table 1. Table 1 shows the relationship between the number of resonators and the coupling coefficient of the Butterworth filter type wireless power transmission apparatus in the wireless power transmission apparatus according to the embodiment of the present invention when the relative bandwidth is 1%.

Figure 2013031272
Figure 2013031272

表1に示した結合係数は、帯域幅が中心周波数の1%の場合(以下、この条件を比帯域1%と呼ぶ)の値である。さらに、表1の結合係数は、無線電力伝送装置で用いられる1000程度のQ値を有する共振器を使用した場合に、ほぼ臨界結合状態に近く、電力伝送効率の大幅な低下を生じる直前の値である。なおかつ、表1の例は、共振器間距離を最も伸ばせる条件の一例である。   The coupling coefficient shown in Table 1 is a value when the bandwidth is 1% of the center frequency (hereinafter, this condition is referred to as a relative bandwidth of 1%). Further, the coupling coefficient in Table 1 is a value just before the occurrence of a significant decrease in power transmission efficiency, which is almost close to a critical coupling state when a resonator having a Q value of about 1000 used in a wireless power transmission apparatus is used. It is. In addition, the example in Table 1 is an example of a condition that can maximize the distance between the resonators.

本発明によれば、図1および図2に示す通り、送電器100と受電器200の共振器102および共振器202を合わせた数n+mが4個以上になり、送電器100と受電器200の間の隣接共振器間結合係数はki,i+1(2≦i≦n+m−2)となる。
また、表1に示されるように、図1の送電器100と受電器200の共振器102および共振器202を合わせた数n+mが3個以下の場合と、n+mが4個以上の場合のk1,2とkn+m−1,n+mと比較して、n+mが4個以上の場合の隣接共振器間結合係数ki,i+1(2≦i≦n+m−2)は20%ほど小さい値を取る場合が多い。
According to the present invention, as shown in FIG. 1 and FIG. 2, the total number n + m of the resonator 102 and the resonator 202 of the power transmitter 100 and the power receiver 200 is four or more, and the power transmitter 100 and the power receiver 200 The coupling coefficient between adjacent resonators is k i, i + 1 (2 ≦ i ≦ n + m−2).
Further, as shown in Table 1, k is obtained when the total number n + m of the power transmitter 100 and the resonator 102 and the resonator 202 of the power receiver 200 in FIG. 1 is 3 or less and when n + m is 4 or more. 1 , 2 and k n + m−1, n + m , the coupling coefficient k i, i + 1 (2 ≦ i ≦ n + m−2) between adjacent resonators when n + m is 4 or more takes a value as small as 20%. There are many cases.

前述の通り、結合係数が小さいということは共振器間距離を伸ばすことができることを示しており、本実施形態の無線電力伝送装置1のように、送電器100と受電器200の共振器102および共振器202を合わせた数n+mが4個以上となるように構成することで、図1の無線電力伝送装置1内の隣接共振器間距離、特に送電器100と受電器200の間の隣接共振器間距離dを長距離化できる。 As described above, a small coupling coefficient indicates that the distance between the resonators can be increased. Like the wireless power transmission device 1 of the present embodiment, the resonators 102 and 102 of the power transmitter 100 and the power receiver 200 are By configuring the number n + m of the resonators 202 to be four or more, the distance between adjacent resonators in the wireless power transmission device 1 of FIG. 1, particularly the adjacent resonance between the power transmitter 100 and the power receiver 200. the vessel distance d 1 can be long distance.

また、図3に示した通り、結合係数の共振器間距離依存性は、下に凸で、x=∞でy=0に漸近する曲線であるため、結合係数が小さい場合、曲線の緩やかな部分に当たる。従って、共振器間距離の変動に対して、結合係数の変動は小さくなり、通過帯域の特性が崩れにくく、ディップ等ができにくい。すなわち、本発明によれば、結合係数を小さくすることで、隣接共振器間距離dの変動に対して、電力伝送効率の変動が少ない無線電力伝送装置1を提供することができる。 Also, as shown in FIG. 3, the inter-resonator distance dependence of the coupling coefficient is a curve that protrudes downward and asymptotically approaches y = 0 when x = ∞. Hit the part. Therefore, the variation of the coupling coefficient is small with respect to the variation of the inter-resonator distance, the characteristics of the pass band are not easily lost, and dip and the like are difficult to be performed. That is, according to the present invention, by reducing the coupling coefficient, it is possible to provide the wireless power transmission device 1 in which the variation in power transmission efficiency is small with respect to the variation in the distance d 1 between adjacent resonators.

また、本発明によれば、図1および図2に示すように、送電器100の共振器102の数と受電器200の共振器202の数が共に等しい場合、送電器100と受電器200の共振器102と共振器202を合わせた数n+mは偶数で、且つ送電器100と受電器200の間の隣接共振器間結合は、偶数個の共振器のちょうど真ん中に相当する。表1に示されるように、共振器数毎の各行で、結合係数の最小値は真ん中の結合係数である。たとえば、共振器数6の場合、真ん中の結合係数k3,4が最小値0.005176である。これは、真ん中に位置する2つの共振器が、外部Q値を通して電磁界結合している入力部120と出力部220からそれぞれ最も離れていることに起因している。 Further, according to the present invention, as shown in FIGS. 1 and 2, when both the number of resonators 102 of the power transmitter 100 and the number of resonators 202 of the power receiver 200 are equal, the power transmitter 100 and the power receiver 200 The total number n + m of the resonator 102 and the resonator 202 is an even number, and the coupling between adjacent resonators between the power transmitter 100 and the power receiver 200 corresponds to the middle of the even number of resonators. As shown in Table 1, in each row for each number of resonators, the minimum value of the coupling coefficient is the middle coupling coefficient. For example, in the case of 6 resonators, the middle coupling coefficient k 3, 4 is the minimum value 0.005176. This is due to the fact that the two resonators located in the middle are farthest from the input unit 120 and the output unit 220 that are electromagnetically coupled through the external Q value.

さらに共振器数が偶数の場合、無線電力伝送装置1の真ん中に共振器間結合が位置するため、共振器数が±1異なる奇数の場合より結合係数の最小値が小さくなる。たとえば、表1に示すように、共振器数が奇数の5の場合の結合係数の最小値は、0.005559であるのに対し、偶数の共振器数4の場合の結合係数の最小値は、0.005412であり、偶数の共振器数6の場合の結合係数の最小値は、0.005176である。
従って、本発明によれば、送電器100の共振器102と受電器200の共振器202を合わせた数n+mを偶数とすることで、送電器100と受電器200の間の隣接共振器間距離d(図1)を長距離化できる無線電力伝送装置1を提供することができる。
Further, when the number of resonators is an even number, the coupling between the resonators is located in the middle of the wireless power transmission apparatus 1, and therefore the minimum value of the coupling coefficient is smaller than that in the case where the number of resonators is an odd number different by ± 1. For example, as shown in Table 1, the minimum value of the coupling coefficient when the number of resonators is an odd number of 5 is 0.005559, whereas the minimum value of the coupling coefficient when the number of resonators is an even number of 4 is , 0.005412, and the minimum value of the coupling coefficient in the case of the even number of resonators 6 is 0.005176.
Therefore, according to the present invention, by setting the number n + m of the resonator 102 of the power transmitter 100 and the resonator 202 of the power receiver 200 as an even number, the distance between adjacent resonators between the power transmitter 100 and the power receiver 200 is set. It is possible to provide the wireless power transmission device 1 that can increase the distance d 1 (FIG. 1).

また、本発明の実施の形態に係る無線電力伝送装置1によれば、送電器100の共振器102の数と受電器200の共振器202の数が共に等しく、且つ、結合係数が真ん中から入力部120側と出力部220側で対称的に並んでいることになる。これは、表1にもあるとおりで、これはフィルタの種類に依らず、全極型帯域通過フィルタの伝達関数であるフルヴィッツ多項式の極配置の対称性や受動回路の相反性に起因する。   Moreover, according to the wireless power transmission device 1 according to the embodiment of the present invention, the number of the resonators 102 of the power transmitter 100 and the number of the resonators 202 of the power receiver 200 are both equal, and the coupling coefficient is input from the middle. The unit 120 side and the output unit 220 side are arranged symmetrically. This is also shown in Table 1, and this is caused by the symmetry of the pole arrangement of the Hurwitz polynomial, which is the transfer function of the all-pole bandpass filter, and the reciprocity of the passive circuit, regardless of the type of filter.

このように結合係数を構成することで、バターワースのみならず、チェビシェフ型といった様々なタイプの通過帯域特性を有する電力伝送特性が得られる。また、不用意に通過帯域内にディップを生じたりすることも避けられる。このようにディップを排除したりすることで電力伝送効率の低下を抑制しながら、送電器100と受電器200の間の隣接共振器間距離dを長距離化できる無線電力伝送装置1を提供することができる。 By configuring the coupling coefficient in this way, not only Butterworth but also power transmission characteristics having various types of passband characteristics such as Chebyshev type can be obtained. Also, inadvertent dip in the passband can be avoided. While thus suppressing a decrease in power transmission efficiency or to eliminate a dip, providing wireless power transmission device 1 capable of long-distance adjacent resonators distance d 1 between the power transmitting device 100 and the power receiver 200 can do.

以上、説明したように、本発明によれば、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、無線電力伝送装置1内の隣接共振器間距離、特に送電器100と受電器200の間の隣接共振器間距離dを長距離化することができるという優れた効果を奏し得る。さらに、本発明によれば、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。 As described above, according to the present invention, the distance between adjacent resonators in the wireless power transmission device 1, particularly the power transmitter 100, while suppressing the increase in size of the device and the decrease in power transmission efficiency. An excellent effect that the distance d 1 between adjacent resonators between the power receivers 200 can be increased can be obtained. Furthermore, according to the present invention, it is possible to provide a wireless power transmission device with less variation in power transmission efficiency with respect to variation in the distance between adjacent resonators.

(第2の実施の形態)
図7は、本発明の実施の形態に係る無線電力伝送装置2を模式的に示すブロック図である。
本実施形態の無線電力伝送装置2は、上記実施形態とは、送電器300の第1の共振器列310の共振器302の数と、受電器400の第2の共振器列410の共振器402の数が等しく2個である点で相違する。送電器300の共振器302は、図7の左から順に共振器RF、共振器RFとし、受電器400の共振器402は、図7の左から順に共振器RF、共振器RFと番号付けする。
(Second Embodiment)
FIG. 7 is a block diagram schematically showing the wireless power transmission device 2 according to the embodiment of the present invention.
The wireless power transmission device 2 of the present embodiment differs from the above embodiment in the number of the resonators 302 in the first resonator array 310 of the power transmitter 300 and the resonators of the second resonator array 410 of the power receiver 400. The difference is that the number 402 is equal to two. The resonator 302 of the power transmitter 300 is the resonator RF 1 and the resonator RF 2 in order from the left in FIG. 7, and the resonator 402 of the power receiver 400 is the resonator RF 3 and the resonator RF 4 in order from the left in FIG. Number it.

本発明の実施の形態に係る無線電力伝送装置2は、送電器300の共振器302の数と受電器400の共振器402の数が共に等しく2個とする。
以下、本実施形態の無線電力伝送装置2の送電器300の共振器302の数と受電器400の共振器402の数を共に等しく2個とした場合の効果について説明する。
In the wireless power transmission device 2 according to the embodiment of the present invention, the number of the resonators 302 of the power transmitter 300 and the number of the resonators 402 of the power receiver 400 are both equal to two.
Hereinafter, an effect when the number of the resonators 302 of the power transmitter 300 and the number of the resonators 402 of the power receiver 400 of the wireless power transmission device 2 of the present embodiment are both equal to two will be described.

共振器数n+mを変数に比帯域1%のバターワース型を取る無線電力伝送装置の結合係数の最小値と電力伝送効率の最大値を計算し、図4と図5に示すと共に、電力伝送効率を結合係数の最小値で除した値を図6に図示する。ここで、共振器はすべて無負荷Q値Qが1000とする。 The minimum value of the coupling coefficient and the maximum value of the power transmission efficiency of the wireless power transmission device of Butterworth type with a relative bandwidth of 1% are calculated by using the number of resonators n + m as a variable. The value divided by the minimum value of the coupling coefficient is shown in FIG. Here, it is assumed that all the resonators have an unloaded Q value Qu of 1000.

図4は、本発明の効果を説明するための計算結果を示す図であり、共振器数n+mを変数に比帯域1%のバターワース型を取る無線電力伝送装置の結合係数の最小値を示す。横軸は無線電力伝送装置に用いる共振器の数を、縦軸は複数ある隣接共振器間結合係数のうち最小の結合係数を示す。   FIG. 4 is a diagram showing calculation results for explaining the effect of the present invention, and shows the minimum value of the coupling coefficient of the wireless power transmission apparatus of Butterworth type having a relative bandwidth of 1% with the number of resonators n + m as a variable. The horizontal axis represents the number of resonators used in the wireless power transmission apparatus, and the vertical axis represents the minimum coupling coefficient among the coupling coefficients between a plurality of adjacent resonators.

図5は、本発明の効果を説明するための計算結果を示す図であり、共振器数n+mを変数に比帯域1%のバターワース型を取る無線電力伝送装置の電力伝送効率の最大値を示す。横軸は無線電力伝送装置に用いる共振器の数を、縦軸はその際に得られる電力伝送効率の通過帯域内での最大値を示す。   FIG. 5 is a diagram showing a calculation result for explaining the effect of the present invention, and shows the maximum value of the power transmission efficiency of the wireless power transmission apparatus of the Butterworth type with a bandwidth of 1% using the number of resonators n + m as a variable. . The horizontal axis represents the number of resonators used in the wireless power transmission apparatus, and the vertical axis represents the maximum value of the power transmission efficiency obtained at that time in the passband.

図6は、本発明の効果を説明するための計算結果を示す図である。横軸は無線電力伝送装置に用いる共振器数を示し、縦軸はその共振器数の際に得られる電力伝送効率を結合係数の最小値で除した値を示す。   FIG. 6 is a diagram showing calculation results for explaining the effect of the present invention. The horizontal axis represents the number of resonators used in the wireless power transmission device, and the vertical axis represents the value obtained by dividing the power transmission efficiency obtained by the number of resonators by the minimum value of the coupling coefficient.

ここで、電力伝送効率は高い方がよく、また、共振器間距離を伸ばせるため、結合係数は小さい方がよい。従って、電力伝送効率を結合係数の最小値で除した値は、本発明の電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化するための一つの指標となる。 Here, the power transmission efficiency should be high, and the coupling coefficient should be small in order to increase the distance between the resonators. Therefore, a value obtained by dividing the minimum value of the coupling coefficient of the power transmission efficiency, while suppressing a decrease in power transmission efficiency of the present invention, long distance adjacent resonators distance d 2 between the power transmitting device 300 and the power reception unit 400 It becomes one index for becoming.

なお、ここで結合係数の最小値とは、共振器数n+mを固定した場合の隣接共振器間結合係数ki,i+1(1≦i≦n+m−1)の最小値であり、表1では各行における結合係数の最小値を示し、本発明で送電器300と受電器400の間の隣接共振器間に用いる結合係数に相当する。図4によると、共振器数4個の場合に、3個の場合と比較して20%ほど結合係数が急激に低下する。 Here, the minimum value of the coupling coefficient is the minimum value of the coupling coefficient k i, i + 1 (1 ≦ i ≦ n + m−1) between adjacent resonators when the number of resonators n + m is fixed. The minimum value of the coupling coefficient is shown, and corresponds to the coupling coefficient used between adjacent resonators between the power transmitter 300 and the power receiver 400 in the present invention. According to FIG. 4, when the number of resonators is four, the coupling coefficient rapidly decreases by about 20% compared to the case of three resonators.

一方で、図5によると電力伝送効率は共振器数の増加に応じて緩やか、且つ滑らかに低下する。従って、共振器数4個とすることにより、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化できる。また、共振器数4個の場合に、電力伝送効率を結合係数の最小値で除した値も最大値を取る。従って、本発明によれば、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化できる無線電力伝送装置を提供することができる。 On the other hand, according to FIG. 5, the power transmission efficiency decreases gently and smoothly as the number of resonators increases. Therefore, by the resonator number 4, while suppressing a decrease in power transmission efficiency and a long distance the adjacent resonators distance d 2 between the power transmitting device 300 and the power receiver 400. Further, when the number of resonators is 4, the value obtained by dividing the power transmission efficiency by the minimum value of the coupling coefficient also takes the maximum value. Therefore, according to the present invention, it is possible to provide a wireless power transmission device that can increase the distance d 2 between adjacent resonators between the power transmitter 300 and the power receiver 400 while suppressing a decrease in power transmission efficiency. .

また、本発明の実施の形態に係る無線電力伝送装置2は、送電器300の第1の共振器列310の内、入力部320と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用い、受電器400の第2の共振器列410の内、出力部420と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用いることができる。 In addition, the wireless power transmission device 2 according to the embodiment of the present invention includes the resonator RF at the other end that is located at an end different from the one connected to the input unit 320 in the first resonator array 310 of the power transmitter 300. 2 , the resonator having the maximum unloaded Q value is used. The second resonator array 410 of the power receiver 400 has no resonance at the other end of the resonator RF 3 located at a different end from the one connected to the output unit 420. A resonator having a maximum load Q value can be used.

なお、図1に示した上記実施形態においても、上記構成を採用することができる。たとえば、図1の本発明の実施の形態に係る無線電力伝送装置1は、送電器100の第1の共振器列110の内、入力部120と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用い、または、受電器200の第2の共振器列210の内、出力部220と繋がる一端と異なる端部に位置する他端の共振器RFn+1に無負荷Q値が最大の共振器を用いることができる。 Note that the above-described configuration can also be adopted in the embodiment shown in FIG. For example, the wireless power transmission device 1 according to the embodiment of the present invention shown in FIG. 1 includes the other end of the first resonator array 110 of the power transmitter 100 that is located at a different end from the one connected to the input unit 120. A resonator having a maximum unloaded Q value is used as the resonator RF n or the other end of the second resonator array 210 of the power receiver 200 is located at a different end from the one connected to the output unit 220. A resonator having a maximum unloaded Q value can be used as the resonator RF n + 1 .

また、無負荷Q値の高い共振器は大型化する傾向にある。従って、大型化を抑制するためには、限られた無負荷Q値の共振器の中で最適な無負荷Q値の配分を考慮する必要がある。
図7の本実施形態の無線電力伝送装置2において、送電器300の共振器302の数と受電器400の共振器402の数が共に等しく2個の場合に、共振器の無負荷Q値の組合せに依存する、周波数帯域内の電力伝送効率の最大値を図8に図示した。なお、比帯域1%のバターワース型で計算し、4つの共振器の無負荷Q値Qを1000または100で組み合わせ、(a)から(j)の場合分けを行った。
Further, a resonator having a high unloaded Q value tends to be enlarged. Therefore, in order to suppress the increase in size, it is necessary to consider the optimum distribution of the no-load Q value in the limited resonator having the no-load Q value.
In the wireless power transmission device 2 of the present embodiment in FIG. 7, when the number of the resonators 302 of the power transmitter 300 and the number of the resonators 402 of the power receiver 400 are both equal, the unloaded Q value of the resonator The maximum power transmission efficiency within the frequency band depending on the combination is shown in FIG. Incidentally, calculated in fractional bandwidth of 1% Butterworth, a combination of four of the unloaded Q value Q U of the resonator at 1000 or 100, it was divided case of (a) from (j).

なお、この場合分けにおいて、受動回路の相反性を考慮して電力伝送効率が同じになる場合を予め取り除いた。たとえば、(QU1,QU2,QU3,QU4)=(100,1000,1000,1000)の場合は(b)の(QU1,QU2,QU3,QU4)=(1000,1000,1000,100)と同一の電力伝送効率となるために、図8には記載せず、省略してある。 In this case classification, the case where the power transmission efficiency is the same in consideration of the reciprocity of the passive circuit was previously removed. For example, (Q U1, Q U2, Q U3, Q U4) = (100,1000,1000,1000) of the case of (b) (Q U1, Q U2, Q U3, Q U4) = (1000,1000 , 1000, 100), the power transmission efficiency is not shown in FIG.

(a)のように全ての共振器のQ値を高くすることができれば、最大の効率を得ることができるが、その場合装置の大型化を招いてしまう。
そこで、たとえば、Q値の小さい共振器を1個用いて大型化を抑制する(b)と(c)の場合や、さらに2個用いる(d)から(g)の場合、3個用いる(h)と(i)の場合を想定する。各々比較すると、4つの共振器のうち、2番目と3番目の共振器に無負荷Q値の高い共振器を配置した場合に、1番目と4番目の共振器に無負荷Q値の高い共振器を配置した場合に比較して、電力伝送効率が高くなることが分る。
If the Q value of all the resonators can be increased as shown in (a), the maximum efficiency can be obtained, but in this case, the apparatus is increased in size.
Therefore, for example, in the case of (b) and (c) which suppresses enlargement by using one resonator having a small Q value, and in the case of (d) to (g) where two are used, three are used (h ) And (i) are assumed. In comparison, when a resonator having a high unloaded Q value is arranged in the second and third resonators among the four resonators, resonances having a high unloaded Q value are arranged in the first and fourth resonators. It can be seen that the power transmission efficiency is higher compared to the case where the device is arranged.

従って、本発明によれば、送電器300の共振器302の数と、受電器400の共振器402の数が等しく2個であり、入力部320と繋がる一端と異なる端部に位置する他端の共振器RF、または、出力部220と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用いることで、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離d(図7)を長距離化できる無線電力伝送装置1を提供することができる。さらに、本発明によれば、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。 Therefore, according to the present invention, the number of the resonators 302 of the power transmitter 300 is equal to the number of the resonators 402 of the power receiver 400, and the other end is located at a different end from the one connected to the input unit 320. resonator RF 2, or, when the unloaded Q value in the resonator RF 4 of the other end located at one end different from an end portion connected to the output unit 220 using the maximum of the resonator to suppress an increase in size of the apparatus At the same time, it is possible to provide the wireless power transmission device 1 that can increase the distance d 2 (FIG. 7) between the adjacent resonators between the power transmitter 300 and the power receiver 400 while suppressing a decrease in power transmission efficiency. Furthermore, according to the present invention, it is possible to provide a wireless power transmission device with less variation in power transmission efficiency with respect to variation in the distance between adjacent resonators.

以上説明したように、本発明によれば、上記実施形態と同様な効果を奏する無線電力伝送装置を提供することができる。   As described above, according to the present invention, it is possible to provide a wireless power transmission device that exhibits the same effects as those of the above embodiment.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
たとえば、隣接共振器間結合係数の小さい順に、無負荷Q値の高い共振器を配置することが望ましい。さらに隣接共振器間結合係数の逆数に比例して隣接共振器の無負荷Q値を配分することが望ましい。
As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
For example, it is desirable to arrange resonators with high unloaded Q values in ascending order of coupling coefficient between adjacent resonators. Furthermore, it is desirable to distribute the unloaded Q value of the adjacent resonators in proportion to the reciprocal of the coupling coefficient between adjacent resonators.

図7を用いて、本発明の無線電力伝送装置の実施例について以下に説明する。
まず、図7の左から入力された電力Pが、入力部320を通って、外部Q値Qe−inを通してインピーダンス整合して共振器RFを共振させる。共振器RFと共振器RFとの間は磁界を通して共鳴させ、その結合係数はk1,2とする。共振器RFが形成する磁界は、結合係数k2,3を通して共振器RFを共鳴させ、共振器RFが共振する。さらに共振器RFが形成する磁界は、結合係数k3,4を通して共振器RFを共鳴させ、共振器RFが共振する。
An embodiment of the wireless power transmission apparatus of the present invention will be described below with reference to FIG.
First, the power P i input from the left in FIG. 7 passes through the input unit 320 and impedance-matches through the external Q value Q e-in to resonate the resonator RF 1 . The resonator RF 1 and the resonator RF 2 are resonated through a magnetic field, and the coupling coefficient is k 1 and 2 . The magnetic field formed by the resonator RF 2 resonates the resonator RF 3 through the coupling coefficient k 2 , 3 , and the resonator RF 3 resonates. Further, the magnetic field formed by the resonator RF 3 causes the resonator RF 4 to resonate through the coupling coefficient k 3 , 4 , and the resonator RF 4 resonates.

最後に、共振器RFと出力部420の間の外部Q値Qe−outを通して出力部に電力Pが伝送される。この際、入力部320と共振器RF、あるいは共振器RFと出力部420の電磁界結合には、ギャップ結合を用いてもよいし、タップ結合を用いてもよく、いずれの場合でもインピーダンス整合を取ることできる。共振器RFや共振器RFは、たとえば小型化のため、他の共振器RFおよび共振器RFより、少し小さい無負荷Q値の共振器を用いてもよい。 Finally, electric power Po is transmitted to the output unit through the external Q value Q e-out between the resonator RF 4 and the output unit 420. At this time, gap coupling or tap coupling may be used for electromagnetic coupling between the input unit 320 and the resonator RF 1 , or between the resonator RF 4 and the output unit 420. Can be consistent. As the resonator RF 1 and the resonator RF 4 , for example, a resonator having a Q value slightly smaller than that of the other resonators RF 2 and RF 3 may be used in order to reduce the size.

一方、上述したように、共振器RFと共振器RFは、その間の距離dをなるべく長くするため、できるだけ高い無負荷Q値の共振器を用いることが望ましい。なお、所望の結合係数を実現するため、予め結合係数の共振器間の相対位置依存性や相対角度依存性を測定しておく。この際、送電器300や受電器400を小型化するために、共振器RFと共振器RFの角度を意図的にずらすなど考えられるが、これらのアイディアは帯域通過フィルタの小型化のために以前から検討されており、そのアイディアを流用することができる。外部Q値Qe−inやQe−outも、予め入力部320と共振器RFの間や共振器RFと出力部420の間でその位置依存性などを測定しておき、所望の値を得ることができる。 On the other hand, as described above, it is desirable that the resonator RF 2 and the resonator RF 3 use a resonator having a high unloaded Q value as much as possible in order to make the distance d 2 between them as long as possible. In order to realize a desired coupling coefficient, the relative position dependence and relative angle dependence of the coupling coefficient between the resonators are measured in advance. At this time, in order to reduce the size of the power transmitting device 300 and the power receiver 400, it can be considered, such as intentionally shifting the angle of the resonator RF 1 and the resonator RF 2, for miniaturization of these ideas bandpass filter Has been studied for a long time, and the idea can be diverted. The external Q value Q e-in and Q e-out are also measured in advance between the input unit 320 and the resonator RF 1 or between the resonator RF 4 and the output unit 420 in order to obtain a desired value. A value can be obtained.

一方で、所望の結合係数は、予め用いる共振器の無負荷Q値と必要な帯域幅、などから、相当するフィルタのタイプを決め、モード結合理論により、計算しておくことができる。さらに、伝達関数を計算して、所望の特性が得られることを確認しておくとよい。また、電力伝送で用いる周波数から、共振器の中心周波数や帯域幅は決定することができる。   On the other hand, the desired coupling coefficient can be calculated by mode coupling theory by determining the corresponding filter type from the unloaded Q value of the resonator used in advance and the required bandwidth. Further, it is preferable to confirm that desired characteristics can be obtained by calculating a transfer function. The center frequency and bandwidth of the resonator can be determined from the frequency used for power transmission.

たとえば、ISM帯(Industry Science Medical band)である周波数13.56MHzを、共振器302および共振器402の中心周波数、すなわち共振周波数に選ぶことができる。この際、共振器302および共振器402の中心周波数の精度は高ければ高いほどよいが、共振周波数の1/Qより十分小さい、1kHz以下の単位で揃っていれば大きな差異はでない。本明細書では、このような大きな差異のでない状況を「略同一」と称している。 For example, a frequency of 13.56 MHz which is an ISM band (Industry Science Medical band) can be selected as the center frequency of the resonator 302 and the resonator 402, that is, the resonance frequency. At this time, the higher the accuracy of the center frequency of the resonator 302 and the resonator 402 is, the better. However, there is no significant difference as long as they are arranged in units of 1 kHz, which is sufficiently smaller than 1 / Q u of the resonance frequency. In the present specification, a situation that does not have such a large difference is referred to as “substantially the same”.

本実施例において、共振器RFと共振器RFの無負荷Q値は785、共振器RFと共振器RFの無負荷Q値は1215とする。且つ、結合係数はk1,2=k3,4=0.008031、k2,3=0.005169を選択する。この場合、共振器の無負荷Q値を一律1000とした場合であって、比帯域1%(表1のk1,2=k3,4=0.008409、k2,3=0.005412)の場合の電力伝送効率59.46%(図8)と同じ電力伝送効率が、より小さいk2,3の値(0.005169)で得られる。すなわち、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化できる。 In this embodiment, the unloaded Q value of the resonator RF 1 and the resonator RF 4 is 785, and the unloaded Q value of the resonator RF 2 and the resonator RF 3 is 1215. In addition, k 1,2 = k 3,4 = 0.008031, and k 2,3 = 0.005169 are selected as the coupling coefficients. In this case, the no-load Q value of the resonator is uniformly set to 1000, and the specific band is 1% (in Table 1, k 1,2 = k 3,4 = 0.008409, k 2,3 = 0.005412). the same power transmission efficiency and the power transmission efficiency 59.46% (Fig. 8) in the case of a) is obtained in a smaller value of k 2,3 (.005169). That is, while suppressing a decrease in power transmission efficiency and a long distance the adjacent resonators distance d 2 between the power transmitting device 300 and the power receiver 400.

結合係数k1,2およびk3,4を等しくするためには、共振器間距離、共振器間相対角度、共振器間の位置ずれを調整したり、共振器間に誘電体、磁性体、または金属を挿入することなどにより実現できる。 In order to make the coupling coefficients k 1, 2 and k 3 , 4 equal, the distance between the resonators, the relative angle between the resonators, the positional deviation between the resonators are adjusted, or the dielectric, magnetic material, Alternatively, it can be realized by inserting a metal.

図9は、本発明の効果を説明するための計算結果を示す図である。横軸は無負荷Q値の和が4個で4000に決まっている場合の4個の共振器の無負荷Q値の組合せを示す。縦軸はその際に得られる電力伝送効率の通過帯域内での最大値を示す。   FIG. 9 is a diagram showing a calculation result for explaining the effect of the present invention. The horizontal axis shows the combination of the no-load Q values of the four resonators when the sum of the no-load Q values is set to 4000. The vertical axis represents the maximum value of the power transmission efficiency obtained at that time in the passband.

図9に示す通り、k1,2=k3,4=0.008031、k2,3=0.005169に固定した条件で、且つ共振器RFまたは共振器RFの無負荷Q値と、共振器RFまたは共振器RFの無負荷Q値との和を一定の2000とした場合に、無負荷Q値の組合せによる電力伝送効率の変化を示す。この図に示す通り、共振器RFまたは共振器RFの無負荷Q値が785、共振器RFまたは共振器RFの無負荷Q値が1215の場合に最大の電力伝送効率59.46%が得られる。この値は、共振器RFまたは共振器RFの無負荷Q値と、共振器RFまたは共振器RFの無負荷Q値とを和を一定の2000として、隣接共振器間結合係数の逆数の1/k1,2と1/k2,3の割合で配分した値である。
このように、隣接共振器間結合係数の小さい順に、無負荷Q値の高い共振器を配置することが望ましい。さらに、隣接共振器間結合係数の逆数に比例して隣接共振器の無負荷Q値を配分することが望ましい。
As shown in FIG. 9, the unloaded Q value of the resonator RF 1 or the resonator RF 4 is set under the condition that k 1,2 = k 3,4 = 0.008031, k 2,3 = 0.005169, and When the sum of the resonator RF 2 or the resonator RF 3 and the no-load Q value is constant 2000, the change in the power transmission efficiency due to the combination of the no-load Q values is shown. As shown in this figure, when the unloaded Q value of the resonator RF 1 or the resonator RF 4 is 785 and the unloaded Q value of the resonator RF 2 or the resonator RF 3 is 1215, the maximum power transfer efficiency 59.46 is obtained. % Is obtained. This value is obtained by setting the unloaded Q value of the resonator RF 1 or the resonator RF 4 and the unloaded Q value of the resonator RF 2 or the resonator RF 3 to be a constant 2000, and the coupling coefficient between adjacent resonators. It is a value distributed at a ratio of 1 / k 1,2 of the reciprocal and 1 / k 2,3 .
As described above, it is desirable to arrange resonators having a high unloaded Q value in ascending order of coupling coefficient between adjacent resonators. Furthermore, it is desirable to distribute the unloaded Q value of adjacent resonators in proportion to the inverse of the coupling coefficient between adjacent resonators.

比較例として、非特許文献1の図3に示されるスパイラルコイル共振器の線間距離g=2cmの場合の結合係数と共振器間距離依存性を用いた場合、比帯域1.5%とすると、共振器数n+mが2個の場合、k1,2=0.0106となり、共振器間距離は52cmとなる。
一方、同じく比帯域1.5%で、本発明に従って、共振器数n+mを4個とした場合、k2,3=0.00812となり、共振器間距離は58.35cmとなり、比較例の場合より12%、隣接共振器間距離を伸ばすことができる。
As a comparative example, when using the coupling coefficient and the inter-resonator distance dependency when the inter-line distance g = 2 cm of the spiral coil resonator shown in FIG. When the number of resonators n + m is 2, k 1,2 = 0.0106, and the distance between the resonators is 52 cm.
On the other hand, when the number of resonators n + m is 4 according to the present invention with a specific bandwidth of 1.5%, k 2,3 = 0.00812, and the distance between resonators is 58.35 cm. Thus, the distance between adjacent resonators can be increased by 12%.

なお、比帯域1.5%とした理由は非特許文献1の図3に示されるデータ範囲により決めたものである。上述の計算では12%長距離化したが、非特許文献2の図16に記載のように共振器形状を工夫し、より緩やかな傾斜の結合係数の共振器間距離依存性を実現すれば、さらに長距離化の効果は大きくなることは言うまでもない。   The reason why the specific bandwidth is 1.5% is determined by the data range shown in FIG. In the above calculation, the distance is increased by 12%. However, if the shape of the resonator is devised as shown in FIG. 16 of Non-Patent Document 2, and the inter-resonator distance dependency of the coupling coefficient having a gentler slope is realized, Needless to say, the effect of increasing the distance is increased.

なお、本発明の実施例では磁界による共鳴の場合を記述したが、共振器が誘電体共振器であるような場合には電界による共鳴となり、本発明が適用されることは言うまでもない。   In the embodiment of the present invention, the case of resonance by a magnetic field has been described, but it goes without saying that when the resonator is a dielectric resonator, resonance is caused by an electric field and the present invention is applied.

以上説明したように、本発明によれば、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、無線電力伝送装置1内の隣接共振器間距離、特に送電器100と受電器200の間の隣接共振器間距離dを長距離化することができるとともに、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。 As described above, according to the present invention, the distance between adjacent resonators in the wireless power transmission device 1, particularly the power transmitter 100, can be reduced while suppressing the increase in size of the device and the decrease in power transmission efficiency. The distance d 1 between adjacent resonators between the electric devices 200 can be increased, and a wireless power transmission device with less variation in power transmission efficiency with respect to variation in the distance between adjacent resonators can be provided. .

なお、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置としては、共振器数n+mを奇数とすることも考えられる。この場合、周波数特性上、共振周波数、あるいは中心周波数において、必ず伝送効率の極大値を得ることができる。したがって、共振周波数において、電力を伝送する場合には、隣接共振器間距離が変動しても必ず伝送効率の極大値で電力伝送できるため、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。しかしながら、長距離化等の他の効果を得られなくなる。   Note that, as a wireless power transmission device in which the variation in power transmission efficiency is small with respect to the variation in the distance between adjacent resonators, the number of resonators n + m may be an odd number. In this case, the maximum value of the transmission efficiency can always be obtained at the resonance frequency or the center frequency in terms of frequency characteristics. Therefore, when power is transmitted at the resonance frequency, even if the distance between adjacent resonators varies, power transmission can always be performed with the maximum value of the transmission efficiency, and thus a wireless power transmission device with less variation in power transmission efficiency is provided. be able to. However, other effects such as long distance cannot be obtained.

以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。   While the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

1 無線電力伝送装置
100 送電器
102、RF、・・・、RF 共振器
110 第1の共振器列
112 一端
114 他端
120 入力部
122 入力端子
200 受電器
202、RFn+1、・・・、RFn+m 共振器
210 第2の共振器列
212 一端
214 他端
220 出力部
222 出力端子
隣接共振器間距離
共振周波数
無負荷Q値
k 結合係数
e−in、Qe−out 外部Q値
2 無線電力伝送装置
300 送電器
302、RF、RF 共振器
310 第1の共振器列
320 入力部
400 受電器
402、RF、RF 共振器
410 第2の共振器列
420 出力部
隣接共振器間距離
1 wireless power transmission apparatus 100 power transmitting device 102, RF 1, ···, RF n resonators 110 first resonator column 112 one end 114 other end 120 input unit 122 input terminal 200 receiving unit 202, RF n + 1, ··· , RF n + m resonator 210 between the second resonator column 212 one end 214 other end 220 output section 222 output terminal d 1 adjacent resonator length f o resonance frequency Q u unloaded Q value k coupling coefficient Q e-in, Q e -out external Q value 2 wireless power transmission unit 300 transmitting unit 302, RF 1, RF 2 resonator 310 first resonator column 320 input unit 400 receiving unit 402, RF 3, RF 4 resonator 410 second resonator Column 420 Output unit d 2 Distance between adjacent resonators

Claims (6)

送電器と、前記送電器から伝送された電力を取り出す受電器と、を備え、
前記送電器は、
共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列と、
周波数が該共振周波数と略同一の周波数成分からなる電力を発生させて前記発生された電力を前記第1の共振器列の一端に供給する入力部と、を含み、
前記受電器は、
前記共振周波数と共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列と、
前記送電器から伝送された前記電力を、前記第2の共振器列の一端から取り出す出力部と、を含み、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とする無線電力伝送装置。
A power transmitter, and a power receiver that extracts power transmitted from the power transmitter,
The power transmitter
A first resonator array in which at least two resonators having substantially the same resonance frequency resonate through an electric field or a magnetic field generated by the resonator and are coupled in series;
An input unit that generates power having a frequency component whose frequency is substantially the same as the resonance frequency, and supplies the generated power to one end of the first resonator array;
The power receiver
A second resonator array in which at least two resonators having substantially the same resonance frequency as the resonance frequency resonate through an electric field or a magnetic field generated by the resonator and are coupled in series;
An output unit that extracts the power transmitted from the power transmitter from one end of the second resonator array;
Of the first resonator row of the power transmitter, the resonator at the other end located at a different end from the one end connected to the input unit, and the second resonator row of the power receiver, A wireless power transmission device in which a resonator at the other end located at a different end from the one end connected to the output unit is resonated through an electric field or a magnetic field to form a coupled state in series.
請求項1に記載の無線電力伝送装置において、
前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しい無線電力伝送装置。
The wireless power transmission device according to claim 1,
The wireless power transmission apparatus in which the number of the resonators of the power transmitter and the number of the resonators of the power receiver are both equal.
請求項2に記載の無線電力伝送装置において、
前記送電器の前記第1の共振器列の、前記入力部側から順に数えた各々の結合係数が、
前記受電器の前記第2の共振器列の、前記出力部側から順に数えた結合係数と、
各々同じ順番の結合係数間で略同一の値を取る無線電力伝送装置。
The wireless power transmission device according to claim 2,
Each coupling coefficient of the first resonator row of the power transmitter, counted in order from the input unit side,
Coupling coefficients of the second resonator array of the power receiver counted from the output unit side in order,
A wireless power transmission apparatus that takes substantially the same value between coupling coefficients in the same order.
請求項3に記載の無線電力伝送装置において、
前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく2個である無線電力伝送装置。
The wireless power transmission device according to claim 3,
The wireless power transmission apparatus in which the number of the resonators of the power transmitter and the number of the resonators of the power receiver are both equal to two.
請求項1に記載の無線電力伝送装置において、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる前記端部に位置する共振器に無負荷Q値が最大の共振器を用い、または、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる前記端部に位置する共振器に無負荷Q値が最大の共振器を用いる無線電力伝送装置。
The wireless power transmission device according to claim 1,
A resonator having a maximum no-load Q value is used as a resonator located at the end different from the one end connected to the input unit in the first resonator row of the power transmitter, or the power receiver A wireless power transmission device using a resonator having a maximum unloaded Q value as a resonator located at the end portion different from the one end connected to the output portion in the second resonator row.
共振周波数が略同一の少なくとも2個の共振器を含む第1の共振器列と、前記第1の共振器列の一端に設けられた入力部とを含む送電器と、前記共振周波数と共振周波数が略同一の少なくとも2個の共振器を含む第2の共振器列と、前記送電器から伝送された電力を前記第2の共振器列の一端から取り出す出力部と、を含む受電器と、を設け、
前記送電器の前記第1の共振器列を、当該共振器の発生する電界または磁界を通して共鳴させ、直列の結合状態とし、
前記送電器の前記入力部が、周波数が該共振周波数と略同一の周波数成分からなる電力を発生させ、
前記送電器の前記入力部が前記発生した電力を前記第1の共振器列の一端に供給し、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
前記受電器の前記出力部が、前記送電器から伝送された前記電力を、前記第2の共振器列の前記一端から取り出す無線電力伝送方法。
A power transmitter including a first resonator array including at least two resonators having substantially the same resonance frequency, and an input provided at one end of the first resonator array; and the resonance frequency and the resonance frequency. A power receiver including: a second resonator array including at least two resonators substantially identical to each other; and an output unit that extracts power transmitted from the power transmitter from one end of the second resonator array; Provided,
The first resonator array of the power transmitter is resonated through an electric field or a magnetic field generated by the resonator to be in a series coupled state,
The input unit of the power transmitter generates power having a frequency component whose frequency is substantially the same as the resonance frequency,
The input of the power transmitter supplies the generated power to one end of the first array of resonators;
Of the first resonator row of the power transmitter, the resonator at the other end located at a different end from the one end connected to the input unit, and the second resonator row of the power receiver, Resonating through the electric field or magnetic field with the resonator at the other end located at a different end from the one end connected to the output unit, in a series coupled state,
The wireless power transmission method, wherein the output unit of the power receiver extracts the power transmitted from the power transmitter from the one end of the second resonator array.
JP2011164852A 2011-07-27 2011-07-27 Wireless power transmission apparatus and method Active JP5742548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164852A JP5742548B2 (en) 2011-07-27 2011-07-27 Wireless power transmission apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164852A JP5742548B2 (en) 2011-07-27 2011-07-27 Wireless power transmission apparatus and method

Publications (2)

Publication Number Publication Date
JP2013031272A true JP2013031272A (en) 2013-02-07
JP5742548B2 JP5742548B2 (en) 2015-07-01

Family

ID=47787772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164852A Active JP5742548B2 (en) 2011-07-27 2011-07-27 Wireless power transmission apparatus and method

Country Status (1)

Country Link
JP (1) JP5742548B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
US20110175456A1 (en) * 2010-01-15 2011-07-21 Sony Corporation Wireless power supplying rack
JP2011160634A (en) * 2010-02-04 2011-08-18 Casio Computer Co Ltd Power transmission system and power transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065732A2 (en) * 2009-11-30 2011-06-03 Samsung Electronics Co., Ltd. Wireless power transceiver and wireless power system
US20110175456A1 (en) * 2010-01-15 2011-07-21 Sony Corporation Wireless power supplying rack
JP2011160634A (en) * 2010-02-04 2011-08-18 Casio Computer Co Ltd Power transmission system and power transmission device

Also Published As

Publication number Publication date
JP5742548B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5675449B2 (en) Dielectric waveguide filter
Awai et al. A simple and versatile design method of resonator-coupled wireless power transfer system
JP2012182981A (en) Wireless energy exchange system and method
US9306258B2 (en) Mixed-mode cavity filter
JP5667019B2 (en) Wireless power transmission apparatus and method
Chu et al. ${\rm TE} _ {01\delta} $-Mode Dielectric-Resonator Filters With Controllable Transmission Zeros
US20180159194A1 (en) Coupling window, dielectric waveguide filter, and resonator assembly
CN102509822A (en) Double-band-pass microstrip filter
US8942774B2 (en) Radio-frequency filter comprising an even mode resonance of a same phase inside the bandwidth and an odd mode resonance of a reverse phase outside the bandwidth
JP5982493B2 (en) Semi-coaxial resonator
JP5625825B2 (en) Signal transmission device, filter, and inter-board communication device
JP5081284B2 (en) Signal transmission device, filter, and inter-board communication device
KR101616768B1 (en) Waveguide resonator filter with notch
JP5742548B2 (en) Wireless power transmission apparatus and method
Stevens A magneto-inductive wave wireless power transfer device
JP6262437B2 (en) Polarized bandpass filter
US20220045412A1 (en) Polarized waveguide filter and antenna feeding circuit
JP5340016B2 (en) Waveguide bandpass filter
US20170201021A1 (en) Broadband antenna
CN202434676U (en) Dual passband micro-strip filter device and dual passband micro-strip filter
US9627733B2 (en) Millimeter waveband filter
JP5966238B2 (en) Multimode resonator, multimode filter, and wireless communication apparatus
KR101569728B1 (en) Cavity Filter with Combined Mode
KR101221418B1 (en) Mono block dielectric filter including metamaterial structure and Communication relay apparatus using it
EP2827439A1 (en) A method for equalizing the distortion caused by losses in couplings in a microwave filter and a filter produced with said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150